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Abstract In this article we give a brief survey on the physics and mathematics of the phe-
nomenon of conductivity in metals under a strong magnetic field.
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1 Quasiperiodic Functions

The canonical projection m; : Rk — T* ~ R¥/Z* determines a canonical linear embedding
C®(T*) — C>®°(R¥) defined by F +— n/F = F o m, whose image is the set of periodic
functions on R,

Quasiperiodic (QP) functions are produced by the following small perturbation of the
procedure above: they are the elements of the union of all embeddings C®(T¥) < C*(Rk)
defined by F +— Fy = (7, o ¥)*F, where ¥ is an affine embedding of R¥ into R”, k < n.
The smallest n for which a QP function f admits such decomposition is the number of
quasiperiods of f. For instance, f(x) = cos(2mx) + cos(~/227x) is a QP function in one
variable and two quasiperiods. We say that v is rational when 7, (¥ (R*)) = T* and fully
irrational when 1, (¥ (£)) = T" for every straight line £ C R¥. When v, v, differ just by
a constant, namely ¥, (x) = v, (x) + y, for some y, € R” and all x € R¥, their images are
parallel k-planes and we say that they are siblings.

Quasiperiodic functions were introduced independently in the mathematical literature by
P. Bohl [7] at the end of XIX century and E. Esclangon [20], who introduced the terminol-
ogy, about ten years later. Their first systematic study, though, within the theory of almost
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periodic functions, is due to H. Bohr in 1926 [8]. Unlike QP functions in one variable,
whose role in completely integrable Hamiltonian systems was known for a long time, the
first concrete application of QP multi-variable functions was found only in the Seventies, by
S.P. Novikov, as solutions of integrable PDEs (see [18] for several other important cases). In
this article we will discuss in some detail a different case, whose relation with quasiperiod-
icity was also noticed by Novikov, namely the conductivity in a normal metal under a strong
magnetic field.

In the Fifties .M. Lifshitz, M.Ya. Azbel and M.I. Kaganov, from the Kharkov-Moscow
school of solid state physics, in order to find a model able to describe several phenomena ex-
plained until then through somewhat artificial assumptions, developed a theory of conductiv-
ity in metals under a strong magnetic field based solely on the semiclassical model [29-31].
An essential feature of this model is that quasi-electrons are treated as classical particles ex-
cept for the (fundamental!) difference that their quasi-momenta belong to T? rather than R>.

Recall that a magnetic field in R* can be seen as a closed 2-form B(x) = B; j (x)dx' A
dxJ whose effect on the dynamics of a particle with charge e is deforming the standard
symplectic form wy = dx’ A dp; on the phase space T*R? into

e
wB:w0+—B
c

(e.g. see [22, 39]), where c is the speed of light. This way, the equations of motion (5) of a
charged particle under an electromagnetic field can be written in the standard Hamiltonian
form with respect to wg:

i ={x" H},. pi ={pi, H}g, (1)
where the Poisson brackets {, }3 induced by wg satisfy the following relations:
{x". x7}, =0, X' pitg =6} {pi, pj}s = Bij(x).

When B is constant, two important things happen:

1. the dynamics of the p; decouples from the dynamics of the x’ and, correspondingly, {, }g
restricts to a Poisson structure on the space of momenta—this structure is called magnetic
brackets;

2. the magnetic brackets are invariant by translations and so, for any lattice L ~ Z> C R?,
they descend to the quotient T ~ R3/L.

In the setting of the semiclassical approximation in solid state physics, a metal is modeled
as a crystal lattice L ~ Z> of ions and the Hamiltonian &(p) is called dispersion relation,
depends only on the quasimomenta p and is invariant under translations by vectors of L*,
the reciprocal lattice of L. In other words, ¢(p) is a well-defined smooth function on the
Poisson manifold (T? ~ (R*)*/L*, {, }). Formally, the corresponding equations of motion

pi=1{pi.e(p)}y 2)

admit the Casimir b(p) = B’ p; but notice that b, in T>, is only a multi-valued function,
since so are the coordinates p;. What is, instead, well-defined is the differential of b, namely
the (constant) 1-form db = B'dp;, and the fact that b is a Casimir corresponds to the fact
that the solutions of the Hamiltonian equations of motion above lie entirely on the leaves
of the foliation db = 0. By analogy, in this setting we call db the magnetic field and we
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Quasiperiodic Dynamics and Magnetoresistance in Normal Metals

denote it, with slight abuse of notation, again by B = B'dp;. Note finally that, in the uni-
versal cover R?, the orbits of the solutions of the Hamiltonian equations are given by the
intersection of planes perpendicular to B with the constant energy surfaces {e(p) = c}. In
other words, the orbits of momenta are level curves of a QP function in two variables with
three quasiperiods.

The theory of Lifshitz, Azbel and Kaganov predicted that the magnetoresistance would
depend qualitatively on the topology of the orbits of quasi-electrons’ momenta that, there-
fore, would be observable. Many experiments followed and fully confirmed the correctness
of this model (see Fig. | and the references in Sect. 2) but the theoretical efforts in this di-
rection stopped, after about a decade, because no method was found to predict the topology
of the orbits for a general dispersion relation.

In 1982 Novikov, in his celebrated paper extending Morse theory to multivalued func-
tions [39], pointed out the equivalence of this problem with the study of the level sets of
quasiperiodic functions (in two variables with three quasiperiods). Since then this problem
was intensively studied analytically and numerically by Novikov [40, 42] and his pupils
A.V. Zorich [48], S.P. Tsarev, I.A. Dynnikov [14, 17] and the first author [9, 14]. Lately con-
tributions were also given by A. Skripchenko [47] jointly with Dynnikov [19] and A. Avila
and P. Hubert [3, 4]. The following theorem collects the most important results on the case
of 3 quasiperiods and shows the fundamental and unexpected fact that, for an open dense
(possibly of full measure) set of directions, open orbits are finite deformations of a straight
line, namely they lie inside a finite width strip parallel to a straight line and are cut by a
generic line transversal to the strip in an odd number of points:

Theorem 1 (Zorich [48], Dynnikov [17]) Let ¥ : R? — R3 be an affine embedding and
denote by By, € (RP?)* ~ RP? the equivalence class of the 2-plane y (R?). Assume that
is fully irrational. For any generic function F € C*(T?) there exist two continuous functions
Lp,Up : RP* = R, with L < Uy pointwise, and a locally constant function

tp:Dp={Lp <Up}— H,(T°, Z)

such that:

1. either D = RP?, and then £ is constant, or £y assumes infinitely many values, and then

Ep =RP?\ U]Eg(DF)m, where D, p = {£r(B) =1}, is non-empty and uncountable;

2. all components of Fy, = c are compact iff ¢ ¢ [Lp(By), Up(By)];
3. if By € Dy then:

(@) Lr(By) <Ur(By);

(b) all Fy, have non-singular open level sets;

(c) all these open level sets are strongly asymptotic to By x Lrp(By), namely to the
straight line obtained as intersection of the plane 1 (R?) with any lattice plane IT
representing the integer 2-cycle £r(By);

4. if By € Ep then:

(@ Lp(By)=Ur(By)=e¢;

(b) none of these non-singular open level sets of Iy, = e is strongly asymptotic to a
straight line.

Notice that, when v is not fully irrational (namely when its image ¥ (R?) contains re-
ciprocal lattice vectors), open (periodic) orbits might arise for a larger closed connected
interval of values of F, but such orbits are unstable, namely they disappear for a generic
perturbation of .
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Denote by L =~ Z? the lattice representing the metal ions, so that its reciprocal L* ~ (Z*)*
is the set of all translations leaving F invariant. One of the main points of Theorem 1 is the
discovery of a hidden topological first integral £z (By) € H(R?/L*,7Z) ~ L that dictates
the asymptotics of all (non-singular) open level sets when By, € Dr. In the most interesting
cases, the dependence of £ on By, is of fractal nature (see Fig. | for some concrete example).
It is not known yet whether Dy is a full measure subset of RP?> or what is its Hausdorff
dimension but it has been conjectured by Novikov [36] that, for a generic F, the measure
of Er is zero and its Hausdorff dimension is strictly between 1 and 2. This conjecture has
been verified recently in the only concrete example, introduced by Dynnikov and the first
author [14], where it was possible to find an explicit expression for £z: in [14] it was proved
that the corresponding £ has zero measure and later Avila, Hubert and Skripchenko in [4]
showed that its Hausdorff measure is strictly smaller than 2.

The structure of the open orbits when By, € £f is still not completely understood but
significant advances have been made recently by Skripchenko and Dynnikov, that built ex-
amples of F such that each F, has a unique open level set [47] and such that there are
infinitely many [19], and by Avila, Hubert and Skripchenko [3] that evaluated bounds for
the diffusion rates of such orbits.

2 Quasiperiodic Functions in Electron Transport Phenomena

To describe the applications of the Novikov problem in the transport phenomena in normal
metals we have to start with a description of electron states in a crystal lattice, defined by
bounded solutions of the Schrodinger equation

h2
—Z—Aw+U(x,y,z)1//=£w 3)
m
The potential U(x) = U(x, y, z) represents a periodic function in R with three different
periods 1, L, 15:
Ux+1l)=Ux+h)=Ux+L)=U(X),

which define the crystal lattice L of a metal.
The basis physical solutions of (3) can be chosen in the form of the Bloch functions
Yp(X), satisfying the conditions

Yp(x+1) = e"(P,ll)/fpr(X)’ o) = e[(p’lz)/hwp(x)’
Yp(x +13) = /@y (x)

The real vector p = (py, p2, p3) represents the quasimomentum of an electron state and
is defined in fact modulo the vectors

mia; +moay +m3az, my,my,mz €7, “4)
with the vectors a;, a,, a3 defined by the relations

L x1 I; x1 I x1
2XB g =2ph— L a =2ph
(I, b, 1) (.1, 1) (.1, 1)

where (a, b, ¢) denotes the mixed product of the three vectors.

31=27Th
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Quasiperiodic Dynamics and Magnetoresistance in Normal Metals

The vectors ay, a,, a; give a basis of the reciprocal lattice L* of a crystal, conjugate to the
direct lattice L. In general, the full space of physical solutions of (3) consists of an infinite
number of “energy bands” where the dependence of the parameter ¢ on the value of p is
given by some three-periodic smooth functions &,(p):

e(p+a) =g(p+a)=e(p+az)=e(p)

Thus, the complete set of parameters specifying single-electron states in a crystal in-
cludes the number of the conduction band s, the quasimomentum value p, and the spin
variable o. The last variable will in fact not be important in our considerations, so we will
omit it in our further constructions.

For a fixed energy band any two values of the quasimomentum that differ by any recipro-
cal lattice vector define the same physical electron state. As a result, we can actually claim
that the space of electron states for a fixed energy band represents a three-dimensional torus
T3 =R*/L*, given by the factorization of the p-space over the reciprocal lattice vectors. In
the same way, every dispersion relation & (p) can be considered as a smooth function on T?
instead of the full Euclidean p-space R>. Every function &,(p) is naturally bounded by its
minimal and maximal values 5}‘““ < &,(p) < &, which define the boundaries of the corre-
sponding energy band. Let us also note here that in the three-dimensional case the intervals
[emin, eM] can in general overlap with each other, so maybe it would be more rigorous to
talk about different branches of the electron energy spectrum in a crystal.

Practically in any metal, the electron gas is highly degenerate and it can be assumed
that all the electron states with energies below a certain value ¢ (the Fermi energy) are
occupied, while states with energies greater than the Fermi energy are empty.' In the general
case, we have here a certain finite number of completely filled energy bands, a finite number
of partially filled bands (conduction bands), and an infinite number of empty energy bands.
The full Fermi surface of a metal is given by the union of the surfaces &,(p) = e for all
partially filled energy bands and represents a 3-periodic smooth surface in the p-space.

We would like to specially note here that we do not require that the Fermi surface con-
sists of only one connected component. For us it is important, however, that the different
connected components of the Fermi surface do not intersect each other. We note here that
the latter property is satisfied, as a rule, also in the case when the Fermi surface is determined
by several dispersion relations.

The form of the dispersion relation & (p) is very important for many quantum processes in
crystals and, in particular, in normal metals. For us, the processes associated with transport
phenomena in metals, for which the dynamics of quantum electron states in the presence
of external electric and magnetic fields is important, will play a decisive role. It can imme-
diately be noted that, since the magnitude of external electric and magnetic fields is much
smaller than the magnitude of the intracrystalline fields, such dynamics is well described by
the adiabatic approximation for the evolution of the functions v, (r), which can be written
in the form of a dynamical system determining the evolution of the values of the quasi-
momentum p. Thus, in the presence of constant external electric and magnetic fields, the
corresponding system can be written in the form (see e.g. [1])

p:%[vm ><B]+eEE§[V€(p) x B] +¢E )

I'This “near to zero temperature” approximation holds in general for metals since for them e =~ 10%-10° K,
at least an order of magnitude above their melting point.
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The electron transport properties are determined, at the leading order, by the properties of
solutions of the kinetic equation for the one-particle distribution function f(p, #), which can
be written in the general case in the form

3

e K Of : af
fit =) [Ve®@) B a—ﬂ(+e§Eka—w=I[f](P» ) (©6)

k=1

The functional I[ f](p, t) is the collision integral, which in the general case determines the
relaxation of the perturbations of the function f(p, ) to its temperature-equilibrium values

1
h®) = T (7)
Quite often, all the necessary properties of the solutions of (6) can be obtained by introduc-
ing a certain typical relaxation time of the function f(p,?) to its equilibrium values (the
mean free electron time) 7 and replacing the collision integral by the value

—(f.0— fop)/x

When calculating the electronic transport properties in metals (such as electrical conduc-
tivity or electron thermal conductivity), the most interesting quantity is usually the response
of the system to the application of, say, an electric field (or a temperature gradient) in the
linear approximation in the value of E. From this point of view, the electric field in (5) can
be regarded as a small correction to the system

. e
p= Z[Va(p) x B], (8)

determining the evolution of electron states in the presence of a constant magnetic field. The
geometry of the trajectories of the system (8) plays an important role for the corresponding
electronic properties of a metal in the region wpt 3> 1, where the cyclotron frequency wp
is defined by the relation wp = e B/m*c. Let us note also here that the value of the effective
electron mass m™* in a metal can, in general, differ noticeably from the free electron mass m.

In the semiclassical approximation one can also consider the motion of electron wave
packets in the coordinate space, which is given by the relations

X =V, (p) = Ve(p). ©)

Writing (9) and (8) in coordinates shows that they are exactly the Hamiltonian equa-
tions (1) in case H only depends on p, revealing the symplectic (rather than metric) nature
of these equations despite the deceptive notation. Note moreover that, when H = H (p), the
Hamiltonian vector field £4 corresponding to H writes as

= )+ ) = 2 P D
B0 Hlapi_api 0x! Yap; api’

so that (£4)'(£y); = 0 identically (and invariantly) due to the antisymmetry of the coeffi-
cients B;; = ¢€;;; BX of the magnetic field 2-form. Formally, this identity can be interpreted as
the fact that, at every point, the p component of &y is perpendicular to the projection of its
x component on the plane perpendicular to B. Due to the constancy of the symplectic form,
one can also see that the projections of the electron trajectories in the x-space onto a plane
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Quasiperiodic Dynamics and Magnetoresistance in Normal Metals

orthogonal to B are obtained in this case from the trajectories of the system (8) in p-space
with a rotation by an angle of 7 /2 in the same plane.

The latter circumstance clarifies the role of the shape of trajectories of the system (8) for
electron transport phenomena and it can be also seen that the parameter wgz T determines the
average length of the electron motion along the trajectory between two acts of scattering by
an impurity. The condition wpT >>> 1 then leads to the manifestation of the features of the
global geometry of the trajectories of system (8) for phenomena of this type.

Going back to system (8), namely to the Hamiltonian system in (T?, {, }) given by (2),
recall that Poisson brackets in odd dimension are necessarily degenerate and, in fact, {, }5
has the (multivalued!) Casimir b(p) = B’ p;. On each of the Casimir’s leaves, namely on
each of the projections into T* of the planes v, : R? — R? perpendicular to B, the system is
non-degenerate and equivalent to the Hamiltonian system with QP Hamiltonian ¢, . Hence,
since we are in dimension 2, the orbits of the solutions of (8) are just the (projection into T>
of) level sets of ¢y, , whose structure has been summarized in Theorem 1.

The study of the question of the influence of the geometry of trajectories of the system (8)
on the behavior of electron transport phenomena was started in the school of .M. Lifshitz in
the Fifties (see [24-29, 31]). Thus, in the work [31] it was first shown that the behavior of the
electric conductivity tensor of a metal in strong magnetic fields is significantly different in
the cases when the Fermi surface contains only closed trajectories and when open periodic
trajectories appear on it. Let us always assume here that the coordinate system in the x-space
is chosen in such a way that the z-axis coincides with the direction of the magnetic field. In
addition, let us also assume that the direction of the x-axis in the second case coincides with
the mean direction of the periodic open trajectories in the p-space (note here that the mean
direction of the projection of the corresponding trajectories onto the plane orthogonal to B
in the x-space coincides with the y-axis in this case). Then, according to [30], the analysis
of (6) gives the following results for the asymptotic behavior of the conductivity tensor in
the two cases above

‘ ne*t (wpT)™? (wpT)™" (wpT)”!
o't~ — | (wpD)™" (W) (wpT)™' |, wpT = 0 (10)
m —1 —1
(wpT) (wpT) *
(closed trajectories),
et (wpT)™? (wpT)™" (wpT)”!
ot —— | (wpT)™! * * . WpT — 00 (11)
m (wpT)~! * *

(open periodic trajectories).

We note here that the relations (10) and (11) should be understood only as asymptotic
expressions and may contain additional dimensionless constants for each of the compo-
nents o'*. We also use here the notation * for arbitrary dimensionless constants of the order
of unity.

It is easy to see that the main difference in the conductivity behavior in the cases con-
sidered above is the strong anisotropy of the conductivity in the plane, orthogonal to B,
observed in the second case. This property is a direct consequence of the special form of the
corresponding electron trajectories and makes it possible to measure the mean direction of
the periodic open trajectories in the p-space.

In the works [27, 28], open trajectories of a more general type on Fermi surfaces of dif-
ferent shapes were considered. Let us say, that the trajectories, considered in [27, 28], are
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not periodic in general, but also have a mean direction in the plane orthogonal to B. As a re-
sult, the conductivity behavior also exhibits strong anisotropic properties in strong magnetic
fields in the presence of trajectories of this type on the Fermi surface. The works [24-26],
as well as the book [31], provide a broad overview of the issues related to the electronic
properties of metals, and in particular the issues related to transport phenomena in strong
magnetic fields examined during that period. We would also like to give here a reference to
the work [23] in which a return to this range of issues is made after a considerable time, and
containing also aspects that arose in the later period.

As we have said above, the problem of the complete classification of possible types of
trajectories of the system (8) was set by S.P. Novikov in the early Eighties and has now been
studied with sufficient completeness, allowing to describe all essentially different types of
open electron trajectories. In this chapter we will focus on the most significant physical
results arising from the mathematical description of the trajectories of system (8), obtained
in the recent decades.

As we noted in the previous chapter, the most significant part in the classification of open
trajectories of system (8) is the description of stable open trajectories obtained in the works
of A.V. Zorich and I.A. Dynnikov. We shall try to describe here the most interesting physical
consequences arising when such trajectories appear on the Fermi surface.

Since the orbits of the solutions of (8) are the level sets of all siblings &, of the quasiperi-
odic function in two variables with three quasiperiods ¢, by Theorem 1 such trajectories
always possess the following two remarkable properties:

1. Any stable open trajectory of system (8) in the p-space lies in a straight strip of finite
width in a plane ¥,;

2. For a fixed direction B, all stable open trajectories in the p-space have the same mean
direction, given by B x £,(B).

As pointed out in [43], the presence of stable open trajectories on the Fermi surface al-
ways entails a strong anisotropy of the conductivity tensor in the plane, orthogonal to B, in
the limit wpt — 00. Because of this, the topological quantum first integral £, (B) is observ-
able experimentally. The corresponding integer triples £,(B) = (M, M,, M3) € H, (T3, Z)
were called in [36, 45] the topological quantum numbers observable in the conductivity of
normal metals. Notice that H,(R3/L*, Z) is the set of lattice planes of the reciprocal lattice
L* and therefore is naturally isomorphic to L, so that we can always think of £,(B) as a di-
rect lattice element in the x space. We call Stability Zones the sets D, . defined by €. (B) =1,
so that for every B € D, , all non-singular open orbits are strongly asymptotic to B x [.

Both the topological quantum first integral and the geometry of the Stability Zones con-
tain important information about the electron spectrum in a crystal that is directly related to
the determination of parameters of this spectrum in real materials. At the same time, both
theoretical and experimental determination of the exact boundaries of the Stability Zones
for a given dispersion relation represents a non-trivial problem that requires the use of rather
special methods. As an example of a theoretical determination of the boundaries of the
Stability Zones, we can cite the work [12], where such calculations were performed for a
number of analytical dispersion relations that arise in real crystals. As can be seen from
the work [12], an accurate calculation of the structure of the Stability Zones on the angu-
lar diagram requires the development of both rather serious topological and computational
methods. We hope, on the other hand, that the methods used in [12] must be applicable to
a large number of different examples of complex Fermi surfaces and will prove extremely
useful in determination the parameters of the dispersion relations in real materials. It must
also be said that the experimental determination of the structure of the Stability Zones in
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real materials also presents a special problem because of a rather complicated analytical
behavior of conductivity near their boundaries (see, e.g. [33]). In particular, the exact exper-
imental determination of the mathematical boundaries of the Stability Zones also requires,
in addition to direct study of conductivity, special experimental techniques ([34]).

Another very important achievement of mathematical research of the S.P. Novikov prob-
lem was the discovery of new, previously unknown, types of trajectories of system (8), which
have very complicated (chaotic) behavior. The first trajectories of this type were constructed
at the beginning of the Nineties by S.P. Tsarev” for “partially irrational” directions of B and
have an obvious chaotic behavior on the Fermi surface. At the same time, the behavior of
the Tsarev trajectories in planes orthogonal to B resembles the behavior of stable open tra-
jectories, in particular, they all have asymptotic directions in these planes (although they do
not lie in straight strips of finite width). As a result, the behavior of the conductivity tensor
in the presence of the Tsarev trajectories on the Fermi surface is also very similar to its be-
havior in the presence of stable open trajectories, in particular, it has a strong anisotropy in
this case. As already mentioned, trajectories of Tsarev type can appear only for directions of
the magnetic field of irrationality 2 (the plane orthogonal to B contains a reciprocal lattice
vector) and it can be shown (see [16]) that all chaotic trajectories arising for such directions
of B have the properties described above.

The first examples of chaotic trajectories for directions of B of maximal irrationality
were constructed by I.A. Dynnikov in the work [16]. Trajectories of this type have a strongly
chaotic behavior both on the Fermi surface and in planes orthogonal to B. Its behavior in a
plane orthogonal to B resembles in a certain sense the diffusion motion, which leads to the
most complicated dependence of the conductivity on the value of B.

The most interesting moment in the behavior of conductivity in the presence of the Dyn-
nikov trajectories is the blocking of the conductivity along the direction of B in strong mag-
netic fields ([32]), such that the entire Fermi surface area covered by the corresponding
chaotic trajectories does not contribute to the conductivity along B in the limit w7 — 00.
As aresult, for the corresponding directions on the angular diagram, rather sharp minima in
conductivity along the direction of B should be observed in strong magnetic fields.

Another interesting feature of the conductivity behavior in the presence of the Dynnikov
trajectories on the Fermi surface is the appearance of fractional powers of the parameter
wpT in the dependence of the components of the conductivity tensor on the value of the
magnetic field ([32]). It must be said that the analysis carried out for (6) in the presence
of such trajectories actually used in this case an additional property (self-similarity) of tra-
jectories constructed in [16], which, generally speaking, is not observed in the general case
for Dynnikov chaotic trajectories. Quite recently, however, it was possible to show that the
appearance of fractional powers of a parameter wpt in the conductivity behavior in the
presence of trajectories of this type is actually a common fact and is connected with the
existence of the so-called Zorich-Kontsevich-Forni indices [49] describing the behavior of
such trajectories on a large scale [38].

As mentioned in the previous section, the general properties of chaotic trajectories of
Dynnikov type, as well as the properties of the set of directions of B at which such trajec-
tories can be observed, are the subject of the most active research at the present time (e.g.
see [3, 4,9, 10, 12, 14, 17, 19, 47, 48]). Let us also note here that, in spite of the fact that
Dynnikov chaotic trajectories are not trajectories of general position, they may nevertheless
be typical for Fermi surfaces of a certain type (see [35]).

2Private communication.
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Let us say, that, in addition to describing the new quantities and the new regimes observed
in conductivity studies, a mathematical investigation of the Novikov problem actually made
it possible to construct a complete classification of the possible types of conductivity behav-
ior in strong magnetic fields, including all cases of both generic and non-generic position.
Here we only point out that the most detailed mathematical consideration of the various
situations possible for system (8) is presented in the work [17]. We also note that a detailed
exposition of the physical consequences of the classification obtained can be found in the
works [36, 37, 44].

3 Experimental and Numerical Study of Level Sets of Quasiperiodic
Functions on R? with 3 Quasiperiods

No algorithm is known able to obtain an analytical or approximate perturbative expression
of the set Dy and the functions L, UF relative to a general function F € C % (T3). In fact,
an analytical description for non-trivial Dy and £f has been found only in case of a very
simple piecewise linear function [14]. Numerical methods are therefore necessary in order
to get some intuition on the nature of such sets and maps and in order to predict theoretically
from first principles the physical behavior of systems involving QP functions.

Using the extrinsic geometry results by Zorich [48] and Dynnikov [17] (see also [41])
about the foliations induced by bundles of parallel planes on a triply periodic surface, Dyn-
nikov [15] was the first to study (semianalytically) a concrete case, namely the triply periodic
function

c(x,y,z) =cos(2mx) + cos(2ry) + cos(2mz).

The level sets ¢, have genus 3 and rank 3 for ¢ € (—1, 1) and genus 0 and rank 0 otherwise.
The function c¢ satisfies the property 7*F = —F, where T is the translation by 1/2 in the
three coordinate directions, so that when ¢ = ¢ has an open level set then also )¢ = —¢
has, meaning ultimately that L, = —U, and so that, in particular, in order to study D, it is
enough looking at the level ¢y. Dynnikov was able to find the analytical expression for the 10
largest connected components of D, and their corresponding values of £.. The drawback of
this method is that it does not look suitable to be implemented into a programming language.

In order to bypass this problem, the first author implemented the algorithm to evaluate
£.(B) in the open source C++ library NTC [13]. NTC is built on top of the open source C++
library VTK, perhaps the most popular computational geometry library available online in
the last two decades. VTK implements fundamental geometry operations such as generating,
within some cuboid, the mesh for the level set of a given function or generating the mesh of
the intersection between two such surfaces within some fixed cuboid.

While restricting an unbounded set to a bounded cuboid causes in general a big loss of
information, it is not so for a periodic set since the whole information about it is contained
inside a basic cell. Surprisingly enough, in the authors’ knowledge, none of the general-
purpose computational geometry libraries available online implement special algorithm for
periodic geometry, although that is the only geometry where, quite remarkably, “it is possi-
ble to keep infinity inside a bounded box”. In order to get an approximation for D, and ¢,
with NTC it is enough to fix a grid in QP? and evaluate £, at all elements of the grid.

NTC currently supports functions with level surfaces of genus g =3 and g = 4. The first
is the simplest case with a non-trivial set D, the second is the case of the Fermi surfaces of
the noble metals Gold, Copper and Silver. In Fig. | (left) we show ¢, the whole SM D(c)
and a detail of it in the region [0, 1]? in the chart B, = 1. A rough numerical evaluation of its

@ Springer



Author's personal copy

Quasiperiodic Dynamics and Magnetoresistance in Normal Metals

Fig. 1 From top to bottom: the surfaces c( (left) and d¢ (right) in the corresponding first Brillouin zone; the
sets D¢ C RP2 (left) and Dy C RP? (right) in the square [0, 112 of the projective chart B, = 1; the same sets
in the whole RPZ, represented as a disc with opposite boundary points identified. The colors of the stability
zones of D¢ and Dy correspond to the norms of the topological first integral associated to them, passing from
green to red as the norm goes to infinity (Color figure online)
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box dimension gives an estimate of about 1.83, in agreement with Novikov’s Conjecture 1.
In Fig. 1 (right) we show the set D, for the map

0(x,y,z) =cos(2mx)cos(2my) + cos(2mwy) cos(2m z) 4+ cos(2m z) cos(2m x),

whose regular level sets d. are either spheres (for ¢ < —1 and ¢ > 0) or genus-4 surfaces
(for —1 < ¢ < 0). Each of the genus-4 level sets has topological rank 4. Note also that ?,
besides being invariant by integer translations along the coordinate axes, is invariant with
respect to translations by 1/2 along the cube diagonals, namely it has a bcc invariance.
A rough numerical evaluation of its box dimension of about 1.69, again in agreement with
Novikov’s Conjecture 1. A striking confirmation of the correctness of these numerical data
is shown in [14]. In that article it is discussed the case of a simple piecewise linear function
F where the first author and Dynnikov were able to find an analytical expression for £; the
numerical data for that case agrees at 100% level with the analytical ones.

We switch now to the experimental data. As mentioned in the previous sections, accord-
ing to the semiclassical approximation the topology of the level sets of the QP function
&y given by the restriction of the Fermi energy function to some plane v perpendicular to
B dictates the asymptotic behavior of the magnetoresistance for ||B|| — oo and so it can
be detected experimentally. Starting from the end of the Fifties, stereographic maps were
experimentally obtained for many metals, mostly by Pippard, Alekseevskii and Gaidukov
(e.g. see [2, 21, 46]). The maps for Gold (left) and Silver (right) are shown in the middle
column of Fig. 2. In these stereographic maps, RP? is represented as a disc and regions
are shaded for those directions of the magnetic field open orbits are detected and left blank
otherwise. Mathematically, this corresponds to the fact that we look only at a single level
set &y, = ¢, the Fermi energy level, for every sibling of ¥ and, correspondingly, we define a
reduced map . .(B) that, for any B € D,, is equal to £,(B) if ¢ € [L., U] and to (0, 0, 0)
(meaning absence of open orbits) otherwise. We denote by D, . the subset of D, where
£e.c(B) #(0,0,0).

No comparison of these experimental data with theoretical prediction was possible for
about half a century because of the lack of knowledge about the levels of QP functions. In
the bottom row of Fig. 2 we show the numerical approximations of the sets D, . relative to
approximated expressions of the Fermi surfaces retrieved from the physics literature. Note
that a strong magnetic field (of the order of 10 Tesla) is needed in order for this phenomenon
to become visible and these old experimental data was taken right at the threshold (with
magnetic fields of about 1 Tesla). Similarly, the trigonometric approximations we used for
the Fermi energy functions is far from being the best approximation available to date (but
it was the simplest and quickest to implement in the NTC library). Yet, the match between
experimental data and theoretical prediction is remarkably high.

We point out that the reason for using such old experimental data is that, after about a
decade of great excitement that saw a large number of theoretical and experimental articles
dedicated to the subject, the interest of the solid state community in the topic decreased a
lot, possible exactly because no way was found to reproduce the experimental data from first
principles, and so in our knowledge no new stereographic maps were produced since the Six-
ties. Recently, though, some new experimental result, in particular on the role of dislocations
in the deformation of the map ¢, . for Copper, has been published by M. Niewczas and his
student Q. Bian [5, 6], giving some hope for the appearance of accurate stereographic maps
in a near future. Now that we have the possibility, it would be indeed extremely interesting
to have some more reliable experimental data to compare to.
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Fig. 2 From top to bottom: Fermi surfaces of Gold and Silver in the corresponding first Brillouin zone; ex-
perimental data on the topology of quasi-electrons trajectories in Gold [21] and Silver [2]—the shaded regions
correspond to directions of the magnetic field for which open trajectories arise (detectable through measure-
ments of magnetoresistance); numerical results on the topology of planar sections of the Fermi surfaces of
Gold and Silver [11, 12]
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