


Our findings show that existing approaches to

toxic language detection have racial biases, and

that text alone does not determine offensiveness.

Therefore, we encourage paying greater atten-

tion to the confounding effects of dialect and a

speaker’s social identity (e.g., race) so as to avoid

unintended negative impacts.

2 Race and Dialect on Social Media

Since previous research has exposed the potential

for other identity-based biases in offensive lan-

guage detection (e.g., gender bias; Park et al.,

2018), here we investigate racial bias against

speech by African Americans, focusing on Twit-

ter as it is a particularly important space for Black

activism (Williams and Domoszlai, 2013; Freelon

et al., 2016; Anderson et al., 2018). Race is a com-

plex, multi-faceted social construct (Sen and Wa-

sow, 2016) that has correlations with geography,

status, dialect, and more. As Twitter accounts typ-

ically do not have self-reported race information,

researchers rely on various correlates of race as

proxies. We use the African American English di-

alect (AAE) as a proxy for race. AAE is a widely

used dialect of English that is common among, but

not unique to, those who identify as African Amer-

ican,1 and is often used in written form on social

media to signal a cultural identity (Green, 2002;

Edwards, 2004; Florini, 2014).

Dialect estimation In this work, we infer di-

alect using a lexical detector of words associated

with AAE or white-aligned English. We use the

topic model from Blodgett et al. (2016), which

was trained on 60M geolocated tweets and relies

on US census race/ethnicity data as topics. The

model yields probabilities of a tweet being AAE

(pAAE) or White-aligned English (pwhite).2

3 Biases in Toxic Language Datasets

To understand the racial and dialectic bias in toxic

language detection, we focus our analyses on two

corpora of tweets (Davidson et al., 2017; Founta

et al., 2018) that are widely used in hate speech

detection (Park et al., 2018; van Aken et al., 2018;

Kapoor et al., 2018; Alorainy et al., 2018; Lee

1Of course, many African Americans might not use AAE
in every context, or at all. For further discussion of AAE,
please refer to Blodgett et al. (2016).

2The model yields AAE, Hispanic, Asian/Other and
White-aligned dialect probabilities, but for the purpose of our
study we only focus on AAE and White-aligned dialects.

category count AAE corr.

D
W

M
W

1
7 hate speech 1,430 −0.057

offensive 19,190 0.420

none 4,163 −0.414

total 24,783

F
D

C
L

1
8

hateful 4,965 0.141

abusive 27,150 0.355

spam 14,030 −0.102

none 53,851 −0.307

total 99,996

Table 1: Number of tweets in each category, and cor-

relation with AAE (Pearson r, p ≪0.001). We assign

tweets to categories based on the label for FDCL18, and

majority class for DWMW17. Correlations are colored

for interpretability.

et al., 2018; Waseem et al., 2018).3 Different pro-

tocols were used to collect the tweets in these cor-

pora, but both were annotated by Figure-Eight4

crowdworkers for various types of toxic language,

shown in Table 1.

DWMW17 (Davidson et al., 2017) includes an-

notations of 25K tweets as hate speech, offensive

(but not hate speech), or none. The authors col-

lected data from Twitter, starting with 1,000 terms

from HateBase (an online database of hate speech

terms) as seeds, and crowdsourced at least three

annotations per tweet.

FDCL18 (Founta et al., 2018) collects 100K

tweets annotated with four labels: hateful, abu-

sive, spam or none. Authors used a bootstrapping

approach to sampling tweets, which were then la-

belled by five crowdsource workers.

3.1 Data Bias

To quantify the racial bias that can arise during the

annotation process, we investigate the correlation

between toxicity annotations and dialect probabil-

ities given by Blodgett et al. (2016).

Table 1 shows the Pearson r correlation be-

tween pAAE and each toxicity category. For both

datasets, we uncover strong associations between

3Our findings also hold for the widely used data from
Waseem and Hovy (2016). However, because of severe limi-
tations of that dataset (see Schmidt and Wiegand, 2017; Klu-
bika and Fernandez, 2018), we relegate those analyses to sup-
plementary (§A.3).

4www.figure-eight.com







could buffer stereotype use, which could in turn

influence annotator responses (Plant and Devine,

1998; Moskowitz and Li, 2011).

5 Related Work

A robust body of work has emerged trying to ad-

dress the problem of hate speech and abusive lan-

guage on social media (Schmidt and Wiegand,

2017). Many datasets have been created, but

most are either small-scale pilots (∼100 instances;

Kwok and Wang, 2013; Burnap and Williams,

2015; Zhang et al., 2018), or focus on other

domains (e.g., Wikipedia edits; Wulczyn et al.,

2017). In addition to DWMW17 and FDCL18,

published Twitter corpora include Golbeck et al.

(2017), which uses a somewhat restrictive defini-

tion of abuse, and Ribeiro et al. (2018), which is

focused on network features, rather than text.

Past work on bias in hate speech datasets has

exclusively focused on finding and removing bias

against explicit identity mentions (e.g., woman,

atheist, queer; Park and Fung, 2017; Dixon et al.,

2018). In contrast, our work shows how insensitiv-

ity to dialect can lead to discrimination against mi-

norities, even without explicit identity mentions.

6 Conclusion

We analyze racial bias in widely-used corpora

of annotated toxic language, establishing corre-

lations between annotations of offensiveness and

the African American English (AAE) dialect. We

show that models trained on these corpora prop-

agate these biases, as AAE tweets are twice as

likely to be labelled offensive compared to others.

Finally, we introduce dialect and race priming,

two ways to reduce annotator bias by highlighting

the dialect of a tweet in the data annotation, and

show that it significantly decreases the likelihood

of AAE tweets being labelled as offensive. We

find strong evidence that extra attention should be

paid to the confounding effects of dialect so as to

avoid unintended racial biases in hate speech de-

tection.
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