
Optimal Cache Allocation under Network-Wide Capacity Constraint

Van Sy Mai, Stratis Ioannidis, Davide Pesavento, and Lotfi Benmohamed

Abstract— Network cache allocation and management are
important aspects of an Information-Centric Network (ICN)
design, such as one based on Named Data Networking (NDN).
We address the problem of optimal cache size allocation and
content placement in an ICN in order to maximize the caching
gain resulting from routing cost savings. While prior art
assumes a given cache size at each network node and focuses
on content placement, we study the problem when a global,
network-wide cache storage budget is given and we solve for the
optimal per-node cache allocation. This problem arises in cloud-
based network settings where each network node is virtualized
and housed within a cloud data center node with associated
dynamic storage resources acquired from the cloud node as
needed. As the offline centralized version of the optimal cache
allocation problem is NP-hard, we develop a distributed adap-
tive algorithm that provides an approximate solution within a
constant factor from the optimal. Performance evaluation of
the algorithm is carried out through extensive simulations over
multiple network topologies, demonstrating that our proposal
significantly outperforms existing cache allocation algorithms.

I. INTRODUCTION

This paper involves modeling, analysis, and implementa-
tion of caching in cloud-based information centric networks
subject to a limited network-wide cache budget. In these
networks, a subset of nodes act as the designated sources
for content (data producers) while any node can be a data
consumer that generates requests for data items, which get
forwarded toward the designated producers. These requests
may not reach the ultimate producer as ICN forwarding ends
when reaching a node along the path that has cached the
requested item in its Content Store (CS). When such a cache
hit takes place, the requested item is served from the CS and
sent back to the requesting node along the reverse path.

Literature on ICN caching is extensive [1]–[9]. With an
ICN being a network of caches where each network node
is equipped with a content store, designing a good caching
solution involves the aspects of determining the size of each
CS, deciding which data objects should be cached (placement
strategy), and which ones should be evicted when needed
(replacement strategy). An efficient caching solution brings
many benefits as it (a) reduces the data producer load since
consumer’s requests would rarely be satisfied by the producer
but rather by cashes, (b) significantly reduces the amount of
network traffic and avoids bottlenecks caused by publishing
data at a limited set of locations, and (c) offers users a faster
content retrieval for an enhanced user experience. In other

V. S. Mai, D. Pesavento and L. Benmohamed are with the In-
formation Technology Laboratory, NIST, USA. Emails: {vansy.mai,
davide.pesavento,lotfi.benmohamed}@nist.gov. Mention of
commercial products does not imply NIST’s endorsement. S. Ioannidis is
with the Northeastern University and is supported by NSF grants NeTS-
1718355 and CCF-1750539. Email: ioannidis@ece.neu.edu.

words, the investment in caching is expected to be of benefit
to users, network operators, as well as content providers
when it enables performance similar to content distribution
networks (CDNs) by dynamically storing content in regions
of high demand. While the problem of assigning items
to caches under given fixed cache sizes has already been
studied, cache capacity design subject to a global network-
wide cache budget has not, and it is the focus of this paper.

Our goal is to achieve an optimal caching solution that
maximizes the caching gain by minimizing the aggregate
routing costs due to content retrieval across the network.
The network load made up of each user demand, which is
determined by the rate of requests and the paths they follow,
is typically dynamic and not known in advance. As a result
it is desirable to have adaptive caching solutions that can
achieve optimal placement of data items in network caches
without prior knowledge of the demands and be adaptive to
any potential demand changes. In addition, caching needs
to be distributed as well, since centralized solutions are not
expected to be feasible when multiple administrative domains
are involved. The network is expected to be more scalable
when implementing distributed algorithms with caching de-
cisions that rely only on locally available information.

Path replication, also known as Leave Copy Everywhere
(LCE), is a popular caching strategy that is dynamic and
distributed, and is often discussed in the literature [10]–
[12]. When a data item is forwarded on the reverse path
towards the consumer that requested it, it is cached at each
intermediate node along the path. When a node’s cache
is full, a replacement takes place by evicting an already
cached item. Despite its popularity, LCE has no performance
guarantees and can be shown to be arbitrarily suboptimal [8].

Our contributions: Our main contributions are the follow-
ing: (1) While previous work only deals with object place-
ment in fixed size caches, we address a more general problem
where no assumption of fixed cache sizes is made but rather
uses a global network-wide cache budget constraint, and
design the optimal per-node cache capacity; (2) We design
an adaptive distributed algorithm for this problem by making
use of a game theory framework in combination with a
distributed gradient estimation approach; (3) We show that
our game-based algorithm can provide suboptimal solutions
within a factor (1−1/e−ε) of optimum for any given small
ε> 0 and without prior knowledge of the network demand;
(4) We present results from extensive simulations over a
number of network topologies that show how our algorithm
outperforms those based on fixed size caches.

The remainder of this paper is organized as follows. In
Section II, we briefly review related work. We introduce the

system model and formally state the problem in Section III.
Our main results on a distributed algorithm are discussed in
Section IV along with a discussion on implementation issues.
Numerical results are presented in Section V. All the proofs
are omitted and can be found in our technical report [13].

II. RELATED WORK

The problem we study amounts to maximizing a submod-
ular function subject to matroid constraints. Such problems
are ubiquitous and appear in many domains (see [14] for
a detailed overview). Though NP-hard, there exist known
approximation algorithms: Nemhauser et al. [15] show that
the greedy algorithm produces a solution within 1/2 of the
optimal. Vondrák [16] and Calinescu et al. [17] show that the
so-called continuous-greedy algorithm produces a solution
within (1− 1/e) of the optimal in polynomial time.

In the context of caching gain maximization, a restricted
version of our problem is considered in [8], [18], where cache
sizes are given and only object placements are optimized.
Under a global constraint, however, the projected gradient
ascent method in [8] becomes inadequate as a distributed
adaptive algorithm. Our problem also resembles network
resource allocation or utility maximization problems, where
various decomposition techniques allows distributed imple-
mentations [19]. However, our (relaxed) global cost function
is coupled in a such way that renders decomposition and
decoupling approaches communication-expensive and com-
plicated, let alone distributed adaptive implementation. This
calls for a different approach. Specifically, we propose to
employ the game theory-based framework in [20]–[22] for
designing a distributed algorithm, where the global cost is
embedded in the potential of a game. In contrast to [20]–
[22], however, we do not assume separability of the potential
function, nor do we employ any decoupling technique; this is
achieved by making use of the distributed gradient estimation
scheme in [8].

Finally, our work is also related to virtual machine (VM)
allocation in cloud computing; see, e.g., [23], [24]. Het-
erogeneity of host resources and VM requirements lead to
multiple knapsack-like constraints per host. With simpler
storage constraints, we can provide distributed algorithms
with provable approximation guarantees.

III. PRELIMINARIES AND PROBLEM FORMULATION

A. Notation and System Model

Let R and N denote the sets of real and natural numbers,
respectively. If A is a finite set, |A| denotes its cardinality.
Let [·]X denote the projection onto X ; [·]+ =max(0, ·).

Consider a connected network G=(V, E), where V is the
node set and E ⊂V×V the set of links. Nodes are equipped
with caches (CSes), whose capacity can be adjusted as part
of an optimized design. As discussed above, the nodal cache
size can be adjusted as needed by acquiring or relinquishing
units of storage at the local cloud node (data center), part
of the operator’s deployed cloud. The local cache is used
to store content items from a catalog made up of a set C,
and subsequently serve requests for these items. We denote

by M the total cache capacity that the network operator is
willing to deploy, it reflects a limit on the operator’s budget.

Let xv,i ∈ {0, 1} for v ∈ V , i ∈ C be the variable
indicating if node v stores item i. Node v’s capacity is
thus

∑
i∈C xvi, which must be less than its maximum cache

capacity, denoted by c̄v . Moreover, the total
∑
v∈V,i∈C xvi

must be within given budget M . We assume that, for each
item i, there exists a set Si ⊂ V that serve as designated
servers (producers) for that item, i.e., xvi = 1, ∀v ∈ Si.
Requests arrive in G and traverse predetermined paths to-
wards producers. Formally, a request for item i∈C through
path p = {p1, . . . , pK} ⊂ V is denoted by (i, p). Let R
denote the set of all such requests. We assume that all
(i, p)∈R are well-routed, i.e., p has no loops and terminates
at producers in Si. Moreover, requests for each element in R
arrive according to independent Poisson processes with rates
λ(i,p) > 0, which is standard for modeling request arrivals
(e.g., [1], [3]–[8]). A request (i, p) is routed along p until it
reaches a cache that has item i. Then, a response message
carrying item i is generated and sent over p in the reverse
direction to the first node in p. We assume that the cost of
routing an item over a link (i, j)∈E is wij ∈R+, while the
cost of forwarding requests/control messages is negligible.

B. Problem Statement

Let C0 denote the expected cost when there are no items
cached except for designated servers, i.e.,

C0 =
∑

(i,p)∈R λ(i,p)

∑|p|−1
k=1 wpk+1pk . (1)

When contents are cached according to an allocation X =
{xvi}v∈V,i∈C , the cost of serving a request (i, p) ∈ R is

C(i,p)(X) =
∑|p|−1
k=1 wpk+1pk

∏k
l=1(1− xpli), (2)

yielding a caching gain F :=C0−
∑

(i,p)∈R λ(i,p)C(i,p), i.e.,

F (X)=
∑

(i,p)∈R

λ(i,p)

∑
1≤k≤|p|−1

wpk+1pk

[
1−

∏
1≤l≤k

(1−xpli)
]

(3)

We seek a distributed adaptive algorithm for the following
problem:

Given cache budget M for the whole network, design an
allocation X to maximize the caching gain:

(MaxCG) max
X

F (X)

s.t. xvi ∈ {0, 1}, ∀v ∈ V , i ∈ C (4)
xvi = 1, ∀v ∈ Si, ∀i ∈ C (5)∑

i∈C xvi ≤ c̄v, ∀v ∈ V (6)∑
v∈V,i∈C xvi ≤M (7)

Let D1 denote the feasible set of (MaxCG), i.e., D1 =
{X ∈ R|V|×|C| | (4) − (7) hold}. Since (MaxCG) is NP-
hard [8], we seek approximate solutions. Moreover, we aim
to develop distributed and adaptive algorithms that enable
the caches themselves to adapt and update their capacities to
solve the underlying optimization problem. For centralized,
offline algorithms employing full knowledge of the demand
and system parameters, see [13].

IV. DISTRIBUTED ALGORITHM AND CONVERGENCE

We develop an algorithm for (MaxCG) based on a number
of approximation steps. We first apply a convex relaxation,
followed by a smooth approximation. We then embed the
resulting problem in a game theory framework and show
that the gradient play strategy, combined with a distributed
gradient estimation scheme, allows us to adapt both cache
sizes and content allocations in a distributed fashion.
A. Convex Relaxation and Smooth Approximation

First, we employ the approach in [8], which convexifies
both D1 and F . Specifically, we relax the Boolean variables:

max {F (Y) | Y ∈ D2} (8)

with D2 = {X ∈ [0, 1]|V|×|C| | (5) − (7) hold}. Since F is
nonconcave on D2, we approximate it with concave function

L(Y)=
∑

(i,p)∈R

λ(i,p)

∑
1≤k≤|p|−1

wpk+1pk min
{

1,
∑k
l=1ypli

}
(9)

satisfying L(X) = f(X), ∀X ∈ D1 and (1− e−1)L(Y) ≤
F (Y)≤L(Y), ∀Y ∈D2. Thus, the resulting problem

L∗ := max {L(Y) | Y ∈ D2} (10)

is convex1 and approximates (MaxCG) within (1−1/e) ratio.
Second, since L in (9) is not differentiable, we consider

L̃(Y)=
∑

(i,p)∈R

λ(i,p)

∑
1≤k≤|p|−1

wpk+1pksatα
(∑k

l=1ypli
)

(11)

where α ∈ (0, 1) is a small number and satα(x) = 1 if
x ≥ 1 + α

2 ; satα(x) = x if x < 1 − α
2 ; and satα(x) =

1− (1 + α
2 − x)2/2α otherwise. Clearly, satα(x) is a lower

bound of min{1, x}, ∀x ∈ R+. Thus, L̃ is a concave lower
bound of L and limα→0+ L̃ = L. Indeed, L̃(Y) ≤ L(Y) ≤
L̃(Y)+ α

8C0, ∀Y ∈ D2. Thus, the following problem

max {L̃(Y) | Y ∈ D2} (12)

can be used in place of (10) by using a sufficiently small α.

B. Potential Game-Based Design

First, we restate (12) as follows:

max{yv∈Ωv} {L̃(Y) |
∑
v∈V(yT

v 1− c0v) ≤ 0} (13)

where yT
v is the v-th row of Y , 1 is a column vector of all

ones, c0v are constants such that
∑
v∈V c

0
v = M , and

Ωv={y ∈ [0, 1]|C| |
∑
i∈C yi ≤ c̄v, yi = 1 if v ∈ Si} (14)

Suppose that each node v knows c0v (e.g., c0v = M/|V|).
We now adapt the game theory framework in [20]–[22]

for (13). In particular, we will design a state based potential
game between the nodes so that they will converge to a pure
Nash equilibrium that can be made arbitrarily close to an
optimal solution of (13). The crucial differences between our
design and that in [20]–[22] are the nodal cost functions and
the implementation of the learning algorithm. In particular,
we do not assume that cost functions are separable across
nodes (indeed, the terms of the objective (13) are coupled).

1in fact, (10) can be converted into a linear program (e.g., [8]).

1) Game model: We now construct a game model for
node caches; the evolution of which via appropriate dynamics
eventually leads to a solution of (13) in a distributed fashion.

1. State space: Let Z = (Y, e) denote the state of the
game, where e = {ev}v∈V and ev is an error term of
node v representing an estimation of (yT

v 1− c0v).
2. Actions: Each node v has a state-dependent action

set Av(Z), where an action av is a tuple av =
(ŷv, {êv→u}u∈Nv

). Here, êv→u is the estimate error
that node v sends to a direct neighbor u, and Nv
denotes the set of node v’s neighbors.

3. State dynamics: For any state Z = (Y, e) and action
{av}, the next state Z̃ = (Ỹ , ẽ) is given by ỹv =
yv + ŷv and ẽv = ev + ŷT

v 1+
∑
u∈Nv

(
êu→v− êv→u

)
where the admissible action set of node v is Av(Z)=
Av(yv) := {ŷ ∈ R|C| | yv + ŷ ∈ Ωv}. Note that∑
v∈V(ẽv − ỹT

v 1) =
∑
v∈V(ev − yT

v 1).
4. Nodal cost function: For a state Z and admissible

action profile {av∈Av(yv)}v∈V , let

Jv(Z, a) = −L̃(Ỹ) + µ
2

∑
u∈Nv

[ẽu]2+, (15)

be node v’s cost function, where (Ỹ , ẽ) is the next state
and µ>0 is a parameter. Here, Jv involves the global
(approximated) caching gain function L̃, but as we will
show later, each node does not need to evaluate Jv .

The game model we just described admits a potential func-
tion Φµ(Z, a) =−L̃(Ỹ)+ µ

2

∑
v∈V [ẽv]

2
+ with bounded level

sets. Thus, a Nash equilibrium always exists and can be
reached by the gradient play strategy (see, e.g., [22]). The
implementation of this strategy is given next.

2) Algorithm description: Suppose that time is partitioned
into periods of equal length T . Each node updates its state
(yv, ev) as follows (see [13] for the detailed derivation):
• At period t = 0, each node v initializes yv(0) ∈ Ωv and
ev(0)← (1Tyv(0)− c0v) such that

∑
v∈V ev(0) ≤ 0.

• At t > 0, node v exchanges ev(t) with neighbors,
computes êv→u(t) = γµ

(
[ev(t)]+−[eu(t)]+

)
with step

size γ > 0, and updates its state as follows:

yv(t+1)=
[
yv(t)+γ

(
∇yv

L̃(Y (t))−µ1[ev(t)]+
)]

Ωv
(16)

ev(t+1)=ev(t)+1T(yv(t+ 1)− yv(t))

+
∑
u∈Nv

êu→v(t)− êv→u(t), (17)

where ∇yv
L̃(Y (t)) can be estimated in a distributed

fashion as shown in Section IV-D.1 below.
In [20]–[22], a potential game-based algorithm is provided

for solving a (more general) constrained optimization prob-
lem, the design of which, if applied to (12), would yield an
exponentially large state space. Specifically, to decompose
Φµ, each node v would need to maintain and update a local
estimate Yv of the state Y through exchanging information
with its neighbors. This would incur much more expensive
communication and computational costs compared to our
algorithm outlined above. Our advantage is gained by em-
ploying a distributed scheme for each node to estimate partial
gradients of L̃. Such an algorithm (given in Section IV-D.1
below) requires only a simple message exchange protocol.

C. Convergence
Note that any Nash equilibrium is optimal to Φ∗µ =

min{ỹv∈Ωv} Φµ(Z, a). Therefore, we have the following.
Theorem 1: For a fixed µ, if {Z, a} = {(Y, e), (Ŷ , Ê)}

is a stationary state Nash equilibrium, Y is also optimal for

max{yv∈Ωv} L̃(Y)− µ
2|V|
[∑

v∈V(yT
v 1− c0v)

]2
+
. (18)

As a result, an approximate (with arbitrary given accuracy)
solution to (13) can be obtained with sufficiently large µ.

Corollary 1: As µ → ∞, the equilibria of the game
constitute solutions of (13).

We now summarize approximation steps introduced so far
in dealing with the original problem (MaxCG). First, we
relax the binary constraints (4) and approximate the objective
function F by L in (9), thereby obtaining (10), a convex
problem on the relaxed feasible set. Second, since L is
nondifferentiable, we then replace it with L̃ in (11). Third, by
resorting to the potential game theory, we effectively remove
the global constraint (7) by adding a penalizing term to L̃,
resulting (18). In summary, (MaxCG) ≈ (10) ≈ (13) ≈
(18). Moreover, the overall approximation ratio (in terms of
caching gains) is within (1−ε−1/e) for any given small ε>0
by selecting µ sufficiently large and α sufficiently small [13].

The convergence of our algorithm is given next.
Theorem 2: For Algorithm (16)–(17) with γ < γ̄0 :=

2
(α−1C0+2µ) , we have limt→∞ Φµ(Z(t),a(t)) = Φ∗µ. More-
over, any limit point Y ∗ of {Y (t)} is an optimizer of (18).

Note that γ̄0 is a theoretical bound for the gradient method,
while step sizes larger than γ̄0 often still work in practice;
the larger the step sizes are, the closer to instability.

Remark 1: Given a fixed µ, the global capacity constraint
in (13) is likely to be violated due to the penalizing term in
(18). To reduce such violation, we can initialize

∑
v∈V c

0
v =

(M − ε) for some small ε ∈ (0, 1) and select µ = Θ(L̃∗) =
Θ(C0) (note that L(Y) ≤ C0, ∀Y), where C0 (or an upper
bound C̄0) can be estimated in a centralized fashion from
history data or in a distributed manner; see [13] for details.
D. Implementation considerations

This subsection details on how each node in the network
can obtain online estimations of ∂yvi

L̃ and update cache
contents. See [13] for distributed estimation of step size
bound γ̄0 in Theorem 2 for ensuring convergence.

1) Distributed gradient estimation: We adopt the mecha-
nism used in [8], [9], namely, additional control messages
are attached to the request and response traffic to gather
needed information. This enables each node v to estimate
partials ∂yv

L̃ in a distributed fashion by using information
in the messages passing by during each time interval T . In
particular:
• Every time a node generates a new request (i, p) ∈ R,

it creates an additional control message ms attached to
the request. At node p1, ms(p1) = yp1i. At node pl,

ms(pl) = ms(pl−1) + ypli (19)

until a node u ∈ p with ms(u) > 1 + α
2 is found or

the end of the path is reached (in which case u = p|p|).
Each visited node pl keeps a local copy of ms(pl).

TABLE I
GRAPH TOPOLOGIES AND PARAMETERS

Graph |V| |E| |C| |Q| |R| M

grid_2d (G2) 100 180 100 20 1K 300
expander (Ex) 100 340 100 50 2K 400
barabasi_albert (BA) 100 384 100 50 2K 400
small_world (SW) 100 240 100 50 2K 400
watts_strogatz (WS) 100 200 100 50 2K 400
erdos_renyi (ER) 100 521 100 50 2K 400
geant (Ge) 22 33 100 20 1K 144
abilene (Ab) 9 13 10 9 100 28
dtelekom (Dt) 68 273 100 20 1K 304

• Node u then creates a control message mr to send back
in the reverse direction with mr(u) = 0. At any pl,

mr(pl) = mr(pl+1) + wpl+1plsat′α(ms(pl)), (20)

where sat′α(x) = 0 if x ≥ 1 + α
2 ; sat′α(x) = 1 if

x < 1− α
2 ; and sat′α(x) = (1 + α

2 − x)/α otherwise.
• For each item i and each node v, let tvi :=
mr(v) as computed above and let Tvi denote the
set of tvi collected by node v regarding item i
during each time slot. It can be seen that tvi =
∂

∂yvi

∑|p|−1
k=kp(v) wpk+1pksatα

(∑k
l=1 ypli

)
, where kp(v)

denotes the position of v in path p. Then it can be
shown [8, Lem. 1] that zvi :=

∑
t∈Tvi

t/T is an unbiased
estimate of ∂yvi

L̃ and thus can be used in (16).
2) Eviction policy: At the end of each iteration t, each

node v determines its expected cache size
∑
i∈C yvi(t). As

this can be fractional, a local rounding scheme is needed;
e.g., randomized rounding as in [8]. A much simpler heuristic
would be the following: node v finds a positive integer
cv(t) such that 1) if (7) is a hard constraint, then cv(t) =
min{b1Tyv(t)c, c̄v}; 2) otherwise, cv(t) is the nearest to∑
i∈C yvi(t). Finally, node v then places/keeps at most cv(t)

items according to largest elements of yv(t) in its cache.
3) Efficient update and message exchange: Our algorithm

requires each node to perform only few basic operations at
each iteration to update its states (16)–(17) and traversing
control messages (19)–(20) for estimating local gradients; the
projection [·]Ωv in (16) can be as simple as scaling. Moreover,
the number of exchange messages (including êv→u, ms, and
mr) is also small. They can be encoded in very few bytes
and can be piggybacked onto existing traffic of Interest and
Data packets, incurring negligible overhead and storage.

V. NUMERICAL EXAMPLES

We simulate our algorithm in Matlab over the graphs in
Table I; see [13] for detailed descriptions of these graphs.

Experiment setup: For each graph, we generate a catalog
C and assign each item i ∈ C to a node selected uniformly at
random (u.a.r.) from V . We select the weight of each edge
u.a.r. from [0.01, 1] and a set of consumers Q ⊂ V u.a.r.
Each consumer v ∈ Q requests an item i selected from
C according to a Zipf distribution with parameter 1.2. The
request is routed over the shortest path p between v and the
designated server for item i. We choose c̄v = |C| and update
period T = 1. We let α = 0.2 µ = C0/4, γ = γ̄0 = 4

11C0
,

c0v=(M−ε)/|V| with ε=0.1 (see Remark 1).

0 0.5 1 1.5 2

104

0

200

400

600
Caching Gain

F(X
heu

) L*

0 0.5 1 1.5 2

104

100

200

300

400
Network Capacity

Total M

0 0.5 1 1.5 2

time 104

0

10

20

30
Nodal Capacity

Fig. 1. (Color online) Simulation results for dtelekom network using cache
allocation Xheu obtained from our heuristic placement in Sect. IV-D.2. L∗

from (10) is obtained by a centralized algorithm and is an upper bound on
the optimal caching gain. Bottom plot shows cache sizes cv(t), ∀v∈V .

G2 Ex BA SW WS ER Ge Ab Dt
0

0.5

1
Equal Capacity Our Algorithm

Fig. 2. Comparison of normalized caching gains for graphs in Table I.

Results: We simulate our algorithm on the dtelekom
graph. During time interval [0, 8000], λ(i,p) are selected u.a.r.
from (0.1, 1); after that λ(i,p) =1, ∀(i, p)∈R. At t=16000,
we reduce the budget by |V| units. The simulation results are
shown in Fig. 1, which clearly demonstrates optimality and
adaptability of our algorithm. Specifically, F (Xheu) reaches
near upper bound L∗, even under some network changes.

We also compare the performance, in terms of caching
gains (normalized to L∗), of our algorithm with the central-
ized solution approach using the equal node-capacity alloca-
tion across all topologies in Table I. Specifically, the latter
fixes cv(t)≡ c̄v = M−|C|

|V| + |{i : v ∈ Si}|, ∀v ∈ V , i.e., (7) is
redundant as

∑
v∈V c̄v=M . Note that the optimal (relaxed)

caching gain in equal node capacity, denoted by L∗EC and
obtained by solving (10) without global constraint (7), is
not only an upper bound on caching gains of all suboptimal
caching policies in the same setting, but also a lower bound
of L∗ in (10) with global constraint (7) and c̄v = |C|.
Significant gaps (ranging from 15% to 50%) between L∗EC
and other common caching strategies have been shown in [8]
for a similar set of topologies. Here, we focus on showing
improvement of F (Xheu) over L∗EC . To this end, we run
our algorithm for 104 time units with λ(i,p) = 1, ∀(i, p)∈R
and estimate the steady state caching gain by averaging
the objective values F (Xheu) over the last 103 time units.
Fig. 2 shows the average results of 10 runs, which clearly
demonstrate that our algorithm yields (near) optimal caching
gains and outperforms the best centralized solutions with
equal capacity across all the topologies considered.

REFERENCES

[1] G. Carofiglio, L. Mekinda, and L. Muscariello, “LAC: Introducing
latency-aware caching in information-centric networks,” in Proc. 40th
Conf. Loc. Computer Netw. IEEE, 2015, pp. 422–425.

[2] Y. Thomas, G. Xylomenos, C. Tsilopoulos, and G. C. Polyzos,
“Object-oriented packet caching for ICN,” in Proc. 2nd ACM Conf.
Info.-Centric Networking. ACM, 2015, pp. 89–98.

[3] D. Nguyen, K. Sugiyama, and A. Tagami, “Congestion price for cache
management in information-centric networking,” in Proc. IEEE Conf.
Computer Commun. Wkshps. IEEE, 2015, pp. 287–292.

[4] W. K. Chai, D. He, I. Psaras, and G. Pavlou, “Cache less for
more in information-centric networks,” in Proc. Int. Conf. Research
Networking. Springer, 2012, pp. 27–40.

[5] M. Dehghan, L. Massoulie, D. Towsley, D. Menasche, and Y. C. Tay,
“A utility optimization approach to network cache design,” in Proc.
35th Annu. IEEE Int. Conf. Computer Commun., 2016, pp. 1–9.

[6] Z. Ming, M. Xu, and D. Wang, “Age-based cooperative caching in
information-centric networking,” in 23rd Int. Conf. Computer Com-
mun. Netw., 2014, pp. 1–8.

[7] M. Badov, A. Seetharam, J. Kurose, V. Firoiu, and S. Nanda,
“Congestion-aware caching and search in information-centric net-
works,” in Proc. 1st ACM Conf. Info.-Centric Network., 2014, pp.
37–46.

[8] S. Ioannidis and E. Yeh, “Adaptive caching networks with optimality
guarantees,” in ACM SIGMETRICS Performance Evaluation Rev.,
vol. 44, no. 1, 2016, pp. 113–124.

[9] A. S. Gill, L. D’Acunto, K. Trichias, and R. van Brandenburg,
“BidCache: Auction-based in-network caching in ICN,” in Globecom
Wkshps. IEEE, 2016, pp. 1–6.

[10] H. Che, Y. Tung, and Z. Wang, “Hierarchical web caching systems:
Modeling, design and experimental results,” IEEEJ. Sel. Areas Com-
mun., vol. 20, no. 7, pp. 1305–1314, 2002.

[11] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proc. 5th Int.
Conf. Emerging Networking Experim. Tech., 2009, pp. 1–12.

[12] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” Telecom ParisTech,
Tech. Rep., 2011.

[13] V. S. Mai, S. Ioannidis, D. Pesavento, and L. Benmohamed,
“Optimal cache allocation for named data caching under network-
wide capacity constraint,” Tech. Rep., 2018. [Online]. Available:
https://arxiv.org/pdf/1810.07229.pdf

[14] A. Krause and D. Golovin, “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, vol. 3, no. 19,
p. 8, 2012.

[15] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Math-
ematical Programming, vol. 14, no. 1, pp. 265–294, Dec 1978.

[16] J. Vondrák, “Optimal approximation for the submodular welfare prob-
lem in the value oracle model,” in STOC, 2008.

[17] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
J. Computing, vol. 40, no. 6, pp. 1740–1766, 2011.

[18] K. Shanmugam, N. Golrezaei, A. G. Dimakis, A. F. Molisch, and
G. Caire, “Femtocaching: Wireless content delivery through distributed
caching helpers,” IEEE Trans. Inform. Theory, vol. 59, no. 12, pp.
8402–8413, 2013.

[19] D. P. Palomar and M. Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE J. Sel. Areas. Commun.,
vol. 24, no. 8, pp. 1439–1451, 2006.

[20] N. Li and J. R. Marden, “Designing games for distributed optimiza-
tion,” IEEE J. Sel. Topics Signal Process., vol. 7, no. 2, pp. 230–242,
2013.

[21] ——, “Decoupling coupled constraints through utility design,” IEEE
Trans. Autom. Control, vol. 59, no. 8, pp. 2289–2294, 2014.

[22] J. R. Marden and J. S. Shamma, “Game theory and distributed control,”
in Handbook of game theory with economic applications. Elsevier,
2015, vol. 4, pp. 861–899.

[23] W. Li, J. Tordsson, and E. Elmroth, “Virtual machine placement for
predictable and time-constrained peak loads,” in Int. Wkshp Grid Econ.
Business Models. Springer, 2011, pp. 120–134.

[24] J. W. Jiang, T. Lan, S. Ha, M. Chen, and M. Chiang, “Joint VM
placement and routing for data center traffic engineering,” in Proc.
2012 INFOCOM. IEEE, 2012, pp. 2876–2880.

