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Abstract—The increasing penetration of renewable energy 
makes the traditional N-1 contingency screening highly 
challenging when a large number of uncertain scenarios need to 
be combined with contingency screening. In this letter, a novel 
data-driven method, similar to image-processing technique, is 
proposed for accelerating N-1 contingency screening of power 
systems based on the deep convolutional neural network (CNN) 
method for calculating AC power flows under N-1 contingency 
and uncertain scenarios. Once the deep CNN is well trained, it has 
high generalization and works in a nearly computation-free 
fashion for unseen instances such as topological changes in the N-1 
cases and uncertain renewable scenarios. The proposed deep CNN 
is implemented on several standard IEEE test systems to verify its 
accuracy and computational efficiency. The proposed study 
constitutes a solid demonstration of the considerable potential of 
the data-driven deep CNN in future online applications.  

Index Terms—AC power flow, deep convolutional neural 
network (deep CNN), data-driven, image processing, N-1 
contingency screening. 

I. INTRODUCTION 
ECENTLY, the  increasing penetration of renewable energy 
into the bulk power system has aggravated the concern of 

system operation security under N-1 contingency. The main 
challenge for N-1 contingency screening under uncertainty is 
the extreme model complexity in case of large-scale power 
systems, combined with many uncertain scenarios. For 
instance, a traditional contingency screening for an N-branch 
system requires N power flow runs; however, once this is 
combined with M independent wind plants with 10 uncertain 
scenarios in each plant, contingency screening needs to be 
performed for N×10M power flow runs [1]. Even though it is 
well known that a traditional full-fledged N-1 contingency 
screening in the actual ISO operation takes only tens of seconds 
to complete, it will be unmanageable if many wind scenarios 
must be combined. Tremendous research efforts have been 
dedicated to accelerating computation speed for N-1 
contingency screening in the literature [1-3].  

The main issue with the traditional model-based methods is 
the huge number of power flow runs, which poses great 
computational burden that prevents their online applications 
even with proper model simplification. To address this issue, in 
this letter we present a novel data-driven method, similar to 
image processing, for accelerating N-1 contingency screening 
under multiple uncertain scenarios. The deep convolutional 
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neural network (deep CNN) is utilized as a regression tool for 
AC power flow calculation. Once the deep CNN is well trained, 
it is expected to have high generalization for unseen power flow 
cases and can improve the computational efficiency by over 
100 times as compared with the conventional model-based 
methods in N-1 contingency screening. It should be noted that 
the solution can deal with topological change under N-1 
contingency without the need of additional trainings.   

II. DEEP CNN-BASED N-1 CONTINGENCY SCREENING 
A. A brief on deep CNN 

Deep convolutional neural network (deep CNN) is known 
for its strong automatic feature learning ability in processing 
data with a grid-like topology, e.g., image data. The term 
“deep” indicates that the deep CNN contains many hidden 
layers. Each hidden layer consists of a group of convolution 
kernels that extract features from the input via convolution 
operation. As the neural network goes deep, more features will 
be captured and analyzed. This hierarchical structure of deep 
CNN mimics the visual cortex system of human beings, which 
is the main reason for its success in image classification. 

Deep CNN has an important feature, which is called sparse 
connectivity [4]. In image data, one pixel is closely related to its 
neighboring pixels, but is less related to the pixels that are far 
away. Hence in deep CNN, each output unit from the hidden 
layer is only connected to a square patch from the input that is 
geographically close to its location, and it discards the farther 
connections. In this way, the number of parameters that need to 
be trained is greatly reduced, which contributes to higher 
computational efficiency.  
B. Mapping power system raw data to deep CNN input data 
 In the N-1 contingency screening problem, the deep CNN is 
proposed as a regression tool to automatically generate AC 
power flow (ACPF) results based on the known system 
parameters.  Deep CNN is applicable for ACPF calculation 
because power system state variables, i.e., the bus voltage 
magnitudes and bus voltage angles, are also sparsely connected 
like image pixels. The power flow equations are as follows: 
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 In (1)-(2), it can be discovered that the bus voltage 
magnitudes (vi and vj) and angles (θi and θj), are mainly related 
to four known parameters including bus active power injection 
Pinj,i, bus reactive power injection Qinj,i, and bus admittance gij 
and bij. As a result, for the ACPF calculation of a n-bus power 
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system, the input to the deep CNN will be the bus active power 
injection vector Pinj, bus reactive power injection vector Qinj, 
bus conductance matrix G, and bus susceptance matrix B, and 
the output will be the V and θ vectors. To further simplify the 
input data, we remove the G matrix and all the non-diagonal 
elements in the B matrix, and only keep the self-susceptance 
elements as the input. Since deep CNN regression is a 
data-driven method, the regression error caused by the missing 
data in G and B will be automatically made up via iterative 
training based on existing data samples. As such, the input to 
the deep CNN will be three 1×n vectors, Pinj, Qinj and Bii, and 
the output will be two 1×n vectors, V and θ. The simplification 
of the input data reduces both the model complexity of deep 
CNN and the computation burden, so it can be well applied to 
large-scale power systems. 
C. Design of deep CNN structure  
 The structure of deep CNN for voltage angle calculation is 
illustrated in Fig. 1. It consists of two convolutional (Conv) 
layers and three fully-connected (FC) layer. The function of the 
convolutional layers is to extract features from the input power 
system raw data. Each convolutional layer is composed of a 
number of learnable convolution kernels, which are shown as 
purple squares in Fig. 1. A convolution kernel conducts the 
following convolution operation for feature extraction: 
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In (3), I(u,v) is a single unit in the original input; ω(u,v) is a 
single unit in the convolution kernel square, which is also called 
the weight; c is the size of the convolution kernel; b is a bias 
parameter; Inew(i,j) is a single unit in the output. As such, each 
unit in the output is the weighted sum of c×c units in the input, 
or we can say it contains the aggregated local information based 
on c×c input units. All the output units constitute a feature map. 
With more convolution kernels, more feature maps can be 
generated to provide sufficient information for deep CNN 
model regression. 

In the constructed deep CNN, the convolution kernel size for 
the two layers are [3, 3, 1, 12] and [3, 3, 12, 24]. The first two 
figures are the height and the width of the convolution kernel, 
the third figure is the depth of the kernel, and the last figure is 
the number of kernels. Zero padding is applied here to maintain 
the width and the height of the input. The generated feature 
maps further go through an activation function. The activation 
function will bring nonlinearity to the regression model (3). 
This is because the original mathematical relationship between 
bus power injection and bus voltage are not linear, as shown by 
(1)-(2), and cannot be fully represented by the linear 
convolution operation in (3). The limitation of linear 
transformations will be overcome by the activation function. 

In this study, ReLU, or rectified linear unit, is applied as the 
activation function. The ReLU function has a quasi-linearity 
feature that makes it preserve high generalization ability as 
linear model, hence is applicable in deep CNN regression. 

The output from the second convolutional layer will go 
through two separate fully-connected layers, FC1 and FC2. 
This is because in the designed deep CNN, two types of output 
will be generated. The first output is the system state variables, 

i.e., the bus voltage angles and bus voltage magnitudes. The 
second output is the system security status. In this work, we 
adopt the security index defined in [5] to evaluate the N-1 
contingency severity: 
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SI measures the margin between the system operation status 
and the system security boundary. More detailed explanations 
of (4) can be found in [5]. Based on the value of SI, the system 
security can be classified into three statues: 1) SI = 0: secure; 2) 
0<SI≤1: alarm; and 3) SI > 1: insecure.  

In Fig. 1, the function of the fully-connected layers, FC1, 
FC2 and FC3, is to transform all the extracted features from the 
power system raw data to the desired output via matrix 
multiplication. Since security assessment is a classification 
problem, the softmax function is used as the activation function 
for the output from FC3, which differentiates various classes 
based on their posterior probabilities. 
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Fig. 1. Deep CNN structure for N-1 contingency screening using 
image-processing-like technique 

It can be observed that the proposed deep CNN can realize 
two functions simultaneously: as an ACPF regression tool and 
as a classifier for system security assessment under N-1 
contingency, which is a multi-task learning model. The loss 
function for training the deep CNN is defined as follows: 
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In (5), Ns is the number of training samples, and n is the 
number of buses. The first two terms are the mean square error 
of the bus voltage variables, where θi,s and vi,s are the deep CNN 
estimated voltage values, and θ* 

i,s and v* 
i,s are the actual voltage 

values. The third term is called the cross-entropy, where ys is 
the deep CNN estimated security classification, and y* 

s  is the 
actual security classification. The cross-entropy is the most 
widely used loss function for multi-classification problems. 
Based on the above loss function, the deep CNN is trained via 
back-propagation method to decide the optimal network weight 
parameters and bias parameters. 

III. CASE STUDY 

The proposed image-processing-like, deep CNN model for 
ACPF calculation under N-1 contingency is tested on the IEEE 
9, 30, 57, 118, and 300-bus systems, WECC 181-bus system, 
and European 1354-bus system to verify its accuracy and 
computing efficiency. To include multi-scenario uncertainty, 
Monte Carlo simulation is used to create load and renewable 
energy variations in training samples. For load uncertainty, we 
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assume that the real power of the bus load follows a uniform 
distribution within the range of [0.8, 1.2] of the base case, and 
the bus reactive load is calculated by multiplying the bus active 
power consumption with a factor uniformly drawn from the 
range [0.15, 0.25]. For renewable energy uncertainty, we 
change 40% of the conventional generators in the original test 
cases into wind generators, and the forecast error of wind 
generation follows a normal distribution with zero mean and a 
standard deviation of 0.05. For N-1 contingency, one line is 
randomly tripped in each training sample. The hardware 
environment for deep CNN training is a Nvidia GeForce GTX 
1080 Ti Graphic Card with 11 GB memory and 1.582 GHz core 
clock. The software environment is the open-source deep 
learning platform TensorFlow for the proposed approach and 
MATPOWER for traditional model-based approach. The 
regression and classification results are shown in TABLE I.  

In TABLE I, the errors of θ and v are the per unit mean 
absolute value over the test set compared with the results from 
model-based AC power flow calculation. The classification 
accuracy is the ratio between the number of test samples that 
has been correctly classified and the total number of test 
samples. As the table shows, deep CNN model possesses 
considerably high accuracy for ACPF calculation, even for 
large-scale power systems. Also, the training time is within an 
acceptable range given that the training is completed off-line. 

TABLE I AC POWER FLOW RESULTS OF DEEP CNN  

Case No. of samples Errors Training  
time(s) 

Classification 
Accuracy Training Test θ v 

9 3292 1412 6.1e-3 7.2e-4 11.42 97.24% 
30 4262 1066 1.5e-3 5.4e-4 23.06 96.25% 
57 3360 1440 4.9e-3 1.6e-3 31.59 99.24% 
118 3027 1298 7.5e-3 2.9e-4 57.88 100% 

181(WECC) 2530 1085 5.7e-2 3.8e-3 65.04 97.70% 
300 3445 1477 6.9e-2 2.3e-3 148.91 99.05% 

1354 (Eu.) 3981 1707 1.1e-2 1.9e-3 1548.94 96.84% 

To validate the computational efficiency of deep CNN 
regression, we compare calculation time of the AC power flow 
with N-1 contingency using both deep CNN and model-based 
AC power flow methods, as shown in TABLE II.  

TABLE II TEST TIME COMPARISON 

Case Test 
size 

Test time (s) 
(deep CNN) 

Test time (s) 
(model-based) 

Acceleration 
ratio 

9 1412 0.017 3.500 206 
30 1066 0.016 3.303 206 
57 1440 0.018 4.323 240 

118 1298 0.021 4.905 234 
181 (WECC) 1085 0.025 4.655 186 

300 1477 0.044 10.15 231 
1354 (Eu.) 1707 0.264 34.13 129 

In TABLE II, the last column shows the acceleration based 
on the computing time of deep CNN and the model-based 
ACPF method. The deep CNN approach is 129 to 240 times 
faster than the latter, average 205 times faster. This is because 
the well-trained deep CNN has high generalization to unseen 
test cases, and it can automatically generate AC power flow 
results and classify system security status under the new given 
input without any iterative calculation of power flows. 

To further demonstrate the superiority of the proposed deep 
CNN over traditional artificial neural networks (ANNs), we 
design an ANN model with only one hidden layer. The size of 
the hidden layer is [3×n, 3×n×24], which extracts the same 

number of features as the deep CNN. Hence the two neural 
networks are comparable. The regression and classification 
results of ANN are shown in TABLE III. 

TABLE III AC POWER FLOW RESULTS OF ANN 

Case No. of samples Errors Training  
time(s) 

Test 
time (s) 

Classification 
Accuracy Training Test θ v 

9 3292 1412 2.0e-2  2.3e-3 6.52 0.011 91.64% 
30 4262 1066 9.0e-3 2.4e-3 10.29 0.008 87.43% 
57 3360 1440 2.7e-2 9.0e-3 14.88 0.009 92.43% 

118 3027 1298 2.7e-2 9.0e-4 36.28 0.017 98.54% 
181 2530 1085 1.8e-1 1.3e-2 47.31 0.019 75.94% 
300 3445 1477 2.0e-1 5.7e-3 139.04 0.036 78.00% 
1354 3981 1707 - - - - - 

The results of the 1354-bus system are not available for ANN 
because the large-scale training data cause memory overflow. 
For all the other systems, deep CNN provides more accurate 
classification and regression results than the traditional shallow 
ANN. This is because the multiple convolutional layers within 
the deep CNN can extract better features for classification and 
regression, and this is the key contributing factor to the recent 
success of CNN in other applications. In addition, the 
traditional ANN is composed of fully-connected layers, where 
each neuron is connected to all of the subsequent neurons. This 
requires more neural parameters and computation. While in 
deep CNN, the sparse connectivity reduces both redundancy 
and computation to achieve better accuracy and computational 
efficiency. Note, although the deep CNN takes a little longer 
training time, it is of less importance since training is done 
offline. 

IV. CONCLUSIONS 
In this letter, a data-driven approach is proposed to achieve 

over 100 times acceleration for N-1 contingency screening 
under uncertain scenarios. An image-processing-like technique 
is proposed to utilize the deep CNN as an efficient regression 
method to fit AC power flow model, and then to automatically 
generate power flow results for system security evaluation with 
high accuracy. The high computational efficiency of deep CNN 
makes it a desirable tool for real-time security assessment 
applications as well as other related power system studies [1]. 
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