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Abstract— As the volume of data and technical complexity
of large-scale analysis increases, many domain experts desire
powerful computational and familiar analysis interface to fully
participate in the analysis workflow by just focusing on
individual datasets, leaving the large-scale computation to the
system. Towards this goal, we investigate and benchmark a
family of Divide-and-Conquer strategies that can help domain
experts perform large-scale simulations by scaling up their
analysis code written in R, the most popular data science and
interactive analysis language. We implement the Divide-and-
Conquer strategies that use R as the analysis (and computing)
language, allowing advanced users to provide custom R scripts
and variables to be fully embedded into the large-scale analysis
workflow in R. The whole process will divide large-scale
simulations tasks and conquer tasks with Slurm array jobs and
R. Simulations and final aggregations are scheduled as array
jobs in parallel means to accelerate the knowledge discovery
process. The objective is to provide a new analytics workflow
for performing similar large-scale analysis loops where expert
users only need to focus on the Divide-and-Conquer tasks with
the domain knowledge.
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I. INTRODUCTION

Simulation is a good means to evaluate various
methodologies that can be used to study the accuracy and
efficiency of the model. It allows the user to study the
model’s behavior under different conditions. In this paper,
we consider a general framework that is useful in performing
large-scale  computational simulations, where each
simulation generates its intermediate analysis outcome
towards the final aggregated results to be analyzed. The
question being asked in our study is how to divide large-
scale simulation tasks for parallel execution and aggregate
the intermediate simulation outcomes in the most efficient
way in a high-performance computing environment.

We have designed and implemented the simulation
methods in R programming language. The R statistical
programming environment provides an ideal platform to
conduct simulation studies. R incorporates features common
in most programming languages such as loops, random
number generators, conditional (if-then) logic, branching,
and reading and writing of data, all of which facilitate the
generation and analysis of data over many repetitions that is
required for many simulation studies [1]. R is open source
and can be run across a variety of operating systems.

R programming language is designed to make analysis
and statistical investigation easier but it is not designed for
high performance. Often times, we are required to conduct
large-scale simulations studies using high volumes of data. It
is easy to run small-scale simulation in R but it poses a
challenge in terms of experimental setup and computational
capability when it comes to processing and generating large
datasets. In this paper, we discuss the procedures in
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designing and implementing Divide and Conquer strategies
for performing large-scale simulations using R that can be
used in a variety of simulation studies. The major
contribution of this work are simple and powerful
frameworks that enables parallelization of large-scale
computation. We will illustrate possible performance gains
from using parallel (divide-and-conquer) framework by
comparing it to the base case.

Sections II and III address the background and
motivation behind this work, section IV describes the basic
structure. Section V explores the different programming
models. Section VI has performance measurements of our
implementation for different batch sizes.

II. BACKGROUND

In many academic domains, there are several opportunities
for discovering new things due to the availability of high
volumes of data. But it poses a challenge in terms of the
computational power needed to analyze the data and extract
information from it. This raises a question of if we should
invest in new computing models or if the existing software
and hardware tools can be combined to meet the computing
needs. Although the shift in analytical models to meet the
needs of Big Data analysis is inevitable, it is costly and
could take a significant amount of time. To meet our
immediate needs, it is possible to combine current software
and hardware tools to scale up computations. In this paper,
we focus on how current hardware technology can be
coupled with R programming language to achieve massive
parallelism.

R programming language is widely used in Big Data
analysis due to its high extensibility and open source
development. Several packages in R was developed to solve
problems in various domains, such as clinical science [2],
bioinformatics [3, 4], geoscience [5], social science [6], to
name a few. Although R is a “high productivity” language, it
lacks the control and structures to support highly efficient
code. One approach is to use parallel packages in R. It is
done by rewriting some basic functions or processing flow
with the corresponding parallel version provided by the
parallel packages. This requires extensive knowledge of R
code and parallel mechanism supported by these packages.
The second approach is to break large data sets into chunks
and process each chunk in parallel. This approach makes use
of the hardware capability instead of fully relying on R
parallel packages. We use the second approach for our study
[7].

To fully exploit the hardware capability, we use Slurm
job array jobs on Stampede2. Job arrays offer a mechanism
for submitting and managing collections of similar jobs
quickly and easily. Job arrays with millions of tasks can be
submitted in milliseconds. This is best suited for the Divide-
and-Conquer strategy we use for our study.



1. MOTIVATION

Divide-and-Conquer is an algorithm design
paradigm based on multi-branched recursion. A Divide-and-
Conquer algorithm works by (recursively) breaking down a
problem into many sub-problems of the same or related
type, until these become (computationally) simple enough to
be solved directly. Individual solutions to the sub-problems
are then aggregated to give the final solution to the original
problem [8]. The divide and conquer paradigm is often used
to find the optimal solution of a problem. Its basic idea is to
decompose a given problem into two or more similar, but
simpler, subproblems, to solve them in turn, and to compose
their solutions to solve the given problem. Problems of
sufficient simplicity are solved directly. Divide and conquer
is a powerful tool for solving conceptually difficult
problems: all it requires is a way of breaking the problem
into sub-problems, of solving the trivial cases and of
combining sub-problems to the original problem. Divide and
conquer algorithms are naturally adapted for execution in
multi-processor machines, especially shared-memory
systems where the communication of data between
processors does not need to be planned in advance, because
distinct sub-problems can be executed on different
processors. The Divide-and-Conquer technique is the basis
of efficient algorithms for many large-scale simulation
problems. Yuhuan proposes using divide and conquer
algorithm for simulation of matrix eigenvalue problem [9].
Harfield used divide and conquer approach for simulating
quantum mechanical systems on quantum computers. They
have obtained fast simulation algorithms using Hamiltonian
structure [10].

Divide and conquer methodology is often used for large-
scale simulations. This approach works in two phases —
Divide phase and Conquer phase. In the Divide phase, an
array of simulation jobs is run to produce a list of
intermediate results. This is done by running the same
computation to different values. In the Conquer phase, the
intermediate results are combined or aggregated to produce
final results.

While R is increasing in popularity over the last few
years, many large-scale simulation studies are conducted in
the R programming environment with parallel computation
implemented. When implementing parallel R computation,
the simulation program needs to start with setting up a
cluster — a collection of “workers” that will be doing the
job. This way of parallel R computing is designed aiming at
executing long jobs in an enormous number of combine
computing nodes offering computing and storage. Acquiring
the “workers” becomes non-trivial for simulations that can
be divided into thousands of short running jobs. The waiting
and configuration time for the parallel resources can be much
longer than the actual parallelized processing time, resulting
in poor response time and inefficient performance with the
traditional parallel R solution [11].

Our task in this paper is to show how one can fully
exploit R and use Slurm array jobs to conquer large-scale
simulations in R. We start with a simple R simulation that
produces a number of intermediate CSV files and extend that
for more repetitions performed by different “workers”. The
intermediate files are then aggregated to produce the final
output files.

IV. BASIC STRUCTURE

In this section, we present three R scripts and their
parameters to illustrate the Divide-and-Conquer phases in
large-scale simulation.

All models have three main parameters:
e B - Batch size
e I - Number of intermediate files
e D - Dimension of intermediate file

The two scripts are:

e Simulation.R — The simulation script is coded to be
executed as a Slurm task array job. The simulation
R script takes two parameters, (B,/). B is the batch
size and / is the number of intermediate output
files. Simulation.R is executed B times and for each
execution, the process is imitated I times. Each
simulation generates / types of intermediate files.
The total number of files produced by this step are
BxI. The intermediate files are generated using
random numbers.

e Aggregate.R — This script first checks to see if all
B simulations have completed execution. It checks
for the last intermediate file in each folder. The
intermediate files generated by Simulation.R are
then aggregated by the type of file. / number of
files are generated by this phase — one for each
type. These files are used for further analysis

The Divide-and-Conquer strategy performs well with
small-to-medium sized outcome data. However, when a
large number of simulations are involved, the size of the
output data increases linearly. Processing large data sets
could take too long or even fail since R keeps all objects in
memory.

In the next section, we will present four different
programming models to process and generate large data
sets.

V. PROGRAMMING MODEL

For this study, we have implemented four divide-
and-conquer strategies to process and generate large datasets.
These strategies explore the effects of serial and parallel
modes of processing.

A. Serial Framework (SsAs)

In this model, simulation and aggregation are executed
sequentially. The simulation job performs multiple tasks
sequentially. The simulation job is run B times and each run
produces / number of intermediate files. The aggregation
job then executes sequentially, each time merging a certain
type of intermediate file. The aggregation task is executed P
times, once for each type of file.

In the serial framework, an R script called Scheduler.R
is used to execute Sim.R and Aggregate.R. The batch size,
B, the number of intermediate files, 7, are specified in the
Scheduler.R file. The batch file executes the Scheduler.R
file once. The scheduler then loops through Sim.R B times
and each run of Sim.R creates a folder and produces 1
intermediate file in each folder. In this model, we use Ss to



refer to serial execution of simulation and A4s to refer to
serial execution of aggregation.

This framework requires only one node to execute. It
uses a single core on a single node. This model is the least
efficient of all since it will take a long time to process and
generate all the files. The execution might also fail because
R keeps all the objects in memory.
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Fig. 1. Serial (SsAs) Framework

B. Parallel - Serial Framework (SpAs)

In this model, the simulation task is split into independent
jobs that are executed by the Slurm array job in parallel. N
nodes execute simulation job once. Each job produces /
intermediate files. The batch size, B, is specified in the batch
file. B is equivalent to N, the number of nodes executing
simulation job in parallel.

The aggregation job then executes sequentially, each time
merging a certain type of intermediate file. The aggregation
task is executed P times, once for each type of file. In this
model, we use Sp to refer to parallel execution of simulation
and A to refer to serial execution of aggregation.

This framework requires B nodes for simulation and one
node for aggregation. Two batch files are needed to execute
the simulation and aggregation task separately. This
framework exploits parallelism to some extent. This model
performs better than the serial framework but the aggregation
task could still take a long time to complete or it could result
in the task failing to complete.
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Fig. 2. Parallel - Serial (SpAs) Framework

C. Parallel Framework

In this framework, simulation and aggregation jobs are
both executed in parallel. The simulation task is split into
independent jobs that are executed by the Slurm array job in
parallel. B nodes execute simulation job once. Each job
produces / intermediate files.

The aggregation job is then split into independent jobs
executed in parallel by another Slurm array job. I nodes
execute the aggregation job once. Each job aggregates a
certain type of intermediate file.

Two batch files are used to execute the simulation and
aggregation tasks. In the batch file for simulation, batch size
is specified to be equivalent to the number of nodes running
Simulation.R in parallel. In the batch file for aggregation,
we specify the number of intermediate files, /, which is also
the number of nodes performing aggregation to produce
final output.

This framework requires B nodes for simulation and /
nodes for aggregation. In this model, we use Sp to refer to
parallel execution of simulation and 4p to refer to parallel
execution of aggregation

This framework exploits parallelism to a great degree.
Since each job requests new compute resources from a
separate process, there could be a delay if compute nodes
are unavailable. This leads to another framework that
combines the simulation and aggregation job and executes
them using one Slurm array job.
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D. Improved Parallel Framework

In this improved parallel framework, simulation and
aggregation is integrated into one script. Both tasks are
executed in parallel by a single Slurm array job submission
by running on the same set of allocated compute nodes. This
model exploits parallelism to the fullest. It accelerates the
aggregation task by using the already available compute
nodes instead of requesting new compute nodes from a
separate process.

Since the simulation and aggregation logic are integrated
into one script, they can communicate and synchronize with
each other. This R script has two functions:

e  The simulation (map) tasks is done in parallel by B
nodes, where B is the batch size

e The aggregation task is then performed by the first
I (number of intermediate files) nodes out of the B
compute nodes already reserved for this task. The
aggregation task begins execution when the
number of simulation tasks remaining is less than
or equal to /

This framework requires a maximum of B (batch size)
nodes for the entire execution. Since both simulation and
aggregation scripts are integrated into one script, we will
refer to this as S4. This new structure utilizes the available
resources to the maximum degree. The large number of
compute nodes running simulations will continue (if
necessary) to perform as Aggregators. Since the simulation
and aggregation logic are now implemented within one R
script, it is easy for the two tasks to communicate and
coordinate with each other to complete the whole task using
the Divide-and-Conquer paradigm. In this way we also
minimize Slurm scheduling burden on HPC side [11].
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Fig. 4. Improved Parallel (SA) Framework

VI. CASE STUDY

To study the effects of various models, we have
used a supercomputer, Stampede2. Stampede2, generously
funded by the National Science Foundation (NSF) through
award ACI-1134872, is the flagship supercomputer at the
Texas Advanced Computing Center (TACC), University of
Texas at Austin. It entered full production in the Fall 2017
as an 18-petaflop national resource that builds on the
successes of the original Stampede system it replaces.
Stampede2 hosts 4,200 KNL compute nodes. Each of
Stampede2's Knights Landing (KNL) nodes includes 96GB
of traditional DDR4 Random Access Memory (RAM). They
also feature an additional 16GB of high bandwidth, on-
package memory known as Multi-Channel Dynamic
Random Access Memory (MCDRAM) that is up to four
times faster than DDR4.

We connect to Stampede?2 through a login node and
run the jobs on compute nodes. The compute nodes are
accessed by submitting a batch job using the sbatch
command.

For this case study we have used three main
parameters:

e B -Batchsize
e /- Number of intermediate files
e D - Dimension of intermediate file

B is varied from 100 to 1000 in increments of 100
and 2000. / is set to 10 for all batch sizes and D is set to 100
x 100. In Simulation.R, we have included a 45 second wait
to mimic the time needed to perform application-specific
tasks.

For each programming model, we have recorded
the time it took the model to complete simulation and
aggregation tasks for different batch sizes.

a) Serial Framework - In this model, all tasks are
executed sequentially. All simulation tasks must complete
before aggregation can begin. Simulation.R is executed B
times and Aggregation.R is executed / times. Execution time
for each batch size is provided in Table I. The execution
takes several hours to complete, and the time increases
linearly with batch size. This method is highly inefficient
since it only uses one core per each node thereby wasting
significant processing power. As batch sizes increase, there
is a possibility of incomplete or failed tasks due to memory
issues and unavailability of compute nodes.



TABLE I
EXECUTION TIME FOR SERIAL FRAMEWORK
Batch Size Time (in hours)

100 1.26

200 2.52

300 3.78

400 5.05

500 6.31

600 7.57

700 8.84

800 Failed

900 Failed
1000 Failed
2000 Failed

b)  Parallel - Serial Framework - In this model,
simulation is executed in parallel and aggregation tasks are
executed sequentially. All simulation tasks must complete
before aggregation can begin. Simulation.R is executed B
times in parallel which is equivalent to running it just once
and Aggregation.R is executed / times sequentially. Two
separate processes are used to request the compute nodes
needed for simulation and aggregation. This could cause a
delay if the required amount of compute nodes is not
available. Execution time for each batch size is provided in
Table II. The execution takes few seconds to several
minutes, greatly reducing the execution time compared to
serial execution. The bulk of the time is due to the serial
execution of aggregation task. This method exploits
parallelism to some degree. This model may be useful for
applications where bulk of the processing is done in the
simulation phase. For aggregation-heavy tasks, this model
will be inefficient.

TABLE I
EXECUTION TIME FOR PARALLEL - SERIAL FRAMEWORK

Batch Size Time (in seconds)
100 73
200 104
300 130
400 162
500 185
600 223
700 252
800 271
900 304
1000 336
2000 725

¢)  Parallel Framework - In this model, simulation and
aggregation tasks are executed in parallel but aggregation
tasks cannot begin before the completion of all simulation
tasks. Simulation.R is executed B times in parallel which is
equivalent to running it just once and Aggregation.R is
executed / times in parallel. Two separate processes are used
to request the compute nodes needed for simulation and
aggregation. Execution time for each batch size is provided
in Table III. The execution takes a few seconds to complete,
further reducing the execution time compared to the
previous models. Although this method exploits parallelism
to a great degree, there could be a delay if the compute
nodes are unavailable. Also, this method does not reuse

compute nodes that have finished execution thereby wasting
valuable resources. Table IV shows the execution time
including wait time to acquire compute nodes for
aggregation.

TABLE III
EXECUTION TIME FOR PARALLEL FRAMEWORK

Batch Size Time (in seconds)
100 53
200 56
300 60
400 63
500 65
600 69
700 71
800 74
900 77
1000 80
2000 111

TABLE IV
EXECUTION TIME FOR PARALLEL FRAMEWORK (Incl. Wait time)

Batch Size Time (in seconds)
100 100
200 104
300 188
400 106
500 454
600 238
700 114
800 325
900 123
1000 174
2000 916

d) Improved Parallel Framework - In this model,
simulation and aggregation tasks are executed in parallel but
unlike previous models, aggregation tasks begin execution
before the completion of all simulation tasks. Simulation.R
is executed B times in parallel which is equivalent to
running it just once and Aggregation.R is executed / times
in parallel. The aggregation task begins execution once the
number of simulation tasks remaining is less than or equal to
1. Only one Slurm array job is used to request the compute
nodes needed for simulation and aggregation, thereby
reusing compute nodes and avoiding the delay caused by
unavailability of new compute nodes for aggregation.
Execution time for each batch size is provided in Table V.
The execution takes a few seconds to complete and it is
comparable to parallel framework if we don’t take into the
account the delay caused for requesting new set of compute
nodes for aggregation. This method exploits parallelism to
the maximum. It also saves time and processing power by
reusing compute nodes.

TABLE V
EXECUTION TIME FOR IMPROVED PARALLEL FRAMEWORK
Batch Size Time (in seconds)
100 53
200 58
300 62
400 66
500 69




600 74
700 78
800 82
900 87
1000 91
2000 132

A. Comparison of different frameworks

Serial execution takes considerably longer to complete
execution compared to the other three models as seen in Fig
5. As seen in the figure, time increases linearly with batch
size. The execution failed for batch size >= 800 due to
memory issues. Hence it is evident that this method is not
suitable for processing large CSV files. Hence, we will
focus our discussion on the benefits and shortcomings of the
other three models in the rest of the paper.
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Fig. 5. Comparison of All Frameworks

B.  Parallel — serial framework vs Parallel framework

As shown in Fig 6, there is a 19% decrease in execution
time between the two models. This could mean a significant
difference if either the batch size, dimension of file or
application-specific task processing time increases. When
the batch size is increased from 1000 to 2000, the time for
parallel-serial framework more than doubles. Whereas, in
the parallel framework there is only a 38% increase in
execution time. This shows that parallel framework
performs significantly better than parallel-serial framework.
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Fig. 6. Parallel-Serial Vs Parallel Frameworks

C. Parallel framework vs Improved Parallel framework

The time recorded for parallel framework in Fig 7, does
not include the extra time needed to acquire the new set of

compute nodes for aggregation. The improved parallel
framework takes a few extra seconds to complete compared
to the parallel framework. This is due to the way R language
handles memory usage. R programming language was
designed to make analysis and statistical investigations
easier, but it is not designed for high performance. The
increasing data in memory and IO operations cause the
execution to take a few extra seconds to complete. For batch
size of 2000, there is an 18% increase in time. Even though
it takes extra time, it is negligible compared to the amount
of time it could take for new set of nodes to be available to
perform aggregation.

In order to compare these two frameworks, we take into
account the wait time for compute nodes to demonstrate the
advantage of reusing already allocated compute nodes.
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Fig. 7. Parallel Vs Improved Parallel Frameworks

D. Parallel framework vs Improved Parallel framework
(with wait time)

The Fig 8 shows the execution time for parallel and
improved parallel framework with the wait time for
allocating new compute nodes for aggregation. Allocation of
new compute nodes could take anywhere from a few
seconds to few hours depending on the availability of
compute nodes. When wait time is taken into account,
parallel framework is significantly slow compared to
improved parallel framework. In the parallel framework,
there is a 500% increase in execution time for batch size of
2000.

Even though, improved parallel framework takes a few
extra seconds to finish execution due to memory
management and IO operations, it far outweighs the
disadvantage of allocating new compute nodes. Hence,
reusing existing nodes saves computational resources and
time.
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VII.CONCLUSION

In this paper, we have discussed four different divide-and-
conquer frameworks to process and generate large CSV
files. We have learned several things from this work. First,
our model makes it easy to parallelize computations.
Second, compute nodes are expensive and take significant
time for allocation. Third, our framework shows that the
increase in execution time due to memory management can
be offset by reusing compute nodes. In the improved parallel
framework, our study shows the tradeoff between reusing
compute nodes and memory management. We have
provided a new analytics workflow for performing similar
large-scale analysis loops where expert users only need to
focus on the Divide-and-Conquer tasks with the domain
knowledge. R programming language is extensively used for
data analysis and this study provides a generalized

framework that can be tailored to specific applications with
little effort.
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