
Brief Announcement: Approximation of Scheduling with
Calibrations on Multiple Machines

Lin Chen

Department of Computer Science, University of Houston

Houston, Texas, USA

chenlin198662@gmail.com

Minming Li

Department of Computing Science, City University of

Hong Kong

Hong Kong SAR, China

minming.li@cityu.edu.hk

Guohui Lin

Department of Computing Science, University of Alberta

Edmonton, Alberta, Canada

guohui@ualberta.ca

Kai Wang

Department of Computing Science, City University of

Hong Kong

Hong Kong SAR, China

Center for Advanced Studies in Management, HHL Leipzig

Graduate School of Management

Leipzig, Saxony, Germany

kai.wang@my.cityu.edu.hk

ABSTRACT
We study the scheduling problem with calibrations. In 2013, Bender

et al. (SPAA ’13) proposed a theoretical framework for the problem.

Jobs of unit processing time with release times and deadlines are to

be scheduled on parallel identical machines. The machines need to

be calibrated to run jobs while a single calibration remains valid on

a machine only for a time period of lengthT . The objective is to find
a schedule that completes all jobs within their timing constraints

and minimizes the total number of calibrations. In this paper, we

aim to design an approximation algorithm to solve the problem.

We propose a dynamic programming algorithm with polynomial

running time when the number of machines is constant. In addition,

we give a PTAS when the number of machines is input.

CCS CONCEPTS
•Theory of computation→Design and analysis of algorithms;
Approximation algorithms analysis; Scheduling algorithms;

KEYWORDS
Approximation Algorithm, Scheduling, Calibration, PTAS

1 INTRODUCTION
In this paper, we study the scheduling problem on multiple ma-

chines with calibrations where a machine must be calibrated before

it runs a job. When the machine is calibrated at time t , it stays
calibrated for a time period of length T , after which it must be

recalibrated to continue running jobs. We refer to the time interval

[t , t + T] as the calibration interval and no job can be started or

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SPAA ’19, June 22–24, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-6184-2/19/06.

https://doi.org/10.1145/3323165.3323173

be processed outside the calibration intervals on a machine. We

are given a set of n jobs J = {1, 2, ...,n}, where each job j ∈ J has
release time r j , deadline dj and processing time pj where pj = 1.

We havem identical parallel machines which can be trusted to run

a job only when calibrated. The objective is to find a schedule that

completes all jobs within their timing constraints such that the

number of calibrations is minimized.

This problem is firstly introduced and studied by Bender et al.

[2], they proposed a greedy, optimal, polynomial-time algorithm

called Lazy-Binning for the single machine case and showed that

the extended Lazy-Binning algorithm on multiple machines yields

2-approximation, while the complexity status of the problem still

remains open. Later on, Fineman and Sheridan [4] considered the

non-preemptive jobs with non-unit processing times and general-

ized the problem with the consideration of resource-augmentation

[5]. In 2017, Angel et al. [1] developed different results for several

generalizations of this calibration minimization scheduling prob-

lem, including heterogeneous calibrations and calibration set-up

time. Chau et al. [3] worked on the trade-off between weighted

flow time and calibration cost for jobs of unit processing time. They

integrated these two criteria in the objective function and gave

several online approximation algorithms with constant approxi-

mation ratio on different settings of single or multiple machines

for weighted or unweighted jobs, as well as a dynamic program-

ming algorithm for the offline problem. Most recently, Wang [6]

worked on the scheduling problem on a single machine with the

consideration of both calibration and time slot cost where a certain

time-dependent cost will be incurred if a time slot is occupied with

some job. They considered the objective of minimizing total time

slot cost with the budget of a certain number of calibrations and

proposed several dynamic programming algorithms for different

variants of the problem.

In this paper, we first propose a dynamic programming approach,

which has polynomial running time whenm is a constant. Based

on the dynamic programming approach, we give a polynomial time

approximation scheme (PTAS).

https://doi.org/10.1145/3323165.3323173

2 PRELIMINARIES
We denote the time interval (t − 1, t] as time slot t . We sort the

jobs in non-decreasing order of their deadlines, and non-decreasing

order of release times if two or more jobs have the same deadline.

We assume that all the input parameters are non-negative integers,

in other words we only consider the feasible schedule in which the

starting times of the calibrations and jobs are integers.

Definition 2.1. LetΨ =
⋃
j ∈J ,s ∈[0,n]{dj−s},Φ =

⋃
j ∈J ,t ∈Ψ,s ∈[0,n]

{r j + s, t + s} and Φ(j) = {t | r j < t ≤ dj , t ∈ Φ}, ∀j ∈ J .

Lemma 2.2. ([1]) There exists an optimal schedule such that (i)
each calibration starts at a time in Ψ. (ii) ∀j ∈ J , job j finishes at a
time in Φ(j).

Lemma 2.2 is summarized from the work by Angel et al. [1], which

shows that there exists an optimal schedule such that the starting

time of any calibration takes value from set Ψ and any job com-

pletion time takes value from set Φ. Also, by adopting the analysis

from [1], one would find that |Ψ| = O(n2) and |Φ| = O(n2).

Lemma 2.3. ([6]) There exists an optimal schedule such that for
any two jobs i, j with i < j (i.e. di ≤ dj), if ri ≤ tj then ti ≤ tj where
ti , tj are the corresponding starting times of job i and j in the optimal
schedule respectively.

Lemma 2.3 plays an important role in designing a dynamic pro-

gramming algorithm and is referred from the work by Wang [6].

3 DYNAMIC PROGRAMMING APPROACH
In this section, we aim to design a dynamic program to solve the

problem. In order to mark the calibrations on each machine that

cover time slot t , we use a vectorγ = ⟨γ1,γ2, ...,γm⟩ to represent the

starting times of these calibrationswhereγk ∈ {nul}∪(Ψ∩[t−T , t))
indicates the starting time of the calibration on machine k and nul

represents the situation that the machine is not calibrated at time

slot t . Let Γ(t) = {⟨γ1,γ2, ...,γm⟩ | γk ∈ {nul}∪(Ψ∩[t−T , t)), ∀k ∈

[1,m]} be the set of all possible vectors, with respect to time slot t .
We use δ (γ) to indicate the number of valid calibrations of vector

γ , i.e. δ (γ) =
∑
γk,nul,k ∈[1,m] 1.

Definition 3.1. Given j ∈ J , t1 ∈ Φ, t2 ∈ Φ, let J (j, t1, t2) =
{i | i ≤ j, ri ∈ [t1, t2), i ∈ J } be the subset of jobs whose in-

dexes are at most j and release times are between t1 and t2. Let
f (j, t1, t2,q,u,v) be the minimum number of additional calibra-

tions needed in the partial schedule that schedules jobs J (j, t1, t2)
on m machines where u = ⟨u1,u2, ...,um⟩,u − T ∈ Γ(t1), v =
⟨v1,v2, ...,vm⟩ ∈ Γ(t2), q ∈ [0,m] on the condition that

i.) all jobs from J (j, t1, t2) are scheduled during time interval

[t1, t2).
ii.) time intervals [t1,uk) and [vk , t2) have already been cali-

brated on machine k, ∀k ∈ [1,m].

iii.) q other jobs (not from J (j, t1, t2)) have already been assigned

to time slot t2.

In Definition 3.1, we use vector u (resp.v) to mark the ending

times (resp. starting times) of the calibrations that cross the bound-

ary of time interval [t1, t2), i.e. that cover time slot t1 (resp. t2),
where u −T ∈ Γ(t1) (resp.v ∈ Γ(t2)).

... ...

t1 t2t

...

q

u vx y

j

Figure 1: An illustration for the dynamic programming
approach in Proposition 1.

The high level idea of the dynamic programming approach is to

schedule job j at time slot t (test every possibility) and then divide

the problem of scheduling jobs J (j − 1, t1, t2) over time interval

[t1, t2) into two sub-problems: scheduling jobs J (j − 1, t1, t) and
jobs J (j − 1, t , t2) over intervals [t1, t) and [t , t2) respectively. The
correctness of dividing sub-problems is proved based on Lemma 2.3.

Moreover, we open additional calibrations on the machines to

cover time slot t (we do it only once for t) and we need to mark the

calibration starting times on each machine that cover time slot t in
the sub-problems. Specifically, we use vector x = ⟨x1,x2, ...,xm⟩ ∈

Γ(t) to indicate the starting times of the additional calibrations on

each machine and correspondingly y = ⟨y1,y2, ...,ym⟩ = x +T as

the calibration ending times.

Proposition 1. For the case J (j, t1, t2) = ∅, f (j, t1, t2,q,u,v)
equals 0 if at leastqmachines are calibrated in time slot t2 provided by
u andv , and otherwise∞. If j < J (j, t1, t2)we have f (j, t1, t2,q,u,v) =
f (j − 1, t1, t2,q,u,v). If j ∈ J (j, t1, t2),Φ(j) ∩ (t1, t2] = ∅ we have
f (j, t1, t2,q,u,v) = ∞. Otherwise we have f (j, t1, t2,q,u,v) =

min

t ∈Φ(j)∩(t1,t2]


∞ , if t = t2,q =m
f (j − 1, t1, t2,q + 1,u,v) , if t = t2, 0 < q < m
min

cond.
f (j − 1, t1, t , 1,u,v ′) +

f (j − 1, t , t2,q,u ′,v) + δ (x) , if t < t2 or q = 0

where cond. represents x ∈ Γ(t),y = x+T ,u ′ = max{y,u ≥ t},v ′ =

min{x ,v < t}.

4 APPROXIMATION ALGORITHM
In this section, we present a PTAS. Two calibrations are referred to

as distinct if they have different starting times.

Theorem 4.1. For any optimal schedule σ that satisfies Lemma 2.3,
Lemma 2.2 and that no two calibrations overlap with each other on
the same machine, it corresponds to another schedule ϖ of (1 + ϵ) -
approximation, in which for any time slot t , it satisfies that

i.) the number of distinct calibrations inQt is at most 2⌈1/ϵ⌉ + 1.
ii.) the number of calibrations inQt is at mostm+ ⌊ϵm⌋+ ⌈ϵm⌉−1.
iii.) the maximum number of calibrations that have the same start-

ing time is at mostm + ⌊ϵm⌋.
iv.) |Qt | ≥ |Q ′

t |.

whereQt (resp.Q ′
t) is the set containing all the calibrations that cover

time slot t in schedule ϖ (resp. schedule σ).

τ τ + T

additional calibrations

ai bi

OPT

PTAS

Figure 2: An illustration for Theorem 4.1 which shows the transformation of the calibrations in an optimal schedule.

We show a constructive process of schedule ϖ as follows. Con-

sider an interval [τ ,τ +T) and suppose that there are l calibrations
whose starting times belong to the interval in an optimal schedule

σ . We aim to delay these l calibrations such that the number of

distinct calibrations after delaying is at most ⌈1/ϵ⌉. Moreover, we

open additional calibrations with identical starting times to guar-

antee the last property in Theorem 4.1. The transformation process

contains three steps as follows.

Step 1. (Partition)Wepartition the l calibrations into ⌈1/ϵ⌉ groups
such that each group contains at most ⌈ϵl⌉ calibrations. This is
feasible as ⌈1/ϵ⌉ · ⌈ϵl⌉ ≥ l .
Step 2. (Delay) For each group of calibrations, we delay all cali-

brations in this group so that they have the same starting time with

the latest calibration in the group.

Step 3. (Augment) We start ⌊ϵl⌋ additional calibrations at time t0
where t0 is the earliest starting time of those l calibrations.

By applying the above steps independently for every sub-interval

([τ ,τ +T)) of length T , the new schedule will fulfill the properties

in Theorem 4.1.

Find an approximation solution.
Based on the properties of Theorem 4.1, we present an efficient way

of marking the calibrations. Let h = 2⌈1/ϵ⌉ + 1,m′ = m + ⌊ϵm⌋,

m̂ =m + ⌊ϵm⌋ + ⌈ϵm⌉ − 1, and we assumem′ < n as we only open

less than n calibrations in the approximation schedule.

Definition 4.2. A configuration is defined as a pair of vectors

⟨α ,η⟩ where α = ⟨α1,α2, ...,αh⟩, η = ⟨η1,η2, ...,ηh⟩ and for each

i ∈ [1,h], αi ∈ {nul}∪Ψ indicates the starting time of a calibration,

ηi ∈ [1,m′] indicates the number of the calibrations that share

the same starting time αi . We define A = {⟨α1,α2, ...,αh⟩ | αi ∈

{nul}∪Ψ,∀i ∈ [1,h]|} to be the set of all possible vectorsα . Given

time slot t , we define A(t) = {⟨α1,α2, ...,αh⟩ | αi ∈ {nul} ∪ (Ψ ∩

[t − T , t)),∀i ∈ [1,h]}, where αi indicates the starting time of a

calibration which covers time slot t . LetB = {η |
∑h
i=0 ηi ≤ m̂,ηi ∈

[1,m′],∀i ∈ [1,h]} be the set of all possible vectors η.

Previously, for the calibrations that cover time slot t , we use

vector γ = ⟨γ1,γ2, ...,γm⟩ ∈ Γ(t) to mark the calibration start-

ing time on each machine. In the modified dynamic programming

approach, we use configurations to mark the distinct calibration

starting times and the number of occurrence of each starting time.

Although calibrations might overlap with each other, we guarantee

that for any time slot t , the number of jobs that are scheduled in

time slot t is no more thanm. Note that in total we have at most

(m′)h |Ψ|h configurations as |A| ≤ |Ψ|h and |B| ≤ (m′)h ≤ nh ,
which implies that the total number of possible configurations is

polynomial in n. In summary, we replace vector γ = ⟨γ1,γ2, ...,γm⟩

of set Γ(t) by configuration ⟨α ,η⟩, and apply the dynamic program

in Proposition 1 to obtain an approximated solution.

5 CONCLUSION
We studied the scheduling problem with calibrations on multi-

ple machines where we consider the schedule of unit process-

ing time jobs with release times and deadlines such that the to-

tal number of calibrations is minimized. We proposed a dynamic

programming approach to solving the problem with running time

O(mn7+6m). Moreover, we presented a PTAS, which has running

time O(mn16+18 ⌈1/ϵ ⌉). It is challenging to tackle the open prob-

lem proposed by Bender et al. [2] about the complexity status on

multiple machines with jobs of unit processing times.

ACKNOWLEDGMENTS
The work described in this paper was supported by a grant from

Research Grants Council of the Hong Kong Special Administrative

Region, China (Project No. CityU 11268616) and Project 11771365

supported by NSFC and a grand from NSF 1756014.

REFERENCES
[1] Eric Angel, Evripidis Bampis, Vincent Chau, and Vassilis Zissimopoulos. 2017.

On the Complexity of Minimizing the Total Calibration Cost. In International
Workshop on Frontiers in Algorithmics. Springer, 1–12. https://doi.org/10.1007/
978-3-319-59605-1_1

[2] Michael A. Bender, David P. Bunde, Vitus J. Leung, Samuel McCauley, and

Cynthia A. Phillips. 2013. Efficient Scheduling to Minimize Calibrations. In

Proceedings of the Twenty-fifth Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA ’13). ACM, New York, NY, USA, 280–287.

https://doi.org/10.1145/2486159.2486193

[3] Vincent Chau, Minming Li, Samuel McCauley, and Kai Wang. 2017. Minimizing

Total Weighted Flow Time with Calibrations. In Proceedings of the 29th ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA ’17). ACM, New

York, NY, USA, 67–76. https://doi.org/10.1145/3087556.3087573

[4] Jeremy T. Fineman and Brendan Sheridan. 2015. Scheduling Non-Unit Jobs to

Minimize Calibrations. In Proceedings of the 27th ACM Symposium on Parallelism
in Algorithms and Architectures (SPAA ’15). ACM, New York, NY, USA, 161–170.

https://doi.org/10.1145/2755573.2755605

[5] Bala Kalyanasundaram and Kirk Pruhs. 2000. Speed is As Powerful As Clairvoy-

ance. J. ACM 47, 4 (July 2000), 617–643. https://doi.org/10.1145/347476.347479

[6] Kai Wang. 2018. Calibration Scheduling with Time Slot Cost. In Algorithmic
Aspects in Information and Management - 12th International Conference, AAIM
2018, Dallas, TX, USA, December 3-4, 2018, Proceedings (Lecture Notes in Computer
Science), Shaojie Tang, Ding-Zhu Du, David L. Woodruff, and Sergiy Butenko

(Eds.), Vol. 11343. Springer, 136–148. https://doi.org/10.1007/978-3-030-04618-7_

12

https://doi.org/10.1007/978-3-319-59605-1_1
https://doi.org/10.1007/978-3-319-59605-1_1
https://doi.org/10.1145/2486159.2486193
https://doi.org/10.1145/3087556.3087573
https://doi.org/10.1145/2755573.2755605
https://doi.org/10.1145/347476.347479
https://doi.org/10.1007/978-3-030-04618-7_12
https://doi.org/10.1007/978-3-030-04618-7_12

	Abstract
	1 Introduction
	2 Preliminaries
	3 Dynamic Programming Approach
	4 Approximation Algorithm
	5 Conclusion
	Acknowledgments
	References

