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Abstract

Vibration absorbers are commonly used to reduce unwanted structural vibrations. In this paper, a vibration
absorber comprised of a sprung mass is used to enforce a location of zero displacement (or node) at a
specified location on an Euler-Bernoulli beam under harmonic base excitation. Closed form expressions for
the optimal tuning of the auxiliary spring-mass system are found, and results are presented for the cases of
the attachment and node located at the same and different locations. The assumed modes method is used,
so the results can be applied for arbitrary boundary conditions. To aid in the design process, this paper
also characterizes the sensitivity of the displacement at the desired node location to parametric variations.
Sensitivities are considered with respect to the base excitation frequency and the attachment mass, stiffness,
and location. The sensitivities of the system highlight some feasible but less desirable attachment locations.
Numerical and experimental results for a cantilever beam are presented to illustrate the proposed method
and the effects of mistuning.
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1. Introduction

1.1. Vibration absorbers

There is a rich history of research and literature on vibration absorbers dating back to seminal work
by Frahm [1], Den Hartog [2], and Brock [3]. Applications of vibration absorbers have widely varied over
the years, as have the design strategies [4, 5]. Many past studies have focused on single-degree-of-freedom

(SDOF) primary systems to which a SDOF absorber is attached, but the focus of this paper is on enforcing
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nodes (i.e., locations of zero displacement) for base-excited beams whose dynamics cannot be captured with
a single mode alone.

Extensive work has been performed on vibration absorbers for base-excited structures. For example,
Warburton and Ayorinde [6] discuss how to find the optimum damper parameters for a simple system under
support (base) excitation, Joshi and Jangid [7] considered using multiple tuned mass dampers to reduce
the sensitivity to mistuning for a SDOF system undergoing white noise base excitation, and Tsai and Lin
[8] found optimal parameters (based on the criteria of Den Hartog) for harmonic support excitation where
the acceleration or displacement amplitude is fixed and independent of frequencies. However, all of these
studies considered simply systems that could be modeled by a single normal mode.

Vibration absorbers have also been designed for continuous systems, such as beams [9] and plates
[10], considering multiple modes of vibration. For example, Jacquot [11] considered vibration absorbers
to eliminate large vibrations near a natural frequency of a beam. He used multiple attachments to reduce
the effects of multiple modes resulting in a flattening of the frequency response. Dayou considered an
attachment to a continuous system to minimize the kinetic energy of the beam and considered multiple
forcing frequencies [12]. However, these examples and most other studies focus on point or distributed

forcing applied to the structure, as opposed to base excitation.

1.2. Enforcing nodes

As previously noted, the focus of this paper is on the enforcement of nodes (or locations of zero dis-
placement) along a beam under base excitation. There is a rich body of work by Cha and colleagues that
considers using one or multiple attachments to enforce a node at a desired location on a beam for either free
vibration or point forcing. These studies are summarized here.

Originally, Cha [13] proposed a method of enforcing nodes with absorbers at the same locations on
the modified orthogonal modes of a continuous system (i.e., collocated). This methodology was developed
for free vibration of beams, but he notes that it is applicable to forcing near one of the modified natural
frequencies. He then considered creating single or multiple nodes with either collocated or not collocated
attachments for a single forcing frequency [14]. The method was then expanded to include limitations
on the maximum amplitudes of the attachments [15]. Cha and Rinker [16] later expanded the method to
include damping of both the beam and the absorbers, as well as outlining an efficient numerical technique
for solving for the system parameters.

Cha and Zhou [17] expanded the work to include enforcing both zero amplitude and zero slope at the
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desired location by attaching both translational and rotational absorbers. This had the added benefit of a
larger region of zero displacement. Cha and Chan [18] later updated this method to consider two degree of
freedom attachments with two springs to act as both the rotational and translational absorbers.

Cha and Ren [19] considered harmonic excitation at multiple frequencies in their design of attachments
to enforce nodes, which allowed them to create a frequency range with little to no displacement at the
desired node location. Cha and Buyco [19] developed a more efficient method of solving for the system
parameters for harmonic forcing at multiple frequencies; their proposed method solved for active forces and
allowed for easy application of limitations on absorber amplitudes.

In all the above referenced studies, numerical experiments were used to demonstrate the various ap-
proaches, but no physical experiments have been reported. Wong et al. [20] experimentally validated an
approach similar to that of Cha and Zhou [17] for enforcing fixed nodes (i.e., zero translation and rotation)
with translational and rotational absorbers. Furthermore, Cha and colleagues have exclusively considered
point force excitations. Rinker [21] previously investigated node enforcement for base excitation of a shear-
type building, but she did not consider node enforcement of a continuous beam-type structure undergoing
base excitation. Moreover, none of the previous work has considered analytical sensitivities to perturbations
in the system parameters.

It is worth mentioning here the close relationship between imposing vibration nodes in a beam and the
more general problem of response localization [22, 23]. The latter aims to localize the vibration modes to
a small, but non-zero-measure, region of a beam [24, 25, 26] (or nominally periodic structure [23, 27, 28]),
whereas the former seeks to suppress the vibrations at a point (i.e., zero-measure localization). Cha and
Zhou [17] showed that, through proper tuning of sprung masses and rotational oscillators, nearly zero
amplitudes could be imposed along a non-zero-measure region of a beam under localized harmonic loading.

In this paper, the theory for node enforcement on a beam under base excitation is developed. An
approach similar to Cha’s earlier work [14] is followed, with the addition of base excitation, as well as
analytical parametric sensitivities and experimental demonstration. The case of only a single node and
attachment is considered here, but the methods can easily be generalized to the case of multiple nodes
and multiple attachments. However for the case of multiple noncollocated nodes and attachments, it is not
possible to obtain a closed form solution. It should also be noted that the method developed in this paper

can only be used to enforce a node at steady state.



Figure 1: A cantilever beam subjected to a base excitation and carrying an attached sprung mass.

2. Theory

2.1. Governing Equations

Consider an elastic beam of length L undergoing base displacement yj(#), as shown in Fig. 1. The trans-
verse deflection of the beam (relative to its base) is given by w(x, f) for 0 < x < L. A sprung mass (k,, m,)
is attached at x = x,, and its displacement (relative to the base) is given by z(¢). Without loss of generality,
z = 0 is assumed to coincide with the static equilibrium position of the sprung mass. Modeling the uniform

beam by the Euler—Bernoulli theory, the kinetic and potential energies of the system are respectively given

by

1 (t 1
T=3 fo 0() [W(x, ) + yp (D1 dx + 5Mal2(t) + 9] (1)
L
V= % f EIG) W (x, 0] dx + %ka[z(t) — w(xg, O (1b)
0

where EI and p are the flexural rigidity and length density of the beam, respectively.

Using a Rayleigh-Ritz approach, the transverse deflection can be expanded as follows:
N
wix 1) = "0 ) = ) ¢iomi() 2)
i=1

where ¢(x) = [¢1(x) --- ¢n(x)]7 in which ¢;(x) are the eigenfunctions of the beam without the attach-

ment, and n(t) = () --- r]N(t)]T in which 7;(¢) are the corresponding generalize coordinates. Applying

Lagrange’s equation for ¢ € {11, ...,nx, 2}, the equations of motion for the beam—attachment system are
Mij(t) + (K + ko $3 0(0) = kapy2(t) = ~mp3n(0) (3a)
maZ(1) = kag 1(0) + kaz(t) = ~mqFp(0) (3b)

where ¢, = [$1(x0) -+~ ¢n(c)I” and my = [l - ™17 in which m{” = [ pi(x)dx. The N x N
matrices M and K are diagonal matrices whose ith entries are the generalized mass M; and stiffness K; of
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the beam alone:
L L
M; = f plgi ()P dx and K;= f EI[¢] ()] dx )
0 0

Now, consider a harmonic base motion y;(#) = Rel[y, exp(jwt)], where y, is the base displacement
amplitude, w is the excitation frequency, and j = V—1. Assuming a harmonic response with the same

frequency as the excitation frequency, i.e., p(f) = Re[nexp(jw?)] and z(t) = Re[zexp(jwr)], the following

< n

kol 7 + ?y,m,

compact matrix equation is obtained:

K- M +k,p, 00 —k.9,

T 2
- a¢a kg — w'my

Finding z (in terms of i) from the lower block equation,

S 6
< k, — wmy ©
and substituting this expression into the upper block equations gives
= _ 2 T1-1,, 2 =
n=K-woM+0¢,p,] (wmy —0d,)y, 7
where
k 2
o= e )
wmy — k,

The inverse of the term in brackets can be found to be

g
1+ ¢l (K- w?M)l¢, o

K- ™ +0od, 71! = (K- M) - (K - 0*M)'¢, 6L (K - M)~ (9)

using the Sherman—Morrison formula.

2.2. Tuning the attachment

The total displacement (relative to an inertial reference frame) along the beam is denoted
y(x, 1) = w(x, 1) + yp(1), (10)
and the displacement amplitude at a point along the beam is given by
) = ') 7+7, (1n
To impose a node at x = x,, requires that

Y ) =0Vt =5, =@l +5, =0 (12)
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where y, = y(x,) and @, = [¢1(x,) --- ¢N(x,l)]T. Substituting the expression for 77 from Eq. (7) into this

constraint gives

¢I (K - M) ¢, ¢! (K - w*M)"'myw’c

- 1+ ¢l (K- wM) ¢, o

#L (K - ™M), ¢l (K — w*M)~'¢p,07
1+ ¢l (K- wM)l¢, o

W*¢T (K - M) 'm,

— ¢l (K- ™M) ,0 +

+1=0 (13)

Solving for o, the (unique) root is

1 2
o = + Cpp (14)
Cnacabwz - Cuacnbw2 + Cna — Caa
where
N
C T el « _ O Pilxn)di(xa)
Ca =@, K—w™M) ¢, = _— (15a)
na n a ; Ki _ szi
N Q)
Gi(xp) m
« T 2am -1 b
cw = (K= M) 'my = 3 ——L (15b)
P Ki — W Ml'
N 2
¢ (xa)
- T 2am—1 i
Caa =P, (K-—0'M)" ¢, = ) ———— (15¢)
“ “ ; Kl' - sz,'
N (@)
) _ Bi(xq) m
cap = (K =M 'my = ) 0 (15d)
1 1

i=1
Assuming either the attachment stiffness k, or the attachment mass m, is specified (as well as the
base excitation frequency w, the desired node location x,, and the attachment location x,), a closed form

expression for the required m, or k,, respectively, can be obtained from Eq. (8):

k.o myw*o

ma(W, Xp, Xq, kg) = or ke(w, Xy, Xq,Mg) = (16)

o — k,w? Mmuw? + o

where 0 = o(w, x,, X;) is given by Eq. (14).

Collocated case. For the case where the attachment and node locations are collocated (i.e., x, = x,), the
denominator in Eq. (14) goes to zero because ¢, = ¢,, so o goes to co. Taking the limit of Eq. (16) as

o — oo, the attachment mass and stiffness would need to be tuned to the excitation frequency w, i.e.
_ 2 _ 2
my = k,/w” or k, = w'm, (17)

This result is consistent with Cha [14] for the point loaded beam.



Limitations. It is worth noting that Eqs. (16) and (17) were derived under the assumption that the transient
(homogeneous) solution can be ignored, which is not strictly correct for undamped systems, but is classically
assumed for convenience [2]. The response of a damped system is ultimately governed by its steady-state
(particular) solution, which for arbitrarily small damping is not dissimilar to that of an undamped system.
Therefore, the tuned masses and stiffnesses given in Egs. (16) and (17) may nearly enforce a node for very
lightly damped systems (as shown in Sec. 4), but care should nevertheless be taken when extrapolating these
results for damped systems. Future studies should consider the incorporation of damping and its effect on

the attachment tuning.

2.3. Sensitivity analysis
In this section, the sensitivity of the beam’s response to mistuning is analyzed. In particular, the quantity
of interest being investigated is the amplitude of the total displacement of the beam at the desired node
location:
Vn = Gndl + 3 (18)
The variables of interest are the mass m,, stiffness k,, and location x, of the attachment, as well as the base
excitation frequency w; i.e.,y, =y, (g, kg, X4, ).

For the perfectly tuned variables (denoted m, k, x}, and w*), the deflection is zero by construction:

a’ "ra’ a’
— % 7% * *
Yy, ky, x,, w") =0

a’ Mas

The variation of y, to small perturbations in m,, k,, x4, and w about the tuned condition is given by

8y, = y,(m, + 5mg, k), + 6kg, X, + 0xq, 0 + 6w) — ¥, (my, Ky, X5y, ") (19)
3, \' .\ ,\ .\

= omy, +|=—| o6k, +|=—| 6x, +|=—| Sw + h.o.t. 20

(ama) M (8ka «"\ox,) OG0 ) 00T 20)

where ()" = (-)|onz k202,01 From this equation, the sensitivity of y, with respect to a given variable is found
from the first derivative of y, with respect to that variable evaluated at (m],, k,, x},, w*). From Eq. (18), the

a’a’

partial derivatives are found to be

D _ gr0m Dy

- ’ aaktb as 21
Tt G P ke o) @1

To determine the sensitivity with respect to a given variable, the partial derivatives di/dp and dy,/dp need

to be evaluated. Note that the latter is always zero for p = my,, k,, and x,:

(ﬁb/ama = (ﬁb/aka = (Wb/(?xa =0 (22)
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However, the derivative dy, /0w depends on whether the displacement amplitude y,, or acceleration ampli-

tude y;, (= —w?Y},) of the base is held constant:

0, ¥, constant
05/ 0w = (23)

2y,/w’, Yy, constant
The latter case will be considered hereinafter because it corresponds to the experiments.
To determine the partial derivatives dn/dp, the matrix equation (5) is differentiated with respect to each

variable, which after re-arranging terms can be written as follows:

on/o . n
A n/0p _9 -5, m oA JM , P € ima, ka, X4, 0} (24)
0z/0p dp mgy

6p z
where A is the system matrix in Eq. (5). Evaluating the derivatives on the right hand side of this equation

for each variable, the derivatives appearing on the left side are solved for:

0
.o ’ p = ma
—Vp + W2
_¢a¢£ﬁ + ¢az
5 P= ka
om/d pin-z
{ '_'/ p} =A"! ¢ (25)
dz/dp —ka($, Bl + B0 + kathlZ
s D= Xa
ke,
20M7
s p=w
2wmgz

where ¢, = [¢](xa) -+ ¢ (xa)]".

Finally, to determine the local sensitivity, Egs. (22), (23), and (25) are evaluated at m, = m}, k, = k,,
X4 = x,;, and w = w*, and then substituted into Eq. (21). The calculated sensitivities can be used to evaluate
the robustness of the absorber to slight mistuning, which is important in designing such an absorber. In Sec.

3.1, these sensitivities are calculated for two example design scenarios.

3. Numerical Results

Because the assumed modes method (Rayleigh-Ritz) was used in formulating the equations of motion,

the development in the previous section is applicable for any arbitrarily supported elastic structure during
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harmonic base excitation, so long as a uniform base excitation is applied at all supports. Without loss of
generality, a cantilever (fixed-free) beam with uniform properties (E1, p) is considered in this section. The

mass-normalized assumed mode shapes for a cantilever beam were used:

1 sinB;L — sinh ;L
/(Xx) = —=[cos Bix — coshB;x +
9i(x) VoL pix pix cos ;L + cosh B;L

where the ;L are found from the transcendental equation

(sinB;x — sinh ,Bix)) (26)

cosB;LcoshB;L = —1 27
These give generalized mass and stiffness values of
M; = 1and K; = (B;L)*EI/(pL*) (28)

The generalized inertial masses for these assumed mode shapes are

) p 2(sinB;L — sinh §;L)
m, = =
b L Bi(cos BiL + cosh 3;L)

(29)

In the following numerical example, N = 15 modes are retained in the assumed-modes expansion (Eq. (2)),
which is sufficient to ensure convergence in the numerical results [14].

The proposed approach is illustrated by imposing a node during harmonic base excitation at a frequency
of w =31 \/W [14]. This base excitation frequency is between the second and third natural frequen-
cies of the beam without an attachment, i.e., 4.6942 \/W and 7.8552 \/W, respectively. It is
desired to enforce a node at the tip of the beam (i.e., x, = 1.0L) by incorporating an attachment with stiff-
ness k, = 20EI/L?. Two cases are considered: attachment and node locations are (a) collocated and (b)
not collocated. Fig. 2 shows the steady-state deflection amplitudes for both these cases. For the collocated
cases, the attachment is tuned to the base excitation frequency per Eq. (17), i.e., m, = k, Jw? = 20pL/ 312
For the non-collocated case, the attachment mass was calculated to be m, = 2.153x 10~2pL. For both cases,
the addition of the attachment allows the tip of the beam to be “fixed” without applying any rigid support
at the tip of the beam. Table 1 gives the sensitivities of the steady-state displacement amplitude y, at the
desired node location x, = 1.0L to the design parameters (m,, k;, X;, and w) for both these cases. The
normalized sensitivities given in Table 1 are
pL 3, k O, L&, w &,

= ’ Ska == ’ S a T o= > o
yb/wz (9ma yb/(u2 6ka * yb/wz 8.Xfa @ yb/wz ow

(30)

Smy

where the partial derivatives dy, /d(-) are given in Eq. (21), which are evaluated at the tuned configuration

(m}, k;, x;, w*) under consideration. From the tabulated sensitivities, it is observed that the noncolocated
9



y(x) /7,

(b)

Figure 2: Steady-state deflection amplitudes of a uniform cantilever beam, without (— — —) and with (—) an attachment with
stiffness k, = 20EI/L?, subject to base excitation with frequency w = 31+/EI/(pL*). The attachment location ((J) and node

location (e) are: (a) collocated, x, = x, = 1.0L; (b) not collocated, x, = 0.5L and x,, = 1.0L.

case (x, = 0.5L) is more sensitive than the collocated case (x, = 1.0L) for all parameters except for

attachment location x,.

3.1. Feasible designs and their sensitivities

For the collocated case (x, = x,), it is always possible to design a feasible! attachment per Eq. (17) to
create a node at an arbitrary point x,. For the non-collocated cases (x, # x,), feasible attachment designs
are not always possible. For example, Eq. (16) may require a negative mass or stiffness to achieve the node

given the selected x, and x;,.

!The design is not necessarily practical, e.g., a very large or very small mass or stiffness.

Table 1: Normalized sensitivities of the steady-state displacement amplitude y, with respect to the attachment mass m,, stiffness

k., and location x,, as well as base excitation frequency w, for the two examples of Fig. 2.

Xq/L Sim, Sk, Sx, Sew
1.0 -2954 6.148 -3.871 -12.30
0.5 -1016 22.64 0.3202 -45.12
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Figure 3: Attachment design maps for a uniform cantilever beam subject to base excitation with frequency w = 31 \/T(pL“).
The charts depict the tuned attachment mass m, per Eq. (16) for an attachment with k, = (a) 20EI/L? and (b) 400E7/L? under
varying attachment location x, and node location x,. The unshaded regions are infeasible, requiring a negative mass. The dashed
lines correspond to the node locations for the cantilever without an attachment, and the dash-dotted lines correspond to the cases

considered in Fig. 4.

Fig. 3 shows the required attachment mass m, based on Eq. (16) and its dependence on possible node
location x;,, and attachment location x, for a base excitation frequency of w = 31 \/T(plﬁ) and attachment
stiffnesses of k, = 20EI/L? and 400EI/L>. The colored regions are where it is possible to create a node at
X, by placing an attachment at x,, whereas the unshaded areas require negative mass and therefore are not
feasible. Closely spaced contours indicate regions where the required mass is sensitive to x, and x,. The
highly sensitive regions tend to align with the node locations for the beam without attachments (x/L = 0.30
and 0.81) indicated by the dashed lines. For the considered base excitation frequency, the higher attachment
stiffness (Fig. 3(b)) results in fewer feasible combinations of attachment and node locations. However, in
some cases, a higher stiffness may be required to limit the amplitudes of the attachments thus restricting the
possible attachment locations for a given node location.

To better visualize the dependence of the attachment mass m, on attachment location x,, Fig. 4 shows
m, versus x, for two given node locations: x, = (a) 0.75L and (b) 0.2L, which correspond to the horizontal
dash-dotted lines in Fig. 3(b). For both design plots, positive values of m, indicate that a design is feasible
while negative values indicate that it is not possible to create a node at the desired location given the specified

attachment location.
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Figure 4: Required attachment mass m, to enforce a node at x, = (a) 0.75L and (b) 0.2L on a uniform cantilever beam subject to
base excitation with frequency w = 31 +/EI/(pL*), for an attachment stiffness k, = 400EI/L? and varying attachment location x,,.

The dashed lines correspond to the node locations for the cantilever without an attachment.

Figs. 5 and 6 show the associated normalized sensitivities (Eq. (30)) of the steady-state displacement
amplitudes at the desired node locations x, = 0.75L and 0.2L, respectively, to the design parameters (i,
ka, Xg, and w). The vertical lines in each figure represent the node locations for the unconstrained system.
While for the given examples, they line up closely with the sensitivities diverging to infinite, this is not
always the case.

For both cases, it is generally desired to minimize the sensitivity of the node displacement to the param-
eters to ensure that the effects of mistuning are minimized. However, depending on the system, the relative
importance of each of the sensitivities may change.

For the node placed at 0.75L (Fig. 4(a)), it is possible to place the attachment anywhere on the beam
closer to the base than 0.8L (see negative mass in Fig. 4(a)). For the considered case, the attachment masses
(mg) are all on the same order of magnitude as the beam mass (pL). However, some locations do have
smaller mass values. Some of the possible attachment locations are not desirable however because of large
sensitivities to mistuning of parameters (see Fig. 5). For this case, the sensitivities diverge to infinity close
to the base and the node locations of the unconstrained system. Therefore, the best designs to constrain the

system would be to place the attachment between 0.1L to 0.25L or 0.35L to 0.7L.
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Figure 5: Normalized sensitivities of the steady-state total displacement amplitude y, with respect to attachment mass m,, stiffness
k., and location x,, as well as base excitation frequency w, to enforce a node at x,, = 0.75L on a uniform cantilever beam subject to
ground excitation with frequency w = 31 +/EI/(pL*), for an attachment stiffness k, = 400EI/L? and varying attachment location

Xq4.

For the node placed at 0.2L (Fig. 4(b)), the sensitivities are more interesting and do not line up as closely
with the nodes of the unconstrained system. Based on Fig. 4(b), it is feasible to place the attachment from
the base to 0.33L or from 0.74L to 0.82L because the mass values are positive. Based solely on the mass
values, it may be undesirable to place the attachment near 0.8 L because of the larger required mass (> pL).
Based on the sensitivities of the system, the desirable locations can be further reduced. Of the feasible
locations, near 0.75L the system shows some of the lowest sensitivities. However, if a smaller attachment
mass is desired for the given spring stiffness, the region of less than 0.33L must be used. In that region, the
smallest sensitivities are around 0.1L. If the sensitivity to the attachment location is the most important, it is
possible in both regions of feasible attachment locations to achieve a zero sensitivity to attachment location

at the cost of higher sensitivities to other variables.
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Figure 6: Normalized sensitivities of the steady-state total displacement amplitude y, with respect to attachment mass m,, stiffness
k., and location x,, as well as base excitation frequency w, to enforce a node at x, = 0.2L on a uniform cantilever beam subject to
ground excitation with frequency w = 31 +/EI/(pL*), for an attachment stiffness k, = 400EI/L? and varying attachment location

Xq4.

4. Experiments

4.1. Experimental Setup

For the experiments, an aluminum yardstick was used as a flexible beam. The clamped and free lengths
of the beam were 25.4 and 889 mm, respectively. The total mass of the beam was 151.3 g. The length
density p of the beam was calculated by dividing the measured mass by the total length (914.4 mm).

The stiffness of the beam was extracted based on free vibration tests using a laser (ILD1302-200, Micro
Epsilon, Ortenburg, Germany) to measure the position of the beam at 750 samples per second. The first
three natural frequencies were extracted from the tests and the resulting values of E/ calculated. The first
three modes were lightly damped so the measured frequencies were not significantly impacted by damping.
The first three natural frequencies were 1.84, 11.6, and 32.6 Hz. These resulted in estimates of flexural
rigidity EI of 1.12, 1.14, and 1.14 N m?, respectively. The flexural rigidity determined from the second

mode was used throughout this section because it is closest to the considered base excitation frequency and
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Figure 7: (a) Attachment drawing (units: mm); (b) setup to measure the natural frequency of the 3D printed attachment.

consistent with the flexural rigidity of the third mode (only 0.26% different).

A 3D printed attachment was designed to act as a vibration absorber, targeting a base excitation fre-
quency of 9.5 Hz. Note that this frequency corresponds to w =~ 17 \/W, which is different than the
case considered in Sec. 3. An effectively rigid rectangular box was connected to the aluminum beam by two
very flexible beams attached to the press fit center. The total mass including the press fit center of the 3D
printed portion (see Fig. 7(a)) was 22.0 g. For additional mass, two bolts and nuts were fastened to the box,
one at either end. The total mass of the attachment with the two nuts and bolts was 67.4 g. The natural fre-
quency of the attachment was extracted using the laser (see Fig. 7(b)). This gave a natural frequency of 15.9
Hz and therefore a calculated stiffness of k, = 673 N/m using the total attachment mass. Note that, although
the attachment was designed as a SDOF oscillator in sway, two torsional modes (roll and yaw) were also
present, but these modes were designed to minimize their influence on the response for the experimental
scenario considered. In particular, the roll mode (20.7 Hz), which corresponds to weak-axis bending in the
beam, was tuned to have a high enough frequency to minimize its response at the nominal base excitation
frequencies (9.5 Hz), and the yaw mode (8.08 Hz), which corresponds to torsion in the beam, has negligible
influence on the bending modes of the beam.

The tests were conduced on a shake table (APS 113 ELECTRO-SEIS, APS Dynamics, San Juan Capis-
trano, CA, USA) shown in Fig. 8. The base excitation frequency was controlled with LabVIEW, and a
constant amplitude of 0.6g was targeted. The table’s acceleration was measured with an accelerometer
(393B04, PCB, Depew, NY, USA), and the peak value of a fast Fourier transform (FFT) of the data was
used to determine the table acceleration amplitude. The laser was again used to measure absolute beam

displacements relative to the fixed ground.
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Figure 8: Experimental setup for test of base-excited beam with attachment.

2 T T T T 0.8 T
Theory ——Theory: 9.2 Hz
O Experiment 071+ —— Theory: 9.3 Hz
— Analytical Sensitivity ’ —— Theory: 9.4 Hz
——Theory: 9.5 Hz
151 b 0.6 Theory: 9.6 Hz
° O Experiments: 9.6 Hz
051
— [e) —
g g
A 1} ] Hoaf
S S
(B> 1= 03l
° .
051 o ° b 0.2
oo o
006 E
[¢) 5 ° 0.1
Oy/00
0 | Q | | 0 | ] |
8 9 10 1 12 0 0.1 0.2 0.3 0.4
(a) w [Hz] (b) o/ L

Figure 9: Comparison of theoretical and experimental displacement amplitude at the desired node location for varying (a) base

excitation frequency w and (b) attachment location x,.

4.2. Experimental Results

Fig. 9 shows experimental data and the associated theoretical results. Two sets of tests were conducted
to evaluate the sensitivity of the system to mistuning in the base excitation frequency w and the attachment
location x,. Each of the theoretical results in Fig. 9 diverges to infinite corresponding to the attachment
location that causes the modified system to have a natural frequency equal to the base excitation frequency.
Though the theoretical curves in Fig. 9(a) and Fig. 9(b) appear similar, the curves cannot be directly com-
pared because they are produced by varying different quantities (x, and w, respectively). These two cases
are discussed here.

The first set of tests (Fig. 9(a)) illustrated the sensitivity of the system to mistuning of the base excitation

frequency w. For this test the attachment was placed 177.8 mm from the base (x,/L = 0.2) and the laser
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measured the displacements at the desired node location of 673.1 mm from the base (x,/L = 0.757). The
base excitation frequency was then varied while maintaining a constant base acceleration of 0.6g. The
theory line in Fig. 9(a) corresponds to the characterized parameters of the system and the chosen values
of x, and x,. The analytical sensitivity corresponds to the local slope at the theoretical node found from
Eq. (25). For the experimental data, the displacement was calculated based on selecting the peak in an
FFT closest to the base excitation frequency. These amplitudes are plotted against the frequency of the
associated peaks.

Fig. 9(a) shows acceptable agreement between the theory and experimental results for varying the base
excitation frequency. The theoretical node based on the characterized system occurs at 9.37 Hz. In the
experiment, the minimum displacement occurred at a system frequency of 9.55 Hz. This discrepancy could
be due to damping or imperfect characterization of the system parameters. The experimental data, how-
ever, does closely follow the same shape as the expected results based on the characterized system. The
experimental points in the range of 9.8 to 10.4 Hz are also generally located beneath the theoretical curve.
This occurs because the real system has damping, so the response does not diverge near resonance like the
theoretical system.

The second set of tests (Fig. 9(b)) illustrated the changes in the system with varying the attachment loca-
tion x,. Each theoretical line corresponds to the behavior of the characterized system when the attachment
location is varied while at fixed base excitation frequency and acceleration. Multiple theory lines are plotted
to illustrate how the behavior changes with the base excitation frequency. Qualitatively similar behavior is
observed for forcing frequencies of 9.2 to 9.5 Hz, but between forcing frequencies of 9.5 and 9.6 Hz the
node changes which side of resonance that it occurs on. The response at x,, is highly sensitive to frequency
variations in this region.

For the experiments, the base excitation frequency was fixed at 9.6 Hz with a constant base acceleration
of 0.6g. The attachment was positioned at 152.4, 165.1, 177.8, 190.5, and 203.2 mm from the base (x,/L =
0.171, 0.186, 0.2, 0.214, and 0.229). For all of these tests, the laser measured the displacements at the
desired node location of 673.1 mm from the base (x,,/L = 0.757). The peaks from the displacement FFT
were again used to determine the amplitude of the response at the base excitation frequency. The second
set of tests showed similar behavior to the theoretical line drawn at 9.3 Hz. The experimental data does
not follow the same general shape of the theoretical line at 9.6 Hz because the system behavior is highly

sensitive to the base excitation frequency as discussed above. The discrepancy between the theoretical and
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experimental results likely is due to inaccuracy in the characterization of the initial system. Nevertheless,
the experiments demonstrated the concept of enforcing nodes on a base-excited beam and the sensitivity to

parametric variation.

5. Conclusion

This paper has expanded previously developed theory for enforcing nodes [14] to incorporate base
excitation of continuous systems. Closed form expressions for the optimal tuning of an auxiliary spring-
mass system are derived for the cases of the attachment and node located at the same and different locations.
The procedure presented uses the assumed modes method, so it can be directly applied to arbitrary beam
boundary conditions and nonuniform cross sections if the mode shapes can be found. In addition, analytical
sensitivities of the combined system were derived to understand the effects of mistuning. In the future,
these sensitivities could be applied to determine the optimal attachment location to create a given node in
the presence of uncertainty.

Two numerical examples were presented to illustrate the value of the proposed method for enforcing a
node on base-excited cantilever beams. Using the derived methods for determining the attachment mass and
the sensitivity of the system, a number of design plots were created. These illustrated not only the required
mass to achieve the node for a perfect system, but also the sensitivity of the system to mistuning. Some
attachment locations were not possible because they required a negative mass. Other attachment locations
result in a highly sensitive system making them undesirable. The best attachment locations have positive
attachment masses so that they are feasible and low sensitivities for all of the parameters considered.

The theoretical approach has been illustrated by experimental tests varying the base excitation frequency
and the attachment location. The experiments varying the base excitation frequency showed good agreement
between the theoretical and experimental effects of mistuning of the base excitation frequency with the real
and theoretical nodes occurring within 2% of the same base excitation frequency. The tests of varied
attachment locations also closely follow the behavior of the theoretical system. Furthermore, both sets
of tests showed that for small deviations in the system parameters the amplitude increases significantly
illustrating the importance of the sensitivity analysis. The experimental tests show that the procedure can

be used to control vibrations in a real system that is lightly damped.
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