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Abstract—The increasing penetration of renewable energy
makes the traditional N-1 contingency screening highly
challenging when a large number of uncertain scenarios need to
be combined with contingency screening. In this letter, a novel
data-driven method, similar to image-processing technique, is
proposed for accelerating N-1 contingency screening of power
systems based on the deep convolutional neural network (CNN)
method for calculating AC power flows under N-1 contingency
and uncertain scenarios. Once the deep CNN is well trained, it has
high generalization and works in a nearly computation-free
fashion for unseen instances such as topological changes in the N-1
cases and uncertain renewable scenarios. The proposed deep CNN
is implemented on several standard IEEE test systems to verify its
accuracy and computational efficiency. The proposed study
constitutes a solid demonstration of the considerable potential of
the data-driven deep CNN in future online applications.

Index Terms—AC power flow, deep convolutional neural
network (deep CNN), data-driven, image processing, N-1
contingency screening.

[. INTRODUCTION

RECENTLY, the increasing penetration of renewable energy
into the bulk power system has aggravated the concern of
system operation security under N-1 contingency. The main
challenge for N-1 contingency screening under uncertainty is
the extreme model complexity in case of large-scale power
systems, combined with many uncertain scenarios. For
instance, a traditional contingency screening for an N-branch
system requires N power flow runs; however, once this is
combined with M independent wind plants with 10 uncertain
scenarios in each plant, contingency screening needs to be
performed for Nx10M power flow runs [1]. Even though it is
well known that a traditional full-fledged N-1 contingency
screening in the actual ISO operation takes only tens of seconds
to complete, it will be unmanageable if many wind scenarios
must be combined. Tremendous research efforts have been
dedicated to accelerating computation speed for N-1
contingency screening in the literature [1-3].

The main issue with the traditional model-based methods is
the huge number of power flow runs, which poses great
computational burden that prevents their online applications
even with proper model simplification. To address this issue, in
this letter we present a novel data-driven method, similar to
image processing, for accelerating N-1 contingency screening
under multiple uncertain scenarios. The deep convolutional
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neural network (deep CNN) is utilized as a regression tool for
AC power flow calculation. Once the deep CNN is well trained,
it is expected to have high generalization for unseen power flow
cases and can improve the computational efficiency by over
100 times as compared with the conventional model-based
methods in N-1 contingency screening. It should be noted that
the solution can deal with topological change under N-1
contingency without the need of additional trainings.

II. DEEP CNN-BASED N-1 CONTINGENCY SCREENING

A. A brief on deep CNN

Deep convolutional neural network (deep CNN) is known
for its strong automatic feature learning ability in processing
data with a grid-like topology, e.g., image data. The term
“deep” indicates that the deep CNN contains many hidden
layers. Each hidden layer consists of a group of convolution
kernels that extract features from the input via convolution
operation. As the neural network goes deep, more features will
be captured and analyzed. This hierarchical structure of deep
CNN mimics the visual cortex system of human beings, which
is the main reason for its success in image classification.

Deep CNN has an important feature, which is called sparse
connectivity [4]. In image data, one pixel is closely related to its
neighboring pixels, but is less related to the pixels that are far
away. Hence in deep CNN, each output unit from the hidden
layer is only connected to a square patch from the input that is
geographically close to its location, and it discards the farther
connections. In this way, the number of parameters that need to
be trained is greatly reduced, which contributes to higher
computational efficiency.

B. Mapping power system raw data to deep CNN input data

In the N-1 contingency screening problem, the deep CNN is
proposed as a regression tool to automatically generate AC
power flow (ACPF) results based on the known system
parameters. Deep CNN is applicable for ACPF calculation
because power system state variables, i.e., the bus voltage
magnitudes and bus voltage angles, are also sparsely connected
like image pixels. The power flow equations are as follows:
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In (1)-(2), it can be discovered that the bus voltage
magnitudes (v; and v;) and angles (&, and §), are mainly related
to four known parameters including bus active power injection
P, bus reactive power injection Qiy;, and bus admittance gj
and bj;. As a result, for the ACPF calculation of a n-bus power



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

system, the input to the deep CNN will be the bus active power
injection vector Pinj, bus reactive power injection vector Qinj,
bus conductance matrix G, and bus susceptance matrix B, and
the output will be the V and 0 vectors. To further simplify the
input data, we remove the G matrix and all the non-diagonal
elements in the B matrix, and only keep the self-susceptance
elements as the input. Since deep CNN regression is a
data-driven method, the regression error caused by the missing
data in G and B will be automatically made up via iterative
training based on existing data samples. As such, the input to
the deep CNN will be three 1xn vectors, Pinj, Qinj and Bii, and
the output will be two 1xn vectors, V and 0. The simplification
of the input data reduces both the model complexity of deep
CNN and the computation burden, so it can be well applied to
large-scale power systems.

C. Design of deep CNN structure

The structure of deep CNN for voltage angle calculation is
illustrated in Fig. 1. It consists of two convolutional (Conv)
layers and three fully-connected (FC) layer. The function of the
convolutional layers is to extract features from the input power
system raw data. Each convolutional layer is composed of a
number of learnable convolution kernels, which are shown as
purple squares in Fig. 1. A convolution kernel conducts the
following convolution operation for feature extraction:

1,.G))= iil(u,v)'a)(u,v) +b 3)
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In (3), I(u,v) is a single unit in the original input; w(u,v) is a
single unit in the convolution kernel square, which is also called
the weight; ¢ is the size of the convolution kernel; b is a bias
parameter; [,..(i,f) is a single unit in the output. As such, each
unit in the output is the weighted sum of ¢Xc units in the input,
or we can say it contains the aggregated local information based
on cxc input units. All the output units constitute a feature map.
With more convolution kernels, more feature maps can be
generated to provide sufficient information for deep CNN
model regression.

In the constructed deep CNN, the convolution kernel size for
the two layers are [3, 3, 1, 12] and [3, 3, 12, 24]. The first two
figures are the height and the width of the convolution kernel,
the third figure is the depth of the kernel, and the last figure is
the number of kernels. Zero padding is applied here to maintain
the width and the height of the input. The generated feature
maps further go through an activation function. The activation
function will bring nonlinearity to the regression model (3).
This is because the original mathematical relationship between
bus power injection and bus voltage are not linear, as shown by
(1)-(2), and cannot be fully represented by the linear
convolution operation in (3). The limitation of linear
transformations will be overcome by the activation function.

In this study, ReLU, or rectified linear unit, is applied as the
activation function. The ReLU function has a quasi-linearity
feature that makes it preserve high generalization ability as
linear model, hence is applicable in deep CNN regression.

The output from the second convolutional layer will go
through two separate fully-connected layers, FC1 and FC2.
This is because in the designed deep CNN, two types of output
will be generated. The first output is the system state variables,

i.e., the bus voltage angles and bus voltage magnitudes. The
second output is the system security status. In this work, we
adopt the security index defined in [5] to evaluate the N-1

contingency severity:
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SI measures the margin between the system operation status
and the system security boundary. More detailed explanations
of (4) can be found in [5]. Based on the value of SI, the system
security can be classified into three statues: 1) SI = 0: secure; 2)
0<SI=<1: alarm; and 3) SI > I: insecure.

In Fig. 1, the function of the fully-connected layers, FC1,
FC2 and FC3, is to transform all the extracted features from the
power system raw data to the desired output via matrix
multiplication. Since security assessment is a classification
problem, the softmax function is used as the activation function
for the output from FC3, which differentiates various classes
based on their posterior probabilities.
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Fig. 1. Deep CNN structure for N-1 contingency screening using

image-processing-like technique

It can be observed that the proposed deep CNN can realize
two functions simultaneously: as an ACPF regression tool and
as a classifier for system security assessment under N-1
contingency, which is a multi-task learning model. The loss
function for training the deep CNN is defined as follows:

N? n n
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NS s=1 N o i=1

In (5), N; is the number of training samples, and »n is the
number of buses. The first two terms are the mean square error
of the bus voltage variables, where ;; and v; are the deep CNN
estimated voltage values, and 9,1 and v,, are the actual voltage
values. The third term is called the cross-entropy, where y; is
the deep CNN estimated security classification, and y. is the
actual security classification. The cross-entropy is the most
widely used loss function for multi-classification problems.
Based on the above loss function, the deep CNN is trained via
back-propagation method to decide the optimal network weight
parameters and bias parameters.

III. CASE STUDY

The proposed image-processing-like, deep CNN model for
ACPF calculation under N-1 contingency is tested on the IEEE
9, 30, 57, 118, and 300-bus systems, WECC 181-bus system,
and European 1354-bus system to verify its accuracy and
computing efficiency. To include multi-scenario uncertainty,
Monte Carlo simulation is used to create load and renewable
energy variations in training samples. For load uncertainty, we
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assume that the real power of the bus load follows a uniform
distribution within the range of [0.8, 1.2] of the base case, and
the bus reactive load is calculated by multiplying the bus active
power consumption with a factor uniformly drawn from the
range [0.15, 0.25]. For renewable energy uncertainty, we
change 40% of the conventional generators in the original test
cases into wind generators, and the forecast error of wind
generation follows a normal distribution with zero mean and a
standard deviation of 0.05. For N-1 contingency, one line is
randomly tripped in each training sample. The hardware
environment for deep CNN training is a Nvidia GeForce GTX
1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core
clock. The software environment is the open-source deep
learning platform TensorFlow for the proposed approach and
MATPOWER for traditional model-based approach. The
regression and classification results are shown in TABLE 1.

In TABLE 1, the errors of @ and v are the per unit mean
absolute value over the test set compared with the results from
model-based AC power flow calculation. The classification
accuracy is the ratio between the number of test samples that
has been correctly classified and the total number of test
samples. As the table shows, deep CNN model possesses
considerably high accuracy for ACPF calculation, even for
large-scale power systems. Also, the training time is within an
acceptable range given that the training is completed off-line.

TABLE I AC POWER FLOW RESULTS OF DEEP CNN

number of features as the deep CNN. Hence the two neural
networks are comparable. The regression and classification
results of ANN are shown in TABLE III.

TABLE III AC POWER FLOW RESULTS OF ANN

Case No. of samples Errors Training Test Classification
Training Test I’) v time(s) time (s) Accuracy
9 3292 1412 2.0e-2 2.3e-3 6.52 0.011 91.64%
30 4262 1066 9.0e-3 2.4e-3  10.29 0.008 87.43%
57 3360 1440 2.7¢-2 9.0e-:3  14.88 0.009 92.43%
118 3027 1298 2.7e¢-2 9.0e-4  36.28 0.017 98.54%
181 2530 1085 1.8e-1 1.3e-2 4731 0.019 75.94%
300 3445 1477 2.0e-1 5.7¢-3  139.04  0.036 78.00%
1354 3981 1707 - - - - -

Case No. of samples Errors Training Classification
Training Test (%] v time(s)  Accuracy

9 3292 1412 6.1e-3  7.2e¢-4 11.42 97.24%
30 4262 1066 1.5e-3  5.4e-4 23.06 96.25%
57 3360 1440 4.9e-3  1.6e-3 31.59 99.24%
118 3027 1298  7.5e-3  2.9e¢-4 57.88 100%
I8I(WECC) 2530 1085 5.7e-2  3.8e-3 65.04 97.70%
300 3445 1477 69e-2  2.3e-3 148.91 99.05%
1354 (Eu.) 3981 1707  1.de-2  1.9e-3  1548.94 96.84%

To validate the computational efficiency of deep CNN
regression, we compare calculation time of the AC power flow
with N-1 contingency using both deep CNN and model-based
AC power flow methods, as shown in TABLE II.

TABLE II TEST TIME COMPARISON

Case Test Test time (s) Test time (s) Acceleration
size (deep CNN) (model-based) ratio
9 1412 0.017 3.500 206
30 1066 0.016 3.303 206
57 1440 0.018 4323 240
118 1298 0.021 4.905 234
181 (WECC) 1085 0.025 4.655 186
300 1477 0.044 10.15 231
1354 (Eu.) 1707 0.264 34.13 129

In TABLE II, the last column shows the acceleration based
on the computing time of deep CNN and the model-based
ACPF method. The deep CNN approach is 129 to 240 times
faster than the latter, average 205 times faster. This is because
the well-trained deep CNN has high generalization to unseen
test cases, and it can automatically generate AC power flow
results and classify system security status under the new given
input without any iterative calculation of power flows.

To further demonstrate the superiority of the proposed deep
CNN over traditional artificial neural networks (ANNs), we
design an ANN model with only one hidden layer. The size of
the hidden layer is [3xn, 3xnx24], which extracts the same

The results of the 1354-bus system are not available for ANN
because the large-scale training data cause memory overflow.
For all the other systems, deep CNN provides more accurate
classification and regression results than the traditional shallow
ANN. This is because the multiple convolutional layers within
the deep CNN can extract better features for classification and
regression, and this is the key contributing factor to the recent
success of CNN in other applications. In addition, the
traditional ANN is composed of fully-connected layers, where
each neuron is connected to all of the subsequent neurons. This
requires more neural parameters and computation. While in
deep CNN, the sparse connectivity reduces both redundancy
and computation to achieve better accuracy and computational
efficiency. Note, although the deep CNN takes a little longer
training time, it is of less importance since training is done
offline.

IV. CONCLUSIONS

In this letter, a data-driven approach is proposed to achieve
over 100 times acceleration for N-1 contingency screening
under uncertain scenarios. An image-processing-like technique
is proposed to utilize the deep CNN as an efficient regression
method to fit AC power flow model, and then to automatically
generate power flow results for system security evaluation with
high accuracy. The high computational efficiency of deep CNN
makes it a desirable tool for real-time security assessment
applications as well as other related power system studies [1].
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