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Abstract
We initiate a systematic study of linear sketching over F2. For a given Boolean function treated
as f : Fn2 → F2 a randomized F2-sketch is a distribution M over d × n matrices with elements
over F2 such thatMx suffices for computing f(x) with high probability. Such sketches for d� n

can be used to design small-space distributed and streaming algorithms.
Motivated by these applications we study a connection between F2-sketching and a two-

player one-way communication game for the corresponding XOR-function. We conjecture that
F2-sketching is optimal for this communication game. Our results confirm this conjecture for
multiple important classes of functions: 1) low-degree F2-polynomials, 2) functions with sparse
Fourier spectrum, 3) most symmetric functions, 4) recursive majority function. These results
rely on a new structural theorem that shows that F2-sketching is optimal (up to constant factors)
for uniformly distributed inputs.

Furthermore, we show that (non-uniform) streaming algorithms that have to process random
updates over F2 can be constructed as F2-sketches for the uniform distribution. In contrast with
the previous work of Li, Nguyen and Woodruff (STOC’14) who show an analogous result for
linear sketches over integers in the adversarial setting our result does not require the stream
length to be triply exponential in n and holds for streams of length Õ(n) constructed through
uniformly random updates.
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1 Introduction

Linear sketching is the underlying technique behind many of the biggest algorithmic break-
throughs of the past two decades. It has played a key role in the development of streaming
algorithms since [3] and most recently has been the key to modern randomized algorithms for
numerical linear algebra (see survey [52]), graph compression (see survey [37]), dimensionality
reduction, etc. Linear sketching is robust to the choice of a computational model and can be
applied in settings as seemingly diverse as streaming, MapReduce as well as various other
distributed models of computation including the congested clique model [19, 12, 23], allowing
to save computational time, space and reduce communication in distributed settings. This
remarkable versatility is based on properties of linear sketches enabled by linearity: simple
and fast updates and mergeability of sketches computed on distributed data. Compatibility
with fast numerical linear algebra packages makes linear sketching particularly attractive for
applications.

Even more surprisingly linear sketching over the reals is known to be the best possible
algorithmic approach (unconditionally) in certain settings. Most notably, under some mild
conditions linear sketches are known to be almost space optimal for processing dynamic
data streams [10, 31, 1]. Optimal bounds for streaming algorithms for a variety of computa-
tional problems can be derived through this connection by analyzing linear sketches rather
than general algorithms. Examples include approximate matchings [5, 4], additive norm
approximation [1] and frequency moments [31, 51].

In this paper we study the power of linear sketching over F2. 5 To the best of our
knowledge no such systematic study currently exists as prior work focuses on sketching over
the field of reals (or large finite fields as reals are represented as word-size bounded integers).
Formally, for a random set S ⊆ [n] let χS =

⊕
i∈S xi. Given a function f : Fn2 → F2 that

needs to be evaluated over an input x = (x1, . . . , xn) we are looking for a distribution over
k subsets S1, . . . ,Sk ⊆ [n] such that the following holds: for any input x given parities
computed over these sets and denoted as χS1(x), χS2(x), . . . , χSk(x), it should be possible
to compute f(x) with probability 1 − δ. While the switch from reals to F2 might seem
restrictive, we are unaware of any problem for which sketching over reals gives any advantage
over F2. Furthermore, as shown very recently and subsequently to the early version of this
work [39], almost all dynamic graph streaming algorithms6 can be seen as F2-sketches [25]
without losing optimality in space7.

5 It is easy to see that sketching over finite fields can be significantly better than linear sketching over
integers for certain computations. As an example, consider a function (x mod 2) (for an integer input
x) which can be trivially sketched with 1 bit over the field of two elements while any linear sketch over
the integers requires word-size memory.

6 With the only exception being the work of [24] on spectral graph sparsification.
7 Technically [25] uses F3, but replacing F3 with F2 doesn’t change their results.

https://arxiv.org/pdf/1611.01879.pdf
https://arxiv.org/pdf/1611.01879.pdf
https://eccc.weizmann.ac.il/report/2018/064/
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In matrix form F2-sketching corresponds to multiplication over F2 of the row vector
x ∈ Fn2 by a random n× k matrix whose i-th column is a characteristic vector of the random
parity χSi :

(
x1 x2 . . . xn

) 
...

...
...

...
χS1 χS2 . . . χSk
...

...
...

...

 =
(
χS1(x) χS2(x) . . . χSk(x)

)

This sketch alone should then be sufficient for computing f with high probability for any
input x. This motivates us to define the randomized linear sketch complexity of a function f
over F2 as the smallest k which allows one to satisfy the above guarantee.

I Definition 1 (F2-sketching). For a function f : Fn2 → F2 we define its randomized linear
sketch complexity 8 over F2 with error δ (denoted as Rlinδ (f)) as the smallest integer k
such that there exists a distribution χS1 , χS2 , . . . , χSk over k linear functions over F2 and a
postprocessing function g : Fk2 → F2

9 which satisfies:

∀x ∈ Fn2 : Pr
S1,...,Sk

[f(x1, x2, . . . , xn) = g(χS1(x), χS2(x), . . . , χSk(x))] ≥ 1− δ.

We note that while the above definition requires that f is computed exactly, most of our
structural results including Theorem 4 can be extended to allow approximate computation
of real-valued functions f : Fn2 → R as shown in [54].

As we show in this paper the study of Rlinδ (f) is closely related to a certain communication
problem. For f : Fn2 → F2 define the XOR-function f+ : Fn2 ×Fn2 → F2 as f+(x, y) = f(x+ y)
where x, y ∈ Fn2 . Consider a communication game between two players Alice and Bob holding
inputs x and y respectively. Given access to a shared source of random bits Alice has to send
a single message to Bob so that he can compute f+(x, y). This is known as the one-way
communication problem for XOR-functions.

I Definition 2 (Randomized one-way communication complexity of XOR function). For a
function f : Fn2 → F2 the randomized one-way communication complexity with error δ
(denoted as R→δ (f+)) of its XOR-function is defined as the smallest size10 (in bits) of the
(randomized using public randomness) message M(x) from Alice to Bob which allows Bob to
evaluate f+(x, y) for any x, y ∈ Fn2 with error probability at most δ.

Communication complexity of XOR-functions has been recently studied extensively in the
context of the log-rank conjecture (see e.g. [45, 55, 38, 28, 30, 47, 32, 49, 34, 18]). However,
such studies either mostly focus on deterministic communication complexity or are specific
to the two-way communication model. We discuss implications of this line of work for our
F2-sketching model in our discussion of prior work.

8 In the language of decision trees this can be interpreted as randomized non-adaptive parity decision
tree complexity. We are unaware of any systematic study of this quantity either. Since heavy decision
tree terminology seems excessive for our applications (in particular, sketching is done in one shot so
there isn’t a decision tree involved) we prefer to use a shorter and more descriptive name.

9 Technically g can also depend on the sampled sets S1, . . . , Sk, but all sketches used in this paper are
oblivious to the choice of these sets.

10Formally the minimum here is taken over all possible protocols where for each protocol the size of the
message M(x) refers to the largest size (in bits) of such message taken over all inputs x ∈ Fn

2 . See [27]
for a formal definition.
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It is easy to see that R→δ (f+) ≤ Rlinδ (f) as using shared randomness for sampling
S1, . . . ,Sk Alice can just send k bits χS1(x), χS2(x), . . . , χSk(x) to Bob who can for each
i ∈ [k] compute χSi(x+ y) = χSi(x) +χSi(y). This gives Bob an F2-sketch of f on x+ y and
hence suffices for computing f+(x, y) with probability 1− δ. The main open question raised
in our work is whether the reverse inequality holds (at least approximately), thus implying
the equivalence of the two notions.

I Conjecture 3. Is it true that R→δ (f+) = Θ̃
(
Rlinδ (f)

)
for every f : Fn2 → F2 and 0 < δ <

1/2?

In fact all known one-way protocols for XOR-functions can be seen as F2-sketches so it is
natural to ask whether this is always true. In this paper we further motivate this conjecture
through a number of examples of classes of functions for which it holds. One important
such example from the previous work is a function Ham≥k which evaluates to 1 if and only
if the Hamming weight of the input string is at least k. The corresponding XOR-function
Ham+

≥k can be seen to have one-way communication complexity of Θ(k log k) via the small
set disjointness lower bound of [9] and a basic upper bound based on random parities [20].
Conjecture 3 would imply that in order to prove a one-way disjointness lower bound it suffices
to only consider F2-sketches.

A deterministic analog of Definition 1 requires that f(x) = g(χα1(x), χα2(x), . . . , χαk(x))
for a fixed choice of α1, . . . , αk ∈ Fn2 . The smallest value of k which satisfies this definition is
known to be equal to the Fourier dimension of f denoted as dim(f). It corresponds to the
smallest dimension of a linear subspace of Fn2 that contains the entire spectrum of f (see
Section 2.2 for a formal definition). In order to keep the notation uniform we also denote
it as Dlin(f). Most importantly, as shown in [38] an analog of Conjecture 3 holds without
any loss in the deterministic case, i.e. D→(f+) = dim(f) = Dlin(f), where D→ denotes the
deterministic one-way communication complexity. This striking fact is one of the reasons
why we suggest Conjecture 3 as an open problem.

Previous work and our results
In the discussion below using Yao’s principle we switch to the equivalent notion of distribu-
tional complexity of the above problems denoted as D→δ and Dlinδ respectively. For the formal
definitions we refer to the reader to Section 2.1 and a standard textbook on communication
complexity [27]. Equivalence between randomized and distributional complexities allows us
to restate Conjecture 3 as D→δ = Θ̃(Dlinδ ).

For a fixed distribution µ over Fn2 we define Dlin,µδ (f) to be the smallest dimension of an
F2-sketch that correctly outputs f with probability 1− δ over µ. Similarly for a distribution
µ over (x, y) ∈ Fn2 × Fn2 we denote distributional one-way communication complexity of f
with error δ as D→,µδ (f+) (See Section 2 for a formal definition). Our first main result is an
analog of Conjecture 3 for the uniform distribution U over (x, y) that matches the statement
of the conjecture up to constant factors:

I Theorem 4. For any f : Fn2 → F2 it holds that D→,U1/9 (f+) ≥ 1
6 · D

lin,U
1/3 (f).

In order to prove Theorem 4 we introduce the notion of an approximate Fourier dimension
(Definition 13) that extends the definition of exact Fourier dimension to allow that only 1− ε
fraction of the total “energy” in f ’s spectrum should be contained in the linear subspace.
The key ingredient in the proof is a structural theorem, Theorem 14, that characterizes both
Dlin,Uδ (f) and D→,Uδ (f+) in terms of f ’s approximate Fourier dimension.
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Using Theorem 14 we confirm Conjecture 3 for several well-studied classes of functions in
Section 4. It is important to note that while we could have stated these results for randomized
one-way communication it is critical that all lower bounds in this section hold for uniform
distribution in order to derive our results for random streams in Section 5.

Low-degree F2 polynomials

Low-degree F2 polynomials have been extensively studied in theoretical computer science in
various contexts: learning theory (Mossel, O’Donnell and Servedio [40]), property testing
(Rubinfield and Sudan [42], Bhattacharyya et al. [6], Alon et al [2]), pseudorandomness
(Bogdanov and Viola [8], Lovett [33], Viola [50]), communication complexity (Tsang et al.[49]),
etc.

Tsang et al. [49] studied deterministic two-way communication protocols for XOR-
functions with low F2-degree. They gave an upper bound on deterministic communication
complexity of f+ in terms of the spectral norm and the F2-degree of f . Their result was
obtained by observing that the communication complexity of f+ is bounded above by the
parity decision tree complexity of f , and then bounding the latter. In this work, we prove a
lower bound on the randomized one-way communication complexity of f+ in terms of the
Fourier dimension of f and the F2-degree of f , denoted as d. We prove the following result:

Dlin(f) = O
(
R→1/3(f+) · d

)
.

In the regime d = O(1), the above result implies that use of randomness does not enable
us to design a better linear-sketching or a one-way communication protocol. Furthermore,
since Rlin1/3(f) ≤ Dlin(f), the above result implies Conjecture 3 for constant degree F2-
polynomials. For F2 polynomials with bounded spectral norm this implies a new bound on
Fourier dimension shown in Corollary 23: Dlin(f) = dim(f) = O(d‖f̂‖21) improving a result
of Tsang et al. for d = ω

(
log1/3 ‖f̂‖1

)
.

Address function and Fourier sparsity

The number s of non-zero Fourier coefficients of f (known as Fourier sparsity) is one of
the key quantities in the analysis of Boolean functions. It also plays an important role
in the recent work on log-rank conjecture for XOR-functions [49, 46]. A recent result by
Sanyal [44] shows that for Boolean functions dim(f) = O(

√
s log s), namely all non-zero

Fourier coefficients are contained in a subspace of a polynomially smaller dimension. This
bound is almost tight as the address function (see Section 4.2 for a definition) exhibits a
quadratic gap. A direct implication of Sanyal’s result is a deterministic F2-sketching upper
bound of O(

√
s log s) for any f with Fourier sparsity s. As we show in Section 4.2 this

dependence on sparsity can’t be improved even if randomization is allowed.

Symmetric functions

A function f is symmetric if it only depends on the Hamming weight of its input. In
Section 4.3 we show that Conjecture 3 holds for all symmetric functions which are not too
close to a constant function or the parity function

∑
i xi, where the sum is taken over F2.

Composition theorem for recursive majority

As an example of a composition theorem we give such a theorem for recursive majority.
For an odd integer n the majority function Majn is defined to be 1 if and only if the

CCC 2018



8:6 Linear Sketching over F2

Hamming weight of the input is greater than n/2. Of particular interest is the recursive
majority function Maj◦k3 that corresponds to k-fold composition of Maj3 for k = log3 n.
This function was introduced by Boppana [43] and serves as an important example of various
properties of Boolean functions, most importantly in randomized decision tree complexity
([43, 22, 36, 29, 35]), deterministic parity decision tree complexity [7] and communication
complexity [22, 13].

In Section 4.4 we use Theorem 14 to obtain the following result:

I Theorem 5. For any ε ∈ [0, 1
2 ], ξ > 4ε2 and k = log3 n it holds that:

D→,U1−ξ
6

(Maj◦k3
+) = Ω(ε2n).

Applications to streaming and distributed computing

In the turnstile streaming model of computation a vector x of dimension n is updated through
a sequence of additive updates applied to its coordinates and the goal of the algorithm is to
be able to output f(x) at any point during the stream while using space that is sublinear
in n. In the real-valued case we have either x ∈ [0,m]n or x ∈ [−m,m]n for some universal
upper bound m and updates can be increments or decrements to x’s coordinates of arbitrary
magnitude.

For x ∈ Fn2 additive updates have a particularly simple form as they always flip the
corresponding coordinate of x. In the streaming literature this model is referred to as the
XOR update model (see e.g. [48]) Note that XOR updates can’t be handled using standard
turnstile streaming algorithms as only the coordinate but not the sign of the update is given.
As we show in Section 5.2 it is easy to see based on the recent work of [10, 31, 1] that in
the adversarial streaming setting the space complexity of turnstile streaming algorithms
over F2 is determined by the F2-sketch complexity of the function of interest. However, this
proof technique only works for very long streams which are unrealistic in practice – the
length of the adversarial stream has to be triply exponential in n in order to enforce linear
behavior. Large stream length requirement is inherent in the proof structure in this line of
work and while one might expect to improve triply exponential dependence on n at least an
exponential dependence appears necessary, which is a major limitation of this approach.

As we show in Section 5.1 it follows directly from our Theorem 4 that turnstile streaming
algorithms that achieve low error probability under random F2 updates might as well be
F2-sketches. For two natural choices of the random update model short streams of length
either O(n) or O(n log n) suffice for our reduction. We stress that our lower bounds are also
stronger than the worst-case adversarial lower bounds as they hold under an average-case
scenario. Furthermore, our Conjecture 3 would imply that space optimal turnstile streaming
algorithms over F2 have to be linear sketches for adversarial streams of length only 2n. We
believe that such result will also help show an analogous statement for real-valued linear
sketches thus removing the triply exponential in n stream length assumption of [31, 1].

By linearity all F2-sketching upper bounds are also applicable in the distributed setting
where two parties Alice and Bob need to send messages to the coordinator who is required
to output f+. This is also known as the Simultaneous Message Passing (SMP) model and
all our one-way lower bounds hold in this model as well.

Other previous work

Closely related to ours is work on communication protocols for XOR-functions [45, 38, 49, 18].
In particular [38] presents two basic one-way communication protocols based on random
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parities. The first one, stated as Fact 60 generalizes the classic communication protocol for
equality. The second one uses the result of Grolmusz [17] and implies that `1-sampling of
Fourier characters gives a randomized F2-sketch of size O(‖f̂‖21) (for constant error).

In [18] structural results about deterministic two-way communication protocols for
XOR-functions have been obtained. In particular, they show that the parity decision tree
complexity of f is O(D(f+)6). The key difference between our work and [18] lies in our focus
on randomized protocols. In [18] it is left as the main open problem whether randomized
parity decision tree complexity can be bounded by poly(R(f+)). Our results can be seen as a
step towards resolving this open problem in one-way communication setting. Full resolution
of Conjecture 3 would show that the conjecture of [18] holds even without polynomial loss
for one-way communication as we show for all the classes considered in Section 4.

Another line of work that is closely related to ours is the study of the two-player
simultaneous message passing model (SMP). This model can also allow to prove lower bounds
on F2-sketching complexity. Since our results hold for one-way communication they also hold
in the SMP model. Moreover, in the context of our work there is no substantial difference as
for product distributions the two models are essentially equivalent. Recent results in the
SMP model include [38, 30, 32].

While decision tree literature is not directly relevant to us since our model doesn’t
allow adaptivity we remark that there has been interest recently in the study of (adaptive)
deterministic parity decision trees [7] and non-adaptive deterministic parity decision trees [46,
44]. As mentioned above, our model can be interpreted as non-adaptive randomized parity
decision trees and to the best of our knowledge it hasn’t been studied explicitly before.
Another related model is that of parity kill numbers. In this model a composition theorem
has recently been shown by [41] but the key difference is again adaptivity.

Finally recent developements in the line of work on lifting theorems such as [15, 14] might
suggest that such results might be applied in our context. However for our purposes we
would need a lifting theorem for the XOR gadget and to the best of our knowledge no such
result is known for randomized one-way communication.

Organization

The rest of this paper is organized as follows. In Section 2 we introduce the required
background from communication complexity and Fourier analysis of Boolean functions. In
Section 3 we prove Theorem 4. In Section 4 we give applications of this theorem for recursive
majority (Theorem 5), address function, low-degree F2 polynomials and symmetric functions.
In Section 5 we describe applications to streaming.

In Appendix B we give some basic results about deterministic F2-sketching (or Fourier
dimension) of composition and convolution of functions. We also present a basic lower
bound argument based on affine dispersers. In Appendix C we give some basic results about
randomized F2-sketching including a lower bound based on extractors and a classic protocol
based on random parities which we use as a building block in our sketch for LTFs. We also
present evidence for why an analog of Theorem 14 doesn’t hold for arbitrary distributions. In
Appendix D we show a lower bound for one-bit protocols making progress towards resolving
Conjecture 3.

2 Preliminaries

For an integer n we use notation [n] = {1, . . . , n}. For integers n ≤ m we use notation
[n,m] = {n, . . . ,m}. For an arbitrary domain D we denote the uniform distribution over

CCC 2018



8:8 Linear Sketching over F2

this domain as U(D). We use the notation x, x′ ∼ U(D) to denote that x and x′ are sampled
uniformly at random and independently from D. The variance of a random variable X is
denoted by Var[X]. For a vector x and p ≥ 1 we denote the p-norm of x as ‖x‖p and reserve
the notation ‖x‖0 for the Hamming weight.

2.1 Communication complexity
Consider a function f : Fn2 × Fn2 → F2 and a distribution µ over Fn2 × Fn2 . The one-way
distributional complexity of f with respect to µ, denoted as D→,µδ (f) is the smallest commu-
nication cost of a one-way deterministic protocol that outputs f(x, y) with probability at
least 1− δ over the inputs (x, y) drawn from the distribution µ. The one-way distributional
complexity of f denoted as D→δ (f) is defined as D→δ (f) = supµD

→,µ
δ (f). By Yao’s minimax

theorem [53] it follows that R→δ (f) = D→δ (f). One-way communication complexity over
product distributions is defined as D→,×δ (f) = supµ=µx×µy D

→,µ
δ (f) where µx and µy are

distributions over Fn2 .
With every two-party function f : Fn2 × Fn2 we associate a communication matrix Mf ∈

F2n×2n
2 with entries Mf

x,y = f(x, y). We say that a deterministic protocol M(x) with length t
of the message that Alice sends to Bob partitions the rows of this matrix into 2t combinatorial
rectangles where each rectangle contains all rows of Mf corresponding to the same fixed
message y ∈ {0, 1}t.

2.2 Fourier analysis
We consider functions11 from Fn2 to R. For any fixed n ≥ 1, the space of these functions forms
an inner product space with the inner product 〈f, g〉 = Ex∈Fn2

[f(x)g(x)] = 1
2n
∑
x∈Fn2

f(x)g(x).
The `2 norm of f : Fn2 → R is ‖f‖2 =

√
〈f, f〉 =

√
Ex[f(x)2] and the `2 distance between

two functions f, g : Fn2 → R is the `2 norm of the function f − g. In other words, ‖f − g‖2 =√
〈f − g, f − g〉 =

√
1

2n
∑
x∈Fn2

(f(x)− g(x))2.
For α ∈ Fn2 , the character χα : Fn2 → {+1,−1} is the function defined by χα(x) = (−1)α·x.

Characters form an orthonormal basis as 〈χα, χβ〉 = δαβ where δ is the Kronecker symbol.
The Fourier coefficient of f : Fn2 → R corresponding to α is f̂(α) = Ex[f(x)χα(x)]. The
Fourier transform of f is the function f̂ : Fn2 → R that returns the value of each Fourier
coefficient of f . We use notation Spec(f) = {α ∈ Fn2 : f̂(α) 6= 0} to denote the set of all
non-zero Fourier coefficients of f . The Fourier `1 norm, or the spectral norm of f , is defined
as ‖f̂‖1 :=

∑
α∈Fn2

|f̂(α)|.

I Fact 6 (Parseval’s identity). For any f : Fn2 → R it holds that

‖f‖2 = ‖f̂‖2 =
√∑
α∈Fn2

f̂(α)2.

Moreover, if f : Fn2 → {+1,−1} then ‖f‖2 = ‖f̂‖2 = 1.

We use notation A ≤ Fn2 to denote the fact that A is a linear subspace of Fn2 .

11 In all Fourier-analytic arguments Boolean functions are treated as functions of the form f : Fn
2 →

{+1,−1} where 0 is mapped to 1 and 1 is mapped to −1. Otherwise we use these two notations
interchangeably.
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I Definition 7 (Fourier dimension). The Fourier dimension of f : Fn2 → {+1,−1} denoted
as dim(f) is the smallest integer k such that there exists A ≤ Fn2 of dimension k for which
Spec(f) ⊆ A.

We say that A ≤ Fn2 is a standard subspace if it has a basis v1, . . . , vd where each vi has
Hamming weight equal to 1. An orthogonal subspace A⊥ is defined as:

A⊥ = {γ ∈ Fn2 : ∀x ∈ A γ · x = 0}.

An affine subspace (or coset) of Fn2 of the form A = H + a for some H ≤ Fn2 and a ∈ Fn2 is
defined as:

A = {γ ∈ Fn2 : ∀x ∈ H⊥ γ · x = a · x}.

We now introduce notation for restrictions of functions to affine subspaces.

I Definition 8. Let f : Fn2 → R and z ∈ Fn2 . We define f+z : Fn2 → R as f+z(x) = f(x+ z).

I Fact 9. The Fourier coefficients of f+z are f̂+z(γ) = (−1)γ·z f̂(γ) and hence:

f+z =
∑
S∈Fn2

f̂(S)χS(z)χS .

IDefinition 10 (Coset restriction). For f : Fn2 → R, z ∈ Fn2 andH ≤ Fn2 we write f+z
H : H → R

for the restriction of f to H + z.

IDefinition 11 (Convolution). For two functions f, g : Fn2 → R their convolution (f∗g) : Fn2 →
R is defined as (f ∗ g)(x) = Ey∼U(Fn2 ) [f(y)g(x+ y)].

For S ∈ Fn2 the corresponding Fourier coefficient of convolution is given as f̂ ∗ g(S) =
f̂(S)ĝ(S).

3 F2-sketching over the uniform distribution

We use the following definition of Fourier concentration that plays an important role in
learning theory [26]. As mentioned above in all Fourier-analytic arguments we replace the
range of the functions with {+1,−1}.

I Definition 12 (Fourier concentration). The spectrum of a function f : Fn2 → {+1,−1} is
ε-concentrated on a collection of Fourier coefficients Z ⊆ Fn2 if

∑
α∈Z f̂

2(α) ≥ ε.

We now introduce the notion of approximate Fourier dimension of a Boolean function.

I Definition 13 (Approximate Fourier dimension). Let Ak be the set of all linear subspaces of
Fn2 of dimension k. For f : Fn2 → {+1,−1} and ε ∈ (0, 1] the ε-approximate Fourier dimension
dimε(f) is defined as:

dimε(f) = min
{
k : ∃A ∈ Ak :

∑
α∈A

f̂2(α) ≥ ε
}
.

The following theorem shows that for uniformly distributed inputs, both the one-way
communication complexity of f+ and the linear sketch complexity of f are characterized
by the approximate Fourier dimension of f . An immediate corollary is that, up to some
slack in the dependence on the probability of error, the one-way communication complexity
under the uniform distribution matches the linear sketch complexity. We note that the lower
bounds given by this theorem are stronger than the basic extractor lower bound given in
Appendix C.1. See Remark C.1 for further discussion.
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I Theorem 14. Let f : Fn2 → {+1,−1} be a Boolean function. Let ξ ∈ [0, 1] and γ < 1−
√
ξ

2 .
Let d = dimξ(f). Then,

1. D→,U(1−ξ)/2(f+) ≤ Dlin,U(1−ξ)/2(f) ≤ d, 2. Dlin,Uγ (f) ≥ d, 3. D→,U(1−ξ)/6 ≥
d

6 .

Proof.

Part 1. 12 Since d = dimξ(f), there exists a subspace A ≤ Fn2 of dimension at most d which
satisfies

∑
α∈A f̂

2(α) ≥ ξ. Let g : Fn2 → R be a function defined by its Fourier transform as
follows:

ĝ(α) =
{
f̂(α), if α ∈ A
0, otherwise.

Consider drawing a random variable θ from the distribution with p.d.f 1− |θ| over [−1, 1].

I Proposition 15. For all t such that −1 ≤ t ≤ 1 and z ∈ {+1,−1} random variable θ
satisfies:

Pr
θ

[sgn(t− θ) 6= z] ≤ 1
2(z − t)2.

Proof. W.l.o.g we can assume z = 1 as the case z = −1 is symmetric. Then we have:

Pr
θ

[sgn(t− θ) 6= 1] =
∫ 1

t

(1− |γ|)dγ ≤
∫ 1

t

(1− γ)dγ = 1
2(1− t)2. J

Define a family of functions gθ : Fn2 → {+1,−1} as gθ(x) = sgn(g(x)− θ). Then we have:

E
θ

[
Pr
x∼Fn2

[gθ(x) 6= f(x)]
]

= E
x∼Fn2

[
Pr
θ

[gθ(x) 6= f(x)]
]

= E
x∼Fn2

[
Pr
θ

[sgn(g(x)− θ) 6= f(x)]
]

≤ E
x∼Fn2

[
1
2(f(x)− g(x))2

]
(by Proposition 15)

= 1
2‖f − g‖

2
2.

Using the definition of g and Parseval we have:

1
2‖f − g‖

2
2 = 1

2‖f̂ − g‖
2
2 = 1

2‖f̂ − ĝ‖
2
2 = 1

2
∑
α/∈A

f̂2(α) ≤ 1− ξ
2 .

Thus, there exists a choice of θ such that gθ achieves error at most 1−ξ
2 . Clearly gθ can be

computed based on the d parities forming a basis for A and hence Dlin,U(1−ξ)/2(f) ≤ d.

12This argument is a refinement of the standard “sign trick” from learning theory which approximates a
Boolean function by taking a sign of its real-valued approximation under `2.
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Part 2. Fix any deterministic sketch that uses d − 1 parities χα1 , . . . , χαd−1 and let S =
(α1, . . . , αd−1). For fixed values of these sketches b = (b1, . . . , bd−1) where bi = χαi(x) we
denote the resulting affine restriction of f as f |(S,b). Using the standard expression for the
Fourier coefficients of an affine restriction the constant Fourier coefficient of the restricted
function is given as:

f̂ |(S,b)(∅) =
∑

Z⊆[d−1]

(−1)
∑

i∈Z
bi f̂

(∑
i∈Z

αi

)
.

Thus, we have:

f̂ |(S,b)
2
(∅) =

∑
Z⊆[d−1]

f̂2(
∑
i∈Z

αi) +
∑

Z1 6=Z2⊆[d−1]

(−1)
∑

i∈Z1∆Z2
bi
f̂(
∑
i∈Z1

αi)f̂(
∑
i∈Z2

αi).

Taking expectation over a uniformly random b ∼ U(Fd2) we have:

Eb∼U(Fd2)

[
f̂ |(S,b)

2
(∅)
]

=Eb∼U(Fd2)

 ∑
Z⊆[d−1]

f̂2

(∑
i∈Z

αi

)
+

∑
Z1 6=Z2⊆[d−1]

(−1)
∑

i∈Z1∆Z2
bi
f̂

(∑
i∈Z1

αi

)
f̂

(∑
i∈Z2

αi

)
=

∑
Z⊆[d−1]

f̂2

(∑
i∈Z

αi

)
.

The latter sum is the sum of squared Fourier coefficients over a linear subspace of
dimension d− 1 < dimξ(f), and hence is strictly less than ξ. Using Jensen’s inequality:

Eb∼U(Fd2)

[
|f̂ |(S,b)(∅)|

]
≤

√
Eb∼U(Fd2)

[
f̂ |(S,b)

2
(∅)
]
<
√
ξ.

For a fixed restriction (S, b) if |f̂ |(S,b)(∅)| < α then |Pr[f |(S,b) = 1]− Pr[f |(S,b) = −1]| < α

and hence no algorithm can predict the value of the restricted function on this coset with
probability at least 1+α

2 . Thus no algorithm can predict f |(α1,b1),...,(αd−1,bd−1) for a uniformly
random choice of (b1, . . . , bd−1), and hence also on a uniformly at random chosen x, with
probability at least 1+

√
ξ

2 .

Part 3. We will need the following fact about entropy of a binary random variable. The
proof is given in the appendix (Section A.1).

I Fact 16. For any random variable X supported on {1,−1}, H(X) ≤ 1− 1
2 (EX)2.

We will need the following proposition that states that random variables taking value in
{1,−1} that are highly biased have low variance. The proof of Proposition 17 can be found
in the appendix (Section E.1).

I Proposition 17. Let X be a random variable taking values in {1,−1}. Define p :=
minb∈{1,−1} Pr[X = b]. Then Var[X] ∈ [2p, 4p].
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In the next two lemmas, we look into the structure of a one-way communication protocol
for f+, and analyze its performance when the inputs are uniformly distributed. We give
a lower bound on the number of bits of information that any correct randomized one-way
protocol reveals about Alice’s input, in terms of the linear sketching complexity of f for
uniform distribution13.

The next lemma bounds the probability of error of a one-way protocol from below in
terms of the Fourier coefficients of f , and the conditional distributions of different parities of
Alice’s input conditioned on Alice’s random message.

I Lemma 18. Let ε ∈ [0, 1
2 ). Let Π be a deterministic one-way protocol for f+ such that

Prx,y∼U(Fn2 )[Π(x, y) 6= f+(x, y)] ≤ ε. Let M denote the distribution of the random message
sent by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm denote the
distribution of Alice’s input x conditioned on the event that M = m. Then,

4ε ≥
∑
α∈Fn2

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
[χα(x)]

)2
)
.

Proof. For any fixed input y of Bob, define ε(y)
m := Prx∼Dm [Π(x, y) 6= f+(x, y)]. Thus,

ε ≥ E
m∼M

E
y∼U(Fn2 )

[ε(y)
m ]. (1)

Note that the output of the protocol is determined by Alice’s message and y. Hence for
a fixed message and Bob’s input, if the restricted function is largely unbiased, then any
protocol is forced to commit an error with high probability. Formally,

ε(y)
m ≥ min

b∈{1,−1}
Pr

x∼Dm
[f+(x, y) = b] ≥ Varx∼Dm [f+(x, y)]

4 . (2)

Since f+(·, ·) takes values in {+1,−1}, the second inequality follows from Proposition 17.
Now,

Varx∼Dm [f+(x, y)] = 1−
(

E
x∼Dm

[f+(x, y)]
)2

(since f+(x, y) ∈ {1,−1})

= 1−

∑
α∈Fn2

f̂(α)χα(y) E
x∼Dm

[χα(x)]

2

(by Fact 9 and linearity of expectation)

= 1−

∑
α∈Fn2

f̂2(α)
(

E
x∼Dm

[χα(x)]
)2

+
∑

(α1,α2)∈Fn2×Fn2 :α1 6=α2

f̂(α1)f̂(α2)χα1+α2(y) E
x∼Dm

[χα1(x)] E
x∼Dm

[χα2(x)]

 .

Taking expectation over y we have:

E
y∼U(Fn2 )

[
Varx∼Dm [f+(x, y)]

]
= 1−

∑
α∈Fn2

f̂2(α)
(

E
x∼Dm

[χα(x)]
)2

. (3)

13We thus prove an information complexity lower bound. See, for example, [21] for an introduction to
information complexity.
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Taking expectation over messages it follows from (1), (2) and (3) that,

4ε ≥ 1−
∑
α∈Fn2

f̂2(α) · E
m∼M

(
E

x∼Dm
[χα(x)]

)2

=
∑
α∈Fn2

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
[χα(x)]

)2
)
. (4)

The second equality above follows from the Parseval’s identity (Fact 6). The lemma follows.
J

Let ε := 1−ξ
6 . Let Π be a deterministic protocol such that Prx,y∼U(Fn2 )[Π(x, y) 6= f+(x, y)] ≤ ε,

with optimal cost cΠ := D→,Uε (f+) = D→,U1−ξ
6

(f+). Let M denote the distribution of the
random message sent by Alice to Bob in Π. For any fixed message m sent by Alice, let Dm
denote the distribution of Alice’s input x conditioned on the event that M = m. To prove
Part 3 of Theorem 14 we use the protocol Π to come up with a subspace of Fn2 . Next, in
Lemma 19 (a) we prove, using Lemma 18, that f is ξ-concentrated on that subspace. In
Lemma 19 (b) we upper bound the dimension of that subspace in terms of cΠ.

I Lemma 19. Let A := {α ∈ Fn2 : Em∼M (Ex∼Dm χα(x))2 ≥ 1
3} ⊆ Fn2 . Let ` = dim(span(A)).

Then,
(a) ` ≥ d.
(b) ` ≤ 6cΠ.

Proof. (a) We prove part (a) by showing that f is ξ-concentrated on span(A). By Lemma 18
we have that

4ε ≥
∑

α∈span(A)

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
χα(x)

)2
)

+

∑
α/∈span(A)

f̂2(α) ·
(

1− E
m∼M

(
E

x∼Dm
χα(x)

)2
)

>
2
3 ·

∑
α/∈span(A)

f̂2(α).

Thus
∑
α/∈span(A) f̂

2(α) < 6ε. Hence,
∑
α∈span(A) f̂

2(α) ≥ 1 − 6ε = ξ. Hence we have
` = dim(span(A)) ≥ dimξ(f) = d.

(b) Notice that χα(x) is a unbiased random variable taking values in {1,−1}. For each α
in the set A in Proposition 19, the value of Em∼M (Ex∼Dm χα(x))2 is bounded away from
0. This suggests that for a typical message m drawn from M , the distribution of χα(x)
conditioned on the event M = m is significantly biased. Fact 16 enables us to conclude
that Alice’s message reveals Ω(1) bit of information about χα(x). However, since the total
information content of Alice’s message is at most cΠ, there can be at most O(cΠ) independent
vectors in A. Now we formalize this intuition.
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8:14 Linear Sketching over F2

Let T = {α1, . . . , α`} be a basis of span(A). Then,

cΠ ≥ H(M) (by the third inequality of Fact 45 (1))
≥ I(M ;χα1(x), . . . , χα`(x)) (by observation 47)
= H(χα1(x), . . . , χα`(x))−H(χα1(x), . . . , χα`(x) |M)
= `−H(χα1(x), . . . , χα`(x) |M)

(by Fact 45 (3) as χαi(x)’s are independent as random variables)

≥ `−
∑̀
i=1

H(χαi(x) |M) (by Fact 45 (2))

≥ `− `
(

1− 1
2 ·

1
3

)
(by Fact 16)

= `

6 . J

Recall that cΠ = D→,U1−ξ
6

(f+). Part 3 of Theorem 14 follows easily from Lemma 19:

D→,U1−ξ
6

(f+) = cΠ

≥ `

6 (by Lemma 19 (b))

≥ d

6 . (by Lemma 19 (a)) J

The proof of Theorem 4 now follows directly from Part 1 and Part 3 of Theorem 14 by
setting ξ = 1/3.

4 Applications

In this section using Theorem 14 we confirm Conjecture 3 for several funcion classes: low-
degree F2 polynomials, functions with sparse Fourier spectrum and symmetric functions
(which are not too imbalanced). We also give an example of a composition theorem using
recursive majority function as an example.

4.1 Low-degree F2 polynomials
In this section we show that for Boolean functions with low F2-degree randomness does not
help in the design of linear sketches or one-way communication protocols. We briefly review
some basic definitions, facts and results below.

I Fact 20. For every Boolean function f : Fn2 → F2 there is a unique n-variate polynomial
p ∈ F2[x1, . . . , xn] such that for every (x1, . . . , xn) ∈ Fn2 , f(x1, . . . , xn) = p(x1, . . . , xn).

The uniqueness of this representation in particular implies that the only F2 polynomial
representing the constant 0 function is the polynomial 0. Taking the contrapositive, we have
that for every non-constant F2 polynomial there is an assignment to its input variables on
which the polynomial evaluates to 1.

The degree of p is referred to as the F2-degree of f . We will need the following standard
result which states that a function with low F2-degree cannot vanish on too many points in
its domain. For the sake of completion, we add a proof of it in the appendix (Section E.2).



S. Kannan, E. Mossel, S. Sanyal, and G. Yaroslavtsev 8:15

I Lemma 21. Let f be a Boolean function different than the constant 0 function with F2
degree d. Then,

Pr
x∼U(Fn2 )

[f(x) = 1] ≥ 1
2d .

In this section we prove the following theorem.

I Theorem 22. Let f : Fn2 → F2 be a Boolean function, and let the F2-degree of f be d.
Then,

Dlin(f) = dim(f) = O
(
R→1/3(f+) · d

)
.

Proof. Let ` = Dlin,U1
4·2d

(f). This implies that there is a set P = {P1, . . . , P`} of at most `

parities and a Boolean function g such that Prx∼U(Fn2 )[f(x) 6= g(P1(x), . . . , P`(x))] ≤ 1
4·2d .

We now prove that Dlin(f) (or equivalently Fourier dimension) of f is at most `. That will
prove the theorem as:

Dlin,U1
4·2d

(f) = O

(
D→,U1

12·2d
(f+)

)
,

D→,U1
12·2d

(f+) = O
(
R→1

12·2d
(f+)

)
,

R→1
12·2d

(f+) = O
(
R→1/3(f+) · d

)
.

where the first relation follows by invoking parts 1 and 3 of Theorem 14 with ξ = 1− 1
2d+1 ,

the second relation holds by fixing the randomness of a randomized one-way protocol
appropriately, and the third relation is true because the error of a randomized one-way
protocol can be reduced from 1/3 to 1

12·2d by taking the majority of O(d) independent parallel
repetitions.

It is left to prove that Dlin(f) ≤ `. We prove it by showing that evaluations of all the
parities in the set P determine the value of f . For each b = (b1, . . . , b`) ∈ F`2, let Vb denote
the affine subspace {x ∈ Fn2 : P1(x) = b1, . . . , P`(x) = b`} and define:

pb := Pr
x∼U(Vb)

[f(x) 6= g(P1(x), . . . , P`(x))] = Pr
x∼U(Vb)

[f(x) 6= g(b1, . . . , b`)].

Note that:

pb ≥ min{ Pr
x∼U(Vb)

[f(x) = 0], Pr
x∼U(Vb)

[f(x) = 1]} ≥ 1
2 Pr
x,x′∼U(Vb)

[f(x) 6= f(x′)]. (5)

Given this observation, define F : Fn2 × Fn2 → F2 as follows. For x, x′ ∈ Fn2 let:

F (x, x′) := 1f(x)6=f(x′) = f(x) + f(x′) mod 2.

Note that F2-degree of F is at most d. Now,

Pr
x∼U(Fn2 )

[f(x) 6= g(P1(x), . . . , P`(x))] ≤ 1
4 · 2d

⇒ Eb∼U(F`2)

[
Pr

x∼U(Vb)
[f(x) 6= g(b1, . . . , b`)]

]
≤ 1

4 · 2d

⇒ Eb∼U(F`2) [pb] ≤
1

4 · 2d

⇒ Eb∼U(F`2)

[
Pr

x,x′∼U(Vb)
[f(x) 6= f(x′)]

]
≤ 1

2 · 2d (From equation (5))

⇒ Eb∼U(F`2)

[
Pr

x,x′∼U(Vb)
[F (x, x′) = 1]

]
≤ 1

2 · 2d (6)
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Let V denote the subspace {(x, x′) ∈ Fn2 × Fn2 : P1(x) = P1(x′), . . . , P`(x) = P`(x′)} of
Fn2 × Fn2 . From 6 we have that

Pr
(x,x′)∼U(V )

[F (x, x′) = 1] ≤ 1
2 · 2d <

1
2d . (7)

Since F2-degree of F is at most d, restriction of F to V also has F2 degree at most d.
Equation 7 and Fact 21 imply that F is the constant 0 function on V . Thus for each x, x′
such that P1(x) = P1(x′), . . . , P`(x) = P`(x′), f(x) = f(x′). Thus f(x) is a function of
P1(x), . . . , P`(x). Hence, Fourier dimension of f is at most `. J

For low-degree polynomials with bounded spectral norm we obtain the following corollary.

I Corollary 23. Let f : Fn2 → F2 be a Boolean function of F2-degree d. Then

Dlin(f) = dim(f) = O
(
d · ‖f̂‖21

)
.

Proof. The proof follows from the result of Grolmusz [17, 38] that shows that R→1/3(f+) =
O(‖f̂‖21) and Theorem 22. J

This result should be compared with Corollary 6 in Tsang et al. [49] who show that
Dlin(f) = O(2d3/2 logd

2
‖f̂‖1). Corollary 23 gives a stronger bound for d = ω

(
log1/3 ‖f̂‖1

)
.

4.2 Address function and Fourier sparsity
Consider the addressing function Addn : {0, 1}logn+n → {0, 1} defined as follows14:

Addn(x, y1, . . . , yn) = yx, where x ∈ {0, 1}logn, yi ∈ {0, 1},

i.e. the value of Addn on an input (x, y) is given by the x-th bit of the vector y where
x is treated as a binary representation of an integer number in between 1 and n. Here
x is commonly referred to as the address block and y as the addressee block. Addressing
function has only n2 non-zero Fourier coefficients. In fact, as shown by Sanyal [44] the
Fourier dimension, and hence by Fact 48 also the deterministic sketch complexity, of any
Boolean function with Fourier sparsity s is O(

√
s log s).

Below using the addressing function we show that this relationship is tight (up to a
logarithmic factor) even if randomization is allowed, i.e. even for a function with Fourier
sparsity s an F2 sketch of size Ω(

√
s) might be required.

I Theorem 24. For the addressing function Addn and values 1 ≤ d ≤ n and ξ > d/n it
holds that:

Dlin,U
1−
√
ξ

2

(Add+
n ) > d, D→,U1−ξ

6
(Addn) > d

6 .

Proof. If we apply the standard Fourier notation switch where we replace 0 with 1 and 1
with −1 in the domain and the range of the function then the addressing function Addn(x, y)
can be expressed as the following multilinear polynomial:

Addn(x, y) =
∑

i∈{0,1}logn

yi
∏

j : ij=1

(
1− xj

2

) ∏
j : ij=0

(
1 + xj

2

)
,

14 In this section it will be more convenient to represent both domain and range of the function using
{0, 1} rather than F2.
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which makes it clear that the only non-zero Fourier coefficents correspond to the sets that
contain a single variable from the addressee block and an arbitrary subset of variables
from the address block. This expansion also shows that the absolute value of each Fourier
coefficient is equal to 1

n .
Fix any d-dimensional subspace Ad and consider the matrix M ∈ Fd×(logn+n)

2 composed
of the basis vectors as rows. We add to M extra log n rows which contain an identity
matrix in the first log n coordinates and zeros everywhere else. This gives us a new matrix
M ′ ∈ F(d+logn)×(logn+n)

2 . Applying Gaussian elimination to M ′ we can assume that it is of
the following form:

M ′ =

Ilogn 0 0
0 Id′ M ′′

0 0 0

 ,

where d′ ≤ d. Thus, the total number of non-zero Fourier coefficients spanned by the rows of
M ′ equals nd′. Hence, the total sum of squared Fourier coeffients in Ad is at most d′

n ≤
d
n ,

i.e. dimξ(Addn) > d. By Part 2 and Part 3 of Theorem 14 the statement of the theorem
follows. J

4.3 Symmetric functions
A function f : Fn2 → F2 is symmetric if it can be expressed as g(‖x‖0) for some function
g : [0, n]→ F2. We give the following lower bound for symmetric functions:

I Theorem 25 (Lower bound for symmetric functions). For any symmetric function f : Fn2 →
F2 that isn’t (1− ε)-concentrated on {∅, {1, . . . , n}}:

Dlin,Uε/8 (f) ≥ n

2e , D→,Uε/12 (f+) ≥ n

2e .

Proof. First we prove an auxiliary lemma. Let Wk be the set of all vectors in Fn2 of Hamming
weight k.

I Lemma 26. For any d ∈ [n/2], k ∈ [n− 1] and any d-dimensional subspace Ad ≤ Fn2 :

|Wk ∩ Ad|
|Wk|

≤
(
ed

n

)min(k,n−k,d)
≤ ed

n
.

Proof. Fix any basis in Ad and consider the matrix M ∈ Fd×n2 composed of the basis vectors
as rows. W.l.o.g we can assume that this matrix is diagonalized and is in the standard form
(Id,M ′) where Id is a d × d identity matrix and M ′ is a d × (n − d)-matrix. Clearly, any
linear combination of more than k rows of M has Hamming weight greater than k just from
the contribution of the first d coordinates. Thus, we have |Wk ∩ Ad| ≤

∑k
i=0
(
d
i

)
.

For any k ≤ d it is a standard fact about binomials that
∑k
i=0
(
d
i

)
≤
(
ed
k

)k. On the
other hand, we have |Wk| =

(
n
k

)
≥ (n/k)k. Thus, we have |Wk∩Ad|

|Wk| ≤
(
ed
n

)k and hence for
1 ≤ k ≤ d the desired inequality holds.

If d < k then consider two cases. Since d ≤ n/2 the case n− d ≤ k ≤ n− 1 is symmetric
to 1 ≤ k ≤ d. If d < k < n− d then we have |Wk| > |Wd| ≥ (n/d)d and |Wk ∩ Ad| ≤ 2d so
that the desired inequality follows. J

Any symmetric function has its spectrum distributed uniformly over Fourier coefficients
of any fixed weight. Let wi =

∑
S∈Wi

f̂2(S). By the assumption of the theorem we have
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∑n−1
i=1 wi ≥ ε. Thus, by Lemma 26 any linear subspace Ad of dimension at most d ≤ n/2

satisfies that:

∑
S∈Ad

f2(S) ≤ f̂2(∅) + f̂2({1, . . . , n}) +
n−1∑
i=1

wi
|Wi ∩ Ad|
|Wi|

≤ f̂2(∅) + f̂2({1, . . . , n}) +
n−1∑
i=1

wi
ed

n

≤ (1− ε) + ε
ed

n
.

Thus, f isn’t 1 − ε(1 − ed
n )-concentrated on any d-dimensional linear subspace, i.e.

dimξ(f) > d for ξ = 1− ε(1− ed
n ). By Part 2 of Theorem 14 this implies that f doesn’t have

randomized sketches of dimension at most d which err with probability less than:

1
2 −

√
1− ε(1− ed

n )
2 ≥ ε

4

(
1− ed

n

)
≥ ε

8

where the last inequality follows by the assumption that d ≤ n
2e . The communication

complexity lower bound follows by Part 3 of Theorem 14 by setting d = n
2e . J

4.4 Composition theorem for majority
In this section using Theorem 14 we give a composition theorem for F2-sketching of the
composedMaj3 function. Unlike in the deterministic case for which the composition theorem
is easy to show (see Lemma 53) in the randomized case composition results require more
work.

I Definition 27 (Composition). For f : Fn2 → F2 and g : Fm2 → F2 their composition f ◦
g : Fmn2 → F2 is defined as:

(f ◦ g)(x) = f(g(x1, . . . , xm), g(xm+1, . . . , x2m), . . . , g(xm(n−1)+1, . . . , xmn)).

Consider the recursive majority function Maj◦k3 ≡Maj3 ◦Maj3 ◦ · · · ◦Maj3 where the
composition is taken k times.

I Theorem 28. For any d ≤ n, k = log3 n and ξ > 4d
n it holds that dimξ

(
Maj◦k3

)
> d.

First, we show a slighthly stronger result for standard subspaces and then extend this result
to arbitrary subspaces with a loss of a constant factor. Fix any set S ⊆ [n] of variables. We
associate this set with a collection of standard unit vectors corresponding to these variables.
Hence in this notation ∅ corresponds to the all-zero vector.

I Lemma 29. For any standard subspace whose basis consists of singletons from the set
S ⊆ [n] it holds that:∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2
≤ |S|

n

Proof. The Fourier expansion of Maj3 is given as

Maj3(x1, x2, x3) = 1
2 (x1 + x2 + x3 − x1x2x3) .
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For i ∈ {1, 2, 3} let Ni = {(i− 1)n/3 + 1, . . . , in/3}. Let Si = S ∩Ni. Let αi be defined as:

αi =
∑

Z∈span(Si)

(
̂Maj◦k−1

3 (Z)
)2

.

Then we have:∑
Z∈span(S)

(
M̂aj◦k3 (Z)

)2
=

3∑
i=1

∑
Z∈span(Si)

(
M̂aj◦k3 (Z)

)2
+

∑
Z∈span(S)−∪3

i=1span(Si)

(
M̂aj◦k3 (Z)

)2
.

For each Si we have∑
Z∈span(Si)

(
M̂aj◦k3 (Z)

)2
= 1

4
∑

Z∈span(Si)

(
̂Maj◦k−1

3 (Z)
)2

= αi
4 .

Moreover, for each Z ∈ span(S)− ∪3
i=1span(Si) we have:

M̂aj◦k3 (Z) =
{
− 1

2
̂Maj◦k−1

3 (Z1) ̂Maj◦k−1
3 (Z2) ̂Maj◦k−1

3 (Z3) if Z ∈ ×3
i=1(span(Si) \ ∅)

0 otherwise.

Thus, we have: ∑
Z∈(span(S1)\∅)×(span(S2)\∅)×(span(S3)\∅)

(
M̂aj◦k3 (Z)

)2

=
∑

Z∈(span(S1)\∅)×(span(S2)\∅)×(span(S3)\∅)

1
4

(
̂Maj◦k−1

3 (Z1)
)2
·
(

̂Maj◦k−1
3 (Z2)

)2
·

(
̂Maj◦k−1

3 (Z3)
)2

= 1
4

 ∑
Z∈(span(S1)\∅)

(
̂Maj◦k−1

3 (Z1)
)2
 ·

 ∑
Z∈(span(S2)\∅)

(
̂Maj◦k−1

3 (Z2)
)2
 ·

 ∑
Z∈(span(S3)\∅)

(
̂Maj◦k−1

3 (Z3)
)2


= 1
4α1α2α3.

where the last equality holds since ̂Maj◦k−1
3 (∅) = 0. Putting this together we have:∑

Z∈span(S)

(
M̂aj◦k3 (Z)

)2
= 1

4(α1 + α2 + α3 + α1α2α3)

≤ 1
4

(
α1 + α2 + α3 + 1

3(α1 + α2 + α3)
)

= 1
3(α1 + α2 + α3).

Applying this argument recursively to each αi for k − 1 times we have:

∑
Z∈span(S)

(
M̂aj◦k3 (Z)

)2
≤ 1

3k
3k∑
i=1

γi,

where γi = 1 if i ∈ S and 0 otherwise. Thus,
∑
Z∈span(S)

(
M̂aj◦k3 (Z)

)2
≤ |S|n . J
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To extend the argument to arbitrary linear subspaces we show that any such subspace has
less Fourier weight than a collection of three carefully chosen standard subspaces. First we
show how to construct such subspaces in Lemma 30.

For a linear subspace L ≤ Fn2 we denote the set of all vectors in L of odd Hamming
weight as O(L) and refer to it as the odd set of L. For two vectors v1, v2 ∈ Fn2 we say that
v1 dominates v2 if the set of non-zero coordinates of v1 is a (not necessarily proper) subset
of the set of non-zero coordinates of v2. For two sets of vectors S1, S2 ⊆ Fn2 we say that S1
dominates S2 (denoted as S1 ≺ S2) if there is a matching M between S1 and S2 of size |S2|
such that for each (v1 ∈ S1, v2 ∈ S2) ∈M the vector v1 dominates v2.

I Lemma 30 (Standard subspace domination lemma). For any linear subspace L ≤ Fn2 of
dimension d there exist three standard linear subspaces S1, S2, S3 ≤ Fn2 such that:

O(L) ≺ O(S1) ∪ O(S2) ∪ O(S3),

and dim(S1) = d− 1, dim(S2) = d, dim(S3) = 2d.

Proof. Let A ∈ Fd×n2 be the matrix with rows corresponding to the basis in L. We will
assume that A is normalized in a way described below. First, we apply Gaussian elimination
to ensure that A = (I,M) where I is a d × d identity matrix. If all rows of A have even
Hamming weight then the lemma holds trivially since O(L) = ∅. By reordering rows and
columns of A we can always assume that for some k ≥ 1 the first k rows of A have odd
Hamming weight and the last d− k have even Hamming weight. Finally, we add the first
column to each of the last d− k rows, which makes all rows have odd Hamming weight. This
results in A of the following form:

A =



1 0 · · · 0 0 · · · 0 a

0
Ik−1 0 M1...

0
1

0 Id−k M2...
1


We use the following notation for submatrices: A[i1, j1; i2, j2] refers to the submatrix of A
with rows between i1 and j1 and columns between i2 and j2 inclusive. We denote to the
first row by v, the submatrix A[2, k; 1, n] as A and the submatrix A[k + 1, d; 1, n] as B. Each
x ∈ O(L) can be represented as

∑
i∈S Ai where the set S is of odd size and the sum is over

Fn2 . We consider the following three cases corresponding to different types of the set S.

Case 1. S ⊆ rows(A) ∪ rows(B). This corresponds to all odd size linear combinations of
the rows of A that don’t include the first row. Clearly, the set of such vectors is dominated
by O(S1) where S1 is the standard subspace corresponding to the span of the rows of the
submatrix A[2, d; 2, d].

Case 2. S contains the first row, |S ∩ rows(A)| and |S ∩ rows(B)| are even. All such linear
combinations have their first coordinate equal 1. Hence, they are dominated by a standard
subspace corresponding to span of the rows the d× d identity matrix, which we refer to as
S2.



S. Kannan, E. Mossel, S. Sanyal, and G. Yaroslavtsev 8:21

Case 3. S contains the first row, |S ∩ rows(A)| and |S ∩ rows(B)| are odd. All such linear
combinations have their first coordinate equal 0. This implies that the Hamming weight of
the first d coordinates of such linear combinations is even and hence the other coordinates
cannot be all equal to 0. Consider the submatrix M = A[1, d; d+ 1, n] corresponding to the
last n − d columns of A. Since the rank of this matrix is at most d by running Gaussian
elimination on M we can construct a matrix M ′ containing as rows the basis for the row
space of M of the following form:

M ′ =
(
It M1
0 0

)
where t = rank(M). This implies that any non-trivial linear combination of the rows of
M contains 1 in one of the first t coordinates. We can reorder the columns of A in such
a way that these t coordinates have indices from d+ 1 to d+ t. Note that now the set of
vectors spanned by the rows of the (d+ t)× (d+ t) identity matrix Id+t dominates the set
of linear combinations we are interested in. Indeed, each such linear combination has even
Hamming weight in the first d coordinates and has at least one coordinate equal to 1 in the
set {d+ 1, . . . , d+ t}. This gives a vector of odd Hamming weight that dominates such linear
combination. Since this mapping is injective we have a matching. We denote the standard
linear subspace constructed this way by S3 and clearly dim(S3) ≤ 2d. J

The following proposition shows that the spectrum of the Maj◦k3 is monotone decreasing
under inclusion if restricted to odd size sets only:

I Proposition 31. For any two sets Z1 ⊆ Z2 of odd size it holds that:∣∣∣M̂aj◦k3 (Z1)
∣∣∣ ≥ ∣∣∣M̂aj◦k3 (Z2)

∣∣∣ .
Proof. The proof is by induction on k. Consider the Fourier expansion of Maj3(x1, x2, x3) =
1
2 (x1 + x2 + x3 − x1x2x3). The case k = 1 holds since all Fourier coefficients have absolute
value 1/2. Since Maj◦k3 = Maj3 ◦ (Maj◦k−1

3 ) all Fourier coefficients of Maj◦k3 result from
substituting either a linear or a cubic term in the Fourier expansion by the multilinear
expansions of Maj◦k−1

3 . This leads to four cases.

Case 1. Z1 and Z2 both arise from linear terms. In this case if Z1 and Z2 aren’t disjoint
then they arise from the same linear term and thus satisfy the statement by the inductive
hypothesis.

Case 2. If Z1 arises from a cubic term and Z2 from the linear term then it can’t be the
case that Z1 ⊆ Z2 since Z2 contains some variables not present in Z1.

Case 3. If Z1 and Z2 both arise from the cubic term then we have (Z1∩Ni) ⊆ (Z2∩Ni) for

each i. By the inductive hypothesis we then have
∣∣∣∣ ̂Maj◦k−1

3 (Z1 ∩Ni)
∣∣∣∣ ≥ ∣∣∣∣ ̂Maj◦k−1

3 (Z2 ∩Ni)
∣∣∣∣.

Since for j = 1, 2 we have M̂aj◦k3 (Zj) = − 1
2
∏
i

̂Maj◦k−1
3 (Zj ∩ Ni) the desired inequality

follows.

Case 4. If Z1 arises from the linear term and Z2 from the cubic term then w.l.o.g. assume
that Z1 arises from the x1 term. Note that Z1 ⊆ (Z2 ∩N1) since Z1 ∩ (N2 ∪N3) = ∅. By
the inductive hypothesis applied to Z1 and Z2 ∩N1 the desired inequality holds. J
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We can now complete the proof of Theorem 28

Proof of Theorem 28. By combining Proposition 31 and Lemma 29 we have that any set T of
vectors that is dominated by O(S) for some standard subspace S satisfies

∑
S∈T M̂aj◦k3 (S)2 ≤

dim(S)
n . By the standard subspace domination lemma (Lemma 30) any subspace L ≤ Fn2 of

dimension d has O(L) dominated by a union of three standard subspaces of dimension 2d, d
and d− 1 respectively. Thus, we have

∑
S∈O(L) M̂aj◦k3 (S)2 ≤ 2d

n + d
n + d−1

n ≤
4d
n . J

We have the following corollary of Theorem 28 that proves Theorem 5.

I Corollary 32. For any ε ∈ [0, 1
2 ], ξ > 4ε2 and k = log3 n it holds that:

Dlin,U
1−
√
ξ

2

(Maj◦k3 ) > ε2n, D→,U1−ξ
6

(Maj◦k3
+) > ε2n

6 .

Proof. Fix d = ε2n. For this choice of d Theorem 28 implies that for ξ > 4ε2 it holds tha t
dimξ

(
Maj◦k3

)
> d. The first part follows from Part 2 of Theorem 14. The second part is by

Part 3 of Theorem 14. J

5 Streaming algorithms over F2

Let ei be the standard unit vector in Fn2 . In the turnstile streaming model the input x ∈ Fn2
is represented as a stream σ = (σ1, σ2, . . . ) where σi ∈ {e1, . . . , en}. For a stream σ the
resulting vector x corresponds to its frequency vector freq σ ≡

∑
i σi. Concatenation of two

streams σ and τ is denoted as σ ◦ τ .

5.1 Random streams
In this section we show how to translate our results in Section 3 and 4 into lower bounds for
streaming algorithms. We consider the following two natural models of random streams over
F2:

Model 1. In the first model we start with x ∈ Fn2 that is drawn from the uniform distribution
over Fn2 and then apply a uniformly random update y ∼ U(Fn2 ) obtaining x + y. In the
streaming language this corresponds to a stream σ = σ1 ◦ σ2 where freq σ1 ∼ U(Fn2 ) and
freq σ2 ∼ U(Fn2 ). A specific example of such stream would be one where for both σ1 and σ2
we flip an unbiased coin to decide whether or not to include a vector ei in the stream for
each value of i. The expected length of the stream in this case is n.

Model 2. In the second model we consider a stream σ which consists of uniformly random
updates. Let σi = er(i) where r(i) ∼ U([n]). This corresponds to each update being a flip
in a coordinate of x chosen uniformly at random. This model is equivalent to the previous
model but requires longer streams to mix. Using coupon collector’s argument such streams
of length Θ(n log n) can be divided into two substreams σ1 and σ2 such that with high
probability both freq σ1 and freq σ2 are uniformly distributed over Fn2 and σ = σ1 ◦ σ2.

I Theorem 33. Let f : Fn2 → F2 be an arbitrary function. In the two random streaming
models for generating σ described above any algorithm that computes f(freq σ) with probability
at least 8/9 in the end of the stream has to use space that is at least Dlin,U1/3 (f).
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Proof. The proof follows directly from Theorem 4 as in both models we can partition the
stream into σ1 and σ2 such that freq σ1 and freq σ2 are both distributed uniformly over Fn2 .
We treat these two frequency vectors as inputs of Alice and Bob in the communication game.
Since communication D→,U1/9 (f+) ≥ Dlin,U1/3 (f) is required no streaming algorithm with less
space exists as otherwise Alice would transfer its state to Bob with less communication. J

Using the same proof as in Theorem 33 it follows that all the lower bounds in Section 4
hold for both random streaming models described above.

5.2 Adversarial streams
We now show that any randomized turnstile streaming algorithm for computing f : Fn2 → F2
with error probability δ has to use space that is at least Rlin6δ (f)−O(log n+ log(1/δ)) under
adversarial sequences of updates. The proof is based on the recent line of work that shows that
this relationship holds for real-valued sketches [10, 31, 1]. The proof framework developed
by [10, 31, 1] for real-valued sketches consists of two steps. First, a turnstile streaming
algorithm is converted into a path-independent stream automaton (Definition 35). Second,
using the theory of modules and their representations it is shown that such automata can
always be represented as linear sketches. We observe that the first step of this framework
can be left unchanged under F2. However, as we show the second step can be significantly
simplified as path-independent automata over F2 can be directly seen as linear sketches
without using module theory. Furthermore, since we are working over F2 we also avoid the
O(logm) factor loss in the reduction between path independent automata and linear sketches
that is present in [10].

We use the following abstraction of a stream automaton from [10, 31, 1] adapted to our
context to represent general turnstile streaming algorithms over F2.

I Definition 34 (Deterministic Stream Automaton). A deterministic stream automaton A is a
Turing machine that uses two tapes, an undirectional read-only input tape and a bidirectional
work tape. The input tape contains the input stream σ. After processing the input, the
automaton writes an output, denoted as φA(σ), on the work tape. A configuration (or state)
of A is determined by the state of its finite control, head position, and contents of the work
tape. The computation of A can be described by a transition function ⊕A : C × F2 → C,
where C is the set of all possible configurations. For a configuration c ∈ C and a stream
σ, we denote by c⊕A σ the configuration of A after processing σ starting from the initial
configuration c. The set of all configurations of A that are reachable via processing some
input stream σ is denoted as C(A). The space of A is defined as S(A) = log |C(A)|.

We say that a deterministic stream automaton computes a function f : Fn2 → F2 over a
distribution Π if Prσ∼Π[φA(σ) = f(freq σ)] ≥ 1− δ.

IDefinition 35 (Path-independent automaton). An automatonA is said to be path-independent
if for any configuration c and any input stream σ, c⊕A σ depends only on freq σ and c.

I Definition 36 (Randomized Stream Automaton). A randomized stream automaton A is
a deterministic automaton with an additional tape for the random bits. This random
tape is initialized with a random bit string R before the automaton is executed. During
the execution of the automaton this bit string is used in a bidirectional read-only manner
while the rest of the execution is the same as in the deterministic case. A randomized
automaton A is said to be path-independent if for each possible fixing of its randomness R
the deterministic automaton AR is path-independent. The space complexity of A is defined
as S(A) = maxR(|R|+ S(AR)).
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Theorems 5 and 9 of [31] combined with the observation in Appendix A of [1] that
guarantees path independence yields the following:

I Theorem 37 (Theorems 5 and 9 in [31] + [1]). Suppose that a randomized stream automaton
A computes f on any stream with probability at least 1 − δ. For an arbitrary distribution
Π over streams there exists a deterministic15 path independent stream automaton B that
computes f with probability 1− 6δ over Π such that S(B) ≤ S(A) +O(log n+ log(1/δ)).

The rest of the argument below is based on the work of Ganguly [10] adopted for our
needs. Since we are working over a finite field we also avoid the O(logm) factor loss in
the reduction between path independent automata and linear sketches that is present in
Ganguly’s work.

Let An be a path-independent stream automaton over F2 and let ⊕ abbreviate ⊕An . Define
the function ∗ : Fn2×C(An)→ C(An) as: x∗a = a⊕σ, where freq(σ) = x. Let o be the initial
configuration of An. The kernel MAn of An is defined as MAn = {x ∈ Fn2 : x ∗ o = 0n ∗ o}.

I Proposition 38. The kernel MAn of a path-independent automaton An is a linear subspace
of Fn2 .

Proof. For x, y ∈MAn by path independence (x+y)∗o = x∗(y∗o) = 0n∗o so x+y ∈MAn . J

Since MAn ≤ Fn2 the kernel partitions Fn2 into cosets of the form x+MAn . Next we show
that there is a one to one mapping between these cosets and the states of An.

I Proposition 39. For x, y ∈ Fn2 and a path independent automaton An with a kernel MAn

it holds that x ∗ o = y ∗ o if and only if x and y lie in the same coset of MAn .

Proof. By path independence x ∗ o = y ∗ o iff x ∗ (x ∗ o) = x ∗ (y ∗ o) or equivalently
0n ∗ o = (x+ y) ∗ o. The latter condition holds iff x+ y ∈MAn which is equivalent to x and
y lying in the same cost of MAn . J

The same argument implies that the the transition function of a path-independent automaton
has to be linear since (x+ y) ∗ o = x ∗ (y ∗ o). Combining these facts together we conclude
that a path-independent automaton has at least as many states as the best deterministic
F2-sketch for f that succeeds with probability at least 1 − 6δ over Π (and hence the best
randomized sketch as well). Putting things together we get:

I Theorem 40. Any randomized streaming algorithm that computes f : Fn2 → F2 under
arbitrary updates over F2 with error probability at least 1− δ has space complexity at least
Rlin6δ (f)−O(log n+ log(1/δ)).
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A Information theory

Let X be a random variable supported on a finite set {x1, . . . , xs}. Let E be any event in
the same probability space. Let P[·] denote the probability of any event. The conditional
entropy H(X | E) of X conditioned on E is defined as follows.

I Definition 41 (Conditional entropy).

H(X | E) :=
s∑
i=1

P[X = xi | E ] log2
1

P[X = xi | E ]

An important special case is when E is the entire sample space. In that case the above
conditional entropy is referred to as the Shannon entropy H(X) of X.

I Definition 42 (Entropy).

H(X) :=
s∑
i=1

P[X = xi] log2
1

P[X = xi]

Let Y be another random variable in the same probability space as X, taking values from a
finite set {y1, . . . , yt}. Then the conditional entropy of X conditioned on Y , H(X | Y ), is
defined as follows.

I Definition 43.

H(X | Y ) =
t∑
i=1

P[Y = yi] ·H(X | Y = yi)

We next define the binary entropy function Hb(·).

I Definition 44 (Binary entropy). For p ∈ (0, 1), the binary entropy of p, Hb(p), is defined
to be the Shannon entropy of a random variable taking two distinct values with probabilities
p and 1− p.

Hb(p) := p log2
1
p

+ (1− p) log 1
1− p .

http://dx.doi.org/10.1561/0400000060
http://dx.doi.org/10.1016/j.tcs.2010.03.027


S. Kannan, E. Mossel, S. Sanyal, and G. Yaroslavtsev 8:29

The following properties of entropy and conditional entropy will be useful.

I Fact 45.
(1) Let X be a random variable supported on a finite set A, and let Y be another random

variable in the same probability space. Then 0 ≤ H(X | Y ) ≤ H(X) ≤ log2 |A|.
(2) (Sub-additivity of conditional entropy). Let X1, . . . , Xn be n jointly distributed random

variables in some probability space, and let Y be another random variable in the same
probability space, all taking values in finite domains. Then,

H(X1, . . . , Xn | Y ) ≤
n∑
i=1

H(Xi | Y ).

(3) Let X1, . . . , Xn are independent random variables taking vakues in finite domains. Then,

H(X1, . . . , Xn) =
n∑
i=1

H(Xi).

(4) (Taylor expansion of binary entropy in the neighbourhood of 1
2 ).

Hb(p) = 1− 1
2 loge 2

∞∑
n=1

(1− 2p)2n

n(2n− 1)

I Definition 46 (Mutual information). Let X and Y be two random variables in the same
probability space, taking values from finite sets. The mutual information between X and Y ,
I(X;Y ), is defined as follows.

I(X;Y ) := H(X)−H(X | Y ).

It can be shown that I(X;Y ) is symmetric in X and Y , i.e. I(X;Y ) = I(Y ;X) = H(Y )−
H(Y | X).
The following observation follows immediately from the first inequality of Fact 45 (1).

I Observation 47. For any two random variables X and Y , I(X;Y ) ≤ H(X).

A.1 Proof of Fact 16

Let EX = δ. Then,

H(X) =
{

1 with probability 1
2 + δ

2
−1 with probability 1

2 −
δ
2

So,

H(X) = Hb

(
1
2 + δ

2

)
= 1− 1

2 loge 2

∞∑
n=1

δ2n

n(2n− 1) (From Fact 45 (4))

≤ 1− δ2

2 .

CCC 2018



8:30 Linear Sketching over F2

B Deterministic F2-sketching

In the deterministic case it will be convenient to represent F2-sketch of a function f : Fn2 → F2
as a d× n matrix Mf ∈ Fd×n2 that we call the sketch matrix. The d rows of Mf correspond
to vectors α1, . . . , αd used in the deterministic sketch so that the sketch can be computed
as Mfx. W.l.o.g below we will assume that the sketch matrix Mf has linearly independent
rows and that the number of rows in it is the smallest possible among all sketch matrices
(ties in the choice of the sketch matrix are broken arbitrarily).

The following fact is standard (see e.g. [38, 16]):

I Fact 48. For any function f : Fn2 → F2 it holds that Dlin(f) = dim(f) = rank(Mf ).
Moreover, set of rows of Mf forms a basis for a subspace A ≤ Fn2 containing all non-zero
coefficients of f .

B.1 Disperser argument

We show that the following basic relationship holds between deterministic linear sketching
complexity and the property of being an affine disperser. For randomized F2-sketching an
analogous statement holds for affine extractors as shown in Lemma 56.

I Definition 49 (Affine disperser). A function f is an affine disperser of dimension at least
d if for any affine subspace of Fn2 of dimension at least d the restriction of f on it is a
non-constant function.

I Lemma 50. Any function f : Fn2 → F2 which is an affine disperser of dimension at least d
has deterministic linear sketching complexity at least n− d+ 1.

Proof. Assume for the sake of contradiction that there exists a linear sketch matrix Mf with
k ≤ n− d rows and a deterministic function g such that g(Mfx) = f(x) for every x ∈ Fn2 .
For any vector b ∈ Fk2 , which is in the span of the columns of Mf , the set of vectors x which
satisfy Mfx = b forms an affine subspace of dimension at least n − k ≥ d. Since f is an
affine disperser for dimension at least d the restriction of f on this subspace is non-constant.
However, the function g(Mfx) = g(b) is constant on this subspace and thus there exists x
such that g(Mfx) 6= f(x), a contradiction. J

B.2 Composition and convolution

In order to prove a composition theorem for Dlin we introduce the following operation on
matrices which for a lack of a better term we call matrix super-slam16.

I Definition 51 (Matrix super-slam). For two matrices A ∈ Fa×n2 and B ∈ Fb×m2 their
super-slam A † B ∈ Fab

n×nm
2 is a block matrix consisting of a blocks (A † B)i. The i-th

block (A † B)i ∈ Fb
n×nm

2 is constructed as follows: for every vector j ∈ {1, . . . , b}n the
corresponding row of (A †B)i is defined as (Ai,1Bj1 , Ai,2Bj2 , . . . , Ai,nBjn), where Bk denotes
the kth row of B.

I Proposition 52. rank(A †B) ≥ rank(A)rank(B).

16This name was suggested by Chris Ramsey.
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Proof. Consider the matrix C which is a subset of rows of A†B where from each block (A†B)i
we select only b rows corresponding to the vectors j of the form αn for all α ∈ {1, . . . , b}.
Note that C ∈ Fab×mn2 and C(i,k),(j,l) = Ai,jBk,l. Hence, C is a Kronecker product of A and
B and we have:

rank(A †B) ≥ rank(C) = rank(A)rank(B). J

The following composition theorem for Dlin holds as long as the inner function is balanced:

I Lemma 53. For f : Fn2 → F2 and g : Fm2 → F2 if g is a balanced function then:

Dlin(f ◦ g) ≥ Dlin(f)Dlin(g)

Proof. The multilinear expansions of f and g are given as f(y) =
∑
S∈Fn2

f̂(S)χS(y) and
g(y) =

∑
S∈Fm2

ĝ(S)χS(y). The multilinear expansion of f ◦ g can be obtained as follows. For
each monomial f̂(S)χS(y) in the multilinear expansion of f and each variable yi substitute
yi by the multilinear expansion of g on a set of variables xm(i−1)+1,...,mi. Multiplying all
these multilinear expansions corresponding to the term f̂(S)χS gives a polynomial which is
a sum of at most bn monomials where b is the number of non-zero Fourier coefficients of g.
Each such monomial is obtained by picking one monomial from the multilinear expansions
corresponding to different variables in χS and multiplying them. Note that there are no
cancellations between the monomials corresponding to a fixed χS . Moreover, since g is
balanced and thus ĝ(∅) = 0 all monomials corresponding to different characters χS and χS′
are unique since S and S′ differ on some variable and substitution of g into that variable
doesn’t have a constant term but introduces new variables. Thus, the characteristic vectors
of non-zero Fourier coefficients of f ◦ g are the same as the set of rows of the super-slam of
the sketch matrices Mf and Mg (note, that in the super-slam some rows can be repeated
multiple times but after removing duplicates the set of rows of the super-slam and the set of
characteristic vectors of non-zero Fourier coefficients of f ◦ g are exactly the same). Using
Proposition 52 and Fact 48 we have:

Dlin(f ◦ g) = rank(Mf◦g) = rank(Mf †Mg) ≥ rank(Mf )rank(Mg) = Dlin(f)Dlin(g).J

Deterministic F2-sketch complexity of convolution satisfies the following property:

I Proposition 54. Dlin(f ∗ g) ≤ min(Dlin(f), Dlin(g)).

Proof. The Fourier spectrum of convolution is given as f̂ ∗ g(S) = f̂(S)ĝ(S). Hence, the set
of non-zero Fourier coefficients of f ∗ g is the intersection of the sets of non-zero coefficients of
f and g. Thus by Fact 48 we have Dlin(f ∗g) ≤ min(rank(Mf ,Mg)) = min(Dlin(f), Dlin(g)).

J

C Randomized F2-sketching

We represent randomized F2-sketches as distributions over d × n matrices over F2. For a
fixed such distributionMf the randomized sketch is computed asMfx. If the set of rows of
Mf satisfies Definition 1 for some reconstruction function g then we call it a randomized
sketch matrix for f .
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C.1 Extractor argument

We now establish a connection between randomized F2-sketching and affine extractors which
will be used to show that the converse of Part 1 of Theorem 14 doesn’t hold for arbitrary
distributions.

I Definition 55 (Affine extractor). A function f : Fn2 → F2 is an affine δ-extractor if for any
affine subspace A of Fn2 of dimension at least d it satisfies:

min
z∈{0,1}

Pr
x∼U(A)

[f(x) = z] > δ.

I Lemma 56. For any f : Fn2 → F2 which is an affine δ-extractor of dimension at least d it
holds that:

Rlinδ (f) ≥ n− d+ 1.

Proof. For the sake of contradiction assume that there exists a randomized linear sketch
with a reconstruction function g : Fk2 → F2 and a randomized sketch matrixMf which is a
distribution over matrices with k ≤ n− d rows. First, we show that:

Pr
x∼U(Fn2 )M∼Mf

[g(Mx) 6= f(x)] > δ.

Indeed, fix any matrix M ∈ supp(Mf ). For any affine subspace S of the form S = {x ∈
Fn2 |Mx = b} of dimension at least n− k ≥ d we have that minz∈{0,1} Prx∼U(S)[f(x) = z] > δ.
This implies that Prx∼U(S)[f(x) 6= g(Mx)] > δ. Summing over all subspaces corresponding
to the fixed M and all possible choices of b we have that Prx∼U(Fn2 )[f(x) 6= g(Mx)] > δ.
Since this holds for any fixed M the bound follows.

Using the above observation it follows by averaging over x ∈ {0, 1}n that there exists
x∗ ∈ {0, 1}n such that:

Pr
M∼Mf

[g(Mx∗) 6= f(x∗)] > δ.

This contradicts the assumption thatMf and g form a randomized linear sketch of dimension
k ≤ n− d. J

I Fact 57. The inner product function IP (x1, . . . xn) =
∑n/2
i=1 x2i−1 ∧ x2i is an (1/2− ε)-

extractor for affine subspaces of dimension ≥ (1/2 + α)n where ε = exp(−αn).

I Corollary 58. Randomized linear sketching complexity of the inner product function is at
least n/2−O(1).

I Remark. We note that the extractor argument of Lemma 56 is often much weaker than the
arguments we give in Part 2 and Part 3 Theorem 14 and wouldn’t suffice for our applications
in Section 4. In fact, the extractor argument is too weak even for the majority function
Majn. If the first 100

√
n variables of Majn are fixed to 0 then the resulting restriction has

value 0 with probability 1− e−Ω(n). Hence for constant error Majn isn’t an extractor for
dimension greater than 100

√
n. However, as shown in Section 4.3 for constant error F2-sketch

complexity of Majn is linear.
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C.2 Existential lower bound for arbitrary distributions
Now we are ready to show that an analog of Part 1 of Theorem 14 doesn’t hold for arbitrary
distributions, i.e. concentration on a low-dimensional linear subspace doesn’t imply existence
of randomized linear sketches of small dimension.

I Lemma 59. For any fixed constant ε > 0 there exists a function f : Fn2 → {+1,−1} such
that Rlinε/8(f) ≥ n− 3 log n such that f is (1− 2ε)-concentrated on the 0-dimensional linear
subspace.

Proof. The proof is based on probabilistic method. Consider a distribution over functions
from Fn2 to {+1,−1} which independently assigns to each x value 1 with probability 1− ε/4
and value −1 with probability ε/4. By a Chernoff bound with probability e−Ω(ε2n) a random
function f drawn from this distribution has at least an ε/2-fraction of −1 values and hence
f̂(∅) = 1

2n
∑
α∈Fn2

f(x) ≥ 1− ε. This implies that f̂(∅)2 ≥ (1− ε)2 ≥ 1− 2ε so f is (1− 2ε)-
concentrated on a linear subspace of dimension 0. However, as we show below the randomized
sketching complexity of some functions in the support of this distribution is large.

The total number of affine subspaces of codimension d is at most (2 · 2n)d = 2(n+1)d since
each such subspace can be specified by d vectors in Fn2 and a vector in Fd2. The number
of vectors in each such affine subspace is 2n−d. The probability that less than ε/8 fraction
of inputs in a fixed subspace have value −1 is by a Chernoff bound at most e−Ω(ε2n−d).
By a union bound the probability that a random function takes value −1 on less than ε/8
fraction of the inputs in any affine subspace of codimension d is at most e−Ω(ε2n−d)2(n+1)d.
For d ≤ n− 3 log n this probability is less than e−Ω(εn). By a union bound, the probability
that a random function is either not an ε/8-extractor or isn’t (1− 2ε)-concentrated on f̂(∅)
is at most e−Ω(εn) + e−Ω(ε2n) � 1. Thus, there exists a function f in the support of our
distribution which is an ε/8-extractor for any affine subspace of dimension at least 3 log n
while at the same time is (1 − 2ε)-concentrated on a linear subspace of dimension 0. By
Lemma 56 there is no randomized linear sketch of dimension less than n− 3 log n for f which
errs with probability less than ε/8. J

C.3 Random F2-sketching
The following result is folklore as it corresponds to multiple instances of the communication
protocol for the equality function [27, 11] and can be found e.g. in [38] (Proposition 11). We
give a proof for completeness.

I Fact 60. A function f : Fn2 → F2 such that minz∈{0,1} Prx[f(x) = z] ≤ ε satisfies

Rlinδ (f) ≤ log ε2
n+1

δ
.

Proof. We assume that argminz∈{0,1} Prx[f(x) = z] = 1 as the other case is symmetric.
Let T = {x ∈ Fn2 |f(x) = 1}. For every two inputs x 6= x′ ∈ T a random F2-sketch χα for
α ∼ U(Fn2 ) satisfies Pr[χα(x) 6= χα(x′)] = 1/2. If we draw t such sketches χα1 , . . . , χαt then
Pr[χαi(x) = χαi(x′), ∀i ∈ [t]] = 1/2t. For any fixed x ∈ T we have:

Pr[∃x′ 6= x ∈ T ∀i ∈ [t] : χαi(x) = χαi(x′)] ≤
|T | − 1

2t ≤ ε2n

2t ≤
δ

2 .

Conditioned on the negation of the event above for a fixed x ∈ T the domain of f is
partitioned by the linear sketches into affine subspaces such that x is the only element of T in
the subspace that contains it. We only need to ensure that we can sketch f on this subspace
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which we denote as A. On this subspace f is isomorphic to an OR function (up to taking
negations of some of the variables) and hence can be sketched using O(log 1/δ) uniformly
random sketches with probability 1 − δ/2. For the OR-function existence of the desired
protocol is clear since we just need to verify whether there exists at least one coordinate of
the input that is set to 1. In case it does exist a random sketch contains this coordinate with
probability 1/2 and hence evaluates to 1 with probability at least 1/4. Repeating O(log 1/δ)
times the desired guarantee follows. J

D Towards the proof of Conjecture 3

We call a function f : Fn2 → {+1,−1} non-linear if for all S ∈ Fn2 there exists x ∈ Fn2 such
that f(x) 6= χS(x). Furthermore, we say that f is ε-far from being linear if:

max
S∈Fn2

[
Pr

x∼U(Fn2 )
[χS(x) = f(x)]

]
= 1− ε.

The following theorem is our first step towards resolving Conjecture 3. Since non-linear
functions don’t admit 1-bit linear sketches we show that the same is also true for the
corresponding communication complexity problem, namely no 1-bit communication protocol
for such functions can succeed with a small constant error probability.

I Theorem 61. For any non-linear function f that is at most 1/10-far from linear D→1/200(f+)
> 1.

Proof. Let S = arg maxT
[
Prx∈Fn2

[χT (x) = f(x)
]
. Pick z ∈ Fn2 such that f(z) 6= χS(z). Let

the distribution over the inputs (x, y) be as follows: y ∼ U(Fn2 ) and x ∼ Dy where Dy is
defined as:

Dy =
{

y + z with probability 1/2,
U(Fn2 ) with probability 1/2.

Fix any deterministic Boolean function M(x) that is used by Alice to send a one-bit message
based on her input. For a fixed Bob’s input y he outputs gy(M(x)) for some function gy that
can depend on y. Thus, the error that Bob makes at predicting f for fixed y is at least:

1−
∣∣Ex∼Dy [gy(M(x))f(x+ y)]

∣∣
2 .

The key observation is that since Bob only receives a single bit message there are only four
possible functions gy to consider for each y: constants −1/1 and ±M(x).

Bounding error for constant estimators

For both constant functions we introduce notation Bcy =
∣∣Ex∼Dy [gy(M(x))f(x+ y)]

∣∣ and
have:

Bcy =
∣∣Ex∼Dy [gy(M(x))f(x+ y)]

∣∣ = |Ex∼Dy [f(x+ y)]| =
∣∣∣∣12f(z) + 1

2Ew∼U(Fn2 )[f(w)]
∣∣∣∣

If χS is not constant then
∣∣Ew∼U(Fn2 )[f(w)]

∣∣ ≤ 2ε we have:∣∣∣∣12f(z) + 1
2Ew∼U(Fn2 )[f(w)]

∣∣∣∣ ≤ 1
2
(
|f(z)|+

∣∣Ew∼U(Fn2 )[f(w)]
∣∣) ≤ 1/2 + ε.
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If χS is a constant then w.l.o.g χS = 1 and f(z) = −1. Also Ew∼U(Fn2 )[f(w)] ≥ 1− 2ε.
Hence we have:∣∣∣∣12f(z) + 1

2Ew∼U(Fn2 )[f(w)]
∣∣∣∣ = 1

2
∣∣−1 + Ew∼U(Fn2 )[f(w)]

∣∣ ≤ ε.
Since ε ≤ 1/10 in both cases Bcy ≤ 1

2 + ε which is the bound we will use below.

Bounding error for message-based estimators

For functions ±M(x) we need to bound
∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣. We denote this expression
as BMy . Proposition 62 shows that Ey[BMy ] ≤

√
2

2 (1 + ε).

I Proposition 62. Ey∼U(Fn2 )
[∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣] ≤ √2
2 (1 + ε).

We have:

Ey
[∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣]
= Ey

[∣∣∣∣12 (M(y + z)f(z) + Ex∼Dy [M(x)f(x+ y)]
)∣∣∣∣]

= 1
2Ey [|(M(y + z)f(z) + (M ∗ f)(y))|]

≤ 1
2

(
Ey
[
((M(y + z)f(z) + (M ∗ f)(y)))2

])1/2

= 1
2
(
Ey
[(

(M(y + z)f(z))2 + ((M ∗ f)(y))2 + 2M(y + z)f(z)(M ∗ f)(y))
)])1/2

= 1
2
(
Ey
[(

(M(y + z)f(z))2]+ Ey
[
((M ∗ f)(y))2]+

2Ey [M(y + z)f(z)(M ∗ f)(y)))])1/2

We have (M(y + z)f(z))2 = 1 and also by Parseval, expression for the Fourier spectrum
of convolution and Cauchy-Schwarz:

Ey[((M ∗ f)(y))2] =
∑
S∈Fn2

M̂ ∗ f(S)2 =
∑
S∈Fn2

M̂(S)2f̂(S)2 ≤ ||M ||2||f ||2 = 1

Thus, it suffices to give a bound on E[M(y + z)f(z)(M ∗ f)(y))]. First we give a bound
on (M ∗ f)(y):

(M ∗ f)(y) = Ex[M(x)f(x+ y)] ≤ Ex[M(x)χS(x+ y)] + 2ε

Plugging this in we have:

Ey[M(y + z)f(z)(M ∗ f)(y))]
= −χS(z)Ey[M(y + z)(M ∗ f)(y))]
≤ −χS(z)Ey [M(y + z)(M ∗ χS)(y)] + 2ε
= −χS(z)(M ∗ (M ∗ χS))(z) + 2ε

= −χS(z)2M̂(S)2 + 2ε
≤ 2ε.

where we used the fact that the Fourier spectrum of (M ∗ (M ∗ χS)) is supported on S only
and ̂M ∗ (M ∗ χS)(S) = M̂2(S) and thus (M ∗ (M ∗ χS))(z) = M̂2(S)χS(z).

Thus, overall, we have:

Ey
[∣∣Ex∼Dy [M(x)f(x+ y)]

∣∣] ≤ 1
2
√

2 + 4ε ≤
√

2
2 (1 + ε). J
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Putting things together

We have that the error that Bob makes is at least:

Ey

[
1−max(Bcy, BMy )

2

]
=

1− Ey[max(Bcy, BMy )]
2

Below we now bound Ey[max(Bcy, BMy )] from above by 99/100 which shows that the error is
at least 1/200.

Ey[max(Bcy, BMy )]

= Pr[BMy ≥ 1/2 + ε]E[BMy |BMy ≥ 1/2 + ε] + Pr[BMy < 1/2 + ε]
(

1
2 + ε

)
= Ey[BMy ] + Pr[BMy < 1/2 + ε]

(
1
2 + ε− E[BMy |BMy < 1/2 + ε]

)
Let δ = Pr[BMy < 1/2 + ε]. Then the first of the expressions above gives the following bound:

Ey[max(Bcy, BMy )] ≤ (1− δ) + δ

(
1
2 + ε

)
= 1− δ

2 + εδ ≤ 1− δ

2 + ε

The second expression gives the following bound:

Ey[max(Bcy, BMy )] ≤
√

2
2 (1 + ε) + δ

(
1
2 + ε

)
≤
√

2
2 + δ

2 +
√

2
2 ε+ ε.

These two bounds are equal for δ = 1 −
√

2
2 (1 + ε) and hence the best of the two bounds

is always at most (
√

2
4 + 1

2 ) + ε
(√

2
4 + 1

)
≤ 99

100 where the last inequality uses the fact that
ε ≤ 1

10 .

E Auxiliary Proofs

E.1 Proof of Proposition 17
Without loss of generality assume that p = Pr[X = 1]

Var[X] = E[X2]− (E[X])2

= 1− (E[X])2 (X2 = 1 as X is supported on {1,-1})
= 1− (p · 1 + (1− p)(−1))2

= 1− (2p− 1)2)
= 4p(1− p)

Since p ≤ 1
2 , 4(1− p) ∈ [2, 4] and the proposition follows.

E.2 Proof of Lemma 21
Let p ∈ F2[x1, . . . , xn] be the F2-polynomial corresponding to f . Fix one monomial M =
Πi∈Sxi of the largest degree. Thus |S| = d. We will show that for each assignment aS to the
variables outside of S, there is an assignment aS to the variables in S such that p(aS , aS) = 1.
This will prove that there are at least 2n−d assignments on which p evaluates to 1, and will
thus imply the lemma.
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To this end, fix an assignment aS to the variables in S. Let p |S←a
S

be the polynomial
obtained from p by setting the variables in S according to aS . Notice that sinceM was a
monomial of largest degree in p,M continues to be a monomial in p |S←a

S

. Thus p |S←a
S

is
a non-constant polynomial in the variables {xi | i ∈ S}. In particular, this implies that there
exists an assignment aS to the variables in S, such that p |S←a

S

(aS) = 1 (see the discussion
in the paragraph after fact 20). This in turn implies that p(aS , aS) = 1.

CCC 2018
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