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Off-nominal weather conditions are the leading causes of air traffic delays in the National
Airspace System (NAS). To minimize traffic delays and meanwhile guarantee aviation safety,
a weather data-driven air traffic management decision solution is important. This decision
solution requires a fast and accurate approach to cluster weather scenarios. Based on re-
trieved offline management solutions corresponding to similar weather scenarios, management
solutions can be quickly designed. In this paper, we use the influence model to capture stochas-
tic spaiotemporal weather spread, and develop model-based distance measures for stochastic
weather spread. We compare these model-based distancemeasures with a data-driven distance
measure for spatiotemporal scenario clustering using simulation studies. Since the perfor-
mance of a data-driven distance measure can be easily affected by the selection of multiple
parameters, the model-based distance measures have advantages such as improved robustness
and less user interference.

I. Nomenclature

Yi = a spatiotemporal weather scenario i
B = the set of spatial cells
bn = a specific spatial cell
T = the set of time points
tk = a specific time point
Ii,n,k = intensity of scenario Yi at spatial cell bn and time point tk
φn,w = a size-w spatial window centered at bn and contains all the spatial cells within (w − 1) hops to bn
φk,h = a size-h temporal window starting from tk and contains itself and the subsequent (h − 1) time points
Di, j,w,h = the distance of spatial resolution w and temporal resolution h between spatiotemporal scenarios Yi and Yj

βr,l = an importance weighing factor of the spatial cell br at time point tl
Φw = the full set of spatial windows of size w
Φh = the full set of temporal windows of size h
Îi,n,k = scaled intensity of Ii,n,k
λn,w = spatial contribution factor
τk,h = temporal contribution factor
Di, j = the total distance between spatiotemporal scenarios Yi and Yj

wmax = maximum spatial window
hmax = maximum temporal window
σw = spatial weighting factor
αh = temporal weighting factor
D = the overall distance matrix of multiple scenarios
N = the number of regions of an area in an influence model
D = network influence matrix
di j = probability that region i is influenced by region j
Ai j = transition matrix of the local Markov chain between region i and region j
Mi = the number of weather statuses for region i
amn = the mth row and nth column entry of Ai j

M = the number of weather statuses for each region in a homogeneous influence model
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A = transition matrix of the local Markov chain in a homogeneous influence model
Si[k] = status of region i at time k in vector-form
si[k] = status of region i at time k in scalar-form
S[k] = the whole area’s weather state matrix at time k
s[k] = state of the master Markov chain G at time k
pi[k] = probability mass function (PMF) for the weather status of region i at time step k
p[k] = PMF of the whole area’s weather state at time k
G = master Markov chain mapped from an influence model
gmn = transition probability from master Markov state m to n
O = an intermediate matrix for the calculation of D from G
V = an intermediate matrix for the calculation of D from G
oi j = the ith row and jth column entry of O
vi j = the ith row and jth column entry of V
L(θi;Yi) = the likelihood of scenario Yi given θi
θ̂i = the estimation of θi from Yi
wi j = the likelihood of scenario Yj given θ̂i
DSS = the distance matrix for the simple symmetric distance measure
DBP = the distance matrix for the BP metric
DYY = the distance matrix for the Yin-Yang distance measure

II. Introduction

Off-nominal weather conditions, such as low ceiling, precipitation, wind, fog, and icing conditions are the leading
causes of air traffic delays in the National Airspace System (NAS), and hence play a significant role in air traffic

management [1, 2]. Strategic air traffic management is concerned with allocating limited resources in the airspace 2-8
hours ahead of time, in preparation for weather and other off-nominal conditions [3, 4]. To minimize traffic delays
and meanwhile guarantee aviation safety, a weather-driven air traffic management decision solution is important. An
advisable approach is to construct a database of weather scenarios and their corresponding management solutions.
Based on the retrieved offline management solutions corresponding to similar weather scenarios from the database,
management solution for the current weather scenario can be quickly designed [5]. For example, a spatiotemporal
scenario data-driven decision framework was developed and its efficiency was verified through an application study on
multi-UAV path planning [6].

Weather scenarios have stochastic spatiotemporal spread properties in the strategic time frame [7].The aforementioned
traffic management decision framework requires clustering algorithms to classify weather scenarios. In the literature,
clustering algorithms can be broadly classified into two categories, model-based and data-based [8]. Both of them require
distance measures to quantify the similarity between pairwise scenarios. For model-based clustering algorithms, distance
measures are applied to the models underlying data, while for data-based clustering algorithms, distance measures are
applied directly to the scenario data. In our previous study, we analyzed the spatiotemporal correlations of weather
scenarios, and developed a data-driven multi-resolution spatiotemporal distance measure to cluster spatiotemporal
spread patterns [7]. The performance of this method was verified using plenty of examples and real NAS weather-impact
datasets. The method has a number of parameters to configure and the performance of the clustering accuracy relies on
proper selections of these parameters. Parameter selection guidelines were provided in [7] based on knowledge of the
spread and sensitivity studies of these parameters.

In this paper, we revisit the data-driven multi-resolution distance measure approach, use it as a benchmark, and
design model-based distance measures that are more robust and require less user interference. Our development for the
model-based distance measures is composed of two steps. The first step is to extract the underlying model dynamics
from spatiotemporal scenario data, and the second step is to calculate the distance between pairwise scenarios based on
the estimated model parameters. Examples of models used in the literature include regression models, auto regressive
moving average (ARMA) models and auto regressive integrated moving average (ARIMA) models. We here use the
influence model, a discrete-time stochastic model to capture spatiotemporal weather spread processes [9]. The influence
model has nice characteristics, such as reduced-order representation and computational efficiency.

Various model-based distance measures have been studied in the literature. Papers [10–13] developed model-based
distance measures to cluster hidden Markov model (HMM) driven scenarios. Paper [11] was one of the earliest work
that developed a probabilistic distance measure based on the Kullback-Leibler (KL) number. In [12], a probabilistic
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model-based distance measure was used for the unsupervised classification of EEG signals. In [13], a distance measure
that considers the cross-fitness of two scenarios was developed to cluster time series data of variable length, noisy and
multiple dimensions. In [10], a model-based distance measure embeds the information of the whole dataset into each
pairwise distance for sequential data clustering. Per knowledge of the authors, this paper is a first attempt to develop
influence model-based distance measures for the clustering of stochastic spatiotemporal senario data.

The rest of this paper is organized as follows. Section III reviews the data-driven multi-resolution spatiotemporal
distance measure, which serves as the benchmark for this paper, and formulates the clustering problem. In Section IV,
we introduce the influence model, its estimation related properties and the estimate algorithms. We then introduce
three model-based distance measures for the influence model. Integrating the distance measures and the hierarchical
clustering algorithm, we construct the influence model-based clustering algorithm. Section V uses simulation studies to
compare and analyze the data-driven distance measure and three model-based distance measures.

III. Literature Review and Problem Formulation

A. Data-Driven Multi-Resolution Spatiotemporal Distance Measure
In our previous work, a data-driven multi-resolution spatiotemporal distance measure approach was developed

to group spatiotemporal scenarios [7]. The measure adopts the concept of moving windows to scan scenarios with
increasingly coarser resolutions along both temporal and spatial dimensions, and calculates the similarity between
pairwise scenarios by summing the difference for all resolutions. A distance matrix can be obtained by iterating
the algorithm for all the pairs of scenarios. Combining the distance matrix with standard distance-based clustering
algorithms, such as hierarchical clustering in our case, the spatiotemporal scenarios can be classified into groups.
The data-driven multi-resolution distance measure approach is efficient in clustering spatiotemporal scenarios with
specific spread patterns. In addition, the algorithm is applicable not only to regular-shaped spatial cells, but also
to randomly-shaped spatial cells. Other features include the correction of boundary effects and the permission of
heterogeneous contributions of spatial cells and time points. The performance of the data-driven multi-resolution
distance measure approach has been verified with real NAS weather-impact dataset.

The algorithm of the data-driven multi-resolution spatiotemporal distance measure is summarized as follows. Let
Yi and Yj denote two spatiotemporal scenarios, each of which is composed of the same number of spatial cells and
temporal length. Each scenario is captured by collecting snapshots of all spatial cells at all time points. Let B denote the
set of spatial cells and bn ∈ B refer to a specific spatial cell. Similarly, let T denote the set of time points and tk ∈ T
refer to a specific time point. The intensity of Yi at a spatial cell bn and time point tk is denoted by Ii,n,k ≥ 0.

Two moving-windows, one for scanning spatial cells and the other one for scanning time points, are denoted as
φn,w and φk,h respectively. φn,w is a size-w window centered at the spatial cell bn and contains all the spatial cells
within w − 1 hops to bn. φk,h is a size-h window starting from the time point tk and contains itself and the subsequent
h − 1 time points. The distance of spatial resolution w and temporal resolution h between the two scenarios Di, j,w,h is
calculated by comparing the aggregated intensities with fixed spatial window size w and temporal window size h.

Di, j,w,h =
∑

φn,w ∈Φw

∑
φk,h ∈Φh

1
|φn,w | |φk,h | |Φh |

������ ∑
br ∈φn,w

∑
tl ∈φk,h

Îi,r,l
λr,wτl,h

−
∑

br ∈φn,w

∑
tl ∈φk,h

Îj,r,l
λr,wτl,h

������ , (1)

where

λn,w =
∑

φr,w ∈{φr,w |bn ∈φr,w }

1
|φr,w |

τk,h =
∑

φl,h ∈{φl,h |tk ∈φl,h }

|T |
|φl,h | |Φh |

where | · | denotes the cardinality, Φw denotes the full set of spatial windows of size w, and Φh denotes the full set of
temporal windows of size h. Îi,r,l = βr,l Ii,r,l is a scaled intensity with βr,l > 0 weighing the importance of the spatial
cell br at time point tl . In our study, we set βr,l = 1 for all spatial cells and time points. λr,w , a spatial contribution
factor, is used to correct the boundary effect of the spatial cells, so that each spatial cell contributes equally to the
distance calculation. The temporal contribution factor τl,h functions in a similar way.
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After iterating all the spatial windows and temporal windows, the total distance between scenarios Yi and Yj can be
computed as

Di, j =

hmax∑
h=1

wmax∑
w=1
Di, j,w,h

δwαh∑hmax

h=1
∑wmax

w=1 δwαh
, (2)

where wmax and hmax denote the sizes of the maximum spatial window and temporal window respectively. With the
increasing of window size, the resolution decreases. δw > 0 and αh > 0 are weighting factors for spatial window and
temporal window respectively. In general, larger window size contributes less to the calculation of distance due to its
coarse resolution. Here we select δw and αh to be negative exponential functions, i.e., δw = e−σ(w−1) and αh = e−ρ(h−1),
where σ, ρ ≥ 0.

Repeating the procedures for each pair of scenario, a distance matrix can be obtained. The overall procedure to
calculate the distance matrix for multiple scenarios is summarized as follows.

Algorithm 1 Data-Driven Multi-Resolution Distance Measure Algorithm
Input:

Multiple scenarios Y =
[
Y1,Y2, · · · ,YL

]
.

Output:
Distance matrix D.

1: for pair of scenarios Yi and Yj do
2: for pair of spatial resolution w = 1 : wmax and temporal resolution h = 1 : hmax do
3: Calculate the distance Di, j,w,h for fixed spatial window size w and temporal window size h according to (1).
4: end for

Calculate the total distance Di, j between scenarios Yi and Yj using Equation (2).
5: end for

B. Problem Formulation
The performance of the data-driven multi-resolution spatiotemporal distance measure depends highly on the selection

of parameters. To achieve accurate clustering results, one may need to understand the spatial graph structure and
spatiotemporal spread dynamics to select appropriate parameters, which can be challenging for users. We study in
this paper the model-based distance measures which have improved robustness and require less user interference. The
procedure of the model-based distance measure clustering approach islisted as follows.

Step 1: Estimate the model parameters underlying each spatiotemporal scenario.
Step 2: Apply model-based distance measures directly to the model parameters between pairwise scenarios and

obtain a distance matrix for all the spatiotemporal scenarios.
Step 3: Apply standard distance-based clustering algorithms to the distance matrix to group the spatiotemporal

scenarios.
To facilitate these three steps, our problems can be formulated as follows.
Problem 1: Find a model-based distance measure to facilitate clustering.
Problem 2: Find a model which is capable to capture spatiotemporal weather dynamics so that we can apply the

model-based distance measure found in Problem 1 to the model-driven scenarios and analyze the performance.

IV. Influence Model-Based Distance Measures
We use the influence model, a discrete-time stochastic model to capture the spatiotemporal spread of weather

scenarios. We first introduce the influence model. Then we study its estimation related properties, and propose two
estimation algorithms. One estimator is the widely used maximum likelihood estimator (MLE), and the other one called
linear-algebra-based influence model estimator is derived based on the unique properties of the influence model [14].
Three KL divergence based distance measures are introduced and applied to the influence model. Combining them with
hierarchical clustering algorithm, we construct the framework for influence-model based clustering algorithm.
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A. Overview of Influence Model
The influence model is a discrete-time stochastic model that succinctly captures uncertain spatiotemporal spread

dynamics. It describes the evolution of weather statuses of an area of multiple regions according to their interactions. At
any time step k, a region randomly picks one of its neighbors (including itself) as its determining region, and refreshes
its status at time k + 1 based on the status of the determining region.

For an area composed of N regions, a network influence matrix D ∈ RN×N is used to capture the network interaction
among regions. A local Markov chain Ai j ∈ RMi×Mj is used to capture the local Markov process between a pair of
regions i and j, where i, j ∈ {1, 2, · · · , N}, and Mi and Mj denote the number of weather statuses of region i and region
j respectively. Both D and Ai j are right stochastic matrices. The entry di j denotes the probability that region i is
influenced by region j. It is natural to assume that the probability becomes smaller with the increase of distance between
region i and j. Each entry amn of Ai j denotes the probability that region i will be in weather status m the next time step
when region j is in weather status n at the current time step. In this paper, we focus on a special class of influence model,
whose name is homogeneous influence model, where the numbers of weather statuses are the same for any region and
the local Markov chains for any pairwise regions are the same as well. Hence, a homogeneous local Markov chain
A ∈ RM×M can be used to capture the local influences, where M denotes the number of weather statuses of each region.
In the rest of this paper, the homogeneous influence model is referred to as influence model when it does not cause
confusion.

A simple example is shown in Figure 1, the area is composed of 3 regions, and each region has 2 weather statuses,
normal and cold. For example, the first row of D denotes how region 1 is influenced by other regions (including itself),
and the other rows function in a similar way. The local Markov chain A is able to capture both positive and negative
influence between a pair of regions. Here positive influence means region i has a tendency to follow its neighbor’s
weather status, and negative influence means region i has a tendency to reject its neighbor’s weather status. The first row
of A shows a positive influence and the second row shows a negative influence.

Fig. 1 An influence model example of 3 regions and each region has two weather statuses, with ‘1’ denoting
normal and ‘2’ denoting cold.

We use a scalar si[k] ∈ {1, 2, · · · , M} to denote the weather status of region i at time k. Let also a length-M row
vector Si[k] to represent the vector form of region i’s weather status at time k, where Si[k] is filled with ‘0’s except a
value ‘1’ at the position si[k]. si[k] and Si[k] has a one-to-one mapping relationship. The weather state S[k] of the
whole area can be described by cascading Si[k] for all region i,

S[k] =
[
ST1 [k], S

T
2 [k], · · · , S

T
N [k]

]T
. (3)

where the superscript T denotes the transpose operation.
Similarly, a length-M row vector pi[k] is used to represent the probability mass function (PMF) for the weather

status of region i at time step k. The PMF of the whole area’s weather state can be represented by a state probability
matrix p[k] through cascading pi[k] for all i,

p[k] =
[
pT1 [k], pT2 [k], · · · , pTN [k]

]T
. (4)
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Based on the evolution rules of the influence model, we have

p[k + 1] = DS[k]A. (5)

The weather state of the area at the next time step k + 1 is realized according to p[k + 1] as

S[k + 1] = Realize(p[k + 1]). (6)

The influence model preserves Markov property since the next weather state of the area only depends on the current
state but nothing else from the past according to (5) and (6). It is a reduced-order representation of a master Markov
chain G with MN states. We use a scalar s[k] ranging from 1 to MN to represent the state of G at time k, and the
mapping from si[k] to s[k] is s[k] =

∑N
i=1(si[k] − 1)MN−i + 1. Conversely, for s[k] = n we have si[k] = ni , where ni

denotes the weather status of region i which is consistent with the overall area state n. The corresponding Si[k] = eni ,
where eni is a row vector with ‘1’ at nith position and otherwise filled with ‘0’s.

For each entry of the master Markov chain G, we use gmn to denote the transition probability from s[k] = m to
s[k + 1] = n. gmn can be computed as the product of all sites’ conditional probabilities.

gmn = P(s[k + 1] = n|s[k] = m)

= P(s1[k + 1] = n1, · · · , sN [k + 1] = nN |s1[k] = m1, · · · , sN [k] = mN )

= P(S1[k + 1] = en1, · · · , SN [k + 1] = enN |S1[k] = em1, · · · , SN [k] = emN )

=

N∏
l=1

P(Sl[k + 1] = enl
|S1[k] = em1, · · · , SN [k] = emN )

=

N∏
l=1
(

N∑
r=1

dlr emr A)eTnl
.

(7)

Compared with the master Markov chain G which has MN states, the influence model has only M × N states at each
time step, which facilitates a tractable analysis of network dynamics with computational efficiency, and having broad
usage in designing, modeling, and analyzing complex spatiotemporal scenarios.

B. Estimation Related Properties of the Influence Model
We study the properties of the influence model related to the estimation of model parameters from data. Specifically,

the master Markov chain G can be uniquely determined from a large volume of scenario data based on the law of large
numbers, and the relationship of the reverse mapping from the master Markov chain G to the local Markov chain A and
the network influence matrix D is summarized as follows[14].

a). Given a master Markov chain G constructed from a network influence matrix D and a local Markov chain A, A
can be recovered from G as

amn = N
√
glm,ln, (8)

where lm represents the state of G where all the regions are in the influence model weather status m. (8) can be obtained
directly from (7).

b). Given a master Markov chain G constructed from a network influence matrix D and a local Markov chain A, D
can be recovered from G as vec(DT ) = V(OTO)−1OT vec(GT ) if matrix O has full column rank, where vec(·) denotes
the vectorization operation of a matrix, i.e., cascading the column vectors of a matrix. Matrix O ∈ RM2N×NN with each
element

oMN (i−1)+j,
∑N

r=1(mr−1)NN−r+1 =

N∏
r=1

aimr , jr , (9)

where
1 ≤ i, j ≤ MN,

1 ≤ m1, · · · ,mN ≤ N,

and imr denotes the weather status of region mr which is consistent with the area’s weather state i of G. V ∈ RN2×NN

with each element

vN (l−1)+n,
∑N

r=1(mr−1)NN−r+1 =

{
1, i f ml = n
0, otherwise

, (10)
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where
1 ≤ l, n ≤ N .

The reverse mapping from G to D can be derived by multiplying (7) out and construct two matrices O and V for
calculation. Note that matrix O is solely dependent on A, which can be extracted from G directly as shown in a). Matrix
V is solely dependent on N .

c). Given a master Markov chain G constructed from a network influence matrix D and a local Markov chain A, if
Null(O) ⊃ Null(V), D can not be uniquely determined from G. In other words, multiple different matrices Ds can map
to a same G. In this case, the influence model is not identifiable from G, and hence not identifiable from spatiotemporal
weather scenarios. Since the estimation is meaningful only when there is a one-to-one mapping between the scenario
and the model parameters, we here focus on the cases where A and D can be uniquely determined from the scenarios.
Matrices O and V can be used to check the design of the spatiotemporal weather spread scenarios generator.

C. Estimation Algorithms for Influence Model
In this subsection, we propose two estimation algorithms for the influence model driven spatiotemporal scenarios.

The first algorithm is the widely used MLE, and the second algorithm called linear-algebra-based influence model
estimator is derived based on the unique properties of the influence model.

1. Maximum Likelihood Estimation Algorithm
Given a spatiotemporal weather scenario Yi which is generated from an influence model, our goal is to find the

underlying parameter θi = (Ai,Di) that maximizes the likelihood function L(θi;Yi).

L(θi;Yi) = P(Yi |θi), (11)
θ̂i = arg max

θi

L(θi;Yi). (12)

After mapping the influence model to the master Markov chain G, we have Yi =
[
si[1], si[2], · · · , si[|T |]

]
, where si[k]

denotes the weather state of the area corresponding to scenario Yi at time k, and |T | is the temporal length as indicated
in Section III. Equation (11) can be expressed as:

L(θi;Yi) = P(Yi |θi) = P(si[1], si[2], · · · , si[|T |]|θi) =
|T |−1∏
k=1

P(si[k + 1]|si[k], θi) (13)

To facilitate computation, take log of (13), we have

logL(θi;Yi) =
|T |−1∑
k=1

logP(si[k + 1]|si[k], θi),

s.t .
M∑
n=1

amn = 1,
N∑
r=1

dlr = 1,

1 ≤ m ≤ M, 1 ≤ l ≤ N .

(14)

By applying the Lagrange multiplier to (14), θ̂i is obtained.

2. Linear-Algebra Based Estimation algorithm
Given a scenario Yi which is generated from an influence model, the corresponding master Markov chain Gi can be

obtained directly by counting the state transition frequencies. As the time approaches infinity, Gi will be equal to its
real value with probability 1 according to the law of large numbers. According to the mapping relationship from Gi to
the local Markov chain Ai and the network influence matrix Di , the linear-algebra based estimation algorithm can be
described as follows.
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Algorithm 2 Linear-Algebra Based Influence Model Estimator
Input:

A spatiotemporal weather scenario Yi .
Output:

Matrices Ai and Di underlying Yi .
1: Count state transition frequencies according to Yi , then calculate matrix Gi .
2: Compute the local Markov chain Ai from Gi according to (8).
3: Compute matrix O according to (9).
4: if matrix O has full column rank then

Compute network influence matrix Di based on Gi , O and V according to vec(DT ) = V(OTO)−1OT vec(GT ).
5: end if

D. Three Model-Based Distance Measures
A number of model-based distance measures have been developed for HMMs. A commonly used framework is

to obtain a likelihood-based distance matrix for all the scenarios based on KL divergence. Considering the mapping
relationship between the influence model and HMM, the model-based distance measures for HMM can be transplanted
to influence model naturally.

An earlier approach for measuring the distance between pairwise HMMs was introduced in [11]. The approach
followed the concept of divergence and cross entropy in information theory and developed a probabilistic distance
measure. Given a scenario Yi , the distance between a pair of models θ1 and θ2 is defined as:

l12 =
1
|T |
(log P(Yi |θ1) − log P(Yi |θ2)), (15)

where l12 measures the difference of the likelihood of generating the same scenario from two different models. To
extend the results to multiple scenarios, for example Y =

[
Y1,Y2, · · · ,YL

]
, where L denotes the number of scenarios,

the main idea is to estimate a model for each scenario and use the resulting models to calculate a length-normalized
log-likelihood matrix W with each element

wi j =
1
|T |

log P(Yj |θ̂i), (16)

where wi j expresses the likelihood of generating scenario Yj using the underlying model θ̂i . Since θ̂i is estimated from
Yi , the more similar Yi and Yj are, the larger wi j is. In the following, we introduce three model-based distance measures
based on matrix W for clustering the influence model driven spatiotemporal weather scenarios.

1. Simple Symmetric Distance Measure
The simple symmetric distance measure is the simplest way to obtain a distance matrix DSS . Each entry DSS

i, j of
DSS is calculated by taking half of the summation of wi j and wji . That is,

DSS
i, j = D

SS
j,i =

1
2
(wi j + wji) (17)

(17) incorporates the information of both θi and θ j and the two scenarios Yi and Yj , and guaranteesDSS to be symmetric.

2. BP Metric
In [12], a model-based distance measure named BP metric is proposed. Each entry DBP

i, j of DBP is calculated as

DBP
i, j =

1
2
(
wi j − wii

wii
+
wji − wj j

wj j
) (18)

Compared with (17), (18) takes into account the performance of the estimator. The simple symmetric distance
measure assumes that all the scenarios are estimated with the same accuracy. However, due to different spatiotemporal
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spread patterns, the performances of the estimators for the scenarios may be different, even though they use the same
estimation algorithm. The information of how well the scenarios are estimated by the estimator is expressed in wii

and wj j , by involving them into (18), the BP metric is expected to perform better than the simple symmetric distance
measure when the performance of estimator differs for different model structures.

3. Yin-Yang distance
In [13] another distance measure named Yin-Yang distance is proposed as follows.

DYY
i, j = |wii + wj j − wi j − wji | (19)

Like BP metric, Yin-Yang distance also takes into account how well the scenarios are estimated by the estimator. If
the two scenarios are identical, DYY

i, j would be equal to zero. If the two scenarios differ greatly from each other, their
likelihood of being generated from the other model would be small and the distance between them would be large. It is
applicable to long-length scenarios with large noises.

E. Hierarchical Clustering Algorithm
In this subsection, we briefly introduce the hierarchical clustering algorithm based on the distance matrix as follows.

Algorithm 3 Hierarchical Clustering Algorithm
Input:

Scenarios Y = [Y1,Y2, · · · ,YL] and a distance matrix D.
Output:

Clustering results.
1: Assign each scenario to a cluster. In particular,we have L clusters and each of them contains only one scenario.
2: Find the closest (the minimum distance) pair of clusters based on D and merge them into a new cluster.
3: Calculate the distances between the new cluster and each of the old clusters using single-linkage, i.e., the distance

between one cluster and another cluster is calculated as the shortest distance from any member of one cluster to any
member of the other cluster. Update the distance matrix D accordingly.

4: Repeat steps 2 and 3 until all scenarios are clustered into a single cluster of size L.

F. The Framework For Influence Model-based Clustering Algorithm
Combining the influence model estimation algorithms, the three model-based distance measures, and the hierarchical

clustering algorithm, the framework for influence model-based clustering algorithm for spatiotemporal weather scenarios
are summarized as follows.

Step 1: Given multiple spatiotemporal weather scenarios Y = [Y1,Y2, · · · ,YL], estimate the influence model
parameters underlying each scenario according to Algorithm 2.

Step 2: Apply the model-based distance measures aforementioned in Subsection IV.D to the model parameters
acquired in Step 1 and obtain a distance matrix D for Y .

Step 3: Apply the hierarchical clustering algorithm described in Algorithm 3 to the distance matrixD, the clustering
results of the spatiotemporal weather scenarios Y can be obtained.

V. Comparative Simulation Studies

A. Spatiotemporal Weather Spread
We generate 100 spatiotemporal weather spread scenarios of four different spread patterns as shown in Figure

2. We model how a cold front intrudes an area which is consist of 20 × 20 regions. The black dot denotes a region
affected by he cold front, and the white one denotes a region of normal weather. We use the binary influence models
to generate the four weather spreading patterns by choosing an appropriate network influence matrix D to ensure our
desired propagation direction.

Then we apply the three model-based distance measure mentioned in Section IV and the data-driven multi-resolution
distance measure mentioned in Section III to cluster the 100 scenarios. Their performances are shown in Table 1.
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Table 1 Accuracy of The Distance Measures For Clustering Spatiotemporal Weather Scenarios

Accuracy (Percent)
Simple Symmetric
Distance

BP Metric Yin-Yang Distance Data-based Cluster-
ing Algorithm

75 74 75 98

The data-driven multi-resolution distance shows better performance than the three model-based approaches in this
case. Since the four weather spreading patterns are generated by binary influence models and binary influence models
are mapped to absorbing Markov chains which are not ergodic, the model-based approach needs large data sets to be
accurate. With small datasets, the model-based approaches lead to less accuracy. For the three model-based approaches,
the accuracy of them differ little from each other in this case.

B. Scenario Length Study
Here we study the relationship between scenario length and the performance of the clustering results of the

model-based approaches and the data-driven approach. To reduce computational complexity, we adopt four influence
models with a similar graph structure as shown in Figure 1. All the four influence models have different network
influence matrices D and local Markov chains A. Scenario length ranges from 100 to 2000, under each case 100
scenarios are generated by these four models accordingly. The three model-based approaches and the data-driven
approach are applied to cluster the 100 scenarios under each length respectively. The accuracy of these approaches
under each length is given in Figure 3. With the increasing of scenario length, all of the model-based approaches and
the data-driven approach improve their accuracy. There is no significant differences in the performance of the three
model-based approaches. However, the performance of the multi-resolution distance approach is much inferior to the
model-based approaches in this case. Since the spatiotemporal weather spreading patterns are not as evident as in V.A,
it is difficult to select appropriate parameters for the multi-resolution distance approach to cluster the spreading patterns
from the scenarios.

C. Study on Scenario Data of Heterogeneous Lengths
We study the clustering of heterogeneous-length scenarios for the three model-based distance approaches since

the data-driven multi-resolution approach requires all the scenarios to have the same length. We adopt the same four
influence models as in case study V.B, and generate 100 scenarios from them accordingly, of which number 1-25
scenarios are generated by the first influence model, number 26-50 scenarios are generated by the second influence
model, number 51-75 scenarios are generated by the third influence model, and number 76-100 scenarios are generated
by the forth influence model. The lengths of these scenarios are not the same and are randomly determined within a
range from 100 to 2000. The accuracy of the three model-based approaches is shown as in Table 2. We can see BP

Table 2 Accuracy of Distance Measures Against Varied-length Scenarios

Accuracy (Percent)
Simple Symmetric
Distance

BP Metric Yin-Yang Distance

71 78 79

metric and Yin-Yang distance outperform the simple symmetric distance in clustering heterogeneous-length scenarios.
That is because BP metric and Yin-Yang distance take into account how well the estimator works and evaluates the
relative difference. There is no prominent difference between the performance of BP metric and Yin-Yang distance in
this case.

VI. Conclusion
In this paper, we develop an influence-model based clustering algorithm to cluster spatiotemporal weather scenarios

for air traffic management. We use the influence model to capture the dynamics of stochastic spatiotemporal weather
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Fig. 2 Four spatiotemporal weather spread patterns. (a) The cold front comes from the west and spreads to the
east.(b) The cold front comes from the northwest and spreads to the southeast. (c) The cold front comes from
the south and spreads to the north. (d) The cold front starts in the middle and spreads to the regions around.

scenarios, and study the estimation algorithms for the influence model based on its unique properties. Three influence
model-based distance measures for clustering stochastic weather scenarios are studied and compared with a data-driven
multi-resolution spatiotemporal distance measure. Combining the influence model estimator, three model-based distance
measures, and the hierarchical clustering algorithm, we develop a influence model-based clustering algorithm for
spatiotemporal weather scenarios. The simulation studies show that the performance of the three model-based distance
measures are more robust and require less user interference than the data-driven multi-resolution spatiotemporal distance
measure, which can be easily affected by the selected parameters. With the increase of scenario length, the clustering
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Fig. 3 Accuracy Under Different Scenario Length

accuracy of the model-based distance measures increase substantially. In addition, the model-based distance measures
are applicable to the clustering of scenarios with different lengths.
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