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ABSTRACT
Can we sense food quality and safety using wireless signals?
In this paper, we explore how we can discover properties of
a container’s contents without opening it and without any
physical contact with its contents. Our idea is to exploit elec-
tromagnetic interactions between wireless stickers placed on
the container and materials in their immediate vicinity (i.e.,
inside the container) to determine food quality and safety.
We show how a preliminary prototype implementation of
our technique enables us to answer questions like: Is a baby
formula inside a container pure or tainted? Is the alcohol
content of a bottle safe? These capabilities pave way for ubiq-
uitous wireless sensing technologies that can inform their
users about the health and safety of their food.

1 INTRODUCTION
Our health and well-being depend on the safety and qual-
ity of the food we eat and drink. Unfortunately, however,
consumers today still lack reliable mechanisms to determine
the safety and quality of their food. This has led to multiple
safety hazards over the past decade. In 2008, Chinese officials
discovered that companies had adulterated infant formulas
with melamine after the hospitalization of more than 50,000
babies [26]. Similarly, fake alcohol remains an on-going prob-
lem in many developing-world countries [13, 17, 24]; in par-
ticular, over the past decade, alcohol mixed with methanol
has resulted in hundreds of fatalities and numerous cases of
blindness in Turkey, Mexico, and China [10, 18].

Indeed, scientists and governments have long recognized
the need to assess food quality and safety. The vast majority
of existing solutions, however, rely on expensive equipment
in specialized food labs [7, 22]. These solutions typically
require extracting food samples to perform electro-chemical
tests on them for determining bacteria content or impurities.
Unfortunately, extracting samples from every purchased item
and sending them to food labs for testing is impractical for
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Figure 1—RFIQ’s Operation. RFIQ learns food quality and safety by sens-
ing weak coupling between a passive wireless sticker on a container and
a container’s content. Coupling affects the sticker’s response, and can be
extracted and analyzed remotely by a reader.

lay consumers. Further, while such techniques are suitable
for skip-lot inspections, they are not practical for long-term
monitoring applications such as quality detection.

In this paper, we investigate the possibility of determin-
ing food safety and quality by relying on cheap, battery-free,
wireless stickers. In particular, over the past few years, many
industries have moved to replacing bar-codes with battery-
free RFID (Radio Frequency Identification) stickers that are
attached to objects. When queried by a wireless device called
a reader, these RFIDs power up and respond with a unique
identifier, enabling the reader to read and uniquely identify
them from distances of few meters. Today’s RFIDs are used
mainly for product identification and efficient inventory con-
trol. Our goal is to leverage these same stickers – which are
already placed on billions of products – for learning food
quality and safety.

We present RFIQ, a system that can learn food quality and
safety by relying on cheap, battery-free RFID stickers without
any hardware modifications to the RFIDs. RFIQ operates by
extracting and analyzing an RFID’s response at the analog
level. In particular, an RFIQ reader transmits a wireless signal
to power up the RFID on a food container of interest and ex-
tracts low-level features from the RFID’s response as shown
in Fig. 1. It then uses these features to learn different prop-
erties about the container’s contents, such as baby formula
purity and alcohol composition.

RFIQ’s basic formulation is inspired by the electromag-
netic principles of multi-layered substrates for printed an-
tennas. Specifically, a UHF (Ultra-High Frequency) RFID
antenna is typically printed on a flexible plastic substrate [41].
The printed antenna’s geometry is optimized to achieve the
highest gain (i.e., strongest signal) at the desired frequency of
operation (around 950 MHz) given the substrate material. To
improve the gain of these antennas, past research has explored
leveraging multi-layer substrates [41], where the antenna’s
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interaction with materials is in its immediate vicinity is gov-
erned by a concept called “weak coupling”.

RFIQ’s key realization is that placing an RFID’s antenna
on a filled container is equivalent to adding another thick
substrate layer below its plastic substrate, with which the
RFID also couples. Yet, in contrast to past proposals which
have designed the antenna geometry and matching circuit in
a manner to optimize its response on a multi-layer substrate,
such a placement would result in reducing the antenna’s effi-
ciency at its desired frequency of operation. This is because
the RFID antenna design does not account for the new sub-
strate material. Indeed, this is why it is difficult to power
up an RFID when it is placed on a bottle with liquid wa-
ter [31, 33, 46]. Aside from reducing the gain at the desired
frequency of operation, such placement results in tuning its
optimal operation bandwidth to a new center frequency that
better matches the multi-layer substrate. RFIQ’s goal is to
discover the new tuning frequency to glean information about
a bottle’s content.

Realizing this goal still requires addressing multiple chal-
lenges. First, the captured RFID signal is not only a function
of the coupling effect, but also the location of the RFID in
the environment as well as multi-path reflections off differ-
ent objects in the environment, all of which interfere at the
receiver. To overcome this challenge, RFIQ exploits the in-
trinsic differences between the impact of multipath and that of
the “weak coupling” on the measured response. In particular,
multipath leads to frequency-selective fading which impacts
all the frequencies, while the coupling effect leads to shifting
the center frequency of the optimal response. Intuitively, the
impact of multipath is similar to fast-varying noise in the
frequency domain response of the RFID, while the impact of
the weak coupling is more localized at the tuning frequency,
as we demonstrate empirically in §3.3.

Another challenge arises from the ability to discover the
tuning frequency and map it to the material contents of a
container. On one hand, FCC regulations for consumer elec-
tronics limit the bandwidth over which we can power up an
RFID to within 26 MHz, significantly constraining RFIQ’s
ability to search for the tuning frequency. On the other hand,
even if we could discover the tuning frequency, mapping it
to the exact material contents of a container is difficult as
it requires solving a complex and under-determined set of
Maxwell’s equations that govern electromagnetic propagation,
as we describe in §3.2. To overcome these challenges, RFIQ
first builds on our recent technique which allows measuring
an RFID’s response over a wide bandwidth while remaining
compliant to FCC regulations [20]. Then, it employs a cus-
tomized machine learning classifier that can automatically
learn the desirable features from the frequency domain re-
sponse of the RFID and use them for classification.

We built an initial prototype of RFIQ and validated it by
conducting 230 experimental trials in two applications. We
first test RFIQ’s ability to identify baby formula adulteration.
We show that RFIQ can identify if a baby formula is tainted

with more than 96% accuracy , while sustaining a false nega-
tives rate is 5%. Second, we consider tainted alcohol identifi-
cation. We show that RFIQ can identify with 97% accuracy.
Note that in both of these applications, users cannot differen-
tiate between tainted and untainted materials due to lack of
visible differences between the container contents.

While these results are promising, we believe they only
present a first demonstration of RFIQ’s capability as a food
quality and safety sensor. In the conclusion, we outline open
research questions that need to be answered to transform
this primitive into a ubiquitous, cost-effective solution for
monitoring food quality and safety.

2 BACKGROUND AND RELATED WORK
Researchers have long recognized the need for monitoring
food quality and safety. Most existing techniques rely on
measuring electrochemical and electrophysical properties [19,
25, 37]. Specifically, scientists extract food samples and place
them in direct contact with other chemical reagents and/or
specialized sensing circuits (e.g., biotoxin sensors [8, 9, 15]),
to test how they react to these reagents. This typically requires
sending samples to research labs for testing. Hence, it is more
suitable for skip-lot inspection where a fraction of the samples
is inspected (as is typically done by government agencies)
rather than everyday usage by lay consumers.

Given the length of the food lab testing process, recent
proposals have considered building small sensing circuits
in hope of incorporating them inside food containers [28,
30, 35, 39]. These proposals require designing a customized
sensor for every different type of food or food property of
interest [35, 39] or they require coating existing circuits (e.g.,
LC circuits or RFIDs) with different types of polymers to
increase sensitivity to specific materials of interest [28, 30].
Moreover, many of these sensors still require direct contact
with food samples, which can lead to contaminating the food
samples and is erosive to their sensing interfaces [29, 44].

Recent advances in wireless transmission and signal pro-
cessing techniques have led to more general wireless solutions
that can classify between different objects. These techniques
fall under two main categories: radar-based [6, 42, 43] and
tag-based [11, 38, 45]. The problem with these systems, how-
ever, is that they are intrinsically incapable of extracting ma-
terial properties such as food quality. They either rely on
radar reflections to classify between objects based on their
shapes [6, 43], or they measure how a wireless signal at a
single frequency attenuates while traveling through a material
before it reaches a tag in order to deliver simple tasks like
distinguishing between whether a cup is empty or filled with
water or if the density of the material changes [11, 27].

A more powerful class of techniques falls under RF dielec-
tric spectroscopy. RF spectroscopy excites a material of inter-
est by electromagnetic waves over a wide range of frequencies
and analyzes how it interacts with these waves to determine
material properties like food quality and safety [14, 32]. Un-
fortunately, however, the technique relies on expensive, bulky
equipment such as Vector Network Analyzers (which cost
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Figure 2—RFIQ’s Operation Principle. (a) shows how a wireless sticker
couples with material in a container. (b) shows fields of a radiating antenna.

tens to hundreds of thousands of dollars) and requires sophis-
ticated calibration techniques for proper operation [23, 34].
Recent proposals have considered using UWB radios as di-
electric spectroscopes [12]; however, they also require ex-
tracting liquid samples and placing them in carefully adjusted
locations, hence preventing in-situ measurements.

While RFIQ is inspired by these techniques, it introduces
new mechanisms that transform cheap, off-the-shelf RFIDs –
which are already placed on billions of manufactured items
– into powerful food sensors without requiring any direct
contact with the food material. This enables a cost-effective,
scalable approach for in-situ, continuous food monitoring.

3 RFIQ
RFIQ is a wireless sensor that can inform lay consumers
about the quality and safety of food in its vicinity. To do
so, it leverages cheap, passive UHF (Ultra-High Frequency)
RFID stickers already attached to the food containers by the
manufacturers. It analyzes low-level physical properties of
an RFID’s response to learn the quality and safety of food
in its corresponding container. RFIQ can scan multiple items
simultaneously as it incorporates the industry standard (EPC
Gen-2) protocol. To map an ID to a particular product, it can
leverage an RFID database provided by its manufacturer.

RFIQ operates in two key stages. First, it transmits a wire-
less signal to power up a passive RFID. When the RFID
responds with its identifier, RFIQ decodes the response and
extracts from it low-level signal features related to food qual-
ity and safety. Second, RFIQ feeds the extracted features into
a machine learning classifier to determine the food quality and
safety. This involves first selecting the correct classifier based
on the food type as determined by the identifier (e.g., alcohol),
and then feeding the signal features to that classifier. RFIQ
repeats the above process for every RFID in its vicinity, each
time selecting the appropriate machine learning classifier to
determine the corresponding food quality and safety.

3.1 Physical Principle: Dielectric Permittivity
Before delving into the details of RFIQ’s operation stages, we
describe the basic physical principle that enables it to identify
food quality and safety from wireless RFID stickers.

When an RFID is placed in the vicinity of a material, the
electromagnetic field of the RFID’s antenna is affected by

the material contents as shown in Fig. 2(a). This phenome-
non is called “weak coupling” [40]. Interestingly, coupling
happens even if the RFID’s antenna is not in direct contact
with the material as shown in the figure. This is because the
electromagnetic field of an RFID’s antenna occupies a region
of space around the antenna.

The magnitude and distribution of this coupling effect are
determined by an intrinsic property of the material called
dielectric permittivity (denoted by ε). A material’s permittiv-
ity is a function of the electrochemical and electrophysical
properties of that material (e.g., molecules and ions in the
material). Hence, if the material content changes, so does its
dielectric permittivity and subsequently the electromagnetic
distribution of the weak coupling.

RFIQ harnesses this property in order to extract features
related to food quality and safety. In particular, it tries to sense
minute variations in an RFID’s response that result from small
changes in the permittivity of the material it couples with.
Specifically, when an RFID transmits its identifier, the “weak
coupling” affects the signal structure of its transmission.1 We
can represent the response captured by RFIQ as a complex
number that has both a magnitude A and a phase θ . The
magnitude and phase are functions of both the excitation
frequency f and the material’s dielectric ε. Mathematically,
we can write the response r as A(ε(f ))e jθ (ε (f )).

By sensing this response over a wide range of frequencies,
RFIQ can learn how small variations in that response are
related to various food properties of interest. Finally, it is
worth noting that even though RFIQ’s technique is inspired
by RF dielectric spectroscopy, it does not attempt to directly
measure the material’s dielectric.2 Rather, it relies on the how
the phenomenon of weak coupling affects an RFID’s response,
and learns the impact of dielectric changes on that response
to infer the food quality and safety metrics of interest.

3.2 Analyzing the Received Signal
Our above discussion focused only on the interaction of the
RFID’s antenna with its immediate surrounding through weak
coupling. In practice, however, when a reader measures an
RFID’s response, it obtains the signal after it has traveled
in space and bounced off different objects. This phenome-
non is referred to as multipath, since the receiver may obtain
multiple superimposed copies of the RFID’s signal after it
has reflected off different objects in the environment. Mathe-
matically, the channel due to the wireless propagation in the
medium is denoted by h(t), and we can describe the channel
of the overall measured response y(t) as:

y(t) = h(t) ∗ r (t) (1)
where ∗ denotes the convolution operator.

So, how can we distinguish between the impact of the
material in the direct vicinity of the RFID (e.g., inside the
container) and that of the RFID’s location with respect to

1Note that it only affects the shape of the physical signals but not the specific
“bits” being transmitted.
2Such measurements require a larger bandwidth of operation.



our receiver or other objects in the environment? And, what
defines the direct vicinity vs multipath in the environment?

To better understand the difference, consider the illustration
in Fig. 2(b). The figure shows an RFID antenna as a dipole
with a voltage and a current and distinguishes between three
fields: near-field reactive, near-field radiating, and far-field
radiating. The near-field reactive decays significantly faster
than the far-field. In particular, the near-field is typically lim-
ited to within less than a wavelength, while the far-field is
dominant at a range larger than two wavelengths.
3.2.1 The Reactive Near-Field
The "coupling effect" we described in §3.1 happens in the
near field. When a voltage is applied across the antenna, it
results in a current flowing through the dipole. Ideally, most of
the energy delivered to the dipole should be radiated outward
toward a receiver in the far field (to maximize the power
transmitted). In practice, however, part of the energy is stored
or dissipated in the antenna’s immediate vicinity.

To understand why this is the case, consider the electric
field lines (shown in solid red) between the two arms of the
dipole in Fig. 2(b). According to basic antenna theory [16],
the two arms of the dipole act like two plates of a capaci-
tor, whose overall capacitance is determined by the electric
permittivity ε of the material between the plates. A larger per-
mittivity leads to larger capacitance, hence a larger amount
of energy stored in the near-field.

Similarly, as the current flows through the conductor, it re-
sults in a magnetic field (shown in dashed red), whose energy
is also stored in the vicinity. The amount of stored magnetic
energy is determined by the magnetic permittivity µ of the
material surrounding the conductor. The magnetic and elec-
tric energy storage effect can be modeled by a self-inductance
L(µ) and a self-capacitance C(ε). An antenna resonates when
it is excited by a frequency ω = 1/

√
L(µ)C(ε). This is why

when the dielectric in the vicinity of the antenna changes, its
optimal frequency of operation changes.

The above discussion is simplified in multiple ways. First, it
does not attempt to solve for the exact tuning frequencyω. Ob-
taining an exact analytic solution requires solving Maxwell’s
equation at medium boundaries, and an analytic solution may
be intractable.

Second, from a circuits perspective, the impact of near-
field coupling on the antenna response will also depend on
the matching circuit, which is optimized to the antenna’s
geometry and its typical medium of operation (i.e., air).

Given this complex relationship, the electromagnetic equa-
tions do not have a general solution, and a solution is typically
obtained through numerical solvers such as the method of mo-
ments (MoM). In contrast, RFIQ leverages a learning-based
approach as we describe in §3.3. A learning approach is in-
trinsically more powerful since it can seamlessly account
for other factors (e.g., complex antenna geometry, different
substrates) without requiring a priori knowledge.

To better understand the impact of the dielectric on the
antenna response, we run an experiment where we power
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Figure 3—Frequency tuning of an RFID due to material content. We
plot the normalized amplitude of the RFID’s response versus frequency when
the RFID is on an empty bottle (in brown) and a water-filled bottle (dark
blue). While an RFID is designed to have optimal response at 950 MHz in air,
its optimal frequency shifts to about 720 MHz due to coupling with water.

up and communicate with a commercial passive UHF RFID
at different frequencies. The RFID is placed on a container.
We measure the amplitude of the RFID response at different
frequencies and plot the output in Fig. 3. The figure plots
the normalized amplitude as a function of the excitation fre-
quency in the absence (brown) and presence (blue) of water
inside the container. The figure shows that while the RFID is
designed to have an optimal response around 950 MHz in air,
its optimal frequency response shifts to around 720 MHz due
to the coupling with water.

3.2.2 The Radiative Far-Field
So far, we have discussed the impact of the reactive near-field
on the antenna impedance. Recall that the overall channel
is also impacted by far field propagation. Specifically, as
the RFID’s signal travels in space, it reflects off different
objects leading constructive and destructive interference, that
exhibits in frequency-selective fading. Unfortunately, such
fading may null or zero-out the new tuning frequency of
the RFID’s response, preventing us from detecting it, and
potentially leading to classification errors.

To overcome this challenge, RFIQ leverages intrinsic dif-
ferences in the patterns of frequency-selective fading and near-
field coupling (or antenna tuning). In particular, antenna tun-
ing causes a shift in the center frequency of optimal operation
as shown in Fig. 3, while frequency-selective fading causes
a high frequency noise. This is because frequency-selective
fading occurs at the order of the coherence bandwidth, which
varies between 4-20 MHz in indoor environments [36]. For
example, in Fig. 3, it would lead to fluctuations in the ampli-
tude of the response, yet we still expect the highest amplitude
to remain around the new frequency (tuned to the dielectric).
In practice, these intrinsic differences allow RFIQ to achieve
high accuracy as we demonstrate qualitatively and quantita-
tively in the next sections.

3.3 Feature Extraction & Classification
Next, we describe how RFIQ can extract relevant features
from the wide bandwidth and use them for classification.

Extracting Features from a Wide Bandwidth. Recall that
the dielectric material causes frequency tuning. However,
searching for the new tuning frequency is prohibitive for mul-
tiple reasons. First, commercial passive RFIDs are optimized
to harness power within a specific frequency range (as per the
matching circuit) [21]. And second, FCC regulations limit the
bandwidth for powering up RFIDs to within 26 MHz.
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the sticker’s response (due to the dielectric) over a wide bandwidth.

To overcome this challenge, RFIQ builds on our recent
technique, two-frequency excitation [20], which enables pow-
ering up an RFID and sensing its response at two different
frequencies. At a high level, instead of using the same fre-
quency to deliver power to an RFID and sense its response,
the technique employs two frequencies as shown in Fig. 4.
The first frequency is used to power up the RFID within
the ISM band, while the second frequency can be used to
sense the response within a completely different band, ideally
where the dielectric changes are most pronounced. Since the
frequencies most affected by dielectric changes are difficult
to predict (due to the non-linear nature of “weak coupling”),
RFIQ sweeps over a wide range of sensing frequencies and
feeds the resulting output into a classifier that can automati-
cally extract the most salient features.

In order to compute the RFID’s response at a given sens-
ing frequency, the receiver can correlate the response with a
known preamble. In particular, given a known preamble pt
of the tag’s response in the received signal yt , it can obtain
an estimate of the overall channel lk at a given sensing fre-
quency fk as lk =

∑
t ytp

∗
t . Finally, in order to improve the

signal-to-interference-and-noise ratio (SINR) of the extracted
features, RFIQ performs two additional steps:
• First, to reliably capture the amplitude and phase over

hundreds of MHz of bandwidth, RFIQ averages multiple
responses of an RFID over time.

• Second, to deal with the interference from other sources in
the environment, RFIQ not only computes the covariance
described above, but also the correlation:

corrk =
∑
t
ytp

∗
t /

√∑
t

|yt |2
∑
t

|pt |2 (2)

This allows RFIQ to normalize the response by the power
of the received signal. The correlation is only close to
1 when there is indeed an RFID response in the measure
signal. Hence, RFIQ uses this correlation output as an input
to its classifier in order to aid it in learning the robustness
of the measured channels at the different frequencies.

Feature Selection and Classification. RFIQ uses the wide
bandwidth to train classifiers for learning various food-related
metrics. Its classification operates in three steps. The first is
deterministic and leverages the RFID’s decoded identifier to
choose the appropriate classifier (e.g., alcohol vs baby for-
mula classifier). Second, it extracts a feature vector, consisting
of normalized amplitude A′(f ), phase θ (f ) and correlation
values corr (f ). Third, it employs a standard gradient boosting

tree for each classification task. This machine learning clas-
sifier is useful in our context because it is known to perform
well for features with sparse information, and it iteratively
constructs trees to combine features.

4 EXPLORATORY STUDY
4.1 Prototype Implementation
Hardware. We implemented our design on USRP N210 soft-
ware radios [3], and adapted our two-frequency excitation pro-
totype [20]. The radios run the EPC-Gen2 protocol and trans-
mit two frequencies: one high power frequency (at 32 dBm)
inside the UHF ISM band and another low power sensing
frequency which is varied within 400-800 MHz. At the sens-
ing frequency’s receiver, we employ a low-pass filter that
eliminates the impact of the power up frequencies and add
an LNA to boost the received signal power. The transmission
powers are compliant to FCC regulations for consumer elec-
tronics [1]. The received signal is sampled (digitized) and
sent over Ethernet to a computer for offline processing.

Software. RFIQ’s algorithms are implemented in MATLAB
and python. The MATLAB component averages every 50
RFID responses to boost the SNR and computes the ampli-
tude and phase at every sensing frequency. It repeats this
process over 21 frequencies, spaced at 20 MHz intervals,
across RFIQ’s 400 MHz frequency span. We use the python
implementation of the XGBoost package [4] to implement
RFIQ’s gradient boosting tree classifiers. The classifier pa-
rameters are selected conservatively to prevent over-fitting.
We set eta = 0.3, max_depth = 3, subsample = 0.5, and
num_boost_round = 128.

4.2 Experimental Results
The goal of our evaluation is to test the feasibility of using
RFIQ to learn about food quality. We evaluate RFIQ’s oper-
ation in a setup similar to Fig. 5. The container of interest
is placed in a constrained region (within about 0.5 m from
RFIQ’s antennas). The antennas capture the response of the
RFID on the container and extract features from it at differ-
ent sensing frequencies. Across experimental trials, we place
the bottle of interest within a bounded region close to RFIQ.
This ensures that we can power up the RFID despite the de-
crease in antenna efficiency. We perform our experiments
with commercial off-the-shelf passive UHF RFIDs, the Avery
Dennison AD-229r6 tag [2].

Identifying Tainted Alcohol. First, we would like to test
RFIQ’s ability to identify fake alcohol. Recall that alcohol
can be tainted by mixing it with the much cheaper methanol.
To simplify the sensing task, we consider only 5 classes of
adulteration. The first class is pure alcohol, and the rest have
25%, 50%, 75%, and 100% methanol. We prepared mixtures
with these compositions. For data collection, we fill a plastic
bottle with one of the mixtures and place it in a randomly cho-
sen location in our setup. The bottle has an RFID attached on
it. We run RFIQ’s sensing and feature extraction algorithms



Figure 5—RFIQ’s Setup. RFIQ’s antennas measure the re-
sponse of an RFID placed on a bottle. We vary the bottles and
their locations across experimental runs.
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Table 1—RFIQ’s Classification Tasks. Different rows of the confusion
matrices represent the actual tainting percentage, and different columns
represent RFIQ’s predicted percentage.

as described in §3.3 and §4.1. For each mixture, we repeat
the experiment in 3 different locations and with 10 different
bottles (of similar shape & material).3 This provides 150 data
points, 30 for each adulteration class. Note that our goal of
using different bottles and locations is to test the robustness
of the classification to minor environmental changes.

To test RFIQ’s ability to distinguish between the different
adulteration classes, we performed standard 10-fold cross-
validation. In particular, for each classification task, we di-
vided our dataset into testing set (consisting of 15 trials per-
formed with the same bottle and all 5 classes) and training set
(consisting of the remaining 135 datapoints). We repeated the
same classification task 10 times, each time with a different
bottle, and computed the average accuracy.

Table 1(a) shows our results as a confusion matrix. The
different rows represent the actual percentage of methanol
tainting, while the different columns represent RFIQ’s pre-
dicted percentage. The table shows that RFIQ can classify
between the different mixtures, with an average accuracy of
97%. Note that the errors were not limited to adjacent classes
(as in the 75% case); we expect this is because while the
compositions are varied linearly, the gradient boosting classi-
fier is not guaranteed to be linear. These results indicate the
potential of using RFIQ for identifying adulterated alcohol.

Identifying Adulterated Infant Formula. In our second
study, we are interested in evaluating RFIQ’s ability to iden-
tify whether a baby formula has been adulterated. We prepare
five different mixtures of baby formula with melamine. Each
mixture consists of 100g in total, and with varying percent-
ages of adulteration between 0% and 30% (i.e., in increments
of 10 g). We use the Organic Infant formula from Earth’s
Best [5] as a baseline for pure infant formula.

We perform 80 experimental trials in total, and test our
classifier using 5-fold cross-validation, as above. RFIQ’s clas-
sification accuracy is shown in the confusion matrix of Ta-
ble 1(b). The different rows of the matrix show the actual
percentage of adulteration, while the different columns show
RFIQ’s prediction of adulteration. The table shows that RFIQ
can classify between the different adulteration classes. In
particular, across all the adulterated formulas, it only misclas-
sified 1.25% of them as pure. Its false positive rate (i.e., it
classified a pure formula as non-pure) is also 0%. Moreover,

3We used the same 10 bottles for the different experiments and refilled them
every time with a different mixture.

RFIQ is capable of identifying the percentage of contamina-
tion with an average accuracy of 96%. This indicates that not
only it can be used to identify adulteration, but also has the
potential to identify its degree.

5 OPEN QUESTIONS & CONCLUSION
This work presents a new sensing technique can be used to
guide consumers against purchasing or consuming hazardous
products (such as fake alcohol). While our initial evaluation
is promising, multiple questions remain to be answered:
• Environmental Changes: Our initial evaluation shows ro-

bustness to limited environmental changes. As the research
evolves, we are interested in enhancing robustness to var-
ious environmental changes, including container shape,
container material, dense multipath, and liquid volume.

• Solution Contents: Our evaluation focused on mixtures of
materials of the same state (i.e., solid mixtures or liquid
mixtures). An important research question is: Can RFIQ
be used to classify and identify solution contents? For
example, is it possible to leverage RFIQ to learn sugar
content of a liquid or lead content of water?

• Range and Mobility: In our evaluation of RFIQ, we placed
the containers of interest in a relatively confined region
near RFIQ’s sensing antennas. It would be interesting to
explore how to miniaturize RFIQ into a handheld device
that a user carries in grocery stores or supermarkets.

• Sensitivity and Learning Algorithms: Our implementation
focuses on a bandwidth of 400-800 MHz, fixes the types of
material and adulterant, and assumes a fixed and discrete
number of classes. This simplifies our sensing task into
a classification problem and enables sensing food proper-
ties whose dielectric changes affect the RFID’s response
within this bandwidth. We are interested in expanding the
bandwidth and exploring other machine learning models
to relax these assumptions and improve sensitivity.

As these capabilities expand and grow, we envision that
wireless sensing can glean increasingly more sensitive (yet
invisible) information about the health and safety of our food
and environment, and use this information to guide us on how
we may improve our health and well-being.
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