
Parallel Framework for Data-Intensive Computing with XSEDE
Ranjini Subramanian
University of Louisville
Louisville, KY, USA

r0subr05@louisville.edu

Hui Zhang
University of Louisville
Louisville, KY, USA

h0zhan22@louisville.edu

ABSTRACT
With the increase in data-driven analytics, the demand for high
performing computing resources has risen. There are many high-
performance computing centers providing cyberinfrastructure (CI)
for academic research. However, there exists access barriers in bring-
ing these resources to a broad range of users. Users who are new to
data analytics field are not yet equipped to take advantage of the
tools offered by CI. In this paper, we propose a framework to lower
the access barriers that exist in bringing the high-performance com-
puting resources to users that do not have the training to utilize the
capability of CI. The framework uses divide-and-conquer (DC) par-
adigm for data-intensive computing tasks. It consists of three major
components - user interface (UI), parallel scripts generator (PSG)
and underlying cyberinfrastructure (CI). The goal of the framework
is to provide a user-friendly method for parallelizing data-intensive
computing tasks with minimal user intervention. Some of the key
design goals are usability, scalability and reproducibility. The users
can focus on their problem and leave the parallelization details to
the framework. This paper will outline the rationale behind this
framework, its detailed implementation and demonstrate its usage
with practical use cases.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms.

KEYWORDS
Cyberinfrastructure (CI), R , Divide-and-conquer methodologies

1 INTRODUCTION
A major driving force behind the increasing popularity of Data
Science is the increasing need for data-driven analytics fueled by
massive amounts of complex data produced by businesses, sci-
entific applications, government agencies and social applications.
However, one unique challenge in Data Science comes from the
tight coupling between practical solutions and their computing
resource requirements. As the volume of data grows bigger, the
solution often becomes viable only with advanced CI. One major
benefit of CI is parallel computing which is known to be effective
in speeding up data-intensive computing tasks. Effective utilization
of CI is vital in maximizing the benefits offered by them. This is
achieved by combining the software and hardware tools to achieve
data-intensive computing. Data-analytics process ingests time and
resources. To speed up data-intensive computing tasks, we can
break large dataset into smaller chunks, process them in parallel
and finally combine the processed results using CI. This approach,
also referred to as divide-and-conquer approach, fully utilizes the

,
.

capability of high-performance computing resources to accelerate
the knowledge discovery process.

DC methodology is best suited for data-intensive computing.
This methodology works by recursively breaking down a problem
into subproblems of similar type that can then be solved in parallel
independently. The solutions to the subproblems are then combined
to obtain a solution to the original program. DC methodology is a
powerful tool in facilitating data-intensive analysis and is used to
solve many data intensive problems like matrix eigenvalue problem
[1], simulating quantum mechanical systems on quantum comput-
ers using Hamiltonian structure [2]. Exploiting parallelism offered
by the DC paradigm, requires certain expertise in parallel program-
ming and knowledge of parallel programming tools. In addition to
that, users must know how to execute parallel implementations in
CI. Users who have only recently started using large-scale compu-
tation as a research tool are not yet trained to take advantage of
the data-intensive computing environment offered by CI. To over-
come these issues, we propose a simple, user-friendly framework
that enables parallel implementation of DC paradigm to perform
data-intensive computing tasks using high performance computing
resources. The backend of our framework can deploy code automat-
ically to scale up the user script by running the analytics script over
much larger datasets with XSEDE high performance computing re-
sources thereby allowing users to focus on transforming theoretical
models and methodologies to practical solutions.

2 BACKGROUND
Many legacy applications are inherently sequential and do not
use parallel programming techniques. In addition to that, novice
users do not have the skills needed to write programs that take
advantage of parallelization. In sequential implementations, the
programs work as a single unit of code. Data is processed one at
a time using iterative style of programming. The algorithm for
sequential program is as shown in Figure 1.

In this implementation, for-loops are used to iterate through each
dataset. The first for-loop is used for user-defined computation and
the second for-loop is used for aggregating intermediate results to
produce the final output. For-loops causes significant overhead and
is slow in processing. In order to convert this implementation to
make use of parallel processing speeds offered by CI, significant
code changes are required which can only be done by users who
have advanced knowledge of parallel programming and its tools.
This drawback has motivated us to adopt DC paradigm with is
naturally suited for parallel processing.

2.1 Divide-and-Conquer (DC) paradigm
DC paradigm is extensively used in data science due to its ver-
satility and computational benefits. It offers best performance in



,

Figure 1: Sequential Implementation

multi-processor, shared-memory systems where the communica-
tion needed between processors is minimal because the distinct
subproblems can be executed independently in different processors.
DC algorithms work in two steps:

• Divide - In this step, the dataset is broken down into smaller
chunks and each chunk is processed independently to pro-
duce intermediate results. This step involves the bulk of the
processing with complex business logic.

• Conquer - This step involves light-weight processing like
aggregation. In this step, the intermediate results from the
previous step are aggregated to produce the final results.

DC algorithm can be implemented using sequential as well as
parallel approaches. Despite the obvious tendency for parallelism,
parallel implementation of DC algorithm requires programming
expertise in order to achieve desired level of performance offered
by CI. Sequential implementation, although easy to implement by
a novice user, is infeasible due to poor processing time. However,
we propose a sequential algorithm that can be automatically paral-
lelized by our framework. In the sequential approach, both phases
can be implemented as functions or can be implemented as two
separate programs. Implementing them as two separate programs
allows for script level parallelism depending on application-specific
requirements and it does not require fixed computation steps. The
proposed algorithm for divide and conquer phases is as shown in
Figure 2. The user is responsible for both scripts. The divide phase
takes two input parameters - filename which is an optional param-
eter and intermediate folder path. User-defined business logic is
implemented in this script. The result of the processing is stored in
an intermediate folder. The conquer script takes two input param-
eters - path to intermediate folder and path to output folder. This
phase loops through the intermediate results, aggregates them and
writes the final output to the output folder.

The volume of data and processing speeds have increased expo-
nentially in the past few years, but the former has risen at a much
higher rate than the later. The rapid growth in data volumes and the
need for higher processing speeds for data intensive tasks has led to

Figure 2: DC Paradigm Implementation

the rise in parallel processing techniques. Processing data-intensive
computing tasks require significant computing power which can
only be achieved by using supercomputers. The type of parallel
processing model depends on the task at hand. For data analytics,
data parallelism approach is extensively used. It involves partition-
ing large dataset among multiple nodes and processing them in
parallel before combining the partial results [4]. Several parallel
and distributed programming models have emerged to tackle data-
intensive problems. MapReduce is a programming model that has
become a standard for large scale data-intensive applications [14]. It
provides a powerful interface for large-scale computations enabled
by automatic parallelization and distribution. It works by splitting
the data and processing it in parallel while hiding the details of load
balancing, synchronization and fault-tolerance. We have adopted
some features of MapReduce paradigm in our framework such as
automatic parallelization of large-scale computations, data locality
and batch processing model.

Although MapReduce paradigm offers great benefits, the im-
plementation is at the functional level which requires advanced
programming skills and good understanding of the underlying sys-
tem architecture. Computation steps are fixed, and it must follow
the map-shuffle-sort-reduce sequence. Not every computation can
be expressed efficiently using this programming model.

In [5], the authors have explored the advantages of using divide-
and-conquer approach for parallel computing and studied the per-
formance gains for data-intensive problems like sorting and matrix
multiplication. Another important application of DC strategy has
been in the medical imaging field [8]. Image enhancement has been
used in several applications such as biomedicine, video surveillance,
remote sensing to name a few.

The performance of different types of DC implementations are
well studied for large scale simulations and it has been outlined
in [6]. The purpose of the study was to evaluate scalability and



Parallel Framework for Data-Intensive Computing with XSEDE ,

Figure 3: Process Flow

performance of parallel and serial implementations of DC tasks
using high performance computing resources. The variables used
for this study are batch size (B), number of intermediate files (I )
and the dimensions of the file (D). The number of nodes used for
each execution was set to B to enable parallel execution and set
to 1 for serial implementation. For each implementation, B was
varied from 100 to 2000, I was set to 10 and D was set to 100x100.
The implementation also included a 45 second wait to mimic the
time needed to perform application-specific tasks. The study found
that using parallel model as opposed to serial model reduced the
execution time by over 98%. The time decreased further as the size
of the dataset increased. It was also found that as the size of the
data increased, the serial mode of execution failed due to memory
issues.

Although parallelizing both divide and conquer phases would
increase the performance further, we chose to parallelize only the
divide task in our framework. This design decision was made based
on three important factors:

• Parallelizing serial implementation of user code is straight-
forward for divide task and requires no programming effort
from the user. Parallelizing conquer task would require users
to make significant changes to their code to avoid synchro-
nization issues.

• The conquer phase is not as data-intensive as the divide
phase

• It eliminates the need for the subproblems to be associative.

3 BASIC DESIGN
The framework enables DC paradigm for efficient processing of
data-intensive computing tasks and provides a user-friendly access
to advanced CI while requiring minimal programming effort and
user intervention. Users are required to provide divide and conquer
scripts.

3.1 Process Flow
The framework is designed for users who do not necessarily have
knowledge of parallel computing. In our design, we use a program-
ming paradigm that hides the underlying parallel computing details
and allows the users to focus on sequential processing leaving the
parallelization details to the framework. It automatically generates
code and schedules batch processing jobs as depicted in Figure 3.
The divide task automatically divides the input data among dif-
ferent computing nodes. Each file is then processed individually
by the user-defined Divide program. The results of this step are
written to an intermediate folder. The conquer task passes the files
from the intermediate folder to the user defined Conquer program
which is responsible for aggregating the intermediate results and
producing the final output.

3.2 Cyberinfrastructure (CI) model
3.2.1 Job Scheduler. Job schedulers are a key component of scalable
computing infrastructures. They are responsible for all of the work
executed on the computing infrastructure and have a direct impact
on the effectiveness of the system. Simple Linux Utility for Resource
Management (SLURM) is the most popular scheduler used in many
of the world’s supercomputers. SLURM is an open source system
used on large and small Linux clusters. It performs four important
functions:

• Resource management
• Job lifecycle management
• Job scheduling
• Job execution

Users are required to specify the number of CPUs needed at
the time of job submission. Jobs are submitted in batch to SLURM
queue using a job script where the scheduler decides how to priori-
tize and allocate resources to jobs for execution.



,

3.2.2 Job Script. A job script is an executable file that is submitted
to the scheduler to run on a collection of nodes. It contains a list of
SLURM directives (or commands) that tells the scheduler what to
do. SBATCH command is used to submit a batch script to SLURM.
Similar jobs can be submitted using a single script and the jobs are
run independently on different nodes. Each job is capable of obtain-
ing the necessary compute nodes from the cluster. Job flags are used
with SBATCH command and the syntax for the directive in a script
is #SBATCH <flag>. The flags we have used in our framework are
N, –ntasks-per-node, –job-name, –output, –error, –partition and
–time. The description and type of arguments accepted by each
of the flags can be found at https://ubccr.freshdesk.com/support/
solutions/articles/5000688140-submitting-a-slurm-job-script. Fig-
ure 4 shows a sample job script. ibrun is a TACC-specific MPI
launcher to launch an MPI application.

Figure 4: SLURM Job Script

3.2.3 Access to CI. Although CI can speed up computations consid-
erably, the skills needed to use them poses a major challenge. With
the advent of data driven analytics, many tools have been devel-
oped to provide access to high performance computing resources
and CI. Accessing these resources requires the users to know its
application, languages and libraries. However, not all users are
equipped with the knowledge to take advantage of these resources.
Many CI providers have models to enable access to the underlying
computing resources. Some of these models include batch job sub-
mission using secure shell connection [9], remote software session
[10], web portal and gateway [11] to name a few. All these models
require the users to know how to submit batch processing jobs
and uploading and downloading data to and from CI. In order to
overcome this issue, we present a simple user-friendly web user
interface that enables non-expert users to access underlying CI.

3.3 Advantages
Some of the advantages of using this framework are:

• Flexibility - Our framework can handle different types of
problems because it does not require the input to be in a
particular format. The user can implement any business logic
to suit their needs and can tailor the intermediate output
and final output to be in the format that is specific to the
problem at hand.

• Granularity - Our framework is designed to treat each file as
one entity. This reduces communication and synchronization
overhead and enables processing of heterogenous data.

• File size - Since the processing takes place at the file-level,
the file size does not cause inefficiency. The framework can
handle files of any size.

• Ease of use - Users can debug their sequential implementa-
tions of divide and conquer scripts locally and upload the
code and input data using a web user interface. It provides
better interactivity.

• Languages - The framework is designed to support R and
python programming languages, two of themost widely used
languages in Data Science. For the purpose of demonstration,
we have used only R programming language.

Figure 5: Framework Layers

4 IMPLEMENTATION DETAILS
The framework takes user defined scripts with custom business
logic and automatically generates code for parallelization. We have
used files to move data between the divide and conquer phases. The
framework is developed using R programming language. The pro-
posed framework consists to 3 layers - User interface (UI), Parallel
scripts generator (PSG) and cyberinfrastructure (CI) as depicted in
Figure 5.

4.1 User Interface (UI)
The framework by itself offers a command line interface to PSG.
To support intuitive access and interactive analysis capability, we
have integrated PSG into a web UI developed by Weija Xu et al. at
Texas Advance Computing Center, The University of Texas [17].
The web UI is designed to enable the use of pre-defined tasks using
a configuration file (workflow) which is reproducible and reusable.
We have designed a workflow which enables the use of our frame-
work. Users must login to the web application to use the workflow.
The workflow consists for a set of predefined tasks - File upload,
Execute script and View results.

4.1.1 File Upload. The first task is the file upload task, using which
the user can upload the divide and conquer scripts and the input data
as shown in Figures 6. The input files must be uploaded to the Input
folder and the user scripts must be uploaded to the User_Scripts
folder.

4.1.2 Execute Script. This task takes four input parameters from
the user as shown in Figure 7:

(1) Application name
(2) Divide script name
(3) Conquer script name
(4) Number of nodes (N) needed for parallelization.

https://ubccr.freshdesk.com/support/solutions/articles/5000688140-submitting-a-slurm-job-script
https://ubccr.freshdesk.com/support/solutions/articles/5000688140-submitting-a-slurm-job-script


Parallel Framework for Data-Intensive Computing with XSEDE ,

Figure 6: Step 1 - Upload Input Files and User Scripts

The location to the script to be executed is automatically pop-
ulated. The script is run on remote computing resources. Each of
user-specified parameters are used by the tasks performed by PSG
as described in the next section.

Figure 7: Step 2 - Execute Script

4.1.3 View Results. This task is used to view/download the output.
The user has the option to view the first 10 rows of the text file or
download the full output file from the remote resource as shown in
Figure 8.

4.2 Parallel scripts generator (PSG)
PSG is responsible for automatic code generation to facilitate par-
allel computing tasks using DC paradigm and to hide the parallel
computing details. PSG automatically generates code to enable the
parallel divide-and-conquer paradigm without any user interven-
tion. It uses batch processing model to access the underlying CI
resources. PSG performs four tasks.

Figure 8: Step 3 - View Results

4.2.1 Folder Structure. - PSG has a predefined folder structure as
depicted in Figure 9. The folder Interface contains the implementa-
tion of PSG. Users input data is uploaded to the Input folder and
user-defined scripts to the User_Scripts folder. The results of the di-
vide task are stored in the Intermediate folder and the results of the
conquer task are stored in Results folder. PSG uses the application
name specified by the user to create application-specific folder in
Input and User_Scripts folder to store the uploaded data.

Figure 9: Folder Structure

4.2.2 Split Data. - In this task, PSG takes input data files from
users and splits the input files equally among N nodes in order to
process the files in parallel. Each set of file paths is written to a file
using the notation files-x.txt where x is 1,2...,N. N files are created,
one for each node. This task is performed only for problems that
require input data. For problems that do not require input data, PSG
automatically goes to the next task.

Figure 10 illustrates the code automatically generated by this
task. In line 1, input points to the data location containing the input
dataset from user. In line 4, numNodes variable holds the number
of nodes specified by the user. Lines 6-8, read the number of files
in the input folder, obtains the full path for each file by recursively
loping through all the subfolders and splits them into a number of
chunks which is equal to numNodes. In lines 11-18, each chunk is
then written to a file. In our example, the path to input files are
split into 3 chunks and written to files, files-1.txt, files-2.txt and
files-3.txt.



,

Figure 10: Code generated by Split Data task. Code fragments in red
are user specified parameters

Suppose there are 10 input files calledNumText1.txt, NumText2.txt
and so on. Then, this task would split the files as shown in Figure
11.

Figure 11: Split Data task

4.2.3 Divide Task. - The divide script provided by the user is de-
signed to process one file at a time. The PSG divide task takes
files-x.txt generated in the previous step, loops over the file paths
and executes the user defined divide script until all the files are
processed. The divide task is executed in each node. Node 1 reads
files-1.txt, node 2 reads files-2.txt and so on. In this manner, all input
files are processed in parallel. The results of this task are written to
an intermediate folder.

The code generated by this task is depicted in Figure 12. In line 2,
node variable stores the node#. Since there are 3 nodes as specified
in the previous step, the nodes will be numbered from 0 to 2. Lines
3-7 takes input parameters for user-defined divide script name
and intermediate folder path to store the output of this step. In
line 9, depending on the node#, filename variable stores the name
of the file auto-generated in task 1. This file contains the list of
input file paths to be processed by each node. For each path in
this file, user-defined divide script is executed once. All the nodes
execute the divide script simultaneously until all input files have
been processed.

4.2.4 Conquer Task. - In this task, PSG takes intermediate results
from divide task as input and passes it to the user defined conquer
script to aggregate the results and to produce the final result which
is written to the Results folder. The results can then be downloaded

Figure 12: Code generated by Divide task. Code fragments in red are
user specified parameters

by the user using the web interface. This task is executed in serial.
It takes three input parameters - user-defined conquer script, in-
termediate folder and output folder path. Each of the files in the
intermediate folder is processed one at a time by the conquer script.
This task only starts execution upon successful completion of the
divide task. The code generated by this task is depicted in Figure
13.

Figure 13: Code generated by Conquer task. Code fragments in red
are user specified parameters

4.2.5 Batch Job Generation. - PSG automatically generates batch
processing scripts for divide and conquer tasks. This task is re-
sponsible for scheduling batch jobs, distributing the tasks among
compute nodes and tracking the job status. The conquer task will
not be executed if the divide task fails thereby saving time and
compute resources.

4.3 Cyberinfrastructure (CI)
All backend computing tasks are performed on remote resources
using batch processing model. The jobs are submitted to Linux
cluster job scheduler SLURM, using a batch script. All the tasks
performed by the framework are executed on Wrangler cluster at
The University of Texas at Austin’s Texas Advanced Computing
Center (TACC). Wrangler is the most powerful data analysis system
available in XSEDE. The system is designed for large-scale analytics,
data transfer and provides support for a wide range of workflows.
It is highly scalable for growth in the number of users and data
applications.

5 USE CASES
In this section, we demonstrate how the framework can be used
to facilitate data analytics tasks. We have used two popular exam-
ples, wordcount and Pi estimation using Monte Carlo simulation.
Wordcount program is data-intensive whereas Pi estimation is not.



Parallel Framework for Data-Intensive Computing with XSEDE ,

(a) Divide.R (b) Conquer.R

Figure 14: Wordcount User Code

5.1 Wordcount
Wordcount, widely used to demonstrate the advantage of parallel
computing, is the problem of counting the number of occurrences of
each word in a collection of documents. We have used Wordcount
problem to demonstrate how our framework handles data-intensive
problems. Figure 14 represents the user code for divide and con-
quer phases. Each of the program takes two input parameters in
accordance with the proposed DC algorithm.

The split data task splits the input data files equally among
different compute nodes. The divide task iterates through the files
created by the previous task and executes the user-defined divide
script once for each file. The divide script reads the contents of
the file and computes the number of occurrences of each word
in the file. The output of this task is written to the Intermediate
folder.The conquer task iterates through each of the intermediate
files, aggregates the count for each word and writes the output to
the Results folder.

Figure 15: Execution time for wordcount program

For this study, we have varied the number of input files from
10 to 200 in increments of 10. Each file is approximately 6Kb in
size. The number of nodes used for parallel processing is set to 10,
which means that 10 files will be processed simultaneously until all
the files have been processed. The goal of this study is to analyze
the performance gain using serial execution and parallel execution
facilitated by the framework. For serial execution analysis, the
number of nodes is set to 1. For both the parallel and the serial
programmingmodels, we have recorded the time it took to complete
both divide and conquer tasks. As seen in Figure 15, the framework
offers significant improvement in execution time by parallelizing

the data processing tasks. The execution time increases significantly
as the number of files increases. Using the framework proves to be
beneficial in data-intensive tasks since the load is divided among
several nodes and processed in parallel.

5.2 Pi Estimation
Pi is a mathematical constant and it is calculated using the ratio of
the circumference of a circle to its diameter. One common approach
of estimating Pi is by using the Monte Carlo method. The Monte
Carlo method uses statistics to solve problems. It uses random
numbers to simulate various statistical outcomes. With this method,
we cannot get the exact value but only an estimate by repeating a
random process. The higher the number of repetitions, the closer
we get to the exact value.

(a) (b)

Figure 16: Pi Estimation Using Monte Carlo Simulation

To estimate the value of Pi using Monte Carlo method, consider
a circle inside a square as shown in Figure 16 (a). The radius of the
circle is denoted by r and the length of each side of the square is 2r.
The area of the circle is Pi * r * r and the area of the square is (2r) *
(2r) which is equal to 4r2. Hence the ratio of the area of the circle
to the area of the square is Pi/4. Suppose we generate N uniformly
distributed random points inside the square as illustrated in Figure
16 (b). The total number of points inside the circle can be calculated
using the distance formula. The points with distance less than 1
represents the points inside the circle and it is denoted by R. The
value of Pi is then estimated using the formula Pi = R * 4/N, where
N is the sum of red and blue points. The performance is studied by
varying the number of random points generated. We have used Pi
estimation problem to study the effectiveness of our framework for
problems that are not data-intensive.



,

(a) Divide.R (b) Conquer.R

Figure 17: Pi Estimation User Code

The user code for divide and conquer phases are as depicted
in Figure 17. Since this use case does not require input data, PSG
skips the split data task. The divide script generates 10000 random
points. The points within the circle are written to red.txt and the
total number of points within the square are written to total.txt.
Both of these files are stored in the Intermediate folder. The conquer
task loops through the files in the Intermediate folder, estimates Pi
value using the given formula and writes it to the Results folder.

To analyze the performance gains for Pi estimation, we have
varied the number of iterations from 1000 to 100000. We varied the
number of nodes used depending on the number of iterations and
recorded the time it took to complete both divide and conquer tasks.
As seen in Figure 18, the framework does not offer significant time
gain. This is due to the fact that the program is not data-intensive,

Figure 18: Execution time for Pi estimation program

and parallelization causes some overhead thereby affecting the
performance gain. However, the execution is still faster with the
use of the framework and it also offers a way to easily scale the
program for larger computations.

6 CONCLUSION
This paper proposes a framework that uses divide-and-conquer
paradigm to automatically parallelize user scripts while hiding de-
tails of parallelization. The framework enhances accessibility to
advanced CI and automatically generates code for parallel comput-
ing of data-intensive tasks. It is easy to use even for programmers
who have little to no knowledge of parallel systems and parallel pro-
gramming languages. In addition to that, a large variety of problems
can be easily expressed as divide-and-conquer computations.

ACKNOWLEDGMENTS
This work was supported by NSF award #1726532. The workflow
and web-based UI is developed in collaboration with TACC and
tested on Wrangler cluster.

REFERENCES
[1] Yuhuan Cui, Jingguo Qu, Weili Chen and Aimin Yang, "Divide and conquer

algorithm for computer simulation and application in the matrix eigenvalue
problem," 2009 International Conference on Test and Measurement, Hong Kong,
2009, pp. 319-322.doi:10.1109/ICTM.2009.5412930.

[2] Stuart Hadfield and Anargyros Papageorgiou, "Divide and conquer approach to
quantum Hamiltonian simulation", 2018 New Journal of Physics

[3] M. D. A. Praveena and B. Bharathi, "A survey paper on big data analytics," 2017
International Conference on Information Communication and Embedded Systems
(ICICES), Chennai, 2017, pp. 1-9. doi: 10.1109/ICICES.2017.8070723

[4] Parhami B. (2018) Parallel Processing with Big Data. In: Sakr S., Zomaya A. (eds)
Encyclopedia of Big Data Technologies. Springer, Cham

[5] Horowitz and Zorat, "Divide-and-Conquer for Parallel Processing," in IEEE
Transactions on Computers, vol. C-32, no. 6, pp. 582-585, June 1983. doi:
10.1109/TC.1983.1676280

[6] Hui Zhang, Yiwen Zhong, Juan Lin, "Divide-and-Conquer Strategies for Large-
scale Simulations in R", 2017 IEEE International Conference on Big Data (BIG-
DATA)

[7] Subramanian, Ranjini Zhang, Hui. (2018). Performance Analysis of Divide-
and-Conquer strategies for Large scale Simulations in R. 4261-4267. 0.1109/Big-
Data.2018.8622068.

[8] Zhuang, Peixian Fu, Xueyang Huang, Yue Ding, Xinghao. (2017). Image Enhance-
ment Using Divide-and- Conquer Strategy. Journal of Visual Communication
and Image Representation. 45. 10.1016/j.jvcir.2017.02.018.

[9] Yoo, M. Jette, and M. Grondona, "Slurm: Simple Linux Utility for Resource Man-
agement ," Job Scheduling Strategies for Parallel Processing, Lecture Notes in
Computer Science, vol. 2862, pp. 44-60, 2003

[10] Rstuido Team. R Studio. [Online]. https://www.rstudio.com/
[11] Merchant, Nirav, et al., "The iPlant Collaborative: Cyberinfrastructure for En-

abling Data to Discovery for the Life Sciences," PLOS Biology, 2016.
[12] Vera, Gonzalo, Ritsert C. Jansen and Remo Suppi. âĂĲR/parallel âĂŞ speeding

up bioinformatics analysis with R.âĂİ BMC Bioinformatics 9 (2008): 390 - 390.
[13] Ruan, Guangchen Zhang, Hui Wernert, Eric Plale, Beth. (2014). TextRWeb:

Large-Scale Text Analytics with R on the Web. ACM International Conference
Proceeding Series. 10.1145/2616498.2616557.

[14] Ji Kang, Sol Yeon Lee, Sang Lee, Keon Myung. (2015). Performance Comparison
of OpenMP, MPI, and MapReduce in Practical Problems. Advances in Multimedia.
2015. 1-9. 10.1155/2015/575687.

[15] Dean, Jeffrey Ghemawat, Sanjay. (2004). MapReduce: Simplified Data Pro-
cessing on Large Clusters. Communications of the ACM. 51. 137-150.
10.1145/1327452.1327492.

[16] V. Kalavri and V. Vlassov, "MapReduce: Limitations, Optimizations and Open
Issues," 2013 12th IEEE International Conference on Trust, Security and Privacy
in Computing and Communications, Melbourne, VIC, 2013, pp. 1031-1038. doi:
10.1109/TrustCom.2013.126

[17] Xu, Weijia Huang, Ruizhu Wang, Yige. (2018). Enabling User Driven Web
Applications on Remote Computing Resource. 10.1109/SERVICES.2018.00038.

[18] I. Gorton, P. Greenfield, A. Szalay and R. Williams, Data-Intensive Computing in
the 21st Century, in Computer, vol 41, no. 4, pp. 30-32.doi :10.1109/MC.2008.122
(2008)


	Abstract
	1 Introduction
	2 Background
	2.1 Divide-and-Conquer (DC) paradigm 

	3 Basic Design
	3.1 Process Flow
	3.2 Cyberinfrastructure (CI) model
	3.3 Advantages

	4 Implementation Details
	4.1 User Interface (UI)
	4.2 Parallel scripts generator (PSG)
	4.3 Cyberinfrastructure (CI)

	5 Use Cases
	5.1 Wordcount
	5.2 Pi Estimation

	6 Conclusion
	Acknowledgments
	References

