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This paper studies a periodic-review single-commodity setup-cost inventory model with
backorders and holding/backlog costs satisfying quasiconvexity assumptions. We show
that the Markov decision process for this inventory model satisfies the assumptions that
lead to the validity of optimality equations for discounted and average-cost problems and
to the existence of optimal (s, S) policies. In particular, we prove the equicontinuity of
the family of discounted value functions and the convergence of optimal discounted lower
thresholds to the optimal average-cost lower threshold for some sequence of discount fac-
tors converging to 1. If an arbitrary nonnegative amount of inventory can be ordered,
we establish stronger convergence properties: (i) the optimal discounted lower thresholds
converge to optimal average-cost lower threshold; and (ii) the discounted relative value
functions converge to average-cost relative value function. These convergence results previ-
ously were known only for subsequences of discount factors even for problems with convex
holding/backlog costs. The results of this paper also hold for problems with fixed lead
times.

Keywords: average-cost optimality equations, inventory control, relative value functions, (s,.S)
policies

1. INTRODUCTION

In this paper, we study a periodic-review single-commodity setup-cost inventory model with
backorders and holding/backlog costs satisfying quasiconvexity assumptions. We show that
the Markov decision process for this inventory model satisfies the assumptions that lead to
the validity of optimality equations for discounted and average-cost problems and to the
existence of optimal (s, S) policies. In particular, we prove the equicontinuity of the family
of discounted value functions and the convergence of optimal discounted lower thresholds to
the optimal average-cost lower threshold for some sequence of discount factors converging
to 1. If an arbitrary nonnegative amount of inventory can be ordered, we establish stronger
convergence properties: (i) the optimal discounted lower thresholds s, converge to an opti-
mal average-cost lower threshold s; and (ii) the discounted relative value functions converge
to an average-cost relative value function. These convergence results previously were known
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2 Feinberg and Liang

only for subsequences of discount factors even for problems with convex holding/backlog
costs. The results of this paper hold for problems with deterministic positive lead times.

For problems with convex holding/backlog cost functions, Scarf [22] introduced the
concept of K-convexity to prove the optimality of (s,.S) policies for finite-horizon prob-
lems with continuous demand and convex holding/backlog costs. Zabel [27] indicated some
gaps in Scarf [22] and corrected them. References [2-6,11-13,18,22,24,26] deal with con-
vex or linear holding/backlog cost functions. Iglehart [18] extended Scarf’s [22] results
to infinite-horizon problems with continuous demand. Veinott and Wagner [26] proved
the optimality of (s,S) policies for both finite-horizon and infinite-horizon problems with
discrete demand. Beyer and Sethi [3] completed the missing proofs in Iglehart [18] and
Veinott and Wagner [26]. Chen and Simchi-Levi [4,5] studied coordinating inventory con-
trol and pricing problems and proved the optimality of (s,.S) policies without assuming
that the demand is discrete or continuous. Under certain assumptions, their results imply
the optimality of (s,S) policies for problems without pricing. Beyer et al. [2] and Huh
et al. [17] studied problems with parameters depending on exogenous factors modeled by
a Markov chain. Additional references can be found in monographs by Porteus [20] and
Zipkin [29].

The analysis of periodic-review inventory models is based on the theory of Markov
Decision Processes (MDPs). However, most of inventory control papers use only basic facts
from the MDP theory, and the corresponding general results had been unavailable for a long
time. Feinberg et al. [7] developed the results on MDPs with Borel state spaces, possibly
noncompact action sets, and possibly unbounded one-step costs. Discrete-time periodic-
review inventory control problems are particular examples of such MDPs; see Feinberg [6]
for details. Feinberg and Lewis [11] obtained additional convergence results for convergence
of optimal actions for MDPs and established the optimality of (s, S) policies for inventory
control p roblems as well as other results. Feinberg and Liang [12] provided descriptions
of optimal policies for all possible values of discount factors (for some parameters, opti-
mal (s,S) policies may not exist for discounted and finite-horizon problems). Feinberg and
Liang [13] proved that discrete-time periodic-review inventory models with backorders and
convex holding /backlog costs satisfy the equicontinuity assumption, and this implies several
additional properties of optimal average-cost policies including the validity of average-cost
optimality equations (ACOEs).

Veinott [25] studied the nonstationary setup-cost inventory model with a fixed lead time,
backorders, and holding/backlog costs satisfying quasiconvexity assumptions. Veinott [25]
proved the optimality of (s, S) policies for finite-horizon problems and also provided bounds
on the values of the optimal thresholds s and S. Zheng [28] proved the optimality of
(s,S) policies for models with quasiconvex cost functions and discrete demand under both
discounted and average cost criteria by constructing a solution to the optimality equations.

In this paper, we consider the infinite-horizon stationary inventory model with hold-
ing /backlog costs satisfying quasiconvexity assumptions. These quasiconvexity assumptions
are introduced by Veinott [25] for finite-horizon nonstationary models. Zheng [28] and
Chen and Simchi-Levi [5] considered a slightly stronger quasiconvexity assumption for
infinite-horizon stationary models. For inventory model with holding/backlog costs satis-
fying quasiconvexity assumptions, this paper establishes convergence properties of optimal
discounted thresholds for discounted problems to the corresponding thresholds for average-
cost problems. Some of the results are new even for problems with convex holding/backlog
costs. While convergence of optimal thresholds and relative discounted value functions was
known only for subsequences of discount factors (see [2,11,13,17]), here we show that conver-
gence of lower thresholds and discounted value functions takes place for all discount factors
tending to 1.
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STOCHASTIC SETUP-COST INVENTORY MODEL 3

The rest of the paper is organized in the following way. Section 2 describes the setup-cost
inventory model and introduces the assumptions used in this paper. Section 3 establishes
the optimality of (sa,S,) policies for the infinite-horizon problem with the discount factor
«. Section 4 verifies average-cost optimality assumptions and the equicontinuity conditions
for discounted relative value functions. Section 5 establishes the validity of ACOEs for
the inventory model and the optimality of (s,.S) policies under the average cost criterion.
Section 6 establishes the convergence of discounted optimal lower thresholds s, when the
discount factor « converges to 1, to the average-cost optimal lower threshold s. Section 7
establishes the convergence of discounted relative value functions, when the discount factor
converges to 1. Section 8 presents a reduction from the inventory model with constant lead
times to the model without lead times using Veinott’s [25] approach. The proofs of all the
lemmas and corollaries in this paper are presented in Appendices.

2. SETUP-COST INVENTORY MODEL WITH BACKORDERS: DEFINITIONS AND
ASSUMPTIONS

Let R denote the real line, Z denote the set of all integers, Ry :=[0,+00) and Ny :=
{0,1,2,...}. Consider the stochastic periodic-review setup-cost inventory model with back-
orders. At times ¢t =0,1,..., a decision-maker views the current inventory of a single
commodity and makes an ordering decision. Assuming zero lead times, the products are
immediately available to meet demand. The cost of ordering is incurred at the time of
delivery of the order. Demand is then realized, the decision-maker views the remaining
inventory, and the process continues. The unmet demand is backlogged. The demand and
the order quantity are assumed to be nonnegative. The objective is to minimize the infinite-
horizon expected total discounted cost for discount factor a € (0,1) and long-run average
cost per unit time for a = 1. The inventory model is defined by the following parameters:

1. K > 0 is a fixed ordering cost;
2. ¢ > 0 is the per unit ordering cost;

3. {D¢,t =1,2,...}is asequence of i.i.d. nonnegative finite random variables represent-
ing the demand at periods 0,1, .... We assume that E[D] < +o0 and P(D > 0) > 0,
where D is a random variable with the same distribution as Dy;

4. h(zx) is the holding/backlog cost per period if the inventory level is x. Assume
that: (i) the function E[h(z — D)] is finite and continuous for all x € X; and
(ii) E[h(x — D)] — +o0 as |z| — +o0.

Without loss of generality, assume that the function E[h(z — D)] is nonnegative. The
assumption P(D > 0) > 0 avoids the trivial case when there is no demand.

Now we formulate an MDP for this inventory model. The state and action spaces can
be either (i) X =R and A =Ry; or (ii) X =7Z and A = Ny, if the demand D takes only
integer values and only integer orders are allowed.

The dynamics of the system are defined by the equation

Tip1 =g +a; — Dy, t=0,1,2,..., (2.1)

where x; and a; denote the current inventory level and the ordered amount at period t,
respectively. The transition probability ¢(dz;41|x¢, a;) for the MDP defined by the stochastic

Downloaded from https://www.cambridge.org/core. SUNY Stony Brook, on 19 Apr 2019 at 20:55:02, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964818000335


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000335
https://www.cambridge.org/core

4 Feinberg and Liang

equation (2.1) is
q(Blz¢,ar) = P(xy + a — Diyq € B) (2.2)

for each measurable subset B of R. The one-step expected cost is
c(z,a) = Klis501 + ca+E[h(z +a - D)], (v,a) € XxA, (2.3)

where 15 is an indicator of the event B.

Let H; = (X x A)t x X be the set of histories for t+ =0,1,.... Let II be the set of
all policies. A (randomized) decision rule at period ¢ =0,1,... is a regular transition
probability m; : Hy — A, that is, (i) m(-|h;) is a probability distribution on A, where
h; = (20, a0, 1, ...,a:—1,2¢), and (ii) for any measurable subset B C A, the function m;(B|-)
is measurable on H;. A policy 7 is a sequence (7, 71, ...) of decision rules. Moreover, 7 is
called non-randomized if each probability measure m;(-|h;) is concentrated at one point. A
non-randomized policy is called stationary if all decisions depend only on the current state.
According to the Ionescu Tulcea theorem (see Hernandez-Lerma and Lasserre [16, p. 178]),
given the initial state z, a policy 7 defines the probability distribution PJ on the set of all
trajectories Hyoo = (X x A)T°°. We denote by ET the expectation with respect to PT.

For a finite-horizon N = 0,1, ..., let us define the expected total discounted costs

U a(®) = EF

N—1
Z atc(xt,at)] , rzeX (2.4)
=0

where o € [0,1] is the discount factor and vf,(z) =0, z € X. When N = 400 and a €
[0,1), (2.4) defines the infinite-horizon expected total discounted cost denoted by v7(z).
Let v () := infremvZ(x), x € X. A policy 7 is called optimal for the respective criterion
with discount factor a if v ,(7) = vn,a (@) or v7 () = va(z) for all z € X.

The average cost per unit time is defined as

1
w’(z) := ljivmiup NUQJ(,@% reX (2.5)
— 100

Define the optimal value function w?¢(z) := inf e w™(x), x € X. A policy 7 is called

average-cost optimal if w™(z) = w*¢(z) for all z € X.
Recall the definition of quasiconvex functions.

DEFINITION 2.1: A function f is quasiconvex on a conver set X C R, if for all x, y € X,
and 0 <A <1

fz+ (1= N)y) < max{f(z), f(y)}.
For « € (0,1], let us define
ho(z) :=h(z) + (1 — a)cx + cE[D], =zeX. (2.6)

Note that since E[h(z — D)] — 400 as x — 400 and (1 —«a)é >0 for all o € (0,1], the
function Elhq(z — D)] = E[h(z — D)] + (1 — a)¢x + acE[D] tends to +oo as  — +oo for
all a € [0, 1]. In addition, for o € (0, 1] the function E[h,(x — D)] is continuous on X because
the functions E[h(z — D)] and (1 — )¢z are continuous on X.

Consider the following assumptions on the quasiconvexity or convexity of the cost
function.
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STOCHASTIC SETUP-COST INVENTORY MODEL 5
ASSUMPTION 1: There exists a* € [0,1) such that for all o € (a*,1]:

(i) The function Elh(x — D)] is quasiconver; and
(ii) limg——oo E[ho(x — D)] > K + inf,ex{E[ho(z — D)|}.

ASSUMPTION 2: The function h(-) is convex on X.

For the discounted criterion, consider the following assumption, which is weaker than
Assumption 1. Assumption 1 is used for the convergence of discounted-cost problems to the
average-cost problem.

ASSUMPTION 3: For a given o € (0,1] assume that:

(i) the function Elh(z — D)] is quasiconvex; and
(ii) limg—.— oo E[ha(x — D)] > K + inf,ex{E[ho(z — D)]}.

We recall that Veinott [25] considered quasiconvexity assumptions for finite-horizon
nonstationary problems. Being applied to stationary infinite-horizon problems, the corre-
sponding assumption is Assumption 3. For stationary infinite-horizon models and discrete
demands, Zheng [28] used a slightly stronger assumption, which is Assumption 3 with
inequality (ii) replaced with lim,_, o E[hy (2 — D)] = 4o0.

For a € [0, 1], if

lim E[hy(z — D)] > inggE[ha(x — D), (2.7)
r——00 xEe
then we define
2" := min {argmin{E[h, (z — D)]}}. (2.8)
zeX

Since the function E[h,(z — D)] is continuous, E[hq (2 — D)] — 400 as & — 400 and (2.7)
imply that [z2"| < +o0.

The following assumption is used to establish the convergence of the discounted optimal
lower thresholds and relative value functions in Sections 6 and 7, respectively.

ASSUMPTION 4: For a given « € (0,1], the function E[hy(x — D)] is strictly decreasing on
(—o00, 2] where ™1 s defined in (2.8).

We state the relationships between these assumptions in the following two lemmas.

LEMMA 2.2: Assumption 2 implies the validity of Assumption 1 with

ot e [max{l—i— lim th?’O}’l) (2.9)

Tr——00

and the validity of Assumption 4 for all o € (a*,1].

LEMMA 2.3: Assumption 1 implies Assumption 3 for a € (a*,1].
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6 Feinberg and Liang

3. SETUP-COST INVENTORY MODEL WITH DISCOUNTED COSTS

This section establishes the existence of optimal (s, S,) policies for the problems with
discounted costs stated in Theorem 3.6. We start this section by verifying the weak con-
tinuity of the transition probability ¢ defined in (2.2) and the K-inf-compactness of the
one-step cost function ¢ defined in (2.3). These properties stated in Assumption W*, imply
the validity of optimality equations and the convergence of value iterations for problems
with discounted costs; see Feinberg et al. [7, Theorem 4].

Recall that a function f: U — R U {+o0}, where U is a subset of a metric space U, is
called inf-compact, if for every A € R the level set {u € U: f(u) < A} is compact.

DEFINITION 3.1 Feinberg et al. [8, Definition 1.1], Feinberg [6, Definition 2.1]: A function
[ X' x A Ris called K-inf-compact, if for every nonempty compact subset K of X, the
Sfunction f: K x A +— R is inf-compact.

It is known for discounted MDPs that if the one-step cost function ¢ and transition
probability ¢ satisfy the Assumption W* below, then it is possible to write the optimality
equations for the finite-horizon and infinite-horizon problems, these equations define the
sets of stationary and Markov optimal policies for infinite and finite horizons, respectively,
Vo (x) = lmy_—yoo Un,o(2) for all € X, and the functions vy, N =1,2,..., and v, are
lower semicontinuous; see Feinberg et al. [7, Theorems 3, 4].

AssuMPTION W* (Feinberg et al. [7], Feinberg and Lewis [11], or Feinberg [6]):

(i) The function c is K-inf-compact and bounded below, and
(ii) the transition probability q(-|z,a) is weakly continuous in (x,a) € X X A, that
for every bounded continuous function f:X— R, the function f(z,a):=
fx Yq(dy|z, a) is continuous on X x A.

THEOREM 3.2: The inventory model satisfies Assumption W*, and the one-step cost
function ¢ is inf-compact.

PROOF: Since the function E[h(x — D)] is continuous and tends to +o00 as |z| — +oo, the
proof of Theorem 3.2 follows from the same arguments as in Feinberg and Lewis [11,
Theorem 5.3(1)] and Feinberg [6, p. 22] |

According to Feinberg and Lewis [11], since Assumption W* holds for the MDP corre-
sponding to the described inventory model, the optimality equations for the total discounted
costs can be written as

Vi41,0(2) = min {mgg[K + G oz +a), tha(x)} —cx, t=0,1,2,...,2€X, (3.1)

Vo (2) = min {?Zig[K + Golz + a)], Ga(x)} —er, zeX, (3.2)
where

Gio(x) :=cx +E[h(x — D)+ aE[v; o(z — D)], t=0,1,2,..., z €X, (3.3)

Go(2) := ez + E[h(z — D)] + aE[va(z — D)], z€X, (3.4)

and v q(xz) =0 for all x € X. Let G := G, t=1,2,..., or G:=G,. Then a* =0 is an
optimal action defined by (3.1) or (3.2) if G(x) < K + ( +a) for all a > 0. Also, a* >0

Downloaded from https://www.cambridge.org/core. SUNY Stony Brook, on 19 Apr 2019 at 20:55:02, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964818000335


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000335
https://www.cambridge.org/core

STOCHASTIC SETUP-COST INVENTORY MODEL 7

is an optimal action of the same equation if G(z) > K + G(z + a) for some a > 0 and
G(z + a*) = ming>o G(z,a). According to Feinberg et al. [7, Theorem 2], for a finite (infi-
nite) horizon problem there exists an optimal Markov (stationary) policy and the set of
optimal Markov (stationary) policies is defined by the set of optimal actions that achieve
the minimum in (3.1) ((3.2)). The following lemma states properties of the value functions.

LEMMA 3.3: Forx <y andt=1,2,...

Ve o(T) + e < v o(y) +cy+ K, (3.5)

v (x) + cx < wva(y) + cy + K, (3.6)
Gta(y) = Gra(z) 2 Elha(y — D)] — E[ha(z — D)] — akK, (3.7)
Ga(y) — Ga(2) 2 E[ha(y — D)] — E[ha(z — D)] — aK. (3.8)

The properties of the value functions stated in Lemma 3.3 imply that it is possible to
consider smaller action sets.

LEMMA 3.4: Let Assumption 3 hold for some « € (0,1). If a* is an optimal action defined
by (3.1) or (3.2) for some x € X, then a* € [0, max{S’ — x,0}], where

S* = inf{x > ™" : E[hy(z — D)] > K + E[hy (22 — D)]. (3.9)

Therefore, without loss of generality, it is possible to reduce the action sets A(x) to the
action sets A(z) = A(z) N [0, max{S} — x,0}], z € X.

Recall the definition of (s, .S) policies. Suppose f(x) is a lower semicontinuous function
such that liminf), o f(2) > K +inf,ex f(2). Let

S € argmin{ f(z)}, (3.10)
rzeX
s=1inf{z < S: f(z) < K+ f(9)}. (3.11)
DEFINITION 3.5: Let sy and Sy be real numbers such that s, < Sy, t =0,1,.... A policy is

called an (s, St) policy at step t if it orders up to the level Sy, if x; < s¢, and does not order,
if x4 > st. A Markov policy is called an (st,St) policy if it is an (s¢,St) policy at all steps
t=0,1,.... A policy is called an (s,S) policy if it is stationary and it is an (s,S) policy at
all stepst=0,1,....

In this section, we consider Assumption 3, which guarantees the optimality of (sq, Sa)
policies for infinite-horizon problems with the discount factor «, as this is stated in the
following theorem, the proof of which is delayed until later in this section.

THEOREM 3.6: Let Assumption 3 hold for some o € (0,1). For the infinite-horizon problem,
there exists an optimal (S, Sa) policy, where S, and s, are real numbers such that S,
satisfies (3.10) and sq is defined in (3.11) with f(z) = G4(x), z € X.

Remark 3.7 Under slightly stronger assumptions, this theorem is proved by Zheng [28] for
inventory models with integer demands and integer orders. Under Assumption 2 and some
other technical assumptions, this conclusion also follows from Chen and Simchi-Levi [5].
Under Assumption 2, Theorem 3.6 is proved in Feinberg and Liang [12, Theorem 4.4] with
a € (a*,1) for a* defined in (2.9). In addition, the structure of optimal policies is described
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8 Feinberg and Liang

in Feinberg and Liang [12, Theorem 4.4] for all a € [0,1). However, under Assumption 3
from this paper, if « € [0, a*), then the structure of optimal policies is currently not clear.

To prove the optimality of (s, S, ) policies, we first consider the same inventory model
with a terminal cost —cx, that is, each unit of stock left over can be discarded with the return
of ¢ and each unit of backlogged demand is satisfied at the cost ¢. By using Lemma 3.4,
for all z € X we reduce the action sets A(x) to the action sets A(:B) defined in the lemma.
For the model with terminal costs, the one-step cost function is the same as the original
problem and the expected total discounted cost is

N—1
Uy o(z) =K} Z oe(wy,ar) —aNexy|, zeX
t=0

In view of Lemma 3.4, the function 0% , is well-defined because E7[zxn] < max{S},z} for

each N =1,2,.... Then we transform the problem into the one with ¢ = 0 and follow the
induction proofs in Veinott [25] to establish properties for 9. Then, we shall also show that
Vo = Vg

The finite-horizon discounted cost optimality equations for the inventory model with
terminal costs —cx are the same as (3.1) with v o(z) =0, vy, and G4 replaced with
Up,a(x) = —Cx, Uy q, and C:'t,a fort=1,2,....

Then, following Veinott [25], we transform the model with the positive unit order-
ing cost ¢ and terminal cost —¢z into the model with zero unit and terminal costs and
holding/backlog costs h, defined in (2.6). The one-step cost function for the new model is

ca(z,a) = Klg4~0) + Elho(z 4 a — D)] (3.12)

and the expected total discounted cost is

U ,a(®) = EF

N—1
Z atca(mt,at)] , zeX
t=0

Since the function E[hy(z — D)] is quasiconvex, lim, . o, E[ho(x —D)] > K + inf,ex
E[ho(z — D)), and lim,_, o E[ho(x — D)] = 400, the function E[h,(x — D)] is bounded
below. Therefore, ¢, is bounded below and the new model satisfies Assumption W*. The
optimality equations for the new model are

Vt41.0(r) = min {m;g[K + Gz + a)), Gt,a(x)} , t=0,1,2,..., z €X| (3.13)

U () = min {ranZlg[K + Gol(z + a)), Ga($)} , reX (3.14)

where
Gt.a(2) = E[ho(z — D) + aB[0s.o(x — D)], t=0,1,2,..., 2 € X, (3.15)
Go(7) = E[ho(x — D)) + aE[v4(z — D)], z€X, (3.16)

and Uy o () = Do,o(x) + éx =0 for all x € X. The arguments in the proof of Lemma 3.4
imply that ming>¢ can be replaced with min, 4., in formulae (3.13) and (3.14).
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STOCHASTIC SETUP-COST INVENTORY MODEL 9

It is easy to see by induction that
U o(2) =0pa(x) +ex, zeX, (3.17)
Gioa(®) =GCGralx), t=01,2,..., z€X (3.18)
Since the validity of Assumption W* for the model with zero unit cost implies that o; o, — 4

as t — 400, in view of (3.17) and (3.18), we can define

Vo) = lim Oo(z) = lim Oy 4(x) —cx =0u(x) —cx. zeX (3.19)
t—-+oo t—-+o0

In view of (3.18), the finite-horizon model with terminal costs —c¢z and the finite-horizon

model with zero unit and terminal costs have the same sets of optimal actions for the same

state-time pairs. In addition, (3.14) implies that

U (x) = min {1312151[1( + Go(z +a)), Ga(m)} — ¢z, (3.20)
where, in view of (3.16),
Golz) = Go(x) = & + E[h(z — D)] + aE[ia(z — D)], =X (3.21)

Now, we extend the properties of finite-horizon value functions v; o, and ét,a, t=0,1,2,...,
stated in Veinott [25, Lemmas 1 and 2] to infinite-horizon value functions o, and G,.

LEMMA 3.8: Forxz <y andt=1,2,...

() < Uraly) + K, (3.22)

Ua(x) < Uo(y) + K, (3.23)

Gia(y) = Gra(2) 2 Elha(y — D)] = E[ha(z — D)] — ok, (3.24)
Guo(y) — Go(z) > E[ha(y — D)] — E[ho(x — D)] — aK. (3.25)

LEMMA 3.9: Let Assumption 3 hold for some o € (0,1). Then fort =0,1,... andx <y <
o0 here ™ s defined in (2.8),

Gia(y) — Gia(z) <0, (3.26)
@tﬂ(y) - ﬂtﬂ(l') S O, (327)
Ua(y) — Ua(x) <0, (3.28)
Ga(y) — Go(z) < 0. (3.29)

THEOREM 3.10: Let Assumption 3 hold for some a € (0,1). For the inventory model with
zero unit and terminal costs, the following statements hold:

(i) For an N-horizon problem, where N =1,2,..., there exists a Markov optimal
(St.or St,a)t=0,1,2,... ,N—1 policy, where S;o and s;o are real numbers such that
Si.o satisfies (3.10) and sy is defined in (3.11) with f(z) = Gn_i—1.4(7), t =
0,1,2,...,N =1, z € X. In addition, the functions v;, and Gt,a, t=0,1,...,N,
are continuous on X;

(ii) For an infinite-horizon problem, there exists a stationary optimal (Su,Sa) policy,
where S, and s, are real numbers such that S, satisfies (3.10) and s, is defined
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10 Feinberg and Liang

in (3.11) with f(x):= Gu(x), x € X. In addition, the functions v, and G, are
continuous on X;

(iii) For all s¢a, St,a, t=0,1,2,..., and S, defined in (i) and (ii),
Sto <M <SG, <S5 and s, <z < S, < SE (3.30)
where S% is defined in (3.9).

Proof of Theorem 3.10: (i) Consider N =1,2,...and t =0,1,2,..., N — 1. According
to Theorem 3.2, Assumption W*. Therefore, in view of Feinberg et al. [7, Theorem 2],
the functions oy_¢—1,, and G N—t—1,o are lower semicontinuous functions. In view
of Lemma 3.9, the function Gx_;—1.(z) is nonincreasing on (—oo, 2], where
™1 s defined in (2.8). In view of (3.15), GN—_¢—1,a(7) > éx — +00 as & — +oo.
Therefore, the function G N—t—1,a is inf-compact; see the definition of inf-compact
functions in the paragraph preceding Definition 3.1. In view of (3.15) and (3.27),
GN—t-1,a(x) > Elho(r — D)] + aE[0n_t—1,o(z2" — D)] for all x < 2%, Therefore,

[e3

liminf Gn_—1a(7) > lim E[hy(x — D)] + a]E[T)N_t_l_’a(xmin — D))

> K + E[ho (2™ — D)] 4+ aE[oy_t_1.0(z™ — D)]  (3.31)
=K+ Gn_t-1,a(zi™) > K + inf GN—t-1,a(2),

where the first inequality follows from the inequality in the previous sentence, the
second inequality follows from Assumption 3, the equality follows from the definition
of the function Gx_;—1,, in (3.16), and the last inequality is straightforward.

Let S; o satisfy (3.10) and s; o be defined in (3.11) with f := GN—i—1.a- The lower
semicontinuity of G _;—1 () implies that

GN-t-1.0(5t0) SGN_1-1.a(Sta) + K. (3.32)
Since the function G _;—1 (z) is nonincreasing on (—oo, z™"],
Sio > ain, (3.33)

To prove the optimality of (s;,4,St.o) policies, we consider three cases: (1) z > zmin;
(2) s <z <zl and (3) © < $4o. (1) In view of Lemma 3.8, for 2™ <z <y

[e3

GN-t-1,a(y) + K — Gn_it—1,a(x) > E[ha(y — D)] — Elho(z — D)+ K — oK > 0,
(3.34)
where the first inequality follows from (3.24) and the second one holds because
the function E[h,(z — D)] is nondecreasing on [z, +00) and K — aK > 0. There-

fore, the action a =0 is optimal for z > x™®. In addition, (3.34) implies that

GN-t-1,0(%) < GN_t-1.0(Sta) + K for all z € [z27 S, ,], which implies
St < T (3.35)
(2) For s, < < pmin,

GN-t-1.0(®) CGN—t-1a(5t0) CK+GN_t-1.0(St0) = K + lglel%g Gn-t-1,a(y),

where the first inequality follows from (3.26) and the second one follows from (3.32).
Therefore, the action a = 0 is optimal for s; , < 2 < z2in,
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STOCHASTIC SETUP-COST INVENTORY MODEL 11
(3) For = < s

GN-t-1,0(®) > K+GN_t-1,0(Sta) = K + gﬂelggl GN-t-1.a(Yy),

where the inequality follows from the definition of s; o in (3.11) with f := G'N_t_La.
Therefore, the action a =S;, —« is optimal for = < s;,. Thus, for N-horizon
problem the (s¢.4,St.a)t=01,2,...n—1 Policy is optimal.

Now, we prove that the functions v; , and Gt)a, t=20,1,..., N, are continuous
on X. Observe that 99 o(z) = 0, z € X, and Gg o(7) = E[hs(z — D)], then the func-
tions 7 o and Gp , are continuous on X. Since E[h, (z — D)] is continuous, the same
arguments as the proof of case (ii) from Feinberg and Liang [12, Theorem 5.2] with
vi,o and Gy, replaced with v; o — ¢z and G't’a imply that the functions v, and
C_T't,a, t=1,2,...,N, are continuous on X.

(ii) In view of Lemmas 3.8 and 3.9, G, and ¥, satisfy the same properties as G
and 7y . Therefore, statement (ii) follows from the same arguments as those in the
proof of (i) with GN—_i—1.0s UN—t—1.a; St.a, and Sy o replaced with G, ¥4, Sq, and
S, respectively. The continuity of the function v, and G, follows from the same
arguments of Feinberg and Liang [12, Theorem 5.3] with v, and G, replaced with
T — ez and Gy,

(iii) In view of (3.9), lim,— too E[ha(z — D)] = 400 and Assumption 3 imply that |S%| <
+o00 and for x > S}

E[ho(x — D)] > E[ha(SE — D)] > K + E[hy (22 — D)]. (3.36)
Therefore, (3.24) and (3.36) imply that, for t =0,1,2,... and = > S¥,

Gi.o(x) = Gpo(x™™) > Elha(z — D)] — E[h (™™ — D)] — oK > K — oK > 0.
(3.37)

Thus, for t =0,1,2,... and x > S,

Gto(r) > Gy o(zmim) > min Gi.a(2). (3.38)
Therefore, if x € argmin{G; o(2)}, t =0,1,2,..., then # < S%. Thus, S; o < Sk, t =
0,1,2,.... In addition, the same arguments with (3.24) and G4, replaced with (3.25)

and G, imply that S, < S¥.
Furthermore, (3.33) and (3.35) imply that s; , < 22" < S, , and the same arguments
as those before (3.33) and (3.35) being applied to infinite-horizon problem with Gx_;—1,4
replaced with G, imply that s, < ™" < S,,. Hence, (3.30) holds. [ |

LEMMA 3.11: Let Assumption 3 hold for some o € (0,1). Then

<
Q
—
&
I
o
=
I
<
Q
8
~
I

v vo(z) >0, zeX (3.39)

In addition, (3.39) implies that G (z) = Gu(x), v € X.

Proof of Theorem 3.6: Theorem 3.6 follows from Theorem 3.10(ii) and Lemma 3.11 because
equations (3.2) and (3.14) are equivalent, and they define the same optimal (s, So) policies.
|
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12 Feinberg and Liang

Remark 8.12: Note that (s¢a,St,a)t=01,2,..,N—1 policies are optimal for N =1,2,... hori-
zon inventory models with terminal costs —éx (see Theorem 3.10(i)), they may not be
optimal for finite-horizon inventory models without terminal costs (see Example 1). How-
ever, Theorem 3.6 states that there exists an optimal (s, S,) policy for infinite-horizon
discounted cost inventory models.

Example 1: Consider the inventory model without terminal costs defined by the following
parameters: fixed ordering cost K = 1, per unit ordering cost ¢ = 1, deterministic demand
D =1, holding/backlog cost function h(z) = 0.5|x|, and the discount factor o = 0.75.
Since E[hy(z — D)] = 0.5]x — 1| + 0.252 4 0.75, the function E[h,(x — D)] is convex and
hence quasiconvex. In addition, lim,_._ o, E[hq(x — D)] = +00 > K + inf ex E[ho(z — D).
Therefore, Assumption 3 holds. For the single-period problem, the policy that does not order
is optimal, because the cost incurred if nothing is ordered, is 0.5|x — 1] and the cost incurred
if @ >0 units are ordered, is 1+a+05z+a—1=14+05(a+|—al+ |z +a—1]) >
1+05(a+|—a+z+a—1|) > 05z —1|

4. VERIFICATION OF AVERAGE-COST OPTIMALITY ASSUMPTIONS FOR THE
SETUP-COST INVENTORY MODEL

In this section, we show that, in addition to Assumption W*, under Assumption 1, the

setup-cost inventory model satisfies Assumption B introduced by Schél [23]. This implies

the validity of average-cost optimality inequalities (ACOIs) and the existence of station-

ary optimal policies; see Feinberg et al. [7, Theorem 4]. In addition, we show that, under

Assumption 1 the inventory model satisfies the equicontinuity condition from Feinberg and

Liang [13, Theorem 3.2], which implies the validity of the ACOE for the inventory model.
As in Schil [23] and Feinberg et al. [7], define

My = ;relggva(x)’ U (T) 1= Vo (T) — Mg,

4.1
w = liminf(1 — a@)my, w:=limsup(l — a)m,. (4.1)
all all
The function wu, is called the discounted relative value function. Consider the following
assumption in addition to Assumption W*.

ASSUMPTION B:
(i) w* :=infex w?°(z) < +o00, and
(i) sup wuq(x) < 400, x € X.

a€l0,1)

As follows from Schél [23, Lemma 1.2(a)], Assumption B(i) implies that m, < +oo for
all @ € [0,1). Thus, all the quantities in (4.1) are defined. According to Feinberg et al. [7,
Theorems 3, 4], if Assumptions W* and B hold, then w = @ and therefore,

11?11(1 —a)my, = w = w. (4.2)

Define the following function on X for the sequence {ay, T 1}p=12

yeen

a(x) ;== liminf wq, (y). (4.3)

n—-4o0o,y—x

In words, u(x) is the largest number such that 4(z) < liminf, o Ua,, (yn) for all sequences
{yn — z}. Since u,(z) is nonnegative by definition, @(x) is also nonnegative. The function
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STOCHASTIC SETUP-COST INVENTORY MODEL 13

@, defined in (4.3) for a sequence {c, T 1},=1,2.. of nonnegative discount factors, is called
an average-cost relative value function.

If Assumptions W* and B hold, then Feinberg et al. [7, Corollary 2] implies the validity
of ACOIs and

w?(z) = w = lim(1 — a)ve(z) =0 =w*, =X, (4.4)

all

where w®(z) is defined in (2.5). Furthermore, let us define w := w; see (4.2) and (4.4) for
other equalities for w.
Consider the renewal counting process

N(t) :==sup{n =0,1,... : S, <t}, (4.5)

where t € Ry, Sp := 0, and

n

Sp=>» Dj, n=12.... (4.6)

j=1
Observe that since P(D >0)>0, E[N(t)] <400, t€R;; see Resnick
[21, Theorem 3.3.1]. For 2 € X and y > 0 define
Ey(x) == E[h(z — SNn(y)+1)]- (4.7)
Since © —y < 2 — Sn(y) <  and the function E[h(z — D)] is quasiconvex,
E,(z) = E[h(x — Sn(y) — D)] < max{E[h(z —y — D)], E[h(x — D)]} < +oo. (4.8)
THEOREM 4.1: Let Assumption 1 hold. The inventory model satisfies Assumption B.

PRrROOF: Assumption B(i) follows from the same arguments in the first paragraph of the
proof in Feinberg and Lewis [11, Proposition 6.3].

The inf-compactness of the function ¢ : X x A — R and the validity of Assumption W*
imply that for each « € [0,1) the function v, is inf-compact (Feinberg and Lewis [10,
Proposition 3.1(iv)]), and therefore the set

Xo i ={2x € X:v,(x) = ma}, (4.9)

where m,, is defined in (4.1), is nonempty and compact. Furthermore, the validity of
Assumption B(i) implies that there is a compact subset K of X such that X, C K for
all o € [0,1); see Feinberg et al. [7, Theorem 6]. Following Feinberg and Lewis [11], consider
a bounded interval [z}, 27;] C X such that

Xo C 2t 2y forall a€[0,1). (4.10)

Consider an arbitrary a € [0,1) and a state x,, such that v, (2,) = mq, where m,, is defined
in (4.1). In view of (4.10), the inequalities 2} < x, < 27; hold.
Let

E(z) :=E[h(z — D)] + Ez—s; (z) < +00, (4.11)
where the function E,(z) is defined in (4.7) and its finiteness is stated in (4.8). For z; =
x—8t=1,...,N(z—uz})+1,

E[h(z:)] <E[h(z — D)] + E[(2 = SN(z-a3)+1)] = E(2), (4.12)

where the inequality holds because the function E[h(x — D)] is quasiconvex and x —
SN(m,w}:)Jrl =T — SN(:L’*iEz) - D < Tt = Tt—1 — D <z — D for t = 1,.. 7N(.’L‘ —l‘z) + 1.
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14 Feinberg and Liang

By considering the same policy o and following the arguments thereafter as in the proof
in Feinberg and Lewis [11, Proposition 6.3] with the equation (6.14) there replaced with
(4.12), we obtain the validity of Assumption B. [ |

Now we establish the boundedness and the equicontinuity of the discounted relative
value functions u, defined in (4.1). Consider

U(x) {K—I—c(x’ir—xz)+(E(x)+cE[D])(1+]E[N(x_x*L)])7 > a7, (4.13)

where the real numbers z} and zj; are defined in (4.10) and the function E(z) is defined
in (4.11).

LEMMA 4.2: Let Assumption 1 hold. The following statements hold for all a € [0,1):

(1) ua(z) <U(z) < o0 for all z € X;
(i) If v,z € X and z, <z, then C(z,x) 1= sup,¢(,, 1 U(y) < +00;
(iii) E[U(xz — D)] < 400 for all z € X.

PrOOF: The proof of this lemma is identical to the proof in Feinberg and Liang
[13, Lemma 4.6]. [ |

The following theorem is proved in Feinberg and Lewis [11, Theorem 6.10(iii)] under
Assumption 2. The proof there remains correct under the weaker Assumption 1.

THEOREM 4.3: Let Assumption 1 hold. For each nonnegative discount factor o € (a*,1),
consider an optimal (sl,,S.) policy for the discounted criterion with the discount factor
a. Let {a, 1 1}p=1,2,.. be a sequence of negative numbers with aq > a*. Every sequence
{(s,,,, 84, ) n=1,2,... is bounded, and each of its limit points (s*,S*) defines an average-cost
optimal (s*,5*) policy. Furthermore, this policy satisfies the optimality inequality

w+a(x) > min{glzig[K—i-H(x—i-a)],H(x)} —cw, (4.14)
where
H(zx) := éx + E[h(x — D)] + Ela(x — D)], (4.15)

where the function @ is defined in (4.3) for an arbitrary subsequence {ou, }r=12,.. of

{an}n=12,.. satisfying (s*,5*) = limkHJroo(s;nk , Sz/xnk)'

Recall the following definition of equicontinuity.

DEFINITION 4.4: A family H of real-valued functions on a metric space X is called equicon-
tinuous at the point x € X if for each € > 0 there exists an open set G containing x such
that

|h(y) — h(z)| < e forally € G and for all h € H.

The family of functions H is called equicontinuous (on X) if it is equicontinuous at all
r e X.

Consider the following assumption on the discounted relative value functions.
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STOCHASTIC SETUP-COST INVENTORY MODEL 15

AssuMpTION EC (Feinberg and Liang [13]): There exists a sequence {c, 1 1}p=12, . of
nonnegative discount factors such that

(i) the family of functions {uw, }n=1,2,.. is equicontinuous, and

(i) there ewists a monnegative measurable function U(x), x € X, such that U(x) >
Ua, (), n=1,2,..., and [, U(y)q(dy|z,a) < +oo for all z € X and a € A.

The following theorem provides sufficient conditions for the existence of a stationary
policy ¢ and a function a(-) satisfying the ACOEs.

THEOREM 4.5 (Feinberg and Liang [13, Theorem 3.2)): Let Assumptions W* and B hold.
Consider a sequence {ay, T 1}n=12,.. of nonnegative discount factors. If Assumption EC is
satisfied for the sequence {cu =12, then the following statements hold.

(i) There exists a subsequence {amn, tr=1,2,.. of {an}tn=12 . such that {uank (z)} con-
verges pointwise to u(z), x € X, where u(x) is defined in (4.3) for the subsequence
{an, tk=1,2..., and the convergence is uniform on each compact subset of X. In
addition, the function @(x) is continuous.

(ii) There exists a stationary policy ¢ satisfying the ACOE with the nonnegative function

@ defined for the sequence {cu, }x=1,2,.. mentioned in statement (i), that is, for all
r € X,

w+ () = ez, $(x)) + / i(y)a(dyle, 6(x)) = minle(r, ) + / a(y)a(dyle, ),

(4.16)
and every stationary policy satisfying (4.16) is average-cost optimal.

The following theorem shows that the equicontinuity conditions stated in Theorem 4.5
holds for the inventory model with holding/backlog costs satisfying quasiconvexity assump-
tions.

THEOREM 4.6: Let Assumption 1 hold. Then for each § € (a*, 1), the family of functions
{Uataes,1) 8 equicontinuous on X.

ProoF: Cousider 8 € (a*,1). According to Theorem 3.6, since the (s,,Ss) policies are
optimal, the arguments provided to prove formula (4.38) in Feinberg and Liang [13,
Theorem 4.9(a)] imply that the set {s4}ac[s,1) is bounded. Therefore, there exist constants
b > 0 and §y > 0 such that

—b< 84 =00 <Sa+0<b, a€els]l). (4.17)

Consider z* € X and e > 0. Let M :=max{b,z*} +1. To prove that the family
{ua}ae[ﬁ’l) is equicontinuous at z*, we show that there exists §* > 0 such that, if y* € X
satisfies |z* — y*| < 0%, then for all a € [5,1)

[ua (™) = ua(y™)| <e. (4.18)
We consider the following three cases: (1) a* < s, and y* < s4; (2) either z* < s, < y*

or y* < s, <a*;and (3) * > s, and y* > s,. In each case, we will prove the validity of
(4.18).
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16 Feinberg and Liang

(1) The optimality of (s4,S.) policy implies that v(x) = ¢(sq — ) + va(sa) if © < 4,
Then uq (2*) — ua(y*) = é(y* — a*). Therefore, if |2* — y*| < 6; := ¢/4¢, then

* * | 0k * €
|ua(@”) —ualy™)l = elz” —y*| < 7. (4.19)

(2) In this case, we first prove that there exists d > 0 such that for = € [s,, Sq + d2]
e (@) — wa(so)] < 7. (4.20)

Let h(z) := E[h(z — D)]. For > s,
Vo () = h(z) + aE[vs(z — D)] (4.21)
and

Elva(x — D)] = P(D > x — 34)E[¢(Sq — x + D)|D > x — 54

+P(0< D <z—54)E[vg(x — D)0 <D <x— 384+ P(D=0)vo(z).
(4.22)

Formulae (4.21) and (4.22) imply
[1 —aP(D = 0)]va(x) = h(x) + (P(D > — 54)E[E(sq — x4+ D)|D > x — 54
+P0<D<z—54)E[va(z—D)0<D<z—S5,]). (4.23)
Therefore, since ta(y1) — ta(Y2) = va (Y1) — va(y2) for all Y1, ys € X, for @ € [sa, 50 + 01
[1—aP(D =0)]ua(r) — ta(sa)| = [ = aP(D = 0)]|va(z) = va(sa)l
= |h(x) = h(sa) + @P(D > & — 54)(50 — )
+aP(0< D <z —54)E[ug(z — D) —uq(sa — D)0 < D < x— 54]
< |h(x) = h(sa)| 4+ &z — 54) + 2P(0 < D <  — 54)C(=b,b), (4.24)

where the nonnegative function C is defined in Lemma 4.2. Let us define @, := (1 — P(D =
0))~%, and Qa(7, 84) := P(0 < D < & — s,). Recall that P(D > 0) > 0, which is equivalent
to P(D = 0) < 1. Since (1 — aP(D = 0))"! < @, formula (4.24) implies that

[ta (@) = ua(sa)| < QullR(z) = A(sa)| + &z = s4) +2Q2(, 5a)C(~b,b)). (4.25)

Since the function k is uniformly continuous on the interval [—b,b], all three summands in
the right-hand side of the last equations converge uniformly in « to 0 as = | s,. Therefore,
there exists d2 € (0, dg) such that (4.20) holds for all z € [s4, sq + 02].

For z < s, <y satisfying |z — y| < d3 := min{dy, I},

[ta(z) = ua(y)] < ua(r) = ualsa)| + [ualsa) = ualy)] < g (4.26)

where the first inequality is the triangle property and the second one follows from (4.19)
and (4.20). Therefore, in this case, (4.26) imply that, if |2* — y*| < 03, then (4.18) holds.
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STOCHASTIC SETUP-COST INVENTORY MODEL 17

(3) Consider y* < M. Let z := min{z*,y*} and 25 := max{x*,y*}. Then s, < z; <
29 < M. The optimality of (s4,Ss) policy implies that

ua(z¥) = ua(y")| = Jua(z1) — ua(22)| = |va(z1) = va(z2)]
N(z1—58q)+1 _ ~ ~
= |E Z o H(h(z1 = Sj-1) = h(z2 = S;-1))

+ aN(Zl_saH_l(Ua(Zl - SN(zlfsa)Jrl) - Uoz(z2 - SN(zlfsaH»l))

N(M+b)+1
<E| > k(21 —8j-1) = h(z2 — ;1)
j=1
+ Ef|ua (21 — SN(ZI_Sa)+1) — Ua (22 — SN(ZI_SQ)"I‘l)”? (4.27)

where the inequality follows from the standard properties of expectations and absolute
values, z1 — sq < M + b, and a < 1. Recall that the function B(x) is continuous and finite.
Therefore, the function A is uniformly continuous on the closed interval [—(M + 2b), M]. In
addition, Assumption 1 implies that the function h is quasiconvex.

In view of (4.26), if |21 — 22| < d3, then with probability 1

€
‘ua(zl - SN(z1—sa)+1) - ua(z2 - SN(Z1—SQ)+1)| < bR
and therefore

(4.28)

N

Efjua (21 — SN(Z1—sa)+1) — Uqa(22 — SN(Z1—sa)+1)|] <

Now, we estimate the first term in right-hand side of the inequality in (4.27).
Since —(M +2b) <z —S,;_1 <M for all x € [-b, M] and j =1,2,...,N(M +b) + 1, the
nonnegativity and quasiconvexity of A imply that

0 < h(z —Sj_1) < max{h(—(M + 2b)), h(M)}, =€ (=b,M). (4.29)
Since —b< z1 <zo < M

N(M+b)+1

E| > |h(z1—=8;-1) = h(za —S; 1)
j=1

N(M+b)+1
<E| > max{h(—(M +2b)),h(M)}

j=1

< E[N(M + b) + 1] max{h(—(M + 2b)), (M)} < +o0, (4.30)
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18 Feinberg and Liang

where the first inequality follows from (4.29), the second one follows from Wald’s identity,
and the last one follows from the finiteness of the function h. Therefore,

[N(M+b)+1 ) )
Jim E ; |h(z = 8j-1) — h(z2 — S;_1)|
:N(M+b)+1
—E| ) Jim h(z = Sj-1) = h(z2—S;1)|| =0, (4.31)
=1

where the first equality follows from (4.30) and Lebesgue’s dominated convergence theorem,
and the second one follows from the continuity of h. In view of (4.31), there exists 64 > 0
such that, if |21 — 22| < d4, then

N(M+b)+1 -
E| > [|h(z1—8;-1) = h(z2—S;-1)|| < 5 (4.32)

j=1
In view of (4.27), (4.28), and (4.32), for z1, 22 > s, satisfying |21 — z2| < 05 := min{ds3, ds }
[ua(21) — ua(22)| <e, (4.33)

which is equivalent to that, in this case, if |2* — y*| < 05, then (4.18) holds.
Hence, the cases (1-3) imply that (4.18) holds with 6* := min{d1, d3, 5 }. [ |

THEOREM 4.7: Let Assumption 1 hold. Then for a € (a*, 1), the functions v, and G, are
continuous on X.

Proof of Theorem 4.7: According to Theorem 3.6, there exists an optimal (s4, S,) optimal
policy for the infinite-horizon problem. In addition, Theorem 4.6 implies that the func-
tion v4(2) = uq(x) + My is continuous on X. Therefore, since the function E[h(z — D)] is
continuous, the same arguments in the proof of Feinberg and Liang [12, Theorem 5.3], start-
ing from the definition of the function g, there, imply that the function G, is continuous
on X. |

5. SETUP-COST INVENTORY MODEL: AVERAGE COSTS PER UNIT TIME

As follows from Chen and Simchi-Levi [5], an average-cost optimal (s,S) policy exists if
Assumption 3 holds for @ = 1. In this section, we study approximations of average-cost
optimal (s, .S) policies by discount-cost optimal (s, S, ) policies as the discount factor tend
to 1. The following theorem establishes the convergence of discounted-cost optimality equa-
tions to the ACOEs for the described inventory model and the optimality of (s, S) policies
under the average cost criterion under Assumption 1.

THEOREM 5.1: Let Assumption 1 hold. For every sequence {ay, T 1}n=1,2,.. of nonnegative
discount factors with cq > a*, there exist a subsequence {an, tk=12,. of {@n}n=12.., a
stationary policy ¢, and a function @ defined in (4.3) for the subsequence {cu,, }r=12,...
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STOCHASTIC SETUP-COST INVENTORY MODEL 19
such that for all z € X

w+a(r) = K1{ym)s01 + H(z + o(z)) — cx

= min{glzig[K+H(x+a)],H(x)} _ ez, (5.1)

where the function H is defined in (4.15). In addition, the functions @ and H are continuous
and inf-compact, and a stationary optimal policy ¢ satisfying (5.1) can be selected as an
(s*,8*) policy described in Theorem 4.3. It also can be selected as an (s,S) policy with the
real numbers S and s satisfying (3.10) and defined in (3.11) respectively for f(x) = H(x),
rxeX

Remark 5.2: The relations between the function @ in ACOE (5.1) and the solutions to the
ACOE constructed by Chen and Simchi-Levi [5] are currently not clear.

To prove Theorem 5.1, we first establish several properties of the average-cost relative

min

value function. Recall that x"™ is defined in (2.8).

LEMMA 5.3: Let Assumption 1 hold. Consider the function @ defined in (4.3) for a sequence
{an}n=12,.. such that o, T1 and a1 > o*. Then the following statements hold:

(i) Forz <y
w(z) +cx < a(y) + ey + K, (5.2)
H(y) — H(xz) > E[h(y — D)] — E[h(z — D)] — aK. (5.3)
(i) For x <y < giin
u(y) +cy —u(x) —ex <0, (5.4)
H(y) — H(z) <0. (5.5)

Proof of Theorem 5.1: The proof of this theorem is identical to the proof in Feinberg and
Liang [13, Theorem 4.5] with the following changes: (i) Lemmas 4.6 and 4.7 from [13] should
be replaced with Lemma 4.2 and Theorem 4.6 from this paper; and (ii) the proof of the K-
convexity of the functions u and H and the optimality of (s, S) policy under the average cost
criterion should be replaced with the following arguments. Consider cases (1-3) in the proof
of Theorem 3.10(i) with G _¢—1.a, ha and 2™ replaced with H, h, and 23", respectively.
Then Lemma 5.3 implies that there exists an optimal (s,.S) policy, with the real numbers
S and s satisfying (3.10) and defined in (3.11) for f := H. [ |

Furthermore, the continuity of average-cost relative value functions implies the following
corollary.

COROLLARY 5.4: Let Assumption 1 hold, the state space X = R, and the action space A =
Ry . For the (s,S) policy defined in Theorems 5.1, consider the stationary policy ¢ coinciding
with this policy at all x € X except x = s, and with ¢(s) = S — s. Then the stationary policy
@ also satisfies the optimality equation (5.1), and it is therefore average-cost optimal.
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20 Feinberg and Liang

6. CONVERGENCE OF OPTIMAL LOWER THRESHOLDS S,

This section establishes convergence of discounted optimal lower thresholds s, — sas «a T 1,
where s the average-cost optimal lower threshold (stated in Theorem 5.1) for the inventory
model with holding/backlog costs satisfying quasiconvexity assumptions. In this and the
following sections, we assume that the state space X = R and the action sets A = A(x) = Ry
for all z € X. This means that an arbitrary nonnegative amount of inventory can be ordered
at any state.

The quasiconvexity of E[h(x — D)] assumed in Assumption 1 implies that the function
E[h(z — D)] is nonincreasing on (—oo, z1"), where 2" is defined in (2.8). The stronger
Assumption 4 is used in this section and Section 7. The following theorem establishes
convergence of the discounted optimal lower thresholds s, when the discount factor «a
converges to 1.

THEOREM 6.1: Let Assumption 1 hold and for o =1 Assumption 4 hold. Then the limit

=1 6.1
s1 0%111 Sq (6.1)

exists and s1 < xrlnin.

Remark 6.2: As shown in Corollary 7.5, if Assumption 1 holds and for « = 1 Assumption 4
holds, then all the sequences {a,, T 1},=12, .. define the same functions @ and H in (5.1),
and, according to Theorem 7.6, there exists a unique threshold s, for which there is an (s, .S)
policy satisfying the ACOE (5.1). However, if X = Z, as this takes place for problems with
discrete commodity, there may be multiple average-cost optimal thresholds s, as shown in
Example 2.

Ezample 2: Consider the inventory model with X =A =7, K =124, ¢=0, P(D=1) =
1— P(D =0)=0.417, and

—0.11x if v <0,
h(z) =10 if 0 <2 <100,
1.05(x — 100)  if 2 > 100.

Let us consider S = 100, s = —5, and § = —4. Straightforward calculations based on Chen
and Simchi-Levi [5, Lemma 2| imply that the average costs per unit time for the (s,.5) and
(8,5) policies are equal to 20.584. Johnson [19, Theorem 5.2] implies that at least one of
these policies is optimal. Therefore, there are multiple average-cost optimal thresholds s.

Before the proof of Theorem 6.1, we first state several auxiliary facts. Consider the
infinite-horizon value function @, for the model with zero unit and terminal costs. According
to Lemma 3.11, U4 (z) — ¢z = vo(z), © € X. For z € X, define

Mo i= rrnelg{@a(a:)} and g () := U (x) — Mg (6.2)

If there exists an a-discount optimal (s4, S, ) policy, then (3.14) can be written as

K 4 Ga(Sa) i < sa, '
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STOCHASTIC SETUP-COST INVENTORY MODEL 21

which implies that
My = melggl{Ga(x)} = Go(Sa). (6.4)

Consider z,, € X,, where X,, is defined in (4.10). For a € [0,1)
Ma < Va(To) = Mo + o < My + 277, (6.5)

where z7; is defined in (4.10). In view of (6.3), the continuity of 7, (x) implies that T, (z) =
U (sq) for all < s,. Therefore,

Mo = inf T,(x) = iglf {va(x) +cx} > i;ﬂf {va(x) + ESq} = Mma + €S0, (6.6)

T>Sq

where the first inequality holds because x > s, and the last one follows from m, =
inf, v (x). Then (6.5) and (6.6) imply

Mo + CSq < Mg < Mg, + CX7;. (6.7)
For a € (a*,1) define the set of all possible optimal discounted lower thresholds
Go = {2 € [$0,5] : Ga(y) > K+ G,(S,) for all y < x}, (6.8)

where S, satisfies (3.10) and s, is defined in (3.11) with f := G,. Note that s, € G, and
Yy > sq for all y € G,.

Remark 6.3: The set G, is not empty if X =R because the function G,, is continuous (see
Theorem 4.7) and lim,—, oo Go(z) > K + Go(S,). If X = Z, as this takes place for problems
with discrete commodity, it is possible that G, is an empty set.

The following three lemmas state the relations between parameters defined in this
section.

LEMMA 6.4: If Assumption 1 holds, then, for all « € (a*,1) and y € G,,
(1= @)(10 + K) = Elha(y — D). (6.9)
LEMMA 6.5: If Assumption 1 holds, then y < z™ < 2 for all o € (a*,1) and y € G,.

LEMMA 6.6: If Assumption 1 holds, then

li%(l —Q)mg = 11%1 E[ho (854 — D)] = w. (6.10)

Proof of Theorem 6.1: The proof is by contradiction. According to Theorem 4.3, for a,, T 1,
n=1,2,..., with a; > o, every sequence {(Sa,,:Sa,)}n=12.. is bounded. Consider two
real numbers s(!) < s(2) such that there exist two sequences {a, }n=12 . and {@,}n=12..
satisfying lim,,— 4o 8o, = s and lim,,— 4 sa, = 5@,
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22 Feinberg and Liang
Since the function E[h(x — D)] is continuous,

lim E[h(sa, — D)] = E[h(s"Y) — D)]. (6.11)

n—-+oo

Therefore,

lim E[ha, (Sa, — D)) = lim {E[h(sq, — D)] + (1 — ay,)E5a, + anE[D]}

n—-+4oo n—-+4oo

= E[n(s"Y) — D)] + ¢E[D], (6.12)

where the second equality follows from (6.11) and s,, — s) € R as a, | 1. According to
Lemma 6.6, E[h(s"") — D)] = w — éE[D]. By the same arguments with a, replaced with d,,,
the formula E[A(s®) — D)] = w — ¢E[D] holds. Therefore,

E[h(sY) — D)] = E[h(s® — D)]. (6.13)
According to Lemma 6.5, s, < 2™ for all a € (a*,1). Therefore

s® = lim Sa, < liminf ;Egli“ < xllnin, (6.14)
n—-400 n—-+400 n

where the last inequality follows from Lemma 6.5. Since s(!) < s(2) < zin " Assumption 4
implies that

E[h(sM) — D)] > E[n(s® — D)], (6.15)

which contradicts (6.13). Thus, the limit lim,q1 s, exists and (6.14) implies that s; < z{in.
[ |

The following theorem establishes the uniqueness of possible optimal lower thresholds
for the inventory model with convex cost functions under the discounted criterion.

THEOREM 6.7: Let Assumption 1 hold and for some o € (a*,1) Assumption 4 hold. Then
Go = {84}, where G, and s, are defined in (6.8) and (3.11) with f := G, respectively.

PrROOF: Recall that s, € G, and y > s, for all y € G,. The proof is by contradiction.
Assume that there exists y; € G, such that y; > s,. According to Lemma 6.4,

Elho(y1 — D)] = (1 — a) (o + K) = E[ha(sq — D)].

Since Assumption 4 holds for the discount factor v, #™" < y;, where 2" is defined in (2.8).
However, according to Lemma 6.5, y; < zh"", which implies that y; < 22" < y;. Therefore,

Go = {Sa} |

7. CONVERGENCE OF DISCOUNTED RELATIVE VALUE FUNCTIONS

This section establishes convergence of discounted relative value functions to the average-
cost relative value function for the setup-cost inventory model when the discount factor
tends to 1. This is a stronger result than the convergence for a subsequence that follows from
Theorem 5.1. We recall that in this section it is assumed that X =R and A = A(z) = Ry
for all z € X.
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1

)

] 1 £ 2 z3 Zn-y #n
=0 )—e(a)—+ (3] —= 2z —m(i)—=
a® a® a a‘ a

a a‘

FIGURE 1. MDP described in Example 3.

Let us define

u(z) = liminf uq(y). (7.1)

ally—x

According to Feinberg et el. [7, Theorems 3, 4], the ACOI holds for the relative value
functions @ and u defined in (4.3) and (7.1), respectively.

The following theorem states the convergence of discounted relative value functions,
when the discount factor converges to 1, to the average-cost relative value function u.

THEOREM 7.1: Let Assumption 1 hold and for o = 1 Assumption 4 hold. Then,

li%ua(x) =u(z), zeX (7.2)

and the function u is continuous.

In particular, Theorem 7.1 implies that the function @ defined in (4.3) is the same for
every particular sequence {c, T 1},,=1.2, . The following example demonstrates that this is
not true in general for MDPs under Assumptions W* and B.

Ezample 3: Consider an MDP with state space X = {—2,—1,0,1,2,...} and action space
A = {a®,a"}, where the action a® stands for ‘stop’ and the action ¢ stands for ‘continue”; see
Figure 1. Let A(—1) = A and A(n) = {a°} for n € X\{—1}. The transition probabilities are
P(—1] —1,a°) = 1 and P(n + 1|n,a®) = 1 for n € X. The costs are ¢(—2,a°) =0, ¢(—1,a) =

1 for a € A, and ¢(n,a®) = 2V for n = 0,1,..., where 2 is defined as
o frtt, if n =0, (7.3)
Zn—zZn-1+1, ifn=12...,
where the sequence z, is taken from Bishop et al. [1, Equation (11)]:
L, _[u iDEE-1)<n<DE), k=12..,
" 0, otherwise,
where D(k) := Zle i!, k=1,2,... . For the sequence {2, }n=0,1,..., define the function
fla):=(1-a)) za', acl01). (7.4)
i=0
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24 Feinberg and Liang

As shown in the proof of Lemma 7.2 in Appendix E, the relative value function

0, if n =-2,
o (n) = 1, if n=-1, (7.5)
) fla) + 1, if n =0, '

(1—a) Y gzt —zp1 +1, ifn=1,2,....

According to Bishop et al. [1, Proposition 1], liminf,, f(a) = 0 and limsup,; f(a) = 1.
Hence, liminf,11 1, (0) = 1 and limsup,,; ua(0) = 2, that is, in this example there exist
multiple relative value functions @ defined in (4.3).

LEMMA 7.2: The MDP described in Example 3 satisfies Assumptions W* and B, where the
discrete metric d(w,y) = 1{,—, is considered on X and A.

Before the proof of Theorem 7.1, we first state several properties of the functions .
defined in (6.2). If there exists an a-discounted optimal (s, Ss) optimal policy, then (6.3)
implies that

(7.6)

_ Go(z) =My, x> s,,
K, if £ < 84.

LEMMA 7.3: If Assumption 1 holds, then,

(i) for each B € (a*,1) the family of functions {lia }ae(s,1) i5 equicontinuous on X;

(i) suPue(ar 1) Ua(r) < +oo for allx € X.

LEMMA 7.4: Let Assumption 1 hold and for a = 1 Assumption 4 hold. Then there exists the
limat

a(x) = li%lﬂa(m), zeX, (7.7)

where the function @ is continuous on X.

In view of (4.1), (3.39), and (6.2),

U () = U (T) + Mo — Mg —Cx, z X (7.8)

Proof of Theorem 7.1: The theorem follows from the following two statements:

(i) there exists the limit u*(z) := limy11 ua (), ¢ € X, and the function v* is continuous
on X; and

(i) u*(z) = u(x) == liminfo1 yos ua(x) for all z € X.

Let us prove statements (i) and (ii). (i) We show that (1) there exists the limit u*(s1) :=
limg 11 ua($1), where s is defined in (6.1); and (2) the limit exists for all z € X.

(1) Consider z,, € X,, a € [0,1), where X, is defined in (4.9), and any given 5 € (a*,1).
In view of (4.10), since X, C [z}, z};] for all @ € [0,1), for every sequence {a,, T 1} =12,
there exists a subsequence {a,, T 1}r=12.. of the sequence {cv, T 1},,=12 . such that c,,, >
B and x4, — 2" ask — +oo for some z* € [z, 27
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Consider ¢ > 0. Since the family of functions {ua}aep,1) is equicontinuous
(see Theorem 4.6), there exists an integer M (g) > 0 such that for all & > M (e)

e, (Tan, ) = Ua,, (27)] <e. (7.9)
Since ua,,, (xank) =0forall k=1,2,..., (7.9) implies that for k > M (e)
[ua,, (z°)] <e. (7.10)
Therefore, (7.10) implies that
kEIJPoo Uq, (z7) =0. (7.11)

Since the function u,,, is nonnegative, (7.10) implies that for k¥ > M (e)
Ua,, (T°) < Uaq,, () +e, z€X (7.12)
Then (7.12) and (7.8) imply that for &k > M ()
Uq,, (77) —cx" <, () —cr+te, zEX (7.13)
By taking the limit of both sides of (7.13) as k — +o00, Lemma 7.4 implies that
a(z®) —ex" <u(xr)—cr+e, zeX. (7.14)
Since € can be chosen arbitrarily, (7.14) implies that

u(x™) —ca* = I;lé%gl{ﬂ(l‘) —cx}. (7.15)

Let My := u(s1) — ¢s1 — mingex{u(x) — cz}. Then
g, (31) ~ e, () = 1T (31) — 1 — [, (%) — 2]

(7.16)

=a(sy) — sy — [u(a™) — cx*] = u(s1) — és1 — mi}rgl{ﬂ(m) —cx} = Mg,
fAS

where the first equality follows from (7.8), the second one follows from Lemma 7.4, and the
third one follows from (7.15). In view of (7.11) and (7.16),

kEToo Uq, (51) = M. (7.17)
Thus, for every sequence {a,, T 1},=1.2, ... there exists a subsequence {a,, }r=12, .. such that
(7.17) holds. Therefore, lim,_, 4 o Ua,, (51) = Mz for every sequence {c, T 1},=12, ., which
is equivalent to

u*(s1) := limu,(s1) = Myg. (7.18)
all
(2) Now we prove that there exists the limit u*(x) := lima11 u(z) for 2 € X. For € X
lim ug () — un(s1) = lim @y (z) — éx — [Ua(s1) — €51]
all all (7.19)
=a(z) — cx — [u(s1) — &s1],

where the first equality follows from (7.8) and the second one follows from Lemma 7.4.
Therefore, (7.18) and (7.19) imply that there exists the limit

u(x) = li%ua(x) = My +u(z) —cx — [a(s1) —¢s1], zeX (7.20)
Furthermore, since the family of functions {uq }ae[s,1) is equicontinuous and Assump-

tion B holds, Ascoli’s theorem (Herndndez-Lerma and Lasserre [16, p. 96]) implies that the
function u* is continuous.
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(ii) Consider sequences {ay, T 1},=12 .. and {y, — x},=12, . such that a; > o* and
limy, 400 Ua, (Yn) = liminfat1 yy e (y). Then,

liminf u,(y) <  liminf  w,, (y) < lim ., (y,) = lminf u,(z),
all,y—x n—-+o0o,y—x : n— oo v ally—z

which implies that
liminf us(y) = liminf  w,, (y). (7.21)

all,y—x n—-+00,y—x
According to Feinberg and Liang [13, Lemma 3.3, since lim, i uq, (x) = u*(x),
Theorems 4.1 and 4.6 imply that
liminf  wq,(y) = lim wu,, (z) = u*(x). (7.22)
n—-—+00,y—T n— 400
Therefore, (7.21) and (7.22) imply that « := liminfay1,y—a va(y) = v*. This completes the
proof. |

Theorem 7.1 implies that (4.15) can be written as
H(x) := éx + E[h(z — D)] + E[u(x — D)]. (7.23)

COROLLARY 7.5: Let Assumption 1 and for « =1 Assumption 4 hold. Consider the function
u defined in (7.2). Then the conclusions of Theorem 5.1 hold with & = w and, in particular,
the lower threshold s*, for the optimal (s*,S*) optimal policy whose existence is stated in
Theorem 5.1, can be chosen as s; defined in (6.1).

Define the set of all possible optimal average-cost lower thresholds
G:={xe€lsS:H(y) > K+ H(S) for all y < z}, (7.24)

where S = min{argmin,{H (z)}} and s is defined in (3.11) with f:= H Note that s € G
andy >sforallyeg

The following theorem establishes the uniqueness of the optimal lower threshold satisfy-
ing the optimality equations for the inventory model with holding/backlog costs satisfying
quasiconvexity assumptions under the average cost criterion.

THEOREM 7.6: Let Assumption 1 hold and for o =1 Assumption 4 hold. Then, G = {s1},
and therefore s = s1, where sy is defined in (6.1).

ProOOF: Cousider G and S defined in (7.24). Recall that s € G and y > s, where s is defined
in (3.11) with f := H. According to Theorem 5.1 and Corollary 7.5, for y € G

w+u(z) + cx = {g(;{{(s)’ ii i ‘Z (7.25)
which implies that for z < y
H(z) = éx + E[h(z — D)] + E[u(z — D)] (7.26)
= K +E[h(z — D) + H(S) + cE[D] — w.
Since H(y) = K + H(S) for y € G, in view of (7.26),
E[h(y — D)] = w — eE[D], ye€G. (7.27)

The rest of the proof is by contradiction. Assume that there exists y; € G such that
y1 > s. Then (7.27) implies that E[h(y; — D)] = E[h(s — D)]. Therefore, Assumption 4

Downloaded from https://www.cambridge.org/core. SUNY Stony Brook, on 19 Apr 2019 at 20:55:02, subject to the Cambridge Core terms of use, available at
https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964818000335


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964818000335
https://www.cambridge.org/core

STOCHASTIC SETUP-COST INVENTORY MODEL 27
implies that 2™ < y;, where 27" is defined in (2.8). Since S = min{argmin,{H (x)}},
(7.25) implies that for z < S

w+ u(z) + éx > H(S). (7.28)

Therefore, for z < S

H(y) = K + H(S) = K + &S + E[h(S — D)] + E[u(z — D)]

) (7.29)
> K + E[h(z1"" — D)] + H(S) + cE[D] — w,
where the first equality holds because y; € G, the second one follows from (7.23), and
the inequality holds because E[h(S — D)] > E[h(2®" — D)] and (7.28). Since y € G and
e < gy H(2P™) > H(yy). In view of (7.26),

H(y1) < H(zP™) = K + E[h(2™ — D)) + H(S) + ¢E[D] — w,

which contradicts (7.29). Then, G = {s}. In addition, Corollary 7.5 implies that s; € G,
where s1 is defined in (6.1). Therefore, s = s and G = {s1}. |

The following corollary states that all the results of this paper hold for inventory models
with convex holding/backlog costs.

COROLLARY 7.7: The conclusions of all the lemmas, theorems, and corollaries in Sections 6
and 7 hold under Assumption 2.

8. VEINOTT'S REDUCTION OF PROBLEMS WITH BACKORDERS AND POSITIVE
LEAD TIMES TO PROBLEMS WITHOUT LEAD TIMES

In this section, we explain, by using the technique introduced without formal proofs by
Veinott [25] for finite-horizon problems with continuous demand, that the infinite-horizon
inventory model with positive lead times and backorders can be reduced to the model with-
out lead times. Therefore, the results of this paper, Feinberg and Lewis [11], and Feinberg
and Liang [12,13] also hold for the inventory model with positive lead times. For inventory
model with positive lead times, we also provide a formal formulation of the MDP with
transformed state space.

Consider the inventory model defined in Section 2. Instead of assuming zero lead times,
assume that the fixed lead time is L € N := {1,2,...}, that is, an order placed at the begin-
ning of time ¢ will be delivered at the beginning of time ¢ 4 L. In addition, let h”(z) be the
holding/backlog cost per period if the inventory level is . We define

L

h*(z) = E[h*(x =) D;)]. (8.1)

i=1
For the inventory model, the dynamics of the system are defined by the equation
Tit1 za:t—i—at_L—Dt_H, t=20,1,2,..., (82)

where x; and a; are the current inventory level before replenishment and the ordered amount
at period t. Equation (8.2) means that a decision-maker observes at the end of the period ¢
the history hy, places an order of amount a;, which will be delivered in L periods (that is,
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at the end of the period ¢ 4+ L), and the demand occurred during the period ¢ + 1 is Dy1q.
In addition, at period ¢, the one-step cost is

éhy,as) == K1l{o, .oy + e +ERY (2 + as_r, — Diyq)], t=0,1,..., (8.3)

where htL =(a_r,0_L[41,--.,4-1,%0,0Q0,...,0t_1,%¢) is the history at period ¢.

As usual, consider the set of possible trajectories hioo = (htL,at,xtH,atH, ...). An
arbitrary policy is a regular probability distribution 7 (da; |htL ),t=0,1,...,onR,. It defines
the transition probability for hf to (hf,a;). The transition probability for (hf,a;) can be
defined by (8.2). Therefore, given the initial state h) = (a_1,a_r41,...,a_1,x0), a policy
7 defines, in view of the Ionescu Tulcea theorem, the probability distribution P}Tg on the

set of trajectories. We denote by E}, the expectation with respect to P..
0 0

For a finite-horizon N = 1,2, ... the expected total discounted cost is
N-1 L—1 N-1
ﬁ%,a(h(l)/) = E;:g Z atf:(xt,at) = E‘{;g Z Oété(l‘t, at) + OéL Z ozté(act_H;, aH_L) s
t=0 t=0 t=0
(8.4)

where o € [0, 1] is the discount factor and o , (hf) = 0. When N = 400 and o € [0, 1), (8.4)
defines the infinite-horizon expected total discounted cost denoted by o7 (hé ). The average
cost per unit time is defined as @™ (ho) := imsupy_, | o l/Nf}}{,’l(hé).

Let us define

L L

Y = xt—i—Zat,i :xt+L+ZDt+i7 t:071,..., (8.5)
i=1 i=1

where y; is the sum of the current inventory level and the outstanding orders at the end of
period t. Since the distribution of x;y is determined by y;, in view of (8.2), we show that
it is possible to make the decision a; only based on the quantity ;.

Let us construct an MDP with state space Y =R (or Y = Z) with states y; defined in
(8.5). The actions are the amount of orders that can be placed at each period t; A(y) =
A =R, (or A(y) = A =Ny) for all y € Y. In view of (8.2) and (8.5), the dynamics of the
system are defined by the equation

Ytg1 =Yt +ar — Dyyq, t=0,1,2,... . (8.6)
The transition probabilities for the MDP corresponding to (8.6) is
q"(Blys, at) = P(y: + a — Dyyq € B), (8.7)
for each measurable subset B of Y. Let the one-step cost be
c"(y,a) == Klg,50y +ca+E[h*(y + a — D)]. (8.8)

As was noticed by Veinott [25], the state space Y, action space A, action sets A(-),
transition probabilities (8.7), and costs (8.8) define the same MDP as for in the problem
without lead time with the only difference that the holding/backlog cost function h is
substituted with the function A*. In addition, though the amount of inventory x;,; at
time (¢ + L) is not known at time ¢, the distribution of z,, is known because x4, ~ y; —
S, DO where DM ... DX are i.i.d. random variables with DO ~ D, 1 =1,2,..., L.
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Since the actual amount of inventory level z;1; is unknown at time ¢, when the amount
ay is ordered, this problem can be modeled as a Partially Observable MDP. According to
the current available theory (see Herndndez-Lerma [15, Chapter 4], Feinberg et al. [9], and
references therein), such models can be reduced to the MDPs whose states are probability
distributions of x;;; known at time ¢, which is the distribution of y; — ZzL:1 DW . The
value of y; defines this distribution. This relation implies that optimal policies for the MDP
introduced by Veinott [25] with state space Y, action space A, and transition probabilities
(8.7), and costs (8.8) define the optimal actions at epoch t =0,1,2,....

THEOREM 8.1: Consider the problem with the lead time L =1,2,.... Then the MDP
{Y, A, g%, c*} coincides the MDP {X, A, q, c} with the function h substituted with h*. There-
fore, the conclusions of theorems in this paper hold for the problems with the lead time
L=1,2,..., if the holding/backlog cost function h* satisfies the conditions assumed for the
function h in the corresponding statements.

PROOF: Since y; € X and the actions are the same for these two models, we need to verify
only the correspondence for transition probabilities and costs. If h = h*, then formulae (2.3)
and (8.8) coincide with z; = y:. The transition probabilities ¢* defined in (8.7) also coincides
with (2.2). Observe that it is easy to show that

ﬁ%,a(hg) = f(hg) + aLUQ,a(yO), (8'9)
where f(h}) = 1 @' Elé(zo + b a pi — Y020 Divis an))- ]

For the problems with convex holding/backlog cost function h, the function h* is also
convex and E[h*(x — D)] — 400 as |x| — +00. We also need the additional assumption
that E[h*(z — D)] < +o0o for all € X. Then the results in this paper formulated under
Assumption 2 and the results in Feinberg and Lewis [11] and Feinberg and Liang [12,13]
hold for the problems with the lead time L =1,2,....

Remark 8.2: Note that the assumption on the finiteness of the function E[h*(x — D)] is
necessary for the problems with convex holding/backlog costs. Consider the lead time L = 1,
the holding/backlog cost function

x+%7 ifx >0,
hL(m) = efz+2

— ifz <

(r—22+1 ' z<0,

and the random variable D is exponential distribution with the density function fp(z) =
e *, if £ >0, and fp(z) =0, otherwise. Then the random variable So follows the Erlang
distribution with density function fs,(z) =xze™*, if >0, and fs,(x) =0, otherwise.
Observe that the function A’ is continuous and nonnegative. Some calculations show
that the function hl is convex on R and E[hL(x — D)] < +oo for all x € R. However,
E[h*(0 — D)] = E[hX(0 — S3)] = 4o0.

Remark 8.3: The reduction discussed in this section does not hold for the inventory model
with lost-sales. For such model with lead time L > 0, the dynamics of the system are defined
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by the equation

w1 = (¢ +a;_p — Dipy)t = max{x; +a;_r — Dyy1,0}, t=0,1,2,... .

Consider the transformation similar to the one defined in (8.5). Then =1y =y —
ZiL:1 Dt+i, where [)j ==min{Dj,x;_1 +aj_r-1}, j=t+1,t+2,...,t+ L. Since the dis-
tribution of z;,4 1, does not depend solely on the information available at time ¢, the reduction
does not hold. Indeed, the structure of the optimal policies may depend on the lead times.
In particular, if the lead times are large, then the constant-order policy performs nearly
optimally; see Goldberg et al. [14].
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APPENDIX A. PROOFS TO SECTION 2

Proof of Lemma 2.2: Since E[h(x — D)] — 400 as ¢ — —o0,

lim sup h(x) = +o0. (A.1)

xr— —0Q

To see this note that if limsup, , ., h(x) < 400, then there exist real numbers My, Mz >0
such that h(z) < M; for & < —Ma. Since D is a nonnegative random variable, E[h(z — D)] < M,
for < =My and limsup,_,_ . E[h(zx — D)] < M; < +oo. This contradicts the assumption that
E[h(z — D)] — 400 as ¢ — —c0.

Since the function h is convex, the function E[h(z — D)] is convex. Therefore, in view of (2.6),
the function E[hq(z — D)] is convex for all a € [0, 1]. Since every convex function is quasiconvex,
the function E[hq (2 — D)] is quasiconvex for all « € [0, 1].

Since the function h is convex on X, it is continuous. Therefore, (A.1) implies limg— _ o h(z) =
+00. As explained in Feinberg and Liang [12, Equations (2.3), (4.1)], the convexity of the function
h imply that 1 4+ limg;—, _o h(z)/cz < 1.

Consider o € [max{1 + limz— o h(z)/cx,0},1). For a € (o™, 1], since the function ha(z) =
cx(h(xz)/cx + 1 — «) tends to +oco as z — —oo,

lim E[ho(z — D)] = +oo, a€ (a,1]. (A.2)

r— —0Q

Therefore, the convexity of the function Elha(z — D)] implies that limg—._ oo E[ha(xz — D)] >
K +inf ex E[ha(z — D)] for all a € (a*,1]. Hence, Assumption 1 holds with a* € [max{1 +
limgy— oo h(x)/cx,0},1). In view of (A.2), the convexity of the function E[ha(x — D)] implies
that Assumption 4 holds for all « € (a*,1]. [ ]

Proof of Lemma 2.3: It is straightforward that Assumption 1 implies Assumption 3 for a € (a*,1).
In addition, since E[ha(x — D)] — E[h(z — D)] as « 11 for all z € X, the quasiconvexity of the
function E[hq(z — D)] implies that the function E[h(z — D)] is quasiconvex. Since inf,cx E[h(z —
D)] < +o0 and E[h(x — D)] = E[ha(x — D)] — (1 — a)cz — 400 as x — —oo for each a € (™, 1),
Assumption 3 holds for a = 1. |
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APPENDIX B. PROOFS TO SECTION 3

Proof of Lemma 3.3: In view of (3.1), for x <y and t =1,2,...

Vt,o(x) + ¢z = min {m>118{K + Gi—1,a(z+a)}, Gt—l,a(fﬂ)} < m>ig{K +Gi—1,a(z+a)}

<K+ min Gi_1a(x+a)=K+ m>18 Gt-1,a(y+a)
az

a>y—x
< Kt min {min(K + Geotaly-+ ), Grosa(0) | = K+ () + o
az
where the second inequality follows from y — x > 0. Furthermore, (3.2) and the same arguments

imply (3.6).
In view of (3.3), for x <y and t =1,2,...

Gt,a(y) — Gt,a(z) = Elha(y — D)] — Elha(z — D)]
+ aE[vg,a(y — D) + c(y — D) — vg,a(x — D) — é(x — D)]
> Blha(y — D)) - Elha(z — D)) — ak,

where the inequality follows from (3.5). Furthermore, (3.4) and the same arguments imply (3.8). W

Proof of Lemma 3.4: In view of (3.9), S > 22", Since limg— oo E[ha(z — D)] = 400 and
Assumption 3 holds, |S;| < 400 and for x > Sj,

E[ha(z — D)] > E[ha(Sf — D)] > K + E[ha(z2™ — D)) (B.1)

Consider z* € X. Let the function G := G, t =1,2,..., or G := G and a” be an optimal action
defined by (3.1) or (3.2) for ™. Then consider the following two cases: (i) z* < xg™; and (ii)

* > g™,

(i) Lemma 3.3 and (B.1) imply that for z > S}, > 220
G(z) — G(z™™) > Elha(z — D)] — Elha(z™™ = D) —aK > K —aK >0.  (B.2)
Therefore, for x > S > gin

G(z) > Gzag™) > ;ﬂel%’gl G(z). (B.3)

Then, for z* < " (B.3) implies that a* € [0, 5% — 2.
(i) For ™" <z <y

G(y) — G(z) + K > E[ha(y — D)] — Elha(z — D)] — aK + K > 0, (B.4)

where the first inequality follows from Lemma 3.3 and the second one holds because the function
Elha(z — D)] is nondecreasing on [zg™", +00) and K — aK > 0. For z* > zg/™, it follows from
(B.4) that G(z¥) < G(y) + K for all y > z*, which implies that a* = 0. Therefore, cases (i) and

(ii) imply that a* € [0, max{Sa — =™, 0}]. [ ]
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Proof of Lemma 3.8: In view of (3.13), for x <y and t = 1,2,...

Ut,o(x) = min {min{K + Gt—l,a(l‘ +a)}, Gt_lﬂ(x)} < min{K + @t_l,a (x4 a)}
a>0 a>0

< K+ min C_T’t,l’a(x +a)= K+m>ilgét,1’a(y+a)
az

a>y—x

< K+ min {min(K + Georaly+ 0} Groralo) ) = K+ 000 (0),

where the second inequality follows from y — z > 0. Furthermore, (3.14) and the same arguments
imply (3.23).
In view of (3.15), for x <y and t =1,2,...

Gr.o(y) = Gra(@) = Elha(y — D)] - Elha(z — D)] + aE[tt,a(y — D) — tt.a(x — D)]
< Efha(y — D)] - E[ha(z — D)] + ok,

where the inequality follows from (3.22). Furthermore, (3.16) and the same arguments imply (3.25).
]

Proof of Lemma 3.9: The proof is by induction on t. For t = 0, (3.27) holds because vg,(z) = 0,
z € X, and (3.26) follows from G o(z) = E[ha(z — D)], z € X, and |z5"™| < +oo, which is true

in view of Assumption 3. To complete the induction arguments, assume that (3.26) holds for
t=ke{0,1,2,...}. Then for z <y < 2™

O1tae) = min { G o o) min K + Cialo+0)) |

= min { G (o) min (K + Gl + o)}

\%

min {ék,a(y)v 0<£n<12,z{K + G a(z+a)}, agn;EZ{K + G ale + a)}}

\%

it { G (0), K + G () (K + Gy + )} |
> i { G () (K + G-+ 00} | = 41,00

where the first and last equalities follow from (3.13), the first two inequalities follow from (3.26),
and the last inequality follows from K > 0. Thus, (3.27) holds for ¢ = k + 1. In addition, for x <

Yy < Tqo

Grt1,0(y) = Grt1,a(@)
= E[ha(y = D)] = Elha(z — D) + aE[g11,0(y = D) = Upq1,a(z = D)) <0,
where the equality follows from (3.15) and the inequality holds because the function E[hq (z — D)]

is nonincreasing on (—oo, "] and (3.27).

Since ¢, o — Ta as t — 400, (3.27) implies (3.28). In addition, for z < y < z2in
Ga(y) — Ga(w) = E[ha(y — D)] — E[ha(x — D)] + aE[va(y — D) — ta(z — D)] <0,
where the equality follows from (3.16) and the inequality holds since the function E[hq(z — D)] is

nonincreasing on (—oo, 22" and (3.28). |
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Proof of Lemma 3.11: We first prove that
Va(x) — cx = Va(x) > va(z) >0, zeX. (B.5)

Note that v (z) > 0 for all z € X, because all costs in the original inventory model are nonnegative.
Theorem 3.10(i), (3.17), and (3.18) imply that for N =1,2,...

na(z) = @;;Na(x) zeX, (B.6)

where the policy oY is the (st,as St,a)t=0,1,2,...,N—1 policy defined in Theorem 3.10(i). Therefore,

N—-1
N N
N a(r) =05 o (@) =B | Y clar,ar) — oV ery
t=0 (B.7)

N
=vy ,(7) — oNeES [zn] > vN,o(z) — aNEmax{:r,SZ}, z € X,

N
where the last inequality holds because v%a(w) >vna(z), z€X, and for all N=1,2,...
N
Theorem 3.10 (iii) implies that ES [zn] < max{z, Sa}. Hence,

Ba(2) — & = Ga(2) = |l na(@) > lm oxa(e) = va(@) 20,

where the first two equalities follow from (3.19), the first inequality follows from (B.7) and
limpy 4 o0 @™ émax{z, S5} = 0 for each z € X. Therefore, (B.5) holds.

To prove Lemma 3.11, it remains to prove that ve(z) > 9o (z), x € X. Observe that for ¢ =
0,1,2,...and w € II

x>z —S¢ and EZR [w] > zo — tE[D],

where Sy is defined in (4.6). Then for N =1,2,...

N-1
IN0(@) SR a(@) =EL | Y e a) —aV ey | = vk a(@) — oV eB [oy] (B.8)
=0 .

<R o(x) — aNe(@ — NE[D]), zeX.

Observe that limy_. o a™ &z — NE[D]) = 0 for each x € X. Thus, by taking the limits as N —
+oo of both sides of (B.8), 9a(x) < vi(z) for all © € II, which implies that 9a(x) < va(x), z € X.
Hence, Ua(z) = va(z) = Ua(z) — ez, z € X. [ |

APPENDIX C. PROOFS TO SECTION 5

Proof of Lemma 5.3: (i) In view of (3.23) and Lemma 3.11, (5.2) holds because un(z) —
Ua(y) = va(z) — va(y) = Va(z) — ¢z — (Da(y) — cy) and the function wua, (x) converges
pointwise to @(x) as n — +oo. For z <y

H(y) — H(x) = E[h(y — D)] + aElu(y — D) + &(y — D))
— E[h(z — D)] — aEfu(z — D) + (99 - D)]
< Elha(y — D)] = E[ha(z — D)] +

where the equality follows from (4.15) and the inequality follows from (5.2).
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(ii) We first show that for 1 > a > 8 > o*
i > Igin. (C.1)

min

To verify this inequality, consider 1 > o > 3 > . Then, for z < x 3
E[ha(x — D)] — E[ha(xg’m — D)]

= Elh(z — D)] + E[h(z§™ — D) + (1 — a)e(z — zj"™) (©.2)
> E[i(z — D)) +E[h(z§™ — D) + (1 - B)e(x — «§™)

= Elhy(z — D)] ~ Elhg(a™ — D)] > 0,

where the equalities follow from (2.6) and the inequality holds because 1 —a <1 — 3 and
é(x — g’m) < 0. If z5™ < 5™, then (C.2) with z = 25 implies that

E[ha(z™ — D)] - E[ha(«§™ — D)] > 0. (C.3)

However, the definition of %™ in (2.8) implies that E[hq (2" — D)] — E[ha (:cglin —-D) <
0, which contradicts (C.3). Therefore, (C.1) holds.
Now, we prove that 22 7 23" as o 7 1. Consider a fixed discount factor 3 € (a*, 1).
In view of (C.1), since x?m < N < Wi for all o € (3,1) and |xg‘in|, |23 < 400, the
monotone convergence theorem implies that there exists 27" min o [xg“n 2] such that z20 1 xrfin
as « 1 1. In addition, for a € (3, 1)

0< E[hl( min D)] [hl( min D)]

= Elha(zg min D) — (1 - a)e(z min _ E[D]) — E[h1 (z} min D))
(C.4)
< E[ha( min D)] — (1 —a)e(xy min _ E[ D E[hl( min D)]

=(1- a)c(a:’lmn — xgm’) <(1- a)c(a:]{mn — xglm),

where the first two inequalities follow from the definition of 2 and 20 in (2.8), the first equality
holds because E[hy(z2 — D)] = E[hq (z2® — D)] — (1 — a)c(;z:?m — E[D]), the second equality
holds because Elhq (2] min _ D)] — E[hy (2} min _ D)] = (1 — a)e(z™™ — E[D]), and the last inequal-
ity follows from z}3"™" < 22 and (1 — a)c > 0fora € (8,1). Observe that (1 — o)¢(z™ — ") —
0 as a ] 1. Then (C.4) implies that lim; E[h1 (25 min _ py] — E[hy (1™ — D)] = 0. Therefore, the
continuity of the function E[h;(z — D)] implies that

E[h1 («1 — D)] = E[h (1™ - D)]. (C.5)

Recall that m‘f“iﬁn [x’ﬁm“wi‘"i"}. If x’i“in < 21 then Assumption 1 and (2.8) imply that
[hl(xff’ — D)] > E[h1 (2} — D)], which contradicts (C.5). Therefore, mff‘ = MM and 0 1
2P as o 7 1.
In view of (3.28) and Lemma 3.11, (5.4) holds because un(x) — ua(y) = va(x) — va(y) =
Va(x) — cx — (Va(y) — ¢y), the function ua, (x) converges pointwise to @(x) as n — +oo, and
2D N ag 0 11 For z < y < 2B

H(y) — H(z) = E[h(y — D)] — E[h(z — D)]
+aEfa(y — D) +&(y — D) — a(x — D) — &(x — D)] <0,

where the equality follows from (4.15) and the inequality follows from that the function E[h(z — D)]
is nonincreasing on (—oo, zi"'"] and (5.4). |

Proof of Corollary 5.4: The proof of the optimality of (s,S) policies is based on the fact that
K+ H(S) < H(z), if ¢ < s, and K + H(S) > H(z), if x > s. Since the function H is continuous,
we have that K + H(S) = H(s). Thus both actions are optimal at the state s. |
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APPENDIX D. PROOFS TO SECTION 6

Proof of Lemma 6.4: According to (6.3), a(z) = K + Ga(Sa) = K + ma for 2 <y. In view of
(3.16), (6.8), and Lemma 3.11,

K +ma = Ga(y) = Elha(y — D)] + aE[va(y — D)] = E[ha(y — D) + a(K + ma),
which implies (6.9). |

Proof of Lemma 6.5: Observe that the second inequality in Lemma 6.5 follows from (C.1). The
following proof is by contradiction. Assume that there exist « € (a*,1) and y € G such that
y > 238 According to (6.3), Ta(z) = K + mq for 2 < y. Therefore, (3.16) and Lemma 3.11 imply
that for x <y

Go(z) = Elha(z — D)] + a(K + ). (D.1)

The definition (2.8) of 2% and (D.1) imply that G (z%) < Ga(y). According to the definition
of sq in (3.11), Ga(z) > Ga(y) for z < y. Therefore, Go(z5™) = Ga(y), which implies that

E[ha(xglin = D) + a(K +ma) = Ga(xgin) = Ga(y) = K +Ga(Sa) (D.2)
— K + E[ha(Sa — D)] + aE[6a(Sa — D)] > Efha(@™® — D)] + a(K + ma), '

where the first equality follows from (D.1), the last equality follows from (3.16) and Lemma 3.11,
and the inequality follows from K > oK and the definition of z3™ and mq. The contradiction in
(D.2) implies that y < 23" for all y € Ga. [ |

Proof of Lemma 6.6: According to equation (4.17), for any given 8 € (™, 1), there exists a constant
b > 0 such that sq € (=b,0) for all a € [3,1). In view of (4.2), since b and z7; are real numbers,
where z7; is defined in (4.10),

lim(1 — a)(ma — ¢b) = lim(1 — a)(ma + exyr) = w. (D.3)
all all

Therefore, since sq > —b for all a € [3,1), (6.7) and (D.3) imply that limqqq(1 — @)ma = w.
Therefore, in view of Lemma 6.4, limy 11 E[ha(sa — D)] = w. [ |

APPENDIX E. PROOFS TO SECTION 7

Proof of Lemma 7.2: We first verify the validity of Assumption W*. It is obvious that the nonneg-
ative cost function ¢ is K-inf-compact and the transition probabilities are weakly continuous. Thus,
Assumption W* holds and a stationary discount cost optimal policy exists for every a € [0,1). To
verify the validity of Assumption B, we calculate the relative value function ue.

Let us calculate the value functions ve for a € [0, 1). Since there is only one action at n =

0,1,..., the infinite-horizon value function
o .
va (1) :Zngl_i)_io/, n=0,1,.... (E.1)
=0

Therefore, for n = 0, (E.1) implies

va(0) = Z zgl)al =20+ Z(zZ —zi_1)a + Z o
i=0 i=1 i=0

(E.2)

— . /L_ . 3 p—
_»EOZZQ aéozla +71—a_f(a)+1—a’
i— i—
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where the second equality follows from (7.3), the third equality is straightforward, and the last
equality follows from (7.4). Furthermore, (E.1) implies that for n =1,2,...

[ o
; i 1
va(n) = Z(Zn+z — Zn4i—1 1 l)oﬂ = (1 — Oc) Z ZnJr,L-aZ — Zn—1+ 1-a (E3)
=0 =0

There are only two stationary policies for this problem: ! with ¢!(—1) =a® and ¢? with

©?(=1) = a°. Observe that v& (1) = 1/(1 — a) and o€ (=1) = 1 + ava(0) = 1/(1 — @) + af(a),
where f(c) > 0. Therefore,
. 1 1 1
va(—l)_mln{m,m—i—af(a)}_ T o (E.4)
Formulae (E.2) and (E.4) imply
va(~2) = ava(-1) = 1 f‘a < va(—1) < va(0). (E.5)
In view of (E.3) and (E.5), forn =1,2,...
va(n) > —1+ —— = va(-2) (E.6)
« el 1—a — Vo ’ °
where the inequality follows from z, € {0,1}, n =0,1,... . (E.5) and (E.6) imply
Mea = inf va(2) = va(—2) = —2 (E.7)
o a:EX [e3 — Vo - 1 o a? '

Thus, (E.2)-(E.5) and (E.7) imply (7.5).

Note that w*™ < w“"(m) (=1) =1 < co. Then to complete the proof of the validity of Assump-
tion B, we need to prove that SUP4c(o,1) ua(n) < oo for n € X. Since 0< 2, <1, n=0,1,...,
(7.5) implies that 0 < ua(n) <14+ (1—a)d> 2ja’ =2 for n € X and « € [0,1). This completes
the proof. |

Proof of Lemma 7.3: (i) For all & € [0,1)

|ta () = ta(y)| = [Pa(z) = Va(y)| = |va(z) = va(y) + &z — y)|

(E.8)
= |ua(z) —ua(y) + &(z = y)| < |ua(z) - ualy)l + ez —yl,
where the first equality follows from (6.2), the second one follows from Lemma 3.11, and the third
one follows from (4.1).

Consider € > 0. For each 8 € (a*, 1), since the family of functions {ua}ae[g,1) is equicon-
tinuous (see Theorem 4.6), there exists 6 > 0 such that |ua(z) — ua(y)| < e/2 for all |z —y| <o
and «a € [, 1). Therefore, for |z —y| < 01 := min{d,e/2¢}, ¢lx — y| < /2 and (E.8) implies that
lta(z) — ta(y)| < e for [z —y| <61 and a € [3,1). Thus, the family of functions {ta}ae(s,1) is
equicontinuous.

(i) Consider z € X. For all @ € (a*,1)

10(2) = tta (@) < [a(2) - ua (@)
= [Ba (@) — va(@) — (T — ma)| = [&@ — (70 — ma)| (E.9)
<

< ezl + [ma — mal < &) + |sal +[2p]) < e(lz] + b+ |zp),

where the last two inequalities follow from (6.7) and Theorem 6.1, respectively.
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According to Theorem 4.1, since Assumption B holds, SUPq e (ax,1) Uor (z) < 4+00. Therefore,
(E.9) implies that

sup  Ga(z) <e(jz| +b+|zp]) + sup  ua(z) < +oo, z€X.
ac(a*,1) a€g(a,1) |

Proof of Lemma 7.4: Consider any given 3 € (a*,1) and s; defined in (6.1). According to (4.17),
there exists b > 0 such that so € [—b,b] for all a € [3,1). The proof of this lemma consists of the
following steps: (i) we show that if x < s1, then limg1; %a(z) = K; (ii) we show that (7.7) holds for
z € [s1,+00) except at most countably infinite many points © € D (see the definition of the set D
in (E.11)) using Lebesgue’s dominated convergence theorem; and (iii) we show that the continuity
of the limiting function of every convergent sequence {@a,, }n=1,2,... implies that (7.7) holds for
x € D and establish the continuity of the function .

(i) For z < s1, according to Theorem 6.1, there exists & > § such that z < s for all a € [&, 1).
Then (7.6) implies that @a(x) = K for all a € [&,1). Therefore,

limaa(z) = K, z<sj. (E.10)

all

(ii) Recall the renewal counting process N(-) defined in (4.5) and S, defined in (4.6). Consider
the sets

Dy = {x € R : distribution function P(S;, < z) is discontinuous}.
Therefore, each set Dy, n =0,1,..., is at most countably infinite. Let
D={s1}U{z>s1:x=s51+y, yeUIZDy} and C=s1,+00)\D. (E.11)

Hence, D is also at most countably infinite. In addition, P(S, < x — s1) is continuous at
x—s1 and forn=0,1,...and z € C

lilT“rll P(Sn <x—38a)=P(Sn <z —351). (E.12)
@

Then we will show that (7.7) holds for x € C. Consider = € C. According to Theorem 6.1,
there exists & > 8 such that sq < z for all a € [&,1). Therefore, in view of (3.16), (6.2),
(6.4), and (7.6), for all « € [&, 1)

tia(z) = (E[ha(z — D)] — (1 — @)ma) + aElia(z — D)). (E.13)

Using the same arguments as in (4.27) and ta (2 — SN(y—s,)+1) = K, which follows from
(7.6), (E.13) implies that

N(z—sq)+1 )
ia(@)=E| Y o Nhalz —Sj-1) — (1 - a)ma)| +ENT T K] (E.14)
j=1

where ho (z) := E[ha(x — D)], z € X. Then it suffices to prove that the two expectations in
(E.14) converge as the discount factor o T 1. We start with the second one in (E.14). For
a€B,1)

1> E[oNE=sa)+l] 5 goN@+)+1) 5 (EN(@+b)+1], (E.15)

where the first inequality follows from a < 1, the second one follows from sq > —band a < 1,
and the last one follows from Jensen’s inequality. Since P(D > 0) > 0, E[N(z +b) + 1] <
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+o0, which implies that limq NG+ 1 I view of (E.15),

lizy E[oN@s) K] = K. (E.16)
«

Now we show that the first expectation in (E.14) converges as the discount factor o 1 1.
Note that the first expectation in (E.14) can be written as

N(z—sq)+1 ) R
E Z a]_l(ha(x_sjfl)_(l_o‘)ma)
j=1

400 i+1 - ~

=3 > TE[(ha(z — Sj-1) — (1 — A)Ma) L {N(z—s.)=i}]
i=0 j=1
+o00 +o0 ] .

= > &El(ha(z - S;) = (1 — A)Ma)L{N(s—s.)=i}] (E-17)
=0 i=j

oo B

= > E[(ha(z = 8;) — (1 — )Ma) L {N(z—s0)>5}]
j=0
+oo B

= Z O‘J]E[(ha(m - Sj) - (1 - a)ma)l{sjgx—sa}},
j=0

where the first and the third equalities are straightforward, the second one changes the order
of summation, and its validity follows from the nonnegativity of h(-) and the finiteness of
o (x), and the last one holds because {N(t) > n} = {S, < t}.

Then we construct a finite upper bound of the sum in (E.17). Since the function he () is
quasiconvex and sq > —b, for j =0,1,...

& Elha(z — Sj)1(s,<s—s.}] < Elha(z — D)] + E[ha(—b — D)] < +oc. (E.18)

Since P(D > 0) > 0, there exists a constant Ap > 0 such that P(D > Ap) > 0. Let

) 0 if D<Ap,
Ap otherwise.

Then E[D] =ApP(D>Ap)>0 and Var(D)=A%LP(D > Ap)(1—P(D > Ap)) <
+00. Define Sg =0 and S, = > | D, n=1,2,... . Therefore, P(Sp < z) < P(Sp < z)

for all z € R and n =0, 1,.... Since E[D] > 0, there exists N1 > 0 such that nE[D] >z +b

for all n > Nj. Let A(n) := nE[D] — (x + b) > 0. Hence, for n > Ny

E[ls, <z—s.}] = P(Sn <@ —50) < P(Sn <& —5a) < P(Sn <2 +b)

- E.19
= P(Sn — nE[D] < z + b — nE[D]) < P(ISn — nE[D]| > A(n)) < ngr((f))y (E.19)

where the last inequality follows from Chebyshev’s inequality. In addition, according to
Lemma 6.6, there exists M; > 0 such that |(1 — a)ma| < M; for all « € [3,1). Therefore,
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in view of (E.18) and (E.19),

+o0 ) _
> |07 El(ha(z = 8;) = (1 - )ifia) Ly, <o—a)
J:

+oo
< (Elha(z — D)] + E[ha(=b— D)] + M1) > Ell(s, <, s.] (E.20)
=0
400 P~
< (E[ha(z — D)] + Elha(~b— D)) + M)(N1 + 3 VA#((],I;)) < +oc.
j=N1
Then
N(z—sa)+1 -
E%E jz::l o " Hha(z —Sj-1) — (1 — a)ima)
+oo B
— 51%} o E[(ha(z = 8;) — (1 — a)ima)l(s,<o—s,}] (E.21)
7=0
400 ~ N(zx—s1)+1 ~
=Y E[(hi(z—8;) — w)lis, <453 = E > (@—8-1) -w)|,
j=0 j=1

where the first equality follows from (E.17), the second one follows from Theorem 6.1,
Lemma 6.6, (E.12), (E.20), and Lebesgue’s dominated convergence theorem, and the last
one follows from {S; < x —s1} = {N(z — s1) > j}. In view of (E.14), (E.16), and (E.21),

N(z—s1)+1
lim @ =E hi(z —S;_1) — K . E.22
Oggw(fv) ; (hi(z—Sj—1) —w)| + K, z€C ( )

Thus, (7.7) is proved for € X\D.

(iii) It remains to prove (7.7) for € D and continuity of the function @. In view of Lemma 7.3
and Ascoli’s theorem, there exist a sequence {an T 1}p=1,2,... with oy > 3 and a continuous
function u* such that lim,— 4 ta, () = @ (z), z € X.

Assume that (7.7) does not hold for some x € D. Then there exists a sequence {vn T 1}n=12,...
with 41 > 8 such that limp— 400 U, (z) # @*(z). According to Lemma 7.3 and Ascoli’s theorem,
there exist a subsequence {yn, }r=1,2,... of {¥n}n=1,2,... and a continuous function @ such that
limy . 4 oo Uy, (T) = @ (z), € X. Then @' (z) # @*(x). However, 4’ and @* are two continuous
functions on R that coincide outside of a countable set. This implies that @’ = @*. Therefore, (7.7)

holds for z € X and the continuity of the function @ follows from Ascoli’s theorem. |
Proof of Corollary 7.5: This corollary follows from Theorems 5.1, 6.1 and 7.1. |
Proof of Corollary 7.7: This corollary follows directly from Lemma 2.2. |
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