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Abstract— As the volume of data and technical complexity 
of large-scale analysis increases, many domain experts desire 
powerful computational and familiar analysis interface to fully 
participate in the analysis workflow by just focusing on 
individual datasets, leaving the large-scale computation to the 
system. Towards this goal, we investigate and benchmark a 
family of Divide-and-Conquer strategies that can help domain 
experts perform large-scale simulations by scaling up their 
analysis code written in R, the most popular data science and 
interactive analysis language. We implement the Divide-and-
Conquer strategies that use R as the analysis (and computing) 
language, allowing advanced users to provide custom R scripts 
and variables to be fully embedded into the large-scale analysis 
workflow in R. The whole process will divide large-scale 
simulations tasks and conquer tasks with Slurm array jobs and 
R. Simulations and final aggregations are scheduled as array 
jobs in parallel means to accelerate the knowledge discovery 
process. The objective is to provide a new analytics workflow 
for performing similar large-scale analysis loops where expert 
users only need to focus on the Divide-and-Conquer tasks with 
the domain knowledge.  

Keywords—Divide-and-conquer, Slurm array jobs, 
Parallel processing, R programming language 

I. INTRODUCTION  
 Simulation is a good means to evaluate various 

methodologies that can be used to study the accuracy and 
efficiency of the model. It allows the user to study the 
model’s behavior under different conditions. In this paper, 
we consider a general framework that is useful in performing 
large-scale computational simulations, where each 
simulation generates its intermediate analysis outcome 
towards the final aggregated results to be analyzed. The 
question being asked in our study is how to divide large-
scale simulation tasks for parallel execution and aggregate 
the intermediate simulation outcomes in the most efficient 
way in a high-performance computing environment.  

We have designed and implemented the simulation 
methods in R programming language. The R statistical 
programming environment provides an ideal platform to 
conduct simulation studies. R incorporates features common 
in most programming languages such as loops, random 
number generators, conditional (if-then) logic, branching, 
and reading and writing of data, all of which facilitate the 
generation and analysis of data over many repetitions that is 
required for many simulation studies [1]. R is open source 
and can be run across a variety of operating systems. 

R programming language is designed to make analysis 
and statistical investigation easier but it is not designed for 
high performance. Often times, we are required to conduct 
large-scale simulations studies using high volumes of data. It 
is easy to run small-scale simulation in R but it poses a 
challenge in terms of experimental setup and computational 
capability when it comes to processing and generating large 
datasets. In this paper, we discuss the procedures in 

designing and implementing Divide and Conquer strategies 
for performing large-scale simulations using R that can be 
used in a variety of simulation studies. The major 
contribution of this work are simple and powerful 
frameworks that enables parallelization of large-scale 
computation. We will illustrate possible performance gains 
from using parallel (divide-and-conquer) framework by 
comparing it to the base case.  

Sections II and III address the background and  
motivation behind this work, section IV describes the basic 
structure. Section V explores the different programming 
models. Section VI has performance measurements of our 
implementation for different batch sizes. 

II. BACKGROUND 
In many academic domains, there are several opportunities 
for discovering new things due to the availability of high 
volumes of data. But it poses a challenge in terms of the 
computational power needed to analyze the data and extract 
information from it. This raises a question of if we should 
invest in new computing models or if the existing software 
and hardware tools can be combined to meet the computing 
needs. Although the shift in analytical models to meet the 
needs of Big Data analysis is inevitable, it is costly and 
could take a significant amount of time. To meet our 
immediate needs, it is possible to combine current software 
and hardware tools to scale up computations.  In this paper, 
we focus on how current hardware technology can be 
coupled with R programming language to achieve massive 
parallelism.  

 R programming language is widely used in Big Data 
analysis due to its high extensibility and open source 
development. Several packages in R was developed to solve 
problems in various domains, such as clinical science [2], 
bioinformatics [3, 4], geoscience [5], social science [6], to 
name a few. Although R is a “high productivity” language, it 
lacks the control and structures to support highly efficient 
code. One approach is to use parallel packages in R. It is 
done by rewriting some basic functions or processing flow 
with the corresponding parallel version provided by the 
parallel packages. This requires extensive knowledge of R 
code and parallel mechanism supported by these packages. 
The second approach is to break large data sets into chunks 
and process each chunk in parallel. This approach makes use 
of the hardware capability instead of fully relying on R 
parallel packages. We use the second approach for our study 
[7].  

To fully exploit the hardware capability, we use Slurm 
job array jobs on Stampede2. Job arrays offer a mechanism 
for submitting and managing collections of similar jobs 
quickly and easily. Job arrays with millions of tasks can be 
submitted in milliseconds. This is best suited for the Divide-
and-Conquer strategy we use for our study.  



III. MOTIVATION 
Divide-and-Conquer is an algorithm design 

paradigm based on multi-branched recursion. A Divide-and-
Conquer algorithm works by (recursively) breaking down a 
problem into many sub-problems of the same or related 
type, until these become (computationally) simple enough to 
be solved directly. Individual solutions to the sub-problems 
are then aggregated to give the final solution to the original 
problem [8]. The divide and conquer paradigm is often used 
to find the optimal solution of a problem. Its basic idea is to 
decompose a given problem into two or more similar, but 
simpler, subproblems, to solve them in turn, and to compose 
their solutions to solve the given problem. Problems of 
sufficient simplicity are solved directly. Divide and conquer 
is a powerful tool for solving conceptually difficult 
problems: all it requires is a way of breaking the problem 
into sub-problems, of solving the trivial cases and of 
combining sub-problems to the original problem. Divide and 
conquer algorithms are naturally adapted for execution in 
multi-processor machines, especially shared-memory 
systems where the communication of data between 
processors does not need to be planned in advance, because 
distinct sub-problems can be executed on different 
processors. The Divide-and-Conquer technique is the basis 
of efficient algorithms for many large-scale simulation 
problems. Yuhuan proposes using divide and conquer 
algorithm for simulation of matrix eigenvalue problem [9]. 
Harfield used divide and conquer approach for simulating 
quantum mechanical systems on quantum computers. They 
have obtained fast simulation algorithms using Hamiltonian 
structure [10].  

Divide and conquer methodology is often used for large-
scale simulations. This approach works in two phases – 
Divide phase and Conquer phase. In the Divide phase, an 
array of simulation jobs is run to produce a list of 
intermediate results. This is done by running the same 
computation to different values. In the Conquer phase, the 
intermediate results are combined or aggregated to produce 
final results.  

While R is increasing in popularity over the last few 
years, many large-scale simulation studies are conducted in 
the R programming environment with parallel computation 
implemented. When implementing parallel R computation, 
the simulation program needs to start with setting up a 
cluster — a collection of “workers” that will be doing the 
job. This way of parallel R computing is designed aiming at 
executing long jobs in an enormous number of combine 
computing nodes offering computing and storage. Acquiring 
the “workers” becomes non-trivial for simulations that can 
be divided into thousands of short running jobs. The waiting 
and configuration time for the parallel resources can be much 
longer than the actual parallelized processing time, resulting 
in poor response time and inefficient performance with the 
traditional parallel R solution [11]. 

Our task in this paper is to show how one can fully 
exploit R and use Slurm array jobs to conquer large-scale 
simulations in R. We start with a simple R simulation that 
produces a number of intermediate CSV files and extend that 
for more repetitions performed by different “workers”. The 
intermediate files are then aggregated to produce the final 
output files. 

IV. BASIC STRUCTURE 
In this section, we present three R scripts and their 

parameters to illustrate the Divide-and-Conquer phases in 
large-scale simulation.  
 

All models have three main parameters:  
• B - Batch size 
• I - Number of intermediate files 
• D - Dimension of intermediate file 

 
The two scripts are: 
• Simulation.R – The simulation script is coded to be 

executed as a Slurm task array job. The simulation 
R script takes two parameters, (B,I). B is the batch 
size and I is the number of intermediate output 
files. Simulation.R is executed B times and for each 
execution, the process is imitated I times. Each 
simulation generates I types of intermediate files. 
The total number of files produced by this step are 
BxI. The intermediate files are generated using 
random numbers.  

• Aggregate.R – This script first checks to see if all 
B simulations have completed execution. It checks 
for the last intermediate file in each folder. The 
intermediate files generated by Simulation.R are 
then aggregated by the type of file. I number of 
files are generated by this phase – one for each 
type. These files are used for further analysis 

 
The Divide-and-Conquer strategy performs well with 

small-to-medium sized outcome data. However, when a 
large number of simulations are involved, the size of the 
output data increases linearly. Processing large data sets 
could take too long or even fail since R keeps all objects in 
memory.  

In the next section, we will present four different 
programming models to process and generate large data 
sets. 

V. PROGRAMMING MODEL 
 For this study, we have implemented four divide-

and-conquer strategies to process and generate large datasets. 
These strategies explore the effects of serial and parallel 
modes of processing.  

A. Serial Framework (SSAS) 
In this model, simulation and aggregation are executed 

sequentially. The simulation job performs multiple tasks 
sequentially. The simulation job is run B times and each run 
produces I number of intermediate files. The aggregation 
job then executes sequentially, each time merging a certain 
type of intermediate file. The aggregation task is executed P 
times, once for each type of file.  

In the serial framework, an R script called Scheduler.R 
is used to execute Sim.R and Aggregate.R. The batch size, 
B, the number of intermediate files, I, are specified in the 
Scheduler.R file. The batch file executes the Scheduler.R 
file once. The scheduler then loops through Sim.R B times 
and each run of Sim.R creates a folder and produces I 
intermediate file in each folder. In this model, we use SS to 



refer to serial execution of simulation and AS to refer to 
serial execution of aggregation.  

This framework requires only one node to execute. It 
uses a single core on a single node.  This model is the least 
efficient of all since it will take a long time to process and 
generate all the files. The execution might also fail because 
R keeps all the objects in memory. 
 

 
Fig. 1. Serial (SSAS) Framework 

B. Parallel - Serial Framework (SPAS) 
In this model, the simulation task is split into independent 

jobs that are executed by the Slurm array job in parallel. N 
nodes execute simulation job once. Each job produces I 
intermediate files. The batch size, B, is specified in the batch 
file. B is equivalent to N, the number of nodes executing 
simulation job in parallel.  

The aggregation job then executes sequentially, each time 
merging a certain type of intermediate file. The aggregation 
task is executed P times, once for each type of file. In this 
model, we use SP to refer to parallel execution of simulation 
and AS to refer to serial execution of aggregation.  

This framework requires B nodes for simulation and one 
node for aggregation. Two batch files are needed to execute 
the simulation and aggregation task separately. This 
framework exploits parallelism to some extent. This model 
performs better than the serial framework but the aggregation 
task could still take a long time to complete or it could result 
in the task failing to complete. 
 

 
Fig. 2. Parallel - Serial (SPAS) Framework 

C. Parallel Framework 
In this framework, simulation and aggregation jobs are 

both executed in parallel. The simulation task is split into 
independent jobs that are executed by the Slurm array job in 
parallel. B nodes execute simulation job once. Each job 
produces I intermediate files.  

The aggregation job is then split into independent jobs 
executed in parallel by another Slurm array job. I nodes 
execute the aggregation job once. Each job aggregates a 
certain type of intermediate file.  

Two batch files are used to execute the simulation and 
aggregation tasks. In the batch file for simulation, batch size 
is specified to be equivalent to the number of nodes running 
Simulation.R in parallel. In the batch file for aggregation, 
we specify the number of intermediate files, I, which is also 
the number of nodes performing aggregation to produce 
final output.  

This framework requires B nodes for simulation and I 
nodes for aggregation. In this model, we use SP to refer to 
parallel execution of simulation and AP to refer to parallel 
execution of aggregation 

This framework exploits parallelism to a great degree. 
Since each job requests new compute resources from a 
separate process, there could be a delay if compute nodes 
are unavailable. This leads to another framework that 
combines the simulation and aggregation job and executes 
them using one Slurm array job. 
 



 

Fig. 3. Parallel (SPAP) Framework 

D. Improved Parallel Framework 
In this improved parallel framework, simulation and 

aggregation is integrated into one script. Both tasks are 
executed in parallel by a single Slurm array job submission 
by running on the same set of allocated compute nodes. This 
model exploits parallelism to the fullest. It accelerates the 
aggregation task by using the already available compute 
nodes instead of requesting new compute nodes from a 
separate process. 

Since the simulation and aggregation logic are integrated 
into one script, they can communicate and synchronize with 
each other. This R script has two functions: 
 

• The simulation (map) tasks is done in parallel by B 
nodes, where B is the batch size 

• The aggregation task is then performed by the first 
I (number of intermediate files) nodes out of the B 
compute nodes already reserved for this task. The 
aggregation task begins execution when the 
number of simulation tasks remaining is less than 
or equal to I 

 
This framework requires a maximum of B (batch size) 

nodes for the entire execution. Since both simulation and 
aggregation scripts are integrated into one script, we will 
refer to this as SA. This new structure utilizes the available 
resources to the maximum degree. The large number of 
compute nodes running simulations will continue (if 
necessary) to perform as Aggregators. Since the simulation 
and aggregation logic are now implemented within one R 
script, it is easy for the two tasks to communicate and 
coordinate with each other to complete the whole task using 
the Divide-and-Conquer paradigm. In this way we also 
minimize Slurm scheduling burden on HPC side [11]. 
 

 
Fig. 4. Improved Parallel (SA) Framework 

 

VI. CASE STUDY 
To study the effects of various models, we have 

used a supercomputer, Stampede2. Stampede2, generously 
funded by the National Science Foundation (NSF) through 
award ACI-1134872, is the flagship supercomputer at the 
Texas Advanced Computing Center (TACC), University of 
Texas at Austin. It entered full production in the Fall 2017 
as an 18-petaflop national resource that builds on the 
successes of the original Stampede system it replaces. 
Stampede2 hosts 4,200 KNL compute nodes. Each of 
Stampede2's Knights Landing (KNL) nodes includes 96GB 
of traditional DDR4 Random Access Memory (RAM). They 
also feature an additional 16GB of high bandwidth, on-
package memory known as Multi-Channel Dynamic 
Random Access Memory (MCDRAM) that is up to four 
times faster than DDR4.  

We connect to Stampede2 through a login node and 
run the jobs on compute nodes. The compute nodes are 
accessed by submitting a batch job using the sbatch 
command.  

For this case study we have used three main 
parameters: 

• B - Batch size 
• I - Number of intermediate files 
• D - Dimension of intermediate file 

 
B is varied from 100 to 1000 in increments of 100 

and 2000. I is set to 10 for all batch sizes and D is set to 100 
x 100. In Simulation.R, we have included a 45 second wait 
to mimic the time needed to perform application-specific 
tasks.  

For each programming model, we have recorded 
the time it took the model to complete simulation and 
aggregation tasks for different batch sizes. 
 

a) Serial Framework - In this model, all tasks are 
executed sequentially. All simulation tasks must complete 
before aggregation can begin. Simulation.R is executed B 
times and Aggregation.R is executed I times. Execution time 
for each batch size is provided in Table I. The execution 
takes several hours to complete, and the time increases 
linearly with batch size. This method is highly inefficient 
since it only uses one core per each node thereby wasting 
significant processing power. As batch sizes increase, there 
is a possibility of incomplete or failed tasks due to memory 
issues and unavailability of compute nodes. 



 
TABLE I 

EXECUTION TIME FOR SERIAL FRAMEWORK 
 

Batch Size Time (in hours) 
100 1.26 
200 2.52 
300 3.78 
400 5.05 
500 6.31 
600 7.57 
700 8.84 
800 Failed 
900 Failed 
1000 Failed 
2000 Failed 

 
 

b) Parallel - Serial Framework - In this model, 
simulation is executed in parallel and aggregation tasks are 
executed sequentially. All simulation tasks must complete 
before aggregation can begin. Simulation.R is executed B 
times in parallel which is equivalent to running it just once 
and Aggregation.R is executed I times sequentially. Two 
separate processes are used to request the compute nodes 
needed for simulation and aggregation. This could cause a 
delay if the required amount of compute nodes is not 
available. Execution time for each batch size is provided in 
Table II. The execution takes few seconds to several 
minutes, greatly reducing the execution time compared to 
serial execution. The bulk of the time is due to the serial 
execution of aggregation task. This method exploits 
parallelism to some degree. This model may be useful for 
applications where bulk of the processing is done in the 
simulation phase. For aggregation-heavy tasks, this model 
will be inefficient. 
 

TABLE II 
EXECUTION TIME FOR PARALLEL - SERIAL FRAMEWORK 

 
Batch Size Time (in seconds) 

100 73 
200 104 
300 130 
400 162 
500 185 
600 223 
700 252 
800 271 
900 304 
1000 336 
2000 725 

 
c) Parallel Framework - In this model, simulation and 

aggregation tasks are executed in parallel but aggregation 
tasks cannot begin before the completion of all simulation 
tasks. Simulation.R is executed B times in parallel which is 
equivalent to running it just once and Aggregation.R is 
executed I times in parallel. Two separate processes are used 
to request the compute nodes needed for simulation and 
aggregation. Execution time for each batch size is provided 
in Table III. The execution takes a few seconds to complete, 
further reducing the execution time compared to the 
previous models. Although this method exploits parallelism 
to a great degree, there could be a delay if the compute 
nodes are unavailable. Also, this method does not reuse 

compute nodes that have finished execution thereby wasting 
valuable resources. Table IV shows the execution time 
including wait time to acquire compute nodes for 
aggregation.  
 

TABLE III 
EXECUTION TIME FOR PARALLEL FRAMEWORK 

 
Batch Size Time (in seconds) 

100 53 
200 56 
300 60 
400 63 
500 65 
600 69 
700 71 
800 74 
900 77 
1000 80 
2000 111 

 
 

TABLE IV 
EXECUTION TIME FOR PARALLEL FRAMEWORK (Incl. Wait time) 

 
Batch Size Time (in seconds) 

100 100 
200 104 
300 188 
400 106 
500 454 
600 238 
700 114 
800 325 
900 123 
1000 174 
2000 916 

 
 

d) Improved Parallel Framework - In this model, 
simulation and aggregation tasks are executed in parallel but 
unlike previous models, aggregation tasks begin execution 
before the completion of all simulation tasks. Simulation.R 
is executed B times in parallel which is equivalent to 
running it just once and Aggregation.R is executed I times 
in parallel. The aggregation task begins execution once the 
number of simulation tasks remaining is less than or equal to 
I. Only one Slurm array job is used to request the compute 
nodes needed for simulation and aggregation, thereby 
reusing compute nodes and avoiding the delay caused by 
unavailability of new compute nodes for aggregation. 
Execution time for each batch size is provided in Table V. 
The execution takes a few seconds to complete and it is 
comparable to parallel framework if we don’t take into the 
account the delay caused for requesting new set of compute 
nodes for aggregation. This method exploits parallelism to 
the maximum. It also saves time and processing power by 
reusing compute nodes. 

 
TABLE V 

EXECUTION TIME FOR IMPROVED PARALLEL FRAMEWORK 
 

Batch Size Time (in seconds) 
100 53 
200 58 
300 62 
400 66 
500 69 



600 74 
700 78 
800 82 
900 87 
1000 91 
2000 132 

 

A. Comparison of different frameworks 
Serial execution takes considerably longer to complete 

execution compared to the other three models as seen in Fig 
5. As seen in the figure, time increases linearly with batch 
size. The execution failed for batch size >= 800 due to 
memory issues. Hence it is evident that this method is not 
suitable for processing large CSV files. Hence, we will 
focus our discussion on the benefits and shortcomings of the 
other three models in the rest of the paper. 

 

 
Fig. 5. Comparison of All Frameworks 

B. Parallel – serial framework vs Parallel framework 
As shown in Fig 6, there is a 19% decrease in execution 

time between the two models. This could mean a significant 
difference if either the batch size, dimension of file or 
application-specific task processing time increases. When 
the batch size is increased from 1000 to 2000, the time for 
parallel-serial framework more than doubles. Whereas, in 
the parallel framework there is only a 38% increase in 
execution time. This shows that parallel framework 
performs significantly better than parallel-serial framework. 
 

 
Fig. 6. Parallel-Serial Vs Parallel Frameworks 

C. Parallel framework vs Improved Parallel framework 
The time recorded for parallel framework in Fig 7, does 

not include the extra time needed to acquire the new set of 

compute nodes for aggregation. The improved parallel 
framework takes a few extra seconds to complete compared 
to the parallel framework. This is due to the way R language 
handles memory usage. R programming language was 
designed to make analysis and statistical investigations 
easier, but it is not designed for high performance. The 
increasing data in memory and IO operations cause the 
execution to take a few extra seconds to complete. For batch 
size of 2000, there is an 18% increase in time. Even though 
it takes extra time, it is negligible compared to the amount 
of time it could take for new set of nodes to be available to 
perform aggregation.  

In order to compare these two frameworks, we take into 
account the wait time for compute nodes to demonstrate the 
advantage of reusing already allocated compute nodes. 

 

 
Fig. 7. Parallel Vs Improved Parallel Frameworks 

D. Parallel framework vs Improved Parallel framework 
(with wait time) 
The Fig 8 shows the execution time for parallel and 

improved parallel framework with the wait time for 
allocating new compute nodes for aggregation. Allocation of 
new compute nodes could take anywhere from a few 
seconds to few hours depending on the availability of 
compute nodes. When wait time is taken into account, 
parallel framework is significantly slow compared to 
improved parallel framework. In the parallel framework, 
there is a 500% increase in execution time for batch size of 
2000.   

Even though, improved parallel framework takes a few 
extra seconds to finish execution due to memory 
management and IO operations, it far outweighs the 
disadvantage of allocating new compute nodes. Hence, 
reusing existing nodes saves computational resources and 
time. 

 



 
Fig. 8. Parallel Vs Improved Parallel Frameworks (Incl. Wait Time) 
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VIII. CONCLUSION 
In this paper, we have discussed four different divide-and-
conquer frameworks to process and generate large CSV 
files. We have learned several things from this work. First, 
our model makes it easy to parallelize computations. 
Second, compute nodes are expensive and take significant 
time for allocation. Third, our framework shows that the 
increase in execution time due to memory management can 
be offset by reusing compute nodes. In the improved parallel 
framework, our study shows the tradeoff between reusing 
compute nodes and memory management. We have 
provided a new analytics workflow for performing similar 
large-scale analysis loops where expert users only need to 
focus on the Divide-and-Conquer tasks with the domain 
knowledge. R programming language is extensively used for 
data analysis and this study provides a generalized 

framework that can be tailored to specific applications with 
little effort. 
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