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SUFFICIENCY OF DETERMINISTIC POLICIES FOR ATOMLESS
DISCOUNTED AND UNIFORMLY ABSORBING MDPs WITH

MULTIPLE CRITERIA∗

EUGENE A. FEINBERG† AND ALEXEY PIUNOVSKIY‡

Abstract. This paper studies Markov decision processes (MDPs) with atomless initial state
distributions and atomless transition probabilities. Such MDPs are called atomless. The initial state
distribution is considered to be fixed. We show that for discounted MDPs with bounded one-step
reward vector-functions, for each policy there exists a deterministic (that is, nonrandomized and
stationary) policy with the same performance vector. This fact is proved in the paper for a more
general class of uniformly absorbing MDPs with expected total rewards, and then it is extended
under certain assumptions to MDPs with unbounded rewards. For problems with multiple criteria
and constraints, the results of this paper imply that for atomless MDPs studied in this paper it is
sufficient to consider only deterministic policies, while without the atomless assumption it is well-
known that randomized policies can outperform deterministic ones. We also provide an example of an
MDP demonstrating that if a vector measure is defined on a standard Borel space, then Lyapunov’s
convexity theorem is a special case of the described results.
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pact
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1. Introduction. This paper studies Markov decision processes (MDPs) with
multiple criteria when each criterion is evaluated by the expected total discounted
rewards or costs. The paper also studies more general uniformly absorbing MDPs.
The number of criteria is finite, and the initial state distribution is fixed. For each
criterion there is a function of one-step rewards, and the performance of each policy
is evaluated by the finite-dimensional vector, whose coordinates are expected total
rewards for the corresponding reward functions. For each policy this vector is called
a performance vector. An MDP is called atomless if the initial state distribution and
transition probabilities are atomless. In general, constrained optimization requires the
use of randomized decisions. However, for atomless problems nonrandomized policies
are optimal under broad conditions.

The first results of this kind were established by Dvoretzky, Wald, and Wolfowitz
[8, 9], who proved that for a one-step problem with multiple atomless initial distri-
butions, multiple reward functions, and finite action sets, the expected reward vector
achieved by an arbitrary policy can be achieved by a nonrandomized policy. The case
of multiple initial distributions can be reduced to a single initial distribution by using
the Radon–Nikodym theorem; see [20] or Example 11.2. Thus, the above-mentioned
result from Dvoretzky, Wald, and Wolfowitz [8, 9] can be interpreted as a fact for one-
step atomless MDPs. As observed by Feinberg and Piunovskiy [20], this result holds
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164 EUGENE A. FEINBERG AND ALEXEY PIUNOVSKIY

for infinite action sets; see also Jaśkiewicz and Nowak [25] for the generalization to
conditional expectations. The proof in Dvoretzky, Wald, and Wolfowitz [8, 9] is based
on Lyapunov’s convexity theorem, which states that the range of a finite atomless
vector-measure is a convex compact subset of the Euclidean space.

Feinberg and Piunovskiy [18, 19] proved that for atomless MDPs with a given
initial state distribution and with multiple expected total rewards, for every policy
there is a nonrandomized Markov policy with the same performance vector. In [18]
this fact was proved for MDPs with weakly continuous transition probabilities and
with weakly continuous reward functions. The proof in [18] is based on geometric
arguments. In [19] this fact was proved for arbitrary atomless MDPs with expected
total rewards, and the proof was based on Lyapunov’s convexity theorem.

In this paper we prove that for an atomless discounted MDP with multiple crite-
ria and bounded reward functions, for each policy there exists a deterministic (that
is, nonrandomized and stationary) policy with the same performance vector. In fact,
we prove this result for uniformly absorbing MDPs with the expected total rewards.
This is a more general class of MDPs than discounted ones. The proof for determin-
istic policies is much more difficult than the proofs for nonrandomized Markov ones
provided in [18] and [19]. In addition, the proofs in this paper use and extend geo-
metric methods introduced in [18] instead of applying Lyapunov’s convexity theorem.
Example 11.2 demonstrates that Lyapunov’s convexity theorem can be interpreted as
a one-step version of the main result of this paper.

For discounted MDPs with multiple criteria and constraints, under certain con-
ditions there exist (randomized) stationary optimal policies; see Altman [1], Feinberg
and Shwartz [22], Hernández-Lerma and González-Hernández [24], and Piunovskiy [29].
The results of this paper imply the existence of optimal deterministic policies for con-
strained atomless discounted MDPs and for constrained atomless uniformly absorbing
MDPs if optimal policies exist.

The main result of this paper, Theorem 3.8, states that the sets of performance
vectors for all policies and for deterministic policies coincide. In order to prove the
main result, we deal with three types of subsets of linear spaces: the set of strategic
measures, the set of occupancy measures, and the set of performance vectors. For a
given policy, the strategic measure is the probability distribution of all state-action
trajectories, and the occupancy measure is the measure on the product of the state
and action spaces, where the value of this measure on each measurable set is the
expected total number of times when the corresponding actions are selected at the
corresponding states. The set of performance vectors (strategic measures, occupancy
measures) consists of performance vectors (strategic measures, occupancy measures)
for all policies. The set of performance vectors is a projection of the set of occupancy
measures, and the set of occupancy measures is a projection of the set of strate-
gic measures. Projections inherit certain properties of the sets from which they are
projected. These properties include convexity and compactness.

The set of all strategic measures is convex; see Dynkin and Yushkevich [10, sec-
tion 3.5]. Therefore, the set of all occupancy vectors and the set of all performance
vectors are convex. Under certain conditions the set of strategic measures is compact.
Schäl [31] introduced two such conditions: (S) and (W). Condition (S) assumes setwise
continuity of transition probabilities, and condition (W) assumes weak continuity of
transition probabilities. In both cases, appropriate continuity properties are assumed
for reward functions. In particular, condition (S) holds for MDPs with finite action
sets. Under the above-mentioned conditions, compactness properties also hold for the
sets of all occupancy measures and all performance vectors.
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For discounted and absorbing MDPs, if the initial distribution is fixed, then for
each policy there exists a stationary policy with the same occupancy measure; see
[1, 6, 21, 23, 29, 30]. Therefore, the sets of all occupancy measures and all performance
vectors coincide with the corresponding sets for all stationary policies. The nontrivial
step in proving Theorem 3.8 is to show that the sets of performance vectors for all
stationary and for all deterministic policies coincide.

The important and nontrivial step is to prove that for an atomless MDP the set
of performance vectors for all deterministic policies is convex. This fact is nontrivial
even for the case of one criterion. Example 11.2 demonstrates that for multiple criteria
this fact is a nontrivial extension of Lyapunov’s convexity theorem for a standard
Borel space. In order to prove this fact, we show that the set of occupancy measures
endowed with the topology of setwise convergence is path-connected. Therefore, being
its projection, the set of performance vectors is a connected subset of the Euclidean
space. Thus, for the single-criterion case, this set is a connected subset of a line.
Therefore, it is convex. The case of multiple criteria is studied by induction using the
dimensionality reduction technique introduced in this paper.

Section 2 of this paper introduces the basic definitions for the discounted case
and formulates the main result for discounted MDPs. Section 3 describes absorbing
and uniformly absorbing MDPs, formulates the main result for uniformly absorbing
MDPs, and shows that a discounted MDP is a particular case of a uniformly absorb-
ing MDP. Section 4 studies the properties of occupancy measures. Section 5 describes
condition (S), which is sufficient for compactness of the sets of all strategic measures,
all occupancy measures, and all performance vectors. In particular, this condition
holds for an MDP with finite action sets. Section 6 describes submodels and dimen-
sionality reduction. Section 7 introduces an MDP generated by two deterministic
policies and describes continuity properties for such MDPs. Section 8 establishes
path-connectedness of the sets of occupancy measures for all deterministic policies for
atomless MDPs. This property implies that the set of all performance vectors for de-
terministic policies is path-connected. Thus, for a single-criterion problem, this set is
convex. The proof of the main theorem is provided in section 9. Section 10 presents
the results for unbounded reward vector-functions by using the standard weighted
norm approach. These results are used in section 11 to show that for standard Borel
spaces Lyapunov’s convexity theorem is a special case of the results of this paper.

2. Main result for discounted MDPs. We start with some definitions. Recall
that two measurable spaces (E, E) and (D,D) are called isomorphic if there exists a
one-to-one measurable correspondence f between them such that the correspondence
f−1 is measurable. A Polish space is a complete separable metrizable space. A stan-
dard Borel space is a measurable space isomorphic to a Borel subset of a Polish space.
Properties of standard Borel spaces can be found in Bertsekas and Shreve [3], Dynkin
and Yushkevich [10], Kechris [26], and Srivastava [32]. In particular, a standard Borel
space is either finite or countable, or it has the cardinality of the continuum. Two
standard Borel spaces with the same cardinality are isomorphic. We always consider
Borel σ-fields on topological and metric spaces. In particular, a standard Borel space
with the cardinality of the continuum is isomorphic to the interval [0, 1]. For two
measurable spaces (E, E) and (D,D), a transition probability q defines a probability
measure q(·|d) on (E, E) for each d ∈ D such that q(C|·) is a measurable function on
(D,D) for each C ∈ E . We recall that a measure ν on a standard Borel (D,D) space
is called atomless if ν(d) = 0 for all d ∈ D; here and below we omit curly brackets in
the expressions like ν({x}) and p({y}|x, a).
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A discounted MDP is defined by the following objects:
(i) a standard Borel state space (X,X ),

(ii) a standard Borel action space (A,A),
(iii) nonempty sets of actions A(x) ∈ A available at states x ∈ X, such that

GrX(A) := {(x, a) ∈ X × A : x ∈ X, a ∈ A(x)} is a measurable subset of
(X× A,X ⊗A),

(iv) a transition probability p from X× A to X,
(v) an initial state distribution µ, which is a probability measure on (X,X ),

(vi) a bounded measurable reward vector-function r : X×A 7→ RN , where N is a
natural number,

(vii) a discount factor β ∈ [0, 1).

Definition 2.1. An MDP is called atomless if µ(x) = 0 and p(y|x, a) = 0 for all
x, y ∈ X and a ∈ A(x).

If an action a ∈ A(x) is chosen at a state x ∈ X, then the process moves to the next
state according to the probability distribution p(·|x, a) and the reward vector r(x, a) =
(r(1)(x, a), r(2)(x, a), . . . , r(N)(x, a)) is collected according to criteria 1, 2, . . . , N. To
avoid a trivial situation, when a policy cannot be defined, we always assume that
there exists a measurable mapping φ : X 7→ A such that φ(x) ∈ A(x) for all x ∈ X.
Such a mapping is called a selector.

Consider the sets of possible finite histories Ht := X × (A × X)t up to time
t = 0, 1, . . . . A policy π is a sequence of transition probabilities πt, t = 0, 1, . . . ,
from Ht to A such that π(A(xt)|ht) = 1 for each ht = (x0, a0, x1, . . . , xt) ∈ Ht. A
policy is called nonrandomized if each transition probability πt(·|ht), t = 0, 1, . . . , is
concentrated at one point. A policy π is called Markov if for each t = 1, 2, . . . the
values of probabilities πt(·|x0, a0, . . . , xt) are the functions of xt. A Markov policy is
called stationary if πt(·|x) = πs(·|x) for all x ∈ X and for all s, t = 0, 1, . . . . A transition
probability πt for a stationary policy π is also denoted as π. A nonrandomized Markov
policy is defined by a sequence of selectors {φt}t=0,1,.... These selectors are equal for
a nonrandomized stationary policy. A nonrandomized stationary policy φ is called
deterministic, and we identify it with the selector φ. We denote by Π, M, S, and F the
sets of all, nonrandomized Markov, stationary, and deterministic policies, respectively.
Observe that F ⊂M ⊂ Π and F ⊂ S ⊂ Π.

The existence of the selector means that F 6= ∅. This assumption does not limit
the generality of the results of this paper. If F = ∅, then Π = ∅; see Dynkin and
Yushkevich [10, sections 3.1 and 3.2]. Therefore, if F = ∅, then the main result of the
paper, Theorem 3.8, is equivalent to the trivial identity ∅ = ∅.

The two special features of the introduced model are that (i) the rewards are
vector-valued, and (ii) the initial distribution µ is fixed. However, we consider addi-
tional initial distributions and initial states in auxiliary results in a few places in this
paper. Whenever we consider initial distributions other than µ, we specify them in
the notation.

According to the Ionescu Tulcea theorem, an initial probability distribution µ on
the state space X and transition probabilities πt and p define a unique probability
measure Pπ on the countable product H∞ := X× (A×X)∞ endowed with the σ-field
X ⊗ (A⊗X )∞. Expectations with respect to this probability are denoted by Eπ.

Remark 2.2. The corresponding probabilities and expectations are defined for
each initial probability distribution ν on (X,X ). In this case, they are denoted as Pπν
and Eπν . That is, Pπ := Pπµ and Eπ := Eπµ . If a probability measure ν is concentrated
at a point x ∈ X, that is, ν(x) = 1, we shall write Pπx and Eπx instead of Pπν and Eπν ,
respectively.
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For an initial state distribution µ and a policy π, the vector of expected total
discounted rewards is

vπβ := Eπ
∞∑
t=0

βtr(xt, at).

For a set of policies ∆ ⊂ Π, the set of all performance vectors is V∆
β := {vπβ : π ∈ ∆}.

Denote Vβ := VΠ
β . It is obvious that VF

β ⊂ Vβ ⊂ RN , and, in general, it is possible

that VF
β 6= Vβ . For example, if X and A are finite sets, then the set VF

β is finite, while
the set Vβ may have the cardinality of the continuum. In fact, for problems with finite
state and action sets, Vβ is a convex hull of VF

β ; see, e.g., Feinberg and Rothblum [21,
Theorem 6.1]. According to the following theorem, which is the main result of this
paper for discounted MDPs, the situation is different for atomless MDPs.

Theorem 2.3. For an atomless MDP VF
β = Vβ .

In section 3 we formulate a more general result, which is proved later in this
paper.

3. Absorbing MDPs and the main result. We start this section with the
definition of the expected total reward under fairly general conditions and for the case
of a single criterion, that is, N = 1. In this case, r is a bounded real-valued function,
but in formula (3.1) and in Definition 3.1 we do not assume that r is bounded. Then
we define absorbing and uniformly absorbing MDPs, formulate the main result of this
paper, Theorem 3.8, and show that it is more general than Theorem 2.3, which states
the sufficiency of deterministic policies for atomless discounted MDPs.

We recall that the initial state distribution µ is fixed. For an arbitrary nonnegative
measurable function r, the expected total reward for a policy π is

(3.1) vπ := Eπ
∞∑
t=0

r(xt, at) = lim
n→∞

Eπ
n−1∑
t=0

r(xt, at),

where the second equality follows from the monotone convergence theorem.
For a number c, let us denote c+ := max{c, 0} and c− := −min{c, 0}. For a policy

π ∈ Π, we consider positive values vπ+ and vπ− defined by (3.1) with the rewards r(x, a)
replaced by the rewards r+(x, a) and r−(x, a), respectively.

Definition 3.1. If min{vπ+, vπ−} < +∞, then the expected total reward vπ is well-
defined and vπ := vπ+ − vπ−.

If vπ is well-defined, then the equalities in (3.1) hold because they hold for rewards
r+ and r− and at least one of the numbers vπ+ and vπ− is finite.

Now let N > 1. Then vπ+ and vπ− are defined as N -dimensional vectors of the
expected total rewards whose coordinates are the expected total rewards for positive
and negative parts of the corresponding coordinates of the vector-function r. The
vector vπ is well-defined if each of its N coordinates is. In this case, as explained
above, vπ := vπ+ − vπ−, and the second equality in (3.1) holds.

Remark 3.2. For an initial probability distribution ν on (X,X ), which can be
different from µ, we shall use the notation v(ν), v+(ν), and v−(ν), respectively. With
a small abuse of notation, we shall write v(x), v+(x), and v−(x), respectively, if the
probability measure ν is concentrated at the point x ∈ X.

Now we introduce an absorbing MDP. Let the standard Borel state space of this
MDP be denoted by X̄. We use the same notation and assumptions for the standard
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Borel action space A, sets of available actions A(·), transition probability p, initial
state distribution µ, and reward vector r as in the previous section.

Let T x denote the first time a stochastic sequence h = x0, x1, . . . with values in
X̄ reaches the state x ∈ X̄, that is, T x(h) := inf{t = 0, 1, . . . : xt = x}.

Definition 3.3. For the initial probability distribution µ, an MDP is called ab-
sorbing if there exists a state x̄ ∈ X̄ with the following properties:

(i) µ(x̄) = 0;
(ii) A(x̄) = {ā} for some ā ∈ A, p(x̄|x̄, ā) = 1, and r(i)(x̄, ā) = 0 for all i =

1, . . . , N ;
(iii) there exists a finite constant L such that, for all policies π ∈ Π,

(3.2) EπT x̄ ≤ L.

Remark 3.4. The state x̄ is fictitious in the sense that under every policy this
state is absorbing, there is no choice of decisions at x̄, and all the rewards are equal to
0 at this state. After the system hits state x̄, it is impossible to control it. Therefore,
the set X̄ \ {x̄} plays the same role for absorbing MDPs as the state space X for
discounted MDPs; see the notation in formula (3.3).

Remark 3.5. We make assumption (i) in Definition 3.3 for convenience only. All
the results in this paper hold without this assumption. In principle, it is possible
to consider initial distributions other than µ. If an MDP is absorbing for an initial
distribution ν, which may differ from µ, then this is stated explicitly in this paper. Of
course, the value of the upper bound L may depend on the initial distribution. In some
publications, including [1, 21], absorbing measurable sets are considered instead of
absorbing states. These formulations are equivalent because the states in an absorbing
set can be merged into a single state.

Observe that T x̄ =
∑∞
t=0 I{t < T x̄}, where I is the indicator function. We

recall that assumption (iii) in Definition 3.3 is equivalent to the validity of (3.2) for
all deterministic policies φ ∈ F instead of arbitrary policies π ∈ Π; see Feinberg
and Rothblum [21, p. 132]. If we interpret T x̄ as the time when the process stops,
then (3.2) means that the average lifetime of the process is uniformly bounded for
all policies given the initial state distribution µ. For an absorbing MDP, we fix an
arbitrary state x̄ described in Definition 3.3 and set

(3.3) X := X̄ \ {x̄}.

Let us consider an absorbing MDP. Recall that the reward vector-function r is
bounded and r(x̄, ā) = 0. In view of Definition 3.3(ii), (iii), the expected total rewards
vπ are well-defined for all policies π, and

vπ = lim
n→∞

Eπ
n−1∑
t=0

r(xt, at) = Eπ
∞∑
t=0

r(xt, at) = Eπ
∞∑
t=0

r(xt, at)I{xt ∈ X}(3.4)

= Eπ
T x̄−1∑
t=0

r(xt, at),

where the first two equalities follow from (3.1) and the last two follow from Defini-
tion 3.3(ii). For ∆ ⊂ Π, the set of performance vectors generated by policies from ∆
is V∆ := {vπ : π ∈ ∆}. We also use the notation

V := VΠ.
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For an absorbing MDP, the monotone convergence theorem implies that for every
policy π

lim
n→∞

Eπ
∞∑
t=n

I{t < T x̄} = 0.

Definition 3.6 states the stronger equality. Recall that M is the set of all nonrandom-
ized Markov policies and the initial measure µ is fixed.

Definition 3.6. An absorbing MDP is called uniformly absorbing if

(3.5) lim
n→∞

sup
π∈M

Eπ
∞∑
t=n

I{t < T x̄} = 0.

Example 3.13 describes an absorbing MDP which is not uniformly absorbing.
We remark that the supremum in (3.5) is equal to the same supremum over the set
of all policies π ∈ Π; see Feinberg [12, Theorem 3]. Recall that EπI{t < T x̄} =
Pπ{T x̄ > t} and EπT x̄ =

∑∞
t=0 P

π{T x̄ > t}. Since Eπ
∑∞
t=n I{t < T x̄} = EπT x̄ −

Eπ
∑n−1
t=0 I{t < T x̄}, assumption (3.5) means that the MDP is absorbing and the

convergence Eπ
∑n−1
t=0 I{t < T x̄} ↑ EπT x̄ as n → ∞ takes place uniformly in π ∈ Π.

Since the vector-function r is bounded, the convergence in (3.1) is uniform in π ∈ Π
for a uniformly absorbing MDP.

Definition 3.7. An absorbing MDP is called atomless if µ(x) = 0 and p(y|x, a) =
0 for all x, y ∈ X and a ∈ A(x).

In some sense, Definition 3.7 means that the state x̄ is considered to be outside of
the state space. Of course, a uniformly absorbing MDP is absorbing, and Definition 3.7
applies to uniformly absorbing MDPs, too.

As explained later in this section, the following theorem, which is the main result
of this paper, generalizes Theorem 2.3, which states a similar statement for discounted
MDPs.

Theorem 3.8. For a uniformly absorbing atomless MDP, VF = V.
The following corollary is an equivalent formulation of Theorem 3.8.

Corollary 3.9. For a uniformly absorbing atomless MDP, for every policy π ∈
Π there exists a deterministic policy φ such that vφ = vπ.

For total-reward MDPs, the performance set V is convex. This simple fact follows
from the convexity of the set of strategic measures; see Dynkin and Yushkevich [10,
section 5.5] or, for absorbing MDPs, see Lemma 4.1 below. This fact and Theorem 3.8
imply the following corollary.

Corollary 3.10. For a uniformly absorbing atomless MDP, the set VF is convex.

Let us show that Theorem 3.8 is more general than Theorem 2.3. Recall that if an
initial probability distribution ν is concentrated at one state x ∈ X, then, according
to Remark 2.2, we usually write Eπx instead of Eπν . The following lemma provides a
natural sufficient condition under which an absorbing MDP is uniformly absorbing.

Lemma 3.11. Consider an MDP with a standard Borel state space X̄ and with a
state x̄ ∈ X̄ such that A(x̄) is a singleton and p(x̄|x̄, ā) = 1, r(x̄, ā) = 0, where A(x̄) =
{ā}. If there is a finite constant L such that EφxT

x̄ < L for all x ∈ X = X̄ \ {x̄} and
for all φ ∈ F, then this MDP is uniformly absorbing for all initial state distributions
µ on X.
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Proof. Let us fix an arbitrary initial probability distribution µ on X. As is men-
tioned after Definition 3.3, supπ∈ΠE

π
xT

x̄ = supφ∈FE
φ
xT

x̄ for all x ∈ X. Therefore,
EπxT

x̄ ≤ L for all x ∈ X and for all π ∈ Π. This implies that EπT x̄ ≤ L for all π ∈ Π.
In view of Markov’s inequality, for an arbitrary policy π ∈ Π and for n = 0, 1, . . . ,

(3.6) Pπ{T x̄ > n} ≤ (n+ 1)−1EπT x̄ ≤ (n+ 1)−1L.

For an arbitrary nonrandomized Markov policy φ = (φ0, φ1, . . .) and for n = 0, 1, . . . ,
let us define by φ+n the shifted nonrandomized Markov policy φ+n = (φn, φn+1, . . .).
Then

Eφ
∞∑
t=n

I{t < T x̄} = EφEφ
+n

xn

∞∑
t=0

I{t < T x̄} = EφEφ
+n

xn T x̄ ≤ EφI{n < T x̄}L

= LPφ{T x̄ > n} ≤ (n+ 1)−1L2,

which implies (3.5), where the first inequality follows from {xn ∈ X} = {n < T x̄}
Pπ-a.s. and EπxT

x̄ ≤ L for all π ∈ Π and all x ∈ X, and the last inequality follows
from (3.6).

Lemma 3.12. Theorem 3.8 implies Theorem 2.3.

Proof. Consider a discounted MDP. The following transformation into an absorb-
ing MDP is well-known; see, e.g., Altman [1, p. 137]. Let us add an additional point
x̄ to the state space X and consider the new transition probability p̄ defined by

p̄(Y |x, a) :=


βp(Y |x, a) if x ∈ X, Y ∈ X ,
1− β if x ∈ X, Y = {x̄},
1 if x = x̄ ∈ Y.

Then VF = VF
β and V = Vβ . The new MDP is absorbing. It is atomless if and only

if the original discounted MDP is atomless. Since EπxT
x̄ = (1 − β)−1, Lemma 3.11

implies that the new model is uniformly absorbing.

Of course, the transformation of a discounted MDP into an absorbing one is
trivial. However, under certain conditions it is also possible to transform an absorbing
MDP into a discounted one; see Feinberg and Huang [14, 15].

The following example describes an absorbing MDP, which is not uniformly ab-
sorbing.

Example 3.13. Let X := {(i, j) : i = 0, 1, . . . , j = 0, 1, . . . , 2i − 1}, x̄ := 0,
A={c,s}, where c stands for “continue” and s stands for “stop,” and

A(x) :=

{
{c, s} if x = (i, 0), i = 0, 1, . . . ,

{s} otherwise,

and for i = 0, 1, . . .

p(y|x, a) =


0.5 if a = c, x = (i, 0), y = 0, or y = (i+ 1, 0),

1 if a = s and either x = (i, j), j = 0, . . . , 2i − 2, y = (i, j + 1)

or x = (i, 2i − 1), y = 0.

In addition, µ(0, 0) = 1. In this example, the process starts at the state (0, 0). At each
state (i, 0), i = 0, 1 . . . , the decision maker can either continue or stop the process.

D
ow

nl
oa

de
d 

08
/0

2/
19

 to
 1

29
.4

9.
10

9.
12

2.
 R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ATOMLESS MARKOV DECISION PROCESSES 171

If the process is continued at state (i, 0), then it moves with probability 0.5 either to
state (i+ 1, 0) or to state x̄. If the process is stopped at state (i, 0), then it makes 2i

additional deterministic moves until it hits the absorbing state x̄ = 0 and stops. Let
φ∞ be the deterministic policy that always chooses an action c at the states (i, 0),
i = 0, 1, . . . . Under this policy, T x̄ has the geometric distribution with the success
probability 0.5 at each step. Therefore, Eφ

∞
T x̄ = 2. Now let φn be a deterministic

policy choosing the action s at the state (n, 0) and the action c at the states (i, 0) with

i = 0, 1, . . . , n−1, where n = 0, 1, . . . . Then Eφ
n

T x̄ = Eφ
n

[
∑n−1
t=0 I{t < T x̄}+2nI{t <

T x̄}] =
∑n−1
t=0 2−t+2n2−n = 3−2−n+1. Thus, EφT x̄ ≤ 3 for all φ ∈ F. So, this MDP is

absorbing. However, limn→∞ supπ∈ME
π
∑∞
t=n I{t < T x̄} ≥ limn→∞Eφ

n∑∞
t=n I{t <

T x̄} = limn→∞ 2−n2n = 1. Thus, this MDP is not uniformly absorbing.

4. Occupancy measures and their properties. For an absorbing MDP, a
policy π, and an initial state distribution µ on X, the finite occupancy measure Qπ(·)
on X× A is defined by

Qπ(Y ×B) := Eπ
T x̄−1∑
t=0

I{xt ∈ Y, at ∈ B} =
∞∑
t=0

Pπ{xt ∈ Y, at ∈ B}, Y ∈ X , B ∈ A.

Let qπ(Y ) := Qπ(Y ×A), where Y ∈ X . Observe that qπ(X) = EπT x̄ ≤ L. In addition,

(4.1) vπ =

∫
X

∫
A

r(x, a)Qπ(dxda).

The set of occupancy measures for the initial distribution µ and for all policies from
∆ ⊂ Π is

M∆ := {Qπ(·) : π ∈ ∆}.

We set M := MΠ. For an arbitrary policy π there exists a stationary policy σ ∈ S
such that

(4.2) Qπ(Y ×B) =

∫
Y

σ(B|x)qπ(dx), Y ∈ X , B ∈ A,

and (4.2) implies that

(4.3) Qσ(·) = Qπ(·);

see [21, Lemmas 4.1 and 4.2]. Therefore,

(4.4) MS =M,

and this set is convex; see [21, Corollary 4.3]. These properties imply the correspond-
ing properties of performance sets stated in the following lemma. Recall that the
initial distribution µ is fixed.

Lemma 4.1. For an absorbing MDP the equality VS = V holds, and this set is
convex.

Proof. The lemma follows from (4.1), (4.4), and the convexity of M.

For an absorbing MDP with the initial state distribution µ, for π ∈ Π, and for
Y ∈ X , define

qπn(Y ) := Pπ{xn ∈ Y }, n = 0, 1, . . . .
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Then

(4.5) qπ(Y ) :=
∞∑
n=0

EπI{xn ∈ Y } =
∞∑
n=0

Pπ(xn ∈ Y ) =
∞∑
n=0

qπn(Y ).

We observe that qπ0 (Y ) = µ(Y ) and

qπn(Y ) =

∫
X
Pπx {xn ∈ Y }µ(dx), Y ∈ X , π ∈ Π, n = 0, 1, . . . .

In particular, qπ(Y ) = 0 if and only if qπn(Y ) = 0 for all n = 0, 1, . . . , Y ∈ X .
This implies that qσ � qπ for policies π and σ, if qσn � qπn for all n = 0, 1, . . . , where
the symbol � means absolute continuity.

Observe that for a stationary policy π ∈ S, n = 0, 1, . . . , and Y ∈ X ,

(4.6) qπn+1(Y ) =

∫
X

∫
A
p(Y |x, a)π(da|x)qπn(dx).

Formulae (4.5) and (4.6) imply that for π ∈ S

(4.7) qπ(Y ) = µ(Y ) +

∫
X

∫
A
p(Y |x, a)π(da|x)qπ(dx).

Lemma 4.2. For two stationary policies π and σ, if σ(·|x)� π(·|x) for all x ∈ X,
then qσn � qπn for all n = 0, 1, . . . , and therefore qσ � qπ.

Proof. For n = 0 the statement is obvious since qπ0 = qσ0 = µ. Assume that
qσn � qπn for some n = 0, 1, . . . . Consider a measurable subset Y of X such that
qπn+1(Y ) = 0. In view of (4.6), this means that∫

A
p(Y |x, a)π(da|x) = 0 (qπn-a.e.).

Since σ(·|x)� π(·|x) for all x ∈ X, as follows from the last equality,∫
A
p(Y |x, a)σ(da|x) = 0 (qπn-a.e.).

Since the integral in the left-hand part of the last equation is nonnegative and qσn � qπn ,∫
A
p(Y |x, a)σ(da|x) = 0 (qσn-a.e.),

which yields

qσn+1(Y ) =

∫
X

∫
A
p(Y |x, a)σ(da|x)qσn(dx) = 0.

Thus qσn � qπn for all n = 0, 1, . . . , which implies qσ � qπ, as explained before formula
(4.6).

Lemma 4.3. For an atomless absorbing MDP, every occupancy measure qπ(dx),
where π ∈ Π, is atomless.

Proof. In view of (4.4), it is sufficient to prove the lemma for stationary policies π.
Let π ∈ S. Then qπ0 = µ is an atomless measure. If qπn is atomless for some n = 0, 1, . . . ,
then formula (4.6) implies that the measure qπn+1 is atomless. Thus, all the measures
qπn , n = 0, 1, . . . , are atomless. Formula (4.5) implies that qπ is atomless.
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The following theorem implies thatMS =M and VS = V for an absorbing MDP.
For discounted MDPs this result was discovered by Borkar [6]; see Borkar [7] and
Piunovskiy [30] for additional references.

Theorem 4.4 (see Feinberg and Rothblum [21, Lemma 4.2]). Let π be an arbi-
trary policy for an absorbing MDP. Consider a stationary policy σ such that σ(B|x) =
Qπ(dx,B)
Qπ(dx,A) for each B ∈ A. Then the measures Qσ and Qπ coincide, and therefore
vσ = vπ.

5. Sufficient conditions for compactness of performance sets. We start
this section with formulating sufficient conditions for compactness of the set of strate-
gic measures S := {Pπ : π ∈ Π} defined on the set of all trajectories H∞ for
the given initial distribution µ. Since H∞ is a countable product of standard Borel
spaces, it is a standard Borel space. Let P(H∞) be the set of all probability mea-
sures on H∞. If A is a Borel subset of a Polish space, let us consider the ws∞-
topology on P(H∞), which is the coarsest topology in which all the mappings P 7→∫
f(x0, a0, x1, . . . , xt)P (dx0da0dx1, . . . , dxt) are continuous for all bounded Borel func-

tions f : Ht 7→ R, which are continuous in (a0, a1, . . . , at), t = 0, 1, . . . . Let us consider
the following version of a condition introduced by Schäl [31].

Condition (S).
(S1) The set A is a Borel subset of a Polish space, and the sets A(x) are compact

for all x ∈ X.
(S2) The transition probability p(·|x, a) is setwise continuous in a ∈ A(x); that is,

for each bounded Borel function f : X 7→ R and for each x ∈ X, the function
a 7→

∫
X f(y)p(dy|x, a) is continuous on A(x).

(S3) For each x ∈ X and i = 1, . . . , N, the reward function r(i)(x, a) is continuous
in a ∈ A(x).

Theorem 5.1 (see Balder [2], Nowak [28], and Schäl [31]). If assumptions (S1)
and (S2) hold, then the set of strategic measures S = {Pπ : π ∈ Π} is a compact
subset of P(H∞) endowed with the ws∞-topology.

Corollary 5.2. Consider a uniformly absorbing MDP. If Condition (S) holds,
then the performance set V is compact.

Proof. Let the ws∞-topology be fixed on P(H∞). Since V = V (S), where V :
S 7→ RN with V (Pπ) := vπ for all π ∈ Π, the corollary follows from the continuity of
V, which is established in the rest of this proof.

Let us set r(i)(x̄, ā) = 0 for all i = 1, . . . , N. This change affects neither the values
of vπ nor the validity of (S3). Let v(i),π be the ith coordinate of the performance
vector vπ, i = 1, 2, . . . , N,

v(i),π = Eπ
T x̄−1∑
t=0

r(i)(xt, at) = Eπ
∞∑
t=0

r(i)(xt, at),

where the second equality holds because the state x̄ is absorbing and r(i)(x̄, ā) = 0.
Define

v(i),π
n := Eπ

n−1∑
t=0

r(i)(xt, at), n = 1, 2, . . . .

Since the MDP is uniformly absorbing, v
(i),π
n → v(i),π uniformly in π as n→∞.

According to Yushkevich [33, Theorem 2], each function r(i), i = 1, . . . , N, can
be extended from GrX(A) to X × A in such a way that the extension is a bounded
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measurable function which is continuous in a ∈ A. By the definition of the ws∞-

topology, the functions V
(i)
n (Pπ) := v

(i),π
n are continuous on S. Let V (i)(Pπ) denote

the ith coordinate of the vector V (Pπ). Since V
(i)
n (P ) → V (i)(P ) uniformly for all

P ∈ S and for all i = 1, . . . , N, the mapping V is continuous.

Corollary 5.3. Consider a uniformly absorbing MDP. If each set A(x), x ∈ X,
is finite, then the performance set V is compact.

Proof. If A is a Borel subset of a Polish space, then the conclusion of the corollary
follows from Corollary 5.2 since Condition (S) holds. The corollary follows from
this fact since a standard Borel space is isomorphic to a Borel subset of a Polish
space. Indeed, let Ã be a Borel subset of a Polish space isomorphic to A, and let
g : Ã 7→ A be the corresponding isomorphism. Let us consider the MDP with the
state space X, the action space A replaced with the isomorphic set Ã, the sets of
available actions Ã(x) := g−1(A(x)), one-step reward vectors r̃(x, a) := r(x, g(a)),
and transition probabilities p̃(·|x, a) = p(·|x, g(a)), where x ∈ X and a ∈ Ã. The
performance sets V for the new and original models coincide. The set V is compact
since Ã is a Borel subset of a Polish space.

6. Submodels and dimensionality reduction.

Definition 6.1. An MDP {X̃, Ã, Ã(·), p̃, r̃} is called a submodel of the MDP
{X,A, A(·), p, r} if X̃ = X, Ã = A, p̃ = p, r̃ = r, and Ã(x) ⊂ A(x) for all x ∈ X.

We say that a submodel is well-defined if the set GrX̃(Ã) is a Borel subset of X̃×Ã
and there exists at least one deterministic policy (selector) in the submodel. The ex-
istence of a selector usually follows from measurable selection theorems. According to
the Arsenin–Kunugui selection theorem (Kechris [26, Theorem 18.18]), a measurable
selector φ : X̃ 7→ Ã, such that φ(s) ∈ Ã(x) for all x ∈ X̃, exists if Ã is a Borel subset
of a Polish space, the set GrX̃(Ã) is a Borel subset of X̃ × Ã, and each set Ã(x) is

a union of a countable number of nonempty compact subsets of Ã. In addition, this
theorem claims that under these assumptions the projection of any Borel subset of
GrX̃(Ã) onto X̃ is a Borel subset of X̃. If GrX̃(Ã) is a Borel subset of X̃×Ã and each set

Ã(x), x ∈ X̃, is nonempty and finite or countable, then the Arsenin–Kunugui theorem
implies that the submodel is well-defined and the projection of any Borel subset of
GrX̃(Ã) onto X̃ is a Borel subset of X̃.

It is obvious that a submodel inherits many properties of the MDP including
atomless, absorbing, and uniformly absorbing properties. In addition, Ṽ ⊂ V, where
Ṽ is the performance set for the submodel.

Lemma 6.2. Consider an absorbing atomless MDP. Then for every v ∈ V there
exists a submodel with finite or countable action sets Ã(x), x ∈ X, such that for some
stationary policy π for this submodel, vπ = v and π(a|x) > 0 for all x ∈ X and all
a ∈ Ã(x).

Proof. According to Feinberg and Piunovskiy [19, Theorem 2.1], there exists a
nonrandomized Markov policy φ = (φ0, φ1, . . .) such that vφ = v. Let us define the
nonempty sets Aφ(x) := ∪∞n=0{φn(x)}, which are either countable or finite. Observe
that the set GrX(Aφ) = ∪∞n=0GrX(φn) is Borel because the graph of a Borel function
φn is a Borel set; see, e.g., Bertsekas and Shreve [3, Corollary 7.14.1].

In view of Theorem 4.4, there is a stationary policy π such that π(·|x) is concen-
trated on Aφ(x) and vπ = vφ = v. Let Ã(x) = {a ∈ Aφ(x) : π(a|x) > 0}, x ∈ X.
Since π(Aφ(x)|x) = 1, then Ã(x) 6= ∅ for all x ∈ X. The set GrX(Ã) is Borel because
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GrX(Ã) = {(x, a) ∈ X×A : G(x, a) > 0}, where G(x, a) =
∑∞
n=0 π(φn(x)|x)I{(x, a) ∈

GrX(φn)}, and because the functions I{(x, a) ∈ GrX(φn)} and π(φn(x)|x) are Borel-
measurable, where the measurability of the function I{(x, a) ∈ GrX(φn)} follows from
the measurability of the sets GrX(φn) ⊂ X×A, and the measurability of the function
π(φn(x)|x) follows from Bertsekas and Shreve [3, Corollary 7.26.1].

Theorem 6.3. Consider a uniformly absorbing atomless MDP. Suppose that N =
1 and there exists a stationary policy σ∗ such that vσ

∗
= supσ∈S v

σ. For v := vσ
∗ ∈ V

consider a stationary policy π and a submodel with action sets Ã(·), whose existence
is stated in Lemma 6.2. Then vπ

∗
= vσ

∗
for each policy π∗ in this submodel.

Proof. Let N = 1. In view of Theorem 4.4, for an absorbing MDP supπ̃∈S v
π̃ =

supπ̃∈Π v
π̃ and vσ = supπ̃∈Π v

π̃ for some policy σ if and only if vσ
∗

= supπ̃∈S v
π̃ for

some stationary policy σ∗. Recall that supπ̃∈S v
π̃ = supφ∈F v

φ; see Feinberg [13].
For an arbitrary policy σ ∈ Π, let Xσ be the set of initial states x ∈ X for which

the expected initial rewards vσ(x) are well-defined, that is,

(6.1) Xσ = {x ∈ X : vσ+(x) < +∞} ∩ {x ∈ X : vσ−(x) < +∞}.

In view of the Ionescu Tulcea theorem [27, section V.1], the functions vσ+(x) and vσ−(x)
are Borel-measurable. Therefore, the set Xσ is Borel as the union of two Borel sets.

For x ∈ X, a ∈ Ã(x), and for a Borel function f : X 7→ R1, let us denote

Taf(x) := r(x, a) +

∫
X
f(y)p(dy|x, a), x ∈ X, a ∈ Ã(x).

This value is well-defined if either
∫
X f

+(y)p(dy|x, a) < +∞ or
∫
X f
−(y)p(dy|x, a) <

+∞.
Let σ be a stationary policy in the submodel with action sets Ã(·). Then Tavσ(x)

is well-defined for x ∈ Xσ and a ∈ Ã(x), where the Borel set Xσ is defined in (6.1).
Indeed,

vσ+(x) =
∑

a∈Ã(x)

σ(a|x)

{
r+(x, a) +

∫
X
vσ+(y)p(dy|x, a)

}
< +∞, x ∈ Xσ,

and

vσ−(x) =
∑

a∈Ã(x)

σ(a|x)

{
r−(x, a) +

∫
X
vσ−(y)p(dy|x, a)

}
< +∞, x ∈ Xσ.

Therefore,

(6.2) vσ(x) = vσ+(x)− vσ−(x) =
∑

a∈Ã(x)

σ(a|x)Tavσ(x), x ∈ Xσ,

and Tavσ(x) is well-defined for x ∈ Xσ and a ∈ Ã(x) if σ(a|x) > 0.
Observe that for an absorbing MDP qσ(X \ Xσ) = 0, which is equivalent to

qσ(X) = qσ(Xσ). Indeed, if qσ(X\Xσ) > 0, then, in view of (4.5), Pσ{xn ∈ X\Xσ} >
0 for some n = 0, 1, . . . . This implies that either vσ+ = +∞ or vσ− = +∞. This
conclusion contradicts the assumptions that the MDP is absorbing and the reward
function r is bounded.
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In particular, for σ = π, where the policy π is defined in Lemma 6.2,

(6.3) qπ(X \Xπ) = 0.

By Lemma 6.2, vπ = v = vσ
∗
. Consider the sets

X> := {x ∈ Xπ : Tavπ(x) > vπ(x) for some a ∈ Ã(x)},

X< := {x ∈ Xπ : Tavπ(x) < vπ(x) for some a ∈ Ã(x)},

X= := {x ∈ Xπ : Tavπ(x) = vπ(x) for all a ∈ Ã(x)}.

The sets X>, X<, and X= are Borel. Indeed, the set X> is a projection of the
Borel set Y (π) := {(x, a) ∈ GrXπ (Ã) : Tavπ(x) > vπ(x)} onto Xπ. In addition,
each action set Ã(x), x ∈ X, is finite or countable. Therefore, in view of the Arsenin–
Kunugui theorem, the set X> is Borel and there exists a Borel mapping ϕ∗ : X> 7→ A
such that ϕ∗(x) ∈ Ã(x) and Tϕ∗(x)vπ(x) > vπ(x) for all x ∈ X>. The set X< is Borel
because it is a projection of the Borel set {(x, a) ∈ GrXπ (Ã) : Tavπ(x) < vπ(x)} onto
X. Thus, X= = Xπ \ (X> ∪X<) is a Borel set, too.

Observe that

(6.4) qπ(X<) = qπ(X>) = 0.

To prove the second equality in (6.4), suppose that qπ(X>) > 0. Therefore, qπn(X>) =
Pπ{xn ∈ X>} > 0 for some n = 0, 1, . . . . For the Borel mapping ϕ∗ described in the
previous paragraph, consider a randomized Markov policy π′:

π′t(B|x) =

{
I{ϕ∗(x) ∈ B} if t = n and x ∈ X>,

π(B|x) otherwise,

where B ∈ A and t = 0, 1, . . . . Straightforward calculations imply that

vπ
′
− vπ =

∫
X>

[Tϕ∗(x)vπ(x)− vπ(x)]qπn(dx) > 0,

which contradicts vπ = vσ
∗

= supσ∈S v
σ = supσ∈Π v

σ ≥ vπ
′
, where the last equality

follows from Theorem 4.4. Thus, the second equality in (6.4) is proved.
The equality qπ(X<) = 0 holds because the inequality qπ(X<) > 0 is impossible.

Indeed, if qπ(X<) > 0, then qπ(X< \ X>) = qπ(X<) > 0 because qπ(X>) = 0.
Therefore,

0 =

∫
X<\X>

(vπ(x)−vπ(x))qπ(dx) =

∫
X<\X>

∑
a∈Ã(x)

π(a|x)(Tavπ(x)−vπ(x))qπ(dx) < 0,

where the second equality follows from (6.2) and the inequality holds because an
integral of a negative function on a set with a positive measure is negative. The
function is negative because π(a|x) > 0 for all a ∈ Ã(x), the difference in the second
integral is nonpositive for all a ∈ Ã(x), and this difference is negative for some a ∈
Ã(x), where x ∈ X< \X>. Equalities (6.4) are proved.

The equality vπ
∗

= vσ
∗

holds for every policy π∗ in the submodel with action sets
Ã(·) if and only if vσ = vπ for every stationary policy σ in this submodel. This is
true in view of Theorem 4.4 and because vπ = vσ

∗
= v. Let σ be a stationary policy
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for the submodel with action sets Ã(·). To complete the proof, we show in the rest of
the proof that vσ = vπ.

Since σ(·|x) � π(·|x) for all x ∈ X, Lemma 4.2 and formulae (6.3), (6.4) imply
that qσ(X \X=) = 0. Let σn,π be the policy that follows σ at times t = 0, 1, . . . , n− 1
and follows π at t = n, n+ 1, . . . . In particular, σ0,π = π. Induction arguments imply
that

(6.5) vσ
n,π

= vπ, n = 0, 1, . . . .

Indeed, for n = 0 formula (6.5) holds because σ0,π = π. If (6.5) holds for some
n = 0, 1, . . . , then

vσ
n+1,π

(x) =
∑

a∈Ã(x)

σ(a|x)T avπ(x) = vπ(x), x ∈ X=,

and

vσ
n+1,π

=

∫
X
vσ

n+1,π

(x)µ(dx) =

∫
X=

vπ(x)µ(dx) =

∫
X
vπ(x)µ(dx) = vπ,

where the last equalities hold because µ(X\X=) = 0 since µ� qπ, and qπ(X\X=) = 0
in view of (6.3) and (6.4). Formula (6.5) is proved.

Since the MDP is uniformly absorbing,

lim
n→∞

Eσ
n,π

∞∑
t=n

I{t < T x̄} = lim
n→∞

sup
π̃∈M

Eπ̃
∞∑
t=n

I{t < T x̄} = 0.

Since the reward function r is bounded,

lim
n→∞

Eσ
n,π

∞∑
t=n

r(xt, at) = 0.

Therefore,

vσ = lim
n→∞

Eσ
n−1∑
t=0

r(xt, at) = lim
n→∞

Eσ
n−1∑
t=0

r(xt, at) + lim
n→∞

Eσ
n,π

∞∑
t=n

r(xt, at)

= lim
n→∞

vσ
n,π

= vπ,

where the last equality follows from (6.5).

The following lemma is correct without the assumption that the MDP is atomless.
However, we need it only for an atomless MDP in this paper, and for an atomless
MDP the proof follows directly from Theorem 6.3.

Corollary 6.4. Consider a uniformly absorbing atomless MDP with N = 1. For
every extreme point v ∈ V of the set V there exists a deterministic policy φ such that
vφ = v.

Proof. Since N = 1, the closure of the convex set V is a bounded interval on
the line. Therefore, there could be at most two extreme points v∗ := infπ∈Π v

π and
v∗ := supπ∈Π v

π. Let us consider v = v∗. Theorem 4.4 implies that v = supπ∈S v
π.

According to Theorem 6.3, vφ = v for every deterministic policy φ in the submodel,
whose existence is stated in Lemma 6.2. The change r := −r reduces the case v = v∗
to the case v = v∗.
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For i = 1, . . . , N, let us denote by b−i the projection of b ∈ RN to RN−1 obtained
by removing the ith coordinate of the vector b. Also, 〈·, ·〉 denotes the scalar product
of two vectors.

Definition 6.5. We say that a point v ∈ V allows the dimensionality reduction if
there are a coordinate i = 1, 2, . . . , N, a vector b ∈ RN−1, a constant d, and a submodel
{X,A, Ã(·), p, r} of the original MDP such that v ∈ Ṽ, where Ṽ is the performance set
for all policies in the submodel, and

(6.6) ṽ(i) = d+ 〈b, ṽ−i〉 for all v̂ ∈ Ṽ.

The following theorem plays an important role in the proof of Theorem 3.8. Recall
that ∂(C) is the boundary of a bounded convex set C ∈ Rn, n = 1, 2, . . . .

Theorem 6.6 (dimensionality reduction). For a uniformly absorbing atomless
MDP, each point on the boundary of V allows the dimensionality reduction.

Proof. Let v∗ ∈ ∂(V). Let 〈b̃, v〉 = d̃ be a supporting hyperplane at the point v∗

to the convex set V such that 〈b̃, v〉 ≤ d̃ for all v ∈ V and 〈b̃, v∗〉 = d̃, where b̃(i) 6= 0
for at least one i = 1, . . . , N. Let us define the one-step reward function

r̃(x, a) := 〈b̃, r(x, a)〉, x ∈ X, a ∈ A(x).

Let ṽσ be the expected total rewards for this reward function, initial distribution µ,
and a policy σ. Then ṽσ = 〈b̃, vσ〉.

Since v∗ ∈ V, then v∗ = vσ
∗

for a stationary policy σ∗ ∈ S. Using Lemma 6.2,
consider the corresponding submodel with finite or countable action sets Ã(·) and a
stationary policy π for this submodel, where Ṽ is the performance set for the submodel.
In particular, vπ = v∗ ∈ Ṽ. Note that ṽπ = d̃ = supv∈V v = supσ∈S ṽ

σ. In view of
Theorem 6.3,

(6.7) ṽπ = 〈b̃, v̂〉 for all v̂ ∈ Ṽ.

Formula (6.7) implies (6.6) with d := 〈b̃, v∗〉/b̃(i) and b := −b̃−i/b̃(i), where i =

1, . . . , N with b̃(i) 6= 0 and b̃(i) is the ith coordinate of the vector b̃.

7. An MDP defined by two deterministic policies. Let φ0 and φ1 be two
deterministic policies. These two policies are considered to be fixed within this section.
Let us define action sets A∗(x) := {φ0(x), φ1(x)} and consider an MDP which is the
submodel obtained from the original MDP by narrowing the action sets A(x) to A∗(x)
for all x ∈ X. We say that this MDP is defined by the deterministic policies φ0 and
φ1.

Consider the stationary policy π∗:

(7.1) π∗(B|x) :=
1

2
[I{φ0(x) ∈ B}+ I{φ1(x) ∈ B}], B ∈ A, x ∈ X,

which averages the deterministic policies φ0 and φ1. We denote by q the occupancy
measure qπ

∗
on X,

(7.2) q(Y ) := qπ
∗
(Y ), Y ∈ X .

Lemma 7.1. qγ � q for every stationary policy γ for the MDP defined by two
deterministic policies φ0 and φ1.
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Proof. This lemma follows from Lemma 4.2 since γ(·|x) � π∗(·|x), x ∈ X, for
each stationary policy γ for the MDP defined by two deterministic policies φ0 and
φ1.

The following lemma provides a useful inequality.

Lemma 7.2. For every stationary policy γ for the MDP defined by two determin-
istic policies φ0 and φ1, the inequality Eγf(xt) ≤ 2tEπ

∗
f(xt) holds for an arbitrary

nonnegative measurable function f and for each t = 0, 1, . . . .

Proof. The proof is based on the induction in t. Since Eγf(x0) =
∫
X f(x)µ(dx)

for every stationary policy γ, the inequality holds for t = 0 in the form of the equality.
Let this inequality hold for some t = 0, 1, . . . . Then
(7.3)

Eγ [f(xt+1)|xt] =

∫
X
f(x)

1∑
i=0

γ(φi(xt)|xt)p(dx|xt, φi(xt)) ≤
∫
X
f(x)

1∑
i=0

p(dx|xt, φi(xt))

= 2

∫
X
f(x)

1∑
i=0

1

2
p(dx|xt, φi(xt)) = 2Eπ

∗
[f(xt+1)|xt],

where the first and the last equalities follow from the definitions of strategic mea-
sures, and the inequality and the second equality are obvious. Therefore, Eγf(xt+1) =
EγEγ [f(xt+1)|xt] ≤ 2EγEπ

∗
[f(xt+1)|xt] ≤ 2t+1Eπ

∗
Eπ
∗
[f(xt+1)|xt] = 2t+1Eπ

∗
f(xt+1),

where the first and the last equalities follow from the definition of a conditional ex-
pectation, the first inequality follows from (7.3), and the second inequality follows
from the induction assumption.

Corollary 7.3. For t = 0, 1, . . . and for every Y ∈ X , the inequality qγt (Y ) ≤
2tqt(Y ) holds for every stationary policy for the MDP defined by two deterministic
policies φ0 and φ1.

Proof. The corollary follows from Lemma 7.2 applied to the function f(x) =
I{x ∈ Y }, x ∈ X.

For two stationary policies π and σ for the MDP defined by two deterministic
policies φ0 and φ1, let

(7.4) X(π, σ) := {x ∈ X : π(·|x) = σ(·|x)} = {x ∈ X : π(φ0(x)|x) = σ(φ0(x)|x)}

be the set of states on which π and σ choose the same decisions. In view of the last
equality, this set is measurable.

Lemma 7.4. Consider a uniformly absorbing MDP. If q(X \ X(π, σ)) = 0, then
qπ = qσ, where π and σ are arbitrary stationary policies in the MDP defined by two
deterministic policies φ0 and φ1.

Proof. As follows from (7.1), π(·|x) � π∗(·|x) and σ(·|x) � π∗(·|x) for all x ∈
X. Lemma 4.2 implies that qπ � q and qσ � q. Therefore, qπ(X \ X(π, σ)) = 0
and qσ(X \ X(π, σ)) = 0 if q(X \ X(π, σ)) = 0. Thus, the set of states, on which
the stationary policies π and σ make different decisions, will be visited with zero
probability when each of these policies is used.

Let dTV (η1, η2) denote the distance in total variation between two finite measures
defined on the same measurable space; see, e.g., [16, section 2] or [17] for details on
definitions and properties of distances in total variation for finite measures. Since
qπ(dx) = Qπ(dx,A) for an arbitrary policy π, then dTV (qπ, qσ) ≤ dTV (Qπ, Qσ) for
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two policies π and σ. As follows from Lemma 7.4, q(X \ X(π, σ)) = 0 implies that
qπ = qσ. The following theorem, which is the main result of this section, demonstrates
that the value of q(X \X(π, σ)) characterizes how close the measures Qπ and Qσ are.

Theorem 7.5. Consider a uniformly absorbing MDP. Let π and σ be two station-
ary policies for the MDP defined by two deterministic policies φ0 and φ1. Then for
every ε > 0 there exists δ > 0 such that if q(X \X(π, σ)) ≤ δ, then dTV (Qπ, Qσ) ≤ ε.

Proof. Let us fix an arbitrary ε > 0. In this proof γ is always a policy that is
equal either to π or to σ. In other words, γ ∈ {π, σ}.

We prove first the existence of δ > 0 such that if q(X \ X(π, σ)) ≤ δ, then
dTV (qπ, qσ) ≤ ε. This claim follows from the following fact. There exist a constant
δ > 0 and measures q̄γ and q̂γ on (X,X ) such that the inequality q(X \X(π, σ)) ≤ δ
implies the correctness of the following statements: (i) qγ = q̄γ + q̂γ , (ii) q̂γ(X) ≤ ε/2,
and (iii) q̄π = q̄σ. If this is true, then dTV (qπ, qσ) = dTV (q̂π, q̂σ) ≤ ε.

Let us construct a positive constant δ and measures q̄γ and q̂γ on (X,X ) satisfying
properties (i)–(iii). We denote by T̄Y := min{t = 0, 1, . . . : xt /∈ Y } the first time the
process leaves the set Y ∈ X and define the measure

q̄γ(C) = Eγ
∞∑
t=0

I{xt ∈ C}I{T̄X(π,σ) > t}, C ∈ X .

Since the stationary policies π and γ coincide on the set X(π, σ),

q̄π = q̄σ.

Thus, (iii) holds. Since the MDP is uniformly absorbing, there exist ` = 1, 2, . . . such
that for every stationary policy π′

(7.5) Dπ′

1 := Eπ
′
∞∑
t=`

I{xt ∈ X} ≤ ε/4.

In particular, (7.5) holds for π′ = γ.
Our next step is to show that there exists δ > 0 such that if q(X \X(π, σ)) ≤ δ,

then

(7.6) Dγ
2 := Eγ

`−1∑
t=0

I{xt ∈ X}I{T̄X(π,σ) ≤ t} ≤ ε/4.

Indeed, by exchanging the summation and expectation in (7.6), we have

(7.7) Dγ
2 =

`−1∑
t=0

P γ{xt ∈ X, T̄X(π,σ) ≤ t}.

Observe that for t = 0, 1, . . .
(7.8)

P γ{xt ∈ X, T̄X(π,σ) ≤ t} ≤
t∑

s=0

P γ{xt ∈ X, xs ∈ X \X(π, σ)} ≤
t∑

s=0

qγs (X \X(π, σ)).

In view of Corollary 7.3,
(7.9)
t∑

s=0

qγs (X\X(π, σ)) ≤
t∑

s=0

2sqs(X\X(π, σ)) ≤ 2t
t∑

s=0

qs(X\X(π, σ)) ≤ 2tq(X\X(π, σ)).
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Formulae (7.7)–(7.9) imply that Dγ
2 ≤ 2`q(X \ X(π, σ)). Thus, (7.6) holds with δ =

2−(`+2)ε.
Let us define the measures

q̂γ(C) = Eγ
∞∑
t=0

I{xt ∈ C}I{T̄X(π,σ) ≤ t}, C ∈ X .

Then qγ = q̄γ + q̂γ . Thus, (i) holds. Let δ = 2−(`+2)ε. For γ ∈ {π, σ}

q̂γ(X) = Eγ
∞∑
t=0

I{xt ∈ X}I{T̄X(π,σ) ≤ t}

≤ Eγ
`−1∑
t=0

I{xt ∈ X}I{T̄X(π,σ) ≤ t}+ Eγ
∞∑
t=`

I{xt ∈ X} ≤ ε/2,

where the last inequality follows from (7.6) and (7.5). Thus, (ii) holds. In view of
(i)–(iii), dTV (qπ, qσ) ≤ ε.

Let us prove the inequality dTV (Qπ, Qσ) ≤ ε. To do this, we consider the measures
Q̄γ and Q̂γ on (X× A,X ×A) defined by

Q̄γ(C ×B) = Eγ
∞∑
t=0

I{xt ∈ C, at ∈ B}I{T̄X(π,σ) > t}, C ∈ X , B ∈ A,

Q̂γ(C ×B) = Eγ
∞∑
t=0

I{xt ∈ C, at ∈ B}I{T̄X(π,σ) ≤ t}, C ∈ X , B ∈ A.

These two measures obviously satisfy the following properties: (i∗) Qγ = Q̄γ + Q̂γ ,
(ii∗) Q̂γ(X × A) = q̂γ(X) ≤ ε/2, and (iii∗) Q̄π = Q̄σ. Properties (i∗)–(iii∗) imply
dTV (Qπ, Qσ) ≤ ε.

Let ‖ · ‖ be the Euclidean norm in RN . The following corollary follows from
Theorem 7.5.

Corollary 7.6. Let π and σ be two stationary policies in the MDP defined by
two deterministic policies φ0 and φ1. Then for every ε > 0 there exists δ > 0 such
that the inequality q(X \X(π, σ)) ≤ δ implies that ‖vπ − vσ‖ ≤ ε.

Proof. Let K be a finite positive constant satisfying K ≥ |r(n)(x, a)| for all n =
1, . . . , N, x ∈ X, and a ∈ A(x). Then the corollary follows from Theorem 7.5 applied

to the constant ε1 := ε/(KN
1
2 ) instead of ε.

8. Path connectedness of the set of occupancy measures generated by
deterministic policies. We recall that a subset E of a topological space is called
path-connected if for every two points e0, e1 ∈ E there exists a continuous function
g : [0, 1] 7→ E such that g(0) = e0 and g(1) = e1. A set is called connected if it cannot
be partitioned into two nonempty subsets which are open in the relative topology
induced on the set. Of course, the validity of these properties may depend on the
topology chosen on the space. A subset of the Euclidean space RN is connected if
and only if it is path-connected.

Definition 8.1. A subset E of the set of finite measures on a measurable space
is called path-connected in total variation if this set is path-connected when the set of
finite measures is endowed with the metric equal to the distance in total variation.
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A sequence {νn}n=1,2,... of finite measures on a measurable space (Ω,F) converges
setwise to a measure ν on (Ω,F) if for every bounded measurable function f : Ω 7→ R∫

Ω
f(ω)νn(dω) 7→

∫
Ω
f(ω)ν(dω). Setwise convergence defines the topology of setwise

convergence of measures; see, e.g., Bogachev [5, p. 291].

Definition 8.2. A subset E of the space of finite measures on a measurable space
is called setwise path-connected if this set is path-connected when the space of finite
measures is endowed with the topology of setwise convergence of measures.

In particular, a sequence of occupancy measures {Qn}n=1,2,... converges setwise
to an occupancy measure Q if for every bounded measurable function f : X×A 7→ R

(8.1)

∫
X

∫
A
f(x, a)Qn(dx, da)→

∫
X

∫
A
f(x, a)Q(dx, da).

In view of (8.1), the set MF is setwise path-connected if and only if for every two
deterministic policies φ0 and φ1 there exists a map g : [0, 1] 7→ MF such that g(0) =

Qφ
0

, g(1) = Qφ
1

, and the function

(8.2) ζ(α) :=

∫
X

∫
A
f(x, a)g(α)(dx, da)

is continuous for every bounded measurable function f : X× A 7→ R.
Theorem 8.3. For a uniformly absorbing atomless MDP, the set MF is path-

connected in total variation and therefore it is setwise path-connected.

Proof. Let φ0 and φ1 be two deterministic policies. Consider the stationary policy
π∗ defined in (7.1) and the measure q on X defined in (7.2). The measure q is atomless
in view of Lemma 4.3. So, q(x) = 0 for all x ∈ X.

Let ψ be an isomorphic map of X onto the closed interval [0, 1]; that is, ψ is
a one-to-one measurable mapping of (X,X ) onto ([0, 1],B([0, 1])). Observe that the
function ψ can be viewed as a nonnegative random variable on the measurable space
(X,X ) with the distribution function

Fψ(b) :=
q({x ∈ X : ψ(x) ≤ b})

q(X)
.

In particular, Fψ(0) = q({ψ−1(0)}) = 0, and the second equality holds because
{ψ−1(0)} is a singleton and the measure q is atomless. In addition, Fψ(1) = 1 because
{x ∈ X : ψ(x) ≤ 1} = X.

The distribution function Fψ is continuous. Indeed, first observe that Fψ(b) = 0
for b ≤ 0 and Fψ(b) = 1 for b ≥ 1. Second, consider b ∈ [0, 1] and observe that
Fψ(b−) = q({x ∈ X : ψ(x) < b})/q(X), b ∈ R. Then Fψ(b)−Fψ(b−) = q({ψ−1(b)}) =
0, where the last inequality holds because the set {ψ−1(b)} is a singleton and the
measure q is atomless.

The continuity of the function Fψ implies the following two equalities for α ∈ [0, 1]:

F−1
ψ (α) = [bmin(α), bmax(α)],

where bmin(α) := inf{b ≥ 0 : Fψ(b) = α} and bmax(α) := sup{b ≤ 1 : Fψ(b) = α},
and

(8.3) q(ψ−1(F−1
ψ (α))) = 0.
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We observe that bmin(α) = inf{b : Fψ(b) ≥ α}, and this function is well-studied
in the literature under the names of the value-at-risk and quantile function. The
function bmin(α) is nondecreasing and left continuous on [0, 1]; see, e.g., Embrechts
and Hofert [11, Proposition 1(2)]. Therefore, it is lower semicontinuous. Since Fψ
is a continuous function, the function bmin(α) is strictly increasing; see, e.g., [11,
Proposition 1(7)].

Let us consider the collection of increasing subsets Xα ⊂ X and X̄α ⊂ X:

(8.4)
Xα := {x ∈ X : ψ(x) < bmin(α)}, α ∈ [0, 1],

X̄α := {x ∈ X : ψ(x) ≤ bmax(α)} = Xα ∪ F−1
ψ (α), α ∈ [0, 1],

and define the deterministic policies ϕα and ϕ̄α:
(8.5)

ϕα(x) :=

{
φ1(x) if x ∈ Xα,
φ0(x) if x ∈ X \ Xα,

ϕ̄α(x) :=

{
φ1(x) if x ∈ X̄α,
φ0(x) if x ∈ X \ X̄α.

Observe that q(X̄α) = q(X)Fψ(bmax(α)) = q(X)α, as follows from the definition of X̄α.
According to (8.3),

(8.6) q(Xα) = q(X̄α) = q(X)α.

Recall that X(ϕα, ϕ̄α) is the set of states on which ϕα and ϕ̄α make the same
decisions; see (7.4). Since X \ X(ϕα, ϕ̄α) ⊂ F−1

ψ (α), equality (8.3) and Lemma 7.4

imply that qϕα = qϕ̄α for all α ∈ [0, 1]. By definition, φ0 = ϕ0 and φ1 = ϕ̄1. Thus,

qφ
0

= qϕ0 and qφ
1

= qϕ1 .
Observe that

(8.7) q(X \X(ϕα, ϕα+∆)) = q(X \X(ϕ̄α, ϕ̄α+∆)) = q(X)|∆|, α, α+ ∆ ∈ [0, 1],

where the last equality holds because

q(X \X(ϕ̄α, ϕ̄α+∆)) = q(X̄α 4 X̄α+∆) = q(X)|Fψ(bmin(α+ ∆))− Fψ(bmin(α))|,

where X̄α 4 X̄α+∆ := (X̄α ∪ X̄α+∆) \ (X̄α ∩ X̄α+∆) is the symmetric difference. Let
us define the mapping g,

g(α) := Qϕα , α ∈ [0, 1].

As shown above, g(0) = Qφ
0

and g(1) = Qφ
1

. Formula (8.7) and Theorem 7.5 imply
that this mapping is continuous in total variation.

Corollary 8.4. For a uniformly absorbing atomless MDP the performance set
VF is connected.

Proof. Let φ0 and φ1 be deterministic policies. Let us consider the function
g : [0, 1] 7→ MF satisfying (8.2) for all bounded measurable functions f. The exis-
tence of such a function follows from Theorem 8.3. Then the vector-function ζ̃(α) :=∫
X
∫
A r(x, a)g(α)(dx, da) defines a path connecting vφ

0

and vφ
1

in RN .

Corollary 8.5. If N = 1, then the set VF is convex for a uniformly absorbing
atomless MDP.

Proof. Corollary 8.4 and the mean value theorem imply that the bounded one-
dimensional set VF is convex.
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Corollary 8.6. If N = 1, then VF = V for a uniformly absorbing atomless
MDP.

Proof. Let v∗ := infπ∈S v
π and v∗ := supπ∈S v

π. Then −∞ < v∗ < v∗ < +∞,
where the first and the last inequality hold since the MDP is absorbing and the reward
function r is bounded. According to Feinberg [13], infφ∈F v

φ = v∗ and supφ∈F v
φ = v∗.

These equalities imply that the closures of the one-dimensional convex sets VF and
V are both equal to the closed bounded interval [v∗, v

∗]. In addition, according to
Corollary 6.4, if v ∈ {v∗, v∗} ∩ V, then v ∈ VF. Therefore, VF ⊃ V and, by definition,
VF ⊂ V.

9. Proof of Theorem 3.8. For the performance set of deterministic policies
VF, consider its closure V̄F. Since the set VF is bounded, V̄F is compact.

Lemma 9.1. Under the assumptions of Theorem 3.8, if the set VF is convex, then
V ⊂ V̄F.

Proof. Suppose that V 6⊂ V̄F. Then there exists a stationary policy π such that
vπ /∈ V̄F. Therefore, there exists a hyperplane in RN separating the point vπ and the
convex compact set V̄F. Let 〈b, v〉+d = 0 be such a hyperplane, and let 〈b, vπ〉+d > 0
and 〈b, v〉+ d ≤ 0 for all v ∈ VF, where b ∈ RN and d ∈ R. Thus

(9.1) sup
φ∈F
〈b, vφ〉 = sup

v∈VF
〈b, v〉 < 〈b, vπ〉.

Let us consider the reward function r̃(x, a) := 〈b, r(x, a)〉, where x ∈ X and
a ∈ A(x). The expected total rewards for this reward function, a policy σ, and the
initial state distribution µ is denoted by ṽσ, and ṽσ = 〈b, vσ〉 for all σ ∈ S.

Supremums of the expected total rewards are equal for deterministic and station-
ary policies; see Feinberg [13]. Therefore, supv∈VF〈b, v〉 = supφ∈F ṽ

φ ≥ ṽπ = 〈b, vπ〉.
This contradicts (9.1).

Lemma 9.2. Let the statement of Theorem 3.8 be correct for N = 1, 2, . . . criteria.
Then, under the assumptions of Theorem 3.8, the set VF is convex for the case of
(N + 1) criteria.

Proof. Let the lemma be correct for N -dimensional vector-functions r, where
N = 1, 2, . . . . We shall prove that the set VF is convex for (N+1)-dimensional vector-
functions r. Let φ0 and φ1 be two deterministic policies, and let λ ∈ (0, 1). Our goal is

to show that there exists a deterministic policy φλ such that vφλ := λvφ
0

+(1−λ)vφ
1

.
Let us consider the stationary policy π∗ defined in (7.1), the measure q on X defined
in (7.2), and the family of expanding sets Xα ⊂ X defined in (8.4). For each α ∈ [0, 1]
we consider the submodel with the action sets reduced to the sets

Aα(x) =

{
{φ1(x)} if x ∈ Xα,
{φ0(x), φ1(x)} if x ∈ X \ Xα.

Let V(α) be the set of all performance vectors for the submodel with the action
sets Aα(·). According to Lemma 4.1 and Corollary 5.3, each set V(α) is convex and
compact. In addition,

(9.2) V(α) ⊂ V(β) if 0 ≤ β ≤ α ≤ 1.

In view of the definition in (8.4), X0 = ∅, which implies

A0(x) = {φ0(x), φ1(x)}, x ∈ X.
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Therefore V(0) is the performance set for the MDP defined by the deterministic

policies φ0 and φ1. Thus, vφ
0

, vφ
1 ∈ V(0).

Observe that V(1) = {vφ1}. Indeed, let ϕ be a deterministic policy for the MDP
with the action sets A1(·). Then ϕ(x) = φ1 when x ∈ X1 ⊂ X. In view of (8.6),
q(X\X1) = 0. Since X\X(ϕ, φ1) ⊂ X\X1, we have that q(X\X(ϕ, φ1)) = 0. Lemma 7.4

implies that qϕ = qφ
1

. Therefore, vϕ =
∫
X r(x, ϕ(x))qϕ(dx) =

∫
X r(x, φ

1(x))qφ
1

(dx) =

vφ
1

, where the first and the last equalities follow from the definitions of expected total
rewards, occupancy measures, and deterministic policies; the equality in the middle
follows from qϕ = qφ

1

and ϕ(x) = φ1(x) for qφ
1

-almost all x ∈ X.
Since the set V(0) is convex and vφ

0

, vφ
1 ∈ V(0), we have that λvφ

0

+(1−λ)vφ
1 ∈

V(0). Consider an arbitrary point v̂ ∈ V(0). We shall prove that vφ = v̂ for some
deterministic policy φ for the submodel with action sets A0(x), x ∈ X.

To do this, we’ll show that v̂ ∈ ∂(V(α̂)) for some α̂ ∈ [0, 1], where ∂(G) is the
boundary of the convex compact subset G of RN+1. For a point e ∈ RN+1 and a
closed set E ⊂ RN+1, we denote by d(e, E) := min{‖e − z‖ : z ∈ E} the distance
between e and E. Since E is closed, d(e, E) = 0 if and only if e ∈ E. If E1 ⊂ E2 for
two closed subsets of RN+1, then d(e, E2) ≤ d(e, E1).

As follows from (9.2), the function

G(α) := d(v̂,V(α)), α ∈ [0, 1],

is nondecreasing in α ∈ [0, 1] and G(0) = d(v̂,V(0)) = 0. Let us prove that this
function is continuous. To do this, we choose an arbitrary α ∈ [0, 1) and ∆ > 0 such
that α + ∆ ≤ 1. We also choose an arbitrary point v ∈ V(α). Let π be a stationary
policy in the submodel with the action sets Aα(x), x ∈ X, such that vπ = v. Let σ be
the stationary policy in the model with the action sets Aα+∆(x), x ∈ X, defined by

σ(φ1(x)|x) :=

{
1 if x ∈ Xα+∆ \ Xα,
π(φ1(x)|x) if x ∈ X \ (Xα+∆ \ Xα).

Then X \ (Xα+∆ \ Xα) ⊂ X(π, σ), which implies X \ X(π, σ) ⊂ Xα+∆ \ Xα. As
follows from (8.6), q(X \ X(π, σ)) ≤ q(X)∆. According to Theorem 7.5, for every
ε1 > 0 there exists δ > 0 such that dTV (Qπ, Qσ) ≤ ε1 if ∆ ≤ δ. This implies that

‖vπ − vσ‖ ≤ K(N + 1)
1
2 ε1, where the positive constant K is an upper bound of

|r(n)(x, a)| for x ∈ X, a ∈ A, and n = 1, 2, . . . , N + 1. So, if we choose an arbitrary

ε > 0, set ε1 = ε/(K(N + 1)
1
2 ), and choose ∆ ≤ δ, then ‖vπ − vσ‖ ≤ ε. This implies

that if ∆ ≤ δ, α ∈ [0, 1), and α+ δ ≤ 1, then

(9.3) d(v,V(α+ ∆)) ≤ ε for all v ∈ V(α).

Let us consider two cases: (i) G(α) > 0 and (ii) G(α) = 0.
(i) In this case, v̂ /∈ V(α). We denote by v̂α the projection of the point v̂ onto the

convex compact set V(α); that is, v̂α is the unique point in V(α) satisfying ‖v̂− v̂α‖ =
d(v̂,V(α)). Let v̂α+∆ ∈ V(α+∆) be the projection of v̂α onto the compact set V(α+∆).
Then, according to the triangle inequality

d(v̂,V(α))+d(v̂α, V (α+∆)) = ‖v̂− v̂α‖+‖v̂α− v̂α+∆‖ ≥ ‖v̂− v̂α+∆‖ ≥ d(v̂,V(α+∆)).

Since 0 < d(v̂α, V (α + ∆)) < ε and the nonnegative function G(α) is nondecreasing,
the last formula implies

(9.4) 0 ≤ G(α+ ∆)−G(α) ≤ ε.
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(ii) The equality G(α) = 0 means that v̂ ∈ V(α). Therefore, (9.3) for v = v̂ implies
0 ≤ G(α+ ∆)−G(α) = G(α+ ∆) ≤ ε. So, (9.4) holds.

Since (9.4) holds for the both cases, this implies continuity of the function G(α)
on [0, 1]. Let us define

α̂ := max{α ∈ [0, 1] : d(v̂,V(α)) = 0}.

This point exists because d(v̂,V(0)) = 0 and the continuous functionG(α) = d(v̂,V(α))
is nondecreasing in α. Since d(v̂,V(α̂)) = 0, we have that v̂ ∈ V(α̂). If α̂ = 1, then

v̂ = vφ
1 ∈ V(1) = ∂V(1) since V(1) = {vφ1}.

So, we need to consider the case α̂ ∈ [0, 1). In this case we shall prove that
v̂ ∈ ∂(V(α̂)).

Since v̂ ∈ V(α̂), in order to prove that v̂ ∈ ∂(V(α̂)), it is sufficient to show that v̂
cannot be an interior point of V(α̂). Indeed, let v̂ be an interior point of V(α̂). Then
there exists ε > 0 such that d(v̂, ∂(V(α̂))) ≥ ε. In view of (9.3) for α = α̂, there
exists ∆ > 0 such that α̂ + ∆ ≤ 1 and d(v,V(α̂ + ∆)) ≤ ε/2 for all v ∈ V(α̂). Thus,
d(v̂,V(α̂+ ∆)) ≤ ε/2. The definition of α̂ implies that d(v̂,V(α̂+ ∆)) > 0. Let v̂p be
the projection of the point v̂ onto the convex set V(α̂ + ∆). Observe that v̂p is an
interior point of V(α̂) because ‖v̂ − v̂p‖ = d(v̂,V(α̂ + ∆)) ≤ ε/2. Since v̂ and v̂p are
interior points of V(α̂), there is a point v ∈ ∂(V(α̂)) such that v belongs to the line
projecting v̂ to V(α̂ + ∆), and v̂ is located between v̂p and v. This is illustrated in
Figure 9.1. Therefore d(v,V(α̂+∆)) = ‖v− v̂p‖ ≥ ‖v− v̂‖ ≥ d(v̂, ∂(V(α̂))) ≥ ε, where
the first inequality holds because v̂ is between v and v̂p, the second inequality follows
from v ∈ ∂(V(α̂)), and the last one follows from the choice of ε. This conclusion is a
contradiction to d(v,V(α̂+ ∆)) ≤ ε/2. Therefore, v ∈ ∂(V(α̂)).

Fig. 9.1. v̂ cannot be an interior point of V(α̂): Otherwise, d(v,V(α̂ + ∆)) = ‖v − v̂p‖ ≥
‖v − v̂‖ ≥ d(v̂, ∂(V(α̂))) ≥ ε, and d(v,V(α̂+ ∆)) ≤ ε/2 (a contradiction).

Since v̂ ∈ ∂(V(α̂)), by Theorem 6.6 there is a coordinate i = 1, . . . , N + 1 such
that v̂−i is a performance vector in a submodel of the MDP with action sets Aα̂(·)
and the value of v(i) is completely defined by the vector v̂−i according to formula
(6.6). The vector v̂−i has N coordinates. By the induction assumption, there is a

deterministic policy φ such that vφ−i = v̂−i. Thus, vφ = v̂.

Proof of Theorem 3.8. According to Corollary 8.6, the statement of the theorem
is correct for N = 1. Suppose the statement of Theorem 3.8 is correct for N criteria,
where N = 1, 2, . . . . Let us prove that it is correct for the case of (N + 1) criteria.
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Consider the case of (N + 1) criteria. By Lemma 9.2, the set VF is convex.
Therefore, Lemma 9.1 and VF ⊂ V imply that if v ∈ V \ ∂(V), then v ∈ VF. Let
v ∈ ∂(V). Theorem 6.6 implies that there exist a coordinate i = 1, . . . , N + 1, a vector
b ∈ RN , a constant d, and a submodel with the performance set Ṽ such that v ∈ Ṽ
and ṽ(i) = d + 〈b, ṽ−i〉 for all ṽ ∈ Ṽ, where for w ∈ RN the following notation is
used: w(i) is the ith coordinate of the vector w and w−i is the projection of w onto
RN obtained by removing the ith coordinate from w. As follows from the induction
assumption, there is a deterministic policy φ in the submodel such that vφ−i = v−i

and v(i),φ = d+ 〈b, vφ−i〉 = d+ 〈b, v−i〉 = v(i). Thus, vφ = v.

10. Unbounded rewards. This section describes extensions to unbounded re-
ward vector-functions r. These extensions are based on the standard weighted norm
transformation of an MDP with unbounded rewards to an MDP with bounded re-
wards.

Let us consider an MDP with the expected total rewards and with a standard
Borel state space X̄ := X ∪ {x̄}, where x̄ /∈ X, a standard Borel action space A, sets
of available actions A(x), where A(x̄) = {ā}, with ā being an arbitrary point in A,
transition probabilities p such that p(x̄|x̄, ā) = 1, a reward vector-function r with
values in RN such that r(n)(x̄, ā) = 0, n = 1, 2, . . . , N, and an initial probability
distribution µ such that µ(X) = 1. Let there exist a positive measurable function
w : X 7→ (0,+∞) for which the following conditions hold:

(a) supx∈X supa∈A(x)
1

w(x)

∫
X w(y)p(dy|x, a) ≤ 1,

(b)
∫
X w(x)µ(dx) < +∞,

(c) supx∈X supa∈A(x)
|r(n)(x,a)|
w(x) < +∞, n = 1, 2, . . . , N.

Let us consider an MDP with state space X̄, action space A, sets of available
action A(x), x ∈ X̄, transition probability p̃, where p̃(x̄|x̄, ā) := 1,

p̃(Y |x, a) :=
1

w(x)

∫
Y

w(y)p(dy|x, a), Y ∈ X , x ∈ X, a ∈ A(x),

and

p̃(x̄|x, a) := 1− 1

w(x)

∫
X
w(y)p(dy|x, a), x ∈ X, a ∈ A(x),

reward function r̃, where r̃(n)(x̄, ā) = 0 and, for n = 1, 2, . . . , N,

r̃(n)(x, a) =
r(n)(x, a)

w(x)

∫
X
w(y)µ(dy), x ∈ X, a ∈ A(x),

and the initial probability distribution µ̃ with

(10.1) µ̃(Y ) :=

∫
Y
w(x)µ(dx)∫

X w(y)µ(dy)
, Y ∈ X ,

and µ(x̄) = 0. If µ(x) = 0, then µ̃(x) = 0, x ∈ X. Let ṽπ be the vector of the
total expected rewards in the MDP with the transition probabilities p̃ and rewards r̃
controlled by a policy π, when the initial state distribution is µ̃.

We say that the defined MDP is uniformly absorbing if equality (3.5) holds for
this MDP with the initial distribution µ̃ instead of µ and the transition probability p̃
instead of p. This definition is consistent with Definition 3.6 because the assumptions
in Definition 3.3 also hold for this MDP with the fixed initial state distribution µ̃.
In addition, the function r̃ is bounded. The following statement follows from Theo-
rem 3.8.
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Corollary 10.1. Consider an MDP with the state space X̄ satisfying conditions
(a)–(c) and such that r(x̄, ā) = 0 and p(x̄|x̄, ā) = 1 for the state x̄ and action ā defined
above. Then ṽπ = vπ for all policies π. Furthermore, if the MDP with the transition
probabilities p̃ is uniformly absorbing and atomless, then V = VF for the initial MDP
and this set is convex.

Proof. Let Ẽ and P̃ denote the expectations and probabilities for the MDP with
the transition probabilities p̃ and the initial distribution µ̃. Pπ(dx0da0, . . . , dxtdat)
and P̃πµ̃ (dx0da0, . . . , dxtdat) are probability distributions on the standard Borel space

(X̄ × A)t+1, where t = 0, 1, . . . . The standard straightforward arguments imply that
for (x0, a0, . . . , xt, at) ∈ (X× A)t+1, t = 0, 1, . . . ,

(10.2) P̃πµ̃ (dx0da0, . . . , xtat) =
w(xt)P

π(dx0da0, . . . , xtat)∫
X w(y)µ(dy)

.

Since p(x̄|x̄, ā) = p̃(x̄|x̄, ā) = 1 and r(x̄, ā) = r̃(x̄, ā) = 0, equality (10.2) and
the definition of the reward function r̃ imply that Eπr(xt, at) = Ẽπµ̃ r̃(xt, at) for all
t = 0, 1, . . . . This equality implies that ṽπ = vπ for an arbitrary policy π. This implies
that VG = {ṽπ : π ∈ G} for every set of policies G ⊂ Π. Since the MDP with the
transition probabilities p̃ is uniformly absorbing and the reward vector-function r̃ is
bounded, Theorem 3.8 implies {ṽφ : φ ∈ F} = {ṽπ : π ∈ Π}. Therefore, V = VF.

Now let us consider a discounted MDP with the state space X introduced in
section 2 without assuming that the reward vector-function r is bounded. Let us
consider the following assumption:

(d) There exists a positive measurable function w : X 7→ (0,+∞) satisfying
assumptions (b) and (c), and there exists a constant β̃ ∈ (0, 1) such that

β sup
x∈X

sup
a∈A(x)

1

w(x)

∫
X
w(y)p(dy|x, a) ≤ β̃.

Then the following corollary from Theorem 2.3 holds.

Corollary 10.2. If an atomless discounted MDP with a possibly unbounded re-
ward vector-function r satisfies assumption (d), then Vβ = VF

β and this set is convex.

Proof. Let us add an isolated point x̄ to the standard Borel space X and set
X̄ := X ∪ {x̄}. Let us consider a discounted MDP with the action set A, sets of
available actions A(x), x ∈ X, reward vector-function r̃, initial state distribution µ̃,
and the discount factor β̃ described and defined above. However, instead of p̃, the
transition probability for this MDP is p̂, where p̂(x̄|x̄, ā) := 1,

p̂(Y |x, a) :=
β

β̃w(x)

∫
Y

w(y)p(dy|x, a), Y ∈ X , x ∈ X, a ∈ A(x),

and

p̂(x̄|x, a) := 1− β

β̃w(x)

∫
X
w(y)p(dy|x, a), x ∈ X, a ∈ A(x).

Let Ê and P̂ denote the expectations and probabilities for the defined MDP with
the state space X̄ and transition probabilities p̂. In particular, P̃πµ̃ (dx0da0, . . . , dxtdat)

is a probability distribution on the standard Borel space (X̄×A)t+1, where t = 0, 1, . . . .
The following formula is similar to (10.2): For t = 0, 1, . . . and (x0, a0, . . . , xt, at) ∈
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(X× A)t+1,

(10.3) β̃tP̂πµ̃ (dx0da0, . . . , dxtdat) =
βtw(xt)P

π(dx0da0, . . . , dxtdat)∫
X w(y)µ(dy)

.

Since p̂(x̄|x̄, ā) = 1 and r̃(x̄, ā) = 0, equality (10.3) and the definition of the
reward function r̃ imply that βtEπr(xt, at) = β̃tẼπµ̃ r̃(xt, at) for all t = 0, 1, . . . . This
equality implies that ṽπ

β̃
= vπβ for an arbitrary policy π, where ṽπ

β̃
is the vector of the

total discounted expected rewards in the MDP with the transition probabilities p̂ and
discount factor β̃, when a policy π is chosen and the initial state distribution is µ̃.
This implies that VG

β = {ṽπ
β̃

: π ∈ G} for every set of policies G ⊂ Π. Since the reward

vector-function r̃ is bounded, Theorem 2.3 implies that {ṽφ
β̃

: φ ∈ F} = {ṽπ
β̃

: π ∈ Π}.
Therefore, Vβ = VF

β .

Corollary 10.2 can also be proved by reducing discounted MDPs with discounted
factors β and β̃ to undiscounted MDPs, as is done in the proof of Lemma 3.12, and
by applying Corollary 10.1.

11. Compactness of performance sets and Lyapunov’s convexity theo-
rem. In this section we describe sufficient conditions for the compactness of the sets
V and VF and discuss the relation of our results to Lyapunov’s convexity theorem.
From an intuitive point of view, it is clear that the set of the ranges of vector-measures
is a particular case of the sets V and VF, when a one-step problem is considered. We
demonstrate this in Example 11.2. The following example shows that the set V may
be noncompact.

Example 11.1. Let X := [0, 1], A(x) := A := (0, 1), r(x, a) = a, and let µ be the
Lebesgue measure on [0, 1]. Under every decision the process moves from every state
x ∈ X to an absorbing state. For every deterministic policy φ, we have that vφ =∫ 1

0
φ(x)dx, where φ : [0, 1] 7→ (0, 1) is an arbitrary Borel function. In this example,

VF = (0, 1). Since this MDP is uniformly absorbing and atomless, V = VF = (0, 1). By
changing the action sets to (0, 1], [0, 1), and [0, 1], we obtain MDPs with performance
sets (0, 1], [0, 1), and [0, 1], respectively.

As stated in Corollary 5.2, Condition (S) from section 5 is sufficient for the com-
pactness of V. For example, in Example 11.1 this condition holds when A(x) = A =
[0, 1], x ∈ X. Condition (S) always holds when all the action sets A(x) are finite.
Another sufficient condition (W) for the compactness of the set of strategic measures
was introduced by Schäl [31]. This condition assumes weak continuity of transition
probabilities. Being combined with continuity of the bounded reward vector-functions
r : X × A 7→ RN , this weak continuity condition implies compactness of the perfor-
mance set V. Condition (W) was used in Feinberg and Piunovskiy [18]. We neither
use nor consider weak continuity condition (W) in this paper. In general, a measure ν
is called atomless if for any measurable set E with ν(E) > 0 there exists a measurable
subset E′ of E such that ν(E) > ν(E′) > 0. A vector-measure is called atomless if
each of its coordinates is an atomless measure.

Lyapunov’s convexity theorem states that the range of a finite atomless vector-
measure is convex and compact. In other words, if (X,X ) is a measurable space and
ν is a finite atomless vector-measure with values in RN , then the set W := {ν(B) :
B ∈ X} is a compact and convex subset of RN .

One of the equivalent formulations of this version of Lyapunov’s convexity theorem
(see, e.g., Blackwell [4]) states that if µ is a finite atomless measure on a measurable
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space (X,X ) and r : (X,X ) 7→ (RN ,B(RN )) is a measurable vector-function whose
coordinates are nonnegative functions satisfying

∫
X r

(n)(x)µ(dx) < +∞, where n =
1, . . . , N, then the set W∗ := {

∫
B
r(x)µ(dx) : B ∈ X} is a compact and convex subset

of RN .
To see that the classic Lyapunov convexity theorem is equivalent to this statement,

for an atomless vector-measure ν = (ν(1), . . . , ν(N)), define the atomless measure µ =∑N
n=1 ν

(n). Since ν(n) � µ, there are Radon–Nikodym derivatives r(n) := dν(n)/dµ,
n = 1, . . . , N. Therefore, ν(B) =

∫
B
r(x)µ(dx) for all ∈ X , and W =W∗. Conversely,

for an atomless finite measure µ and the vector-function r described in the previous
paragraph, ν(B) =

∫
B
r(x)µ(dx), where B ∈ X is the atomless vector-measure, and

W∗ =W is its range.
The following example demonstrates that Theorem 3.8 and Corollaries 5.3 and

10.1 imply Lyapunov’s convexity theorem for the case when an atomless measure is
defined on a standard Borel space.

Example 11.2. Let us consider an MDP with a state space X̄ = X∪{x̄}, where X
is a standard Borel space, action sets A(x) := A := {0, 1} and A(x̄) = {0}, rewards
r : X × A 7→ RN , and let µ be an atomless initial probability measure on X. We
also set p(x̄|x, a) = 1 for all x ∈ X̄ and a ∈ A(x). That is, from each state x the
process moves to the absorbing state x̄. We also set r(x, 0) := 0̄ for all x ∈ X̄, where
0̄ is the zero-vector in RN , and r(x, 1) := r(x), x ∈ X, where r = (r(1), . . . , r(N)) is
a Borel vector-function such that each coordinate function r(n) is nonnegative and∫
X r

(n)(x)µ(dx) < +∞ for all n = 1, . . . , N.

Every deterministic policy φ ∈ F is defined by the set Bφ := {x ∈ X : φ(x) = 1}.
Observe that vφ =

∫
Bφ

r(x)µ(dx). In addition, {Bφ : φ ∈ F} is the Borel σ-algebra
on X. Thus, we are in the framework of the equivalent formulation of Lyapunov’s
convexity theorem, and W∗ = VF. Since the function r can be unbounded, we define
the weight function w(x) := 1 +

∑N
n=1 |r(n)(x)|, x ∈ X.

Then vφ =
∫
Bφ

r̃(x)µ̃(dx), where the measure µ̃ is defined in (10.1) and the vector-
function r̃(x) := r(x)(w(x))−1

∫
X w(y)µ(dy), x ∈ X, is bounded. Therefore, in view of

Corollary 10.1, VF = V and this set is closed and compact. The compactness of the
set V follows from Corollaries 5.3 and 10.1. The set W∗ = VF is convex and compact.
Thus, Lyapunov’s convexity theorem for a standard Borel space X is a particular
example of an application of Corollary 10.1, which follows from Theorem 3.8.
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