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ABSTRACT

Selecting the best items in a dataset is a common task in
data exploration. However, the concept of “best” lies in the
eyes of the beholder: different users may consider different
attributes more important, and hence arrive at different rank-
ings. Nevertheless, one can remove “dominated” items and
create a “representative” subset of the data, comprising the
“best items” in it. A Pareto-optimal representative is guaran-
teed to contain the best item of each possible ranking, but it
can be a large portion of data. A much smaller representative
can be found if we relax the requirement to include the best
item for each user, and instead just limit the users’ “regret”.
Existing work defines regret as the loss in score by limiting
consideration to the representative instead of the full data
set, for any chosen ranking function.

However, the score is often not a meaningful number and
users may not understand its absolute value. Sometimes
small ranges in score can include large fractions of the data
set. In contrast, users do understand the notion of rank order-
ing. Therefore, we consider the position of the items in the
ranked list for defining the regret and propose the rank-regret
representative as the minimal subset of the data containing
at least one of the top-k of any possible ranking function.
This problem is NP-complete. We use a geometric interpre-
tation of items to bound their ranks on ranges of functions
and to utilize combinatorial geometry notions for develop-
ing effective and efficient approximation algorithms for the
problem. Experiments on real datasets demonstrate that we
can efficiently find small subsets with small rank-regrets.
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1 INTRODUCTION

Given a dataset with multiple attributes, the challenge is to
combine the values of multiple attributes to arrive at a rank.
In many applications, especially in databases with numeric
attributes, a weight vector w is used to express user prefer-
ences in the form of a linear combination of the attributes,
i.e., ), w;A;. Finding flights based on a linear combination of
some criteria such as price and duration [1], diamonds based
on depth and carat [2], and houses based on price and floor
area [2] are a few examples.

The difficulty is that the concept of “best” lies in the eyes
of the beholder. Different users may consider different at-
tributes more important, and hence arrive at very different
rankings. In the absence of explicit user preferences, the sys-
tem can remove dominated items, and offer the remaining
Pareto-optimal [3] set as representing the desirable items in
the data set. Such a skyline (resp. convex hull) is the smallest
subset of the data that is guaranteed to contain the top choice
of a user based on any monotonic (resp. linear) ranking func-
tion. Borzsony et. al. [4] initiated the skyline research in the
database community and since then a large body of work
has been conducted in this area. A major issue with such
representatives is that they can be a large portion of the
dataset [5, 6], especially when there are multiple attributes.
Hence, several researchers have tackled [7, 8] the challenge
of finding a small subset of the data for further consideration.

One elegant way to find a smaller subset is to define the
notion of regret for any particular user. That is, how much
this user loses by restricting consideration only to the sub-
set rather than the whole set. The goal is to find a small
subset of the data such that this regret is small for every
user, no matter what their preference function. There has
been considerable attention given to the regret-ratio mini-
mizing set [5, 9] problem and its variants [10-16]. Let m,
be the maximum score of the tuples in dataset based on a
scoring function f. Also, let m, be the maximum score for
a subset of data. The regret-ratio of the subset for f is the
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ratio of (m, — mg,) to m,. The classic regret-ratio minimizing
set problem aims to find a subset of size r that minimizes
the maximum regret-ratio for any possible function. Other
variations of the problem are pointed out in § 7.

Unfortunately, in most real situations, the actual score
is a “made up” number with no direct significance. This is
even more so the case when attribute values are drawn from
different domains. In fact, the score itself could also be on a
made-up scale. Considering the regret as a ratio helps, but
is far from being a complete solution. For example, wine
ratings appear to be on a 100 point scale, with the best wines
in the high 90s. However, wines rated below 80 almost never
make it to a store. In § 6.2, we conduct an experiment over
a collection of 100 top wines. The rating of the best wine
in the dataset is at 98 points. A regret of 6 points gives a
very small regret ratio of .06, but actually only promises a
wine with a rating of 92, which is below median! In other
words, a small value of regret ratio can actually result in a
large swing in rank. In the case of wines, at least the rating
scales see enough use that most wine-drinkers would have a
sense of what a score means. But consider choosing a hotel.
If a website takes your preferences into account and scores a
hotel at 17.2 for you, do you know what that means? If not,
then how can you meaningfully specify a regret ratio?

Although ordinary users may not have a good sense of
actual scores, they almost always understand the notion
of rank. Therefore, as an alternative to the regret-ratio, we
consider the position of the items in the ranked list and
propose the position distance of items to the top of the list
as the rank-regret measure. We define the rank-regret of a
subset of the data to be k, if it contains at least one of the
top-k tuples of any possible ranking function.

Since items in a dataset are usually not uniformly dis-
tributed by score, solutions that minimize regret-ratio do
not typically minimize rank-regret. In this paper, we seek
to find the smallest subset of the given data set that has
rank-regret of k. We call this subset the order k rank-regret
representative of the database. (We will write this as k-RRR,
or simply as RRR when k is understood from context). The
order 1 rank-regret representative of a database (for linear
ranking functions) is its convex hull: guaranteed to contain
the top choice of any linear ranking function. The convex
hull is usually very large: almost the entire data set with five
or more dimensions [5, 6]. By choosing a value of k larger
than 1, we can drastically reduce the size of the rank-regret
representative set, while guaranteeing everyone a choice in
their top k even if not the absolute top choice.

Unfortunately, finding RRR is NP-complete, even for three
dimensions. However, we find a bound on the maximum rank
of an item for a function and use it for designing efficient
approximation algorithms. We also find the connection of
the RRR problem with well-known notions in combinatorial
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geometry such as k-set [17], a set of k points in d dimensional
space separated from the remaining points by a hyperplane.
We show how the k-set notion can be used to find a set that
guarantees a rank-regret of k and a logarithmic approxima-
tion ratio on the output size. We then show how a smart
partitioning of the function space offers an elegant way of
finding the rank-regret representative.

Summary of contributions:

e We propose the rank-regret representative as a way of
choosing a small subset of the dataset guaranteed to con-
tain at least one good choice for every user.

e We provide a key theorem that, given the rank of an item
for a pair of functions, bounds the maximum rank of the
item for any function “between” these functions.

o For the 2D case, we provide an approximation algorithm
2DRRR that guarantees to achieve the optimal output size
and the approximation ratio of 2 on the rank-regret.

o We identify the connection of the problem with the com-
binatorial geometry notion of k-set. We review that k-set
enumeration can be modeled by graph traversal. Using
the collection of k-sets, for the general case with constant
number of dimensions, we model the problem by geomet-
ric hitting set, and propose the approximation algorithm
MDRRR that guarantees the rank-regret of k and a loga-
rithmic approximation-ratio on its output size. We also
propose a randomized algorithm for k-set enumeration,
based on the coupon collector’s problem.

e We propose a function space partitioning algorithm Mprc
that, for a fixed number of dimensions, guarantees a fixed
approximation ratio on the rank-regret. As confirmed in
the experiments, applying a greedy strategy while parti-
tioning the space makes this algorithm both efficient and
effective in practice.

e We conduct extensive experiments on two real datasets to
verify the efficiency and effectiveness of our proposal.

In the following, we first formally define the terms, provide
the problem formulation, and study its complexity in § 2. We
provide the geometric interpretation of items, a dual space,
and some statements in § 3 that play key roles in the technical
sections. In § 4, we study the 2D problem and propose an
approximation algorithm for it. § 5 starts by revisiting the
k-set notion and its connection to our problem. Then we
provide the hitting set based approximation algorithm, as
well as the function space partitioning based algorithm, for
the general multi dimensional case. Experiment results and
related work are provided in § 6 and 7, respectively, and the
paper is concluded in § 8.

2 PROBLEM DEFINITION

Database: Consider a database D of n tuples, each consisting
of d attributes A = {A;, Az, - -+ , Ay} that may be involved
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Figure 1: A 2D dataset

in a user’s preference function®. Without loss of generality,
we consider A; € R for all i € [1, d]. We represent each tuple
t € D as a d-dimensional vector {t[1], ¢[2], - - - ¢[d]}.

Ranking function: Consider a ranking function f : R —
R that maps each tuple t to a numerical score. We say t;
outrankst; if and only if f(t;) > f(t;). We apply any arbitrary
tie-breaker when f(t;) = f(t;). For each t € D, let V¢(t) be
the rank of t in the ordered list of O based on f. In other
words, there are exactly V¢ (¢) — 1 tuples in O that outrank ¢
according to f.

Ranking functions can take a wide variety of forms. A
popular type of ranking functions studied in the database
literature is linear ranking functions, i.e.,

d
F@ =" wi-tli], (1)
i=1
where w = {wy, wy, -+, wgq} (Vi € [1,d], w; > 0) is a weight

vector used to capture the importance of each attribute to
the final score of a tuple. We use L to refer to the set of all
possible linear ranking functions.

Maxima representation: For a given database D, if the set
of ranking functions of interest is known - say ¥ - then we
can derive a compact maxima representation of O by only
including a tuple ¢ € D if it represents the maxima (i.e., is
the No. 1 ranked tuple) for at least one ranking function in
¥ For example, if we focus on linear ranking functions in £,
then the maxima representation of O is what is known in
the computational geometry and database literature as the
convex hull [18] of D. Similarly, the set of skyline tuples [4], a
superset of the convex hull, form the maxima representation
for the set of all monotonic ranking functions [19].

A problem with the maxima representation is its poten-
tially large size. For example, depending on the “curvature”
of the shape within which the tuples are distributed, even
in 2D, the convex hull can be as large as O(n'/?) [6]. The

Each tuple could also include additional attributes that are not involved in
the user preferences. We do not consider these attributes for the purpose of
this paper.

Figure 2: Items of Fig. 1 ordered by f = x1 + x»

265

1
Figure 3: Dual presentation of items in Fig. 1

problem gets worse in higher dimensions [5, 20]. In practice,
even for a database with dimensionality as small as d = 5,
the convex hull can often be as large as O(n)[5].

To address this issue, we propose in this paper to relax
the definition of maxima representation in order to reduce
its size. Specifically, instead of requiring the representation
to contain the top-1 item for every ranking function, we
allow the representation to stand so long as it contains at
least one of the top-k items for every ranking function. This
tradeoff between the compactness of the representation and
the “satisfaction” of each ranking function is captured in the
following formal definitions of rank regret:

DEFINITION 1. Given a subset of tuples X C D and a
ranking function f, the rank-regret of X for f is the minimum
rank of all tuples in X according to f. Formally,

RR¢(X) = argmin(Vg(t))
VteX

DEFINITION 2. Given a subset of tuples X C D and a
set of ranking functions F, the rank-regret of X for ¥ is the
maximum rank-regret of X for all functions in ¥ - i.e.,

RRHX) = argmax(RR¢(X))
VfeF

DEFINITION 3. Given a set of ranking functions ¥ and a
user inputk > 1, we say X C O is a rank-regret representation
of O if and only if X has the rank-regret of at most k for F,
and no other subset of D satisfies this condition while having
a smaller size than X. Formally:

X1l

min

.t. X) <
min s.t. RRA(X) < k

Problem Formulation: Finding the rank-regret representa-
tive of the dataset O is our objective in this paper. Therefore,
we define the problem as follows:

RANK-REGRET REPRESENTATIVE (RRR) PROBLEM:
Given a dataset D, a set of ranking functions ¥, and a
user input k, find the rank-regret representative of D for
¥ and k according to Definition 3.
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We note that there is a dual formulation of the problem -
i.e., a user specifies the output size |X|, and aims to find X
that has the minimum rank-regret. Interestingly, a solution
for the RRR problem can be easily adopted for solving this
dual problem. Given the solver for RRR, for the set size x, one
may apply a binary search to vary the value of k in the range
[1, n] and, for each value of k, call the solver to find RRR. If
the output size is larger than x, then the search continues
in the upper half of the search space for k, or otherwise
moves to the lower half. Given an optimal solver for RRR,
this algorithm is guaranteed to find the optimal solution for
the dual problem at a cost of an additional log n factor in the
running time.

In the rest of the paper, we focus on £, the class of linear
ranking functions.

Complexity analysis: The decision version of RRR prob-
lem asks if there exists a subset of size r of D that satisfies
the rank-regret of k. Somewhat surprisingly, even though
no solution for RRR exists in the literature, we can readily
use previous results to prove the NP-completeness of RRR.
Specifically, the (k, €)-regret problem studied in Agrawal et
al. [14] asks if there exists a set that guarantees the maximum
regret-ratio of € from the top k-th item of any linear ranking
function. Note that the (2, 0)-regret problem is the equivalent
of RRR problem for k = 2. Given that the NP-completeness
proof in [14] covers the (2, 0)-case when d > 3, through a
reduction to the NP-completeness of the convex polytope
vertex cover (CPVC) problem proven by Das et al. [21], the
NP-completeness of RRR follows.

We would like to reemphasize that even though the com-
plexity of RRR was established in existing work, RRR is
still a novel problem to study because all previous work
in the regret ratio area focused on the case where € > 0.
In other words, they seek approximations on the absolute
score achieved by tuples in the compact representation - a
strategy which, as discussed in the introduction, could lead
to a significant increase on rank regret because many tuples
may congregate in a small band of absolute scores. RRR, on
the other hand, focus on the rank perspective (i.e., € = 0)
and assumes no specific distribution of the absolute scores.

3 GEOMETRIC INTERPRETATION OF
ITEMS

In this section, we use the geometric interpretation of items,
explain a dual transformation, and propose a theorem that
plays a key role in designing the RRR algorithms.

Each item t € D with d scalar attributes can be viewed
as a point in R?. As an example, Figure 1 shows a sample
dataset with n = 7 items, defined over d = 2 attributes.
Figure 2 shows these items as the points in R2. In this space,
every linear preference function f with the weight vector
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w = {wy,ws, -+ ,wy} can be viewed as a ray that starts at
the origin and passes through the point {wq, ws, -, wg}.
For each item t € D, consider the orthogonal line to the ray
of f that passes through t; let the projection of ¢ on f be the
intersection of this line with the ray of f. The ordering of
items based on f is the same as the ordering of the projection
of them on f where the items that are farther from the origin
are ranked higher. For example, Figure 2 shows the ray of
the function f = x; + x3, as well as the ordering of items
based on it. As shown in the figure, the items are ranked as
t7, t3, ts, t1, by, Lg, and ty, based on f = x; + x,. Every ray
starting at the origin in R? is represented by d — 1 angles.
For example in R?, every ray is identified by a single angle.
In Figure 2, the ray of function f = x; + x; is identified by
the angle 6 = 7 /4.

Small changes in the weights of a function will move the
corresponding ray slightly, and hence change the projection
points of items. However, it may not change the ordering of
items. In fact, while the function space is continuous and the
number of possible weight vectors is infinite, the number
of possible orderings between the items is, combinatorially,
bounded by n!.

In order to study the ranking of items based on vari-
ous functions, throughout this paper, we consider the dual
space [17] that transforms a tuple ¢ in R to the hyperplane
d(t) as follows:

d
d(t) : Z tilx = 1 2)

i=1
In the dual space, the ray of a linear function f with the
weight vector w = {wy, wy, - - - , wy} remains the same as the
original space: the origin-starting ray that passes through
the point w. The ordering of items based on a function is
specified by the intersection of hyperplanes d(t;) with it.
However, unlike the original space, the intersections that
are closer to the origin are ranked higher. Using Equation 2,
every tuple in two dimensional space gets transformed to
the line d(¢) : ¢[1].x; + t[2].x; = 1. Figure 3 shows the items
in the example dataset of Figure 1 in the dual space. Looking
at the intersection of dual lines with the x; axis in Figure 3,
one can see that the ordering of items based on f = x; is t7,
t1, t3, by, ts, 14, and tg; hence, for any set X containing t; or
ty, for f = x; (ie, w = {1,0}), RRp(X) < 2.

The set of dual hyperplanes defines a dissection of R? into
connected convex cells named as the arrangement of hyper-
planes [17]. The borders of the cells in the arrangement are
d — 1 dimensional facets. For example, in Figure 3, the ar-
rangement of dual lines dissect the R? space into connected
convex polygons. The borders of the convex polygons are
one dimensional line segments. For every facet in the ar-
rangement consider a line segment starting from the origin
and ending on it. Let the level of the facet be the number
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of hyperplanes intersecting this line segment. We define a
top-k border (or simply k-border) as the set of facets having
level k. For example, the red chain consisting of piecewise
linear segments in Figure 3, shows the top-k border for k = 2.
For any function f, the hyperplanes intersecting the ray of
f on or below the top-k border are the top-k. Looking at the
red line in Figure 3, one may confirm that:

o The top-k border is not necessarily convex.

o A dual hyperplane d(t;) may contain more than one
facet of the top-k border. For example, d(#3) in Figure 3
contains two line segments of the top-2 border.

In the following, we propose an important theorem that is
the key to designing the 2D algorithm, as well as the practical
algorithm in MD.

THEOREM 1. For any item t € D consider two (if any)
functions f and " where V¢(t) < ki and V(1) < ky. Also,
consider a line segment I ¢ starting from a point on the ray
of f and ending at a point on the ray of f’. For any function
f" that its ray intersects I g1, V(1) < ky + ks.

Proor. We use the dual space and prove the theorem by
contradiction. In the dual space, consider the 2D plane pass-

ing through the rays of f and f’ - referred as ]R;, 2 Note

that R}zc’ s the affine space for the origin starting rays that
intersect Ir, 7. The intersection of each hyperplane d(t;) and
this plane is a line that we name as L(¢;). The arrangement
of lines L(t;), Vt; € D, identify the orderings of items t € D
based on any origin-starting ray (function) that falls in Rjzf’ e
This is similar to Figure 3 in that the arrangement of lines
d(t;) identify the possible ordering of items in Figure 1. For
any pair of items #; and t;, the intersection of the lines L(#;)
and L(#2) shows the function (the origin-starting ray that
passes through the intersection) that ranks t; and ¢, equally
well, while on one side of this point #; outranks t;, but ¢,
outranks #; on the other side. Note that since L(t;) and L(t,)
are both (one dimensional) lines, they intersect at most once.

Now consider the item ¢ and its corresponding line L(t)
in the arrangement. Since V(t) < ki, there exist at most
k — 1 lines below it on the ray of f. Moving from the ray of
f toward the ray of f’, in order for ¢ to have a rank greater
than k; + ks, L(¢) has to intersect with at least k; lines L(¢;)
in a way that after the intersection points (toward f’) those
points outrank ¢. Since every pair of lines has at most one
intersection point, L(¢) will not intersect with those lines any
further. As a result, those (at least) k; points keep outranking
t, and thus t cannot have a rank smaller than or equal to k;
again, which contradicts the fact that V(t) < k. |

Intuitively, Theorem 1 states that if f” lies “between” f
and f’, then the rank of an item based on f”’ is at worst
the summation of its rank in f and f”’. We use this result in
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the next section, as well as § 5, for providing approximation
algorithms for RRR.

4 RRRIN 2D

In this section, we study the special case of two dimensional
(2D) data in which d = 2. In § 2, we discussed the complex-
ity of the problem for d > 3. However, we believe that the
complexity of the problem is due to the complexity of cov-
ering the possible top-k results and therefore, provide an
approximation algorithm for 2D. We consider the items in
the dual space and use Theorem 1 as the key for designing
the algorithm 2DRRR. Later in § 5, we extend this theorem to
design a practical algorithm for general cases.

Based on our discussion about the top-k border in the pre-
vious section, each dual line may contain multiple segments
of the top-k border. As a results, for each item, the set of
functions for which the item is in the top-k, is a collection
of disjoint intervals. Based on Theorem 1, if we take the
union of these intervals (i.e., the convex closure), we get a
single interval, in which the item is guaranteed to be in the
top-2k. This, we are effectively applying Theorem 1 to get
the 2-approximation factor.

At a high-level, the algorithm 2DRRR consists of two parts.
It first makes an angular sweep of a ray anchored at the
origin, from the x-axis (angle 0°) toward the y-axis (angle
7/2°) so that for every item ¢t € D, it finds the first (smallest
angle) and the last function (largest angle) for which ¢ is in
top-k. Then it transforms the problem into an instance of
one-dimensional range cover [22] and solves it optimally.

The first part, i.e., the angular sweep, is described in Al-
gorithm 1 (the function FINDRANGES)?. For every item t the
algorithm aims to find the first (b[¢]) and the last (e[¢]) func-
tion for which V¢(¢) < k. FINDRANGES initially orders the
items based on their x;-coordinates and puts them in a list L
that keeps tracks of orderings while moving from x to y-axis.
It uses a min-heap data structure to maintain the ordering
exchanges between the adjacent items in L. Please note that
each ordering exchange [23] is always between two adja-
cent items in L. Using Equation 2, the angle of the ordering
exchange between two items L; and L;4; is as follows:

Lia[1] = Li[1]
Li[2] - Liwa[2]

For the items that are initially in the top-k, FINDRANGES
sets b[t] to the angle 0°. Then, it sweeps the ray and pops
the next ordering exchange from the heap. Upon visiting an
ordering exchange, the algorithm updates the ordered list
L. If the exchange occurs between the items at rank k and
k + 1: (i) if this is the first time L, enters the top-k, the
algorithm sets b[Lk.1] as the current angle, and (ii) for the
item Ly that leaves the top-k, it sets e[k] to the current angle.

0r,1,, = arctan

2Pseudocode of all algorithms are provided in Appendix D.
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The algorithm will update e[k] later on if it becomes a top-k
again. Figure 4 shows the ranges for the example dataset in
Figure 1 and k = 2 (k-border is shown in Figure 3).

After computing the ranges for the items, the problem is
transformed into a one dimensional range cover instance.
The objective is to cover the function space (the range be-
tween 0° and 7/2°) using the least number of ranges. The
greedy approach leads to the optimal solution for this prob-
lem - that is, at every iteration, select the range with the
maximum coverage of the uncovered space.

At every iteration, the uncovered space is identified by a
set of intervals. Due to the greedy nature of the algorithm,
the range of each remaining item intersects with at most
one uncovered interval. To explain this by contradiction,
consider an item t that its range intersects with two (or
more) uncovered intervals (Figure 5). Let u; and u, be these
intervals. Also, let us name the covered space between u; and
uy as cy,2. (i) Since the range of ¢ intersects with both u; and
uy, ¢1,2 is contained within the range of ¢, which implies the
range of t is larger than ¢y 5. (ii) ¢1,2 should be covered by the
range of at least one previously selected item ¢’. Also, since
the ranges of items are continuous, the range of ¢’ cannot
be larger than c; ;. As a result, the range of ¢’ is less than
the range of ¢, which contradicts the fact that the ranges are
selected greedily.

Using this observation, after finding the ranges for each
item, 2DRRR (Algorithm 2) uses a sorted list to keep track of
the uncovered intervals. The elements of the list are in the
form of (0;,+ /), where  (resp. ) specifies that this is the
beginning (resp. the end) of an uncovered interval.

At every iteration, for each item that has still not been
selected, the algorithm applies a binary search to find the
element in Uy that b[#;] falls right before it, i.e., Ug[1] > b[t;]
and 3k’ < k such that Up[1] > b[t;]. Then depending on
whether Uy specifies the beginning () or the end (4) of an
uncovered interval, it computes how much of the uncovered
region t; covers. The algorithm chooses the item with the
maximum coverage, adds it to the selected set, and updates
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the uncovered intervals accordingly. It stops when no more
uncovered intervals are left.

As an example, for the dataset in Figure 1, if we execute
Algorithm 2 on the ranges provided in Figure 4, it returns
the set {t3,t}.

THEOREM 2. The algorithm 2DRRR runs in O(n? log n) time.

Proor. Intuitively, the summation of the cost of each iter-
ation of the greedy algorithm is used to derive the running
time. Please find the details of the proof in Appendix C. O

THEOREM 3. The output size of 2DRRR is not more than the
size of the optimal solution for RRR.

Proor. The proof follows from the fact that the ranges
identified by Algorithm 1 provide a superset for each top-k
result. Please refer to Appendix C for details. ]

THEOREM 4. The output of 2DRRR guarantees the maximum
rank-regret of 2k.

Proor. This result is easy to prove, by applying Theo-
rem 1. The details are provided in Appendix C. ]

5 RRRINMD

In multi-dimensional cases (MD) where d > 2, the contin-
uous function space becomes problematic, the geometric
shapes become complex, and even the operations such as
computing the volume of a shape and the set operations be-
come inefficient. Therefore, in this section, we use the k-set
notion [17] to take an alternative route for solving the RRR
problem by transforming the continuous function space to
discrete sets. This leads to the design of an approximation
algorithm that guarantees the rank-regret of k, introduces a
log approximation-ratio in the output size, and runs in poly-
nomial time, for a constant number of dimensions. We will
explain the details of this algorithm in § 5.2. Then, in § 5.3,
we propose the function-space partitioning algorithm Mprc
that uses the result of Theorem 1 in its design for solving
the problem without finding the k-sets. Note that proposed
algorithms in this section are also applicable for 2D.

5.1 k-Set and Its Connection to RRR

k-set is an important notion in combinatorial geometry with
applications including half-space range search [24, 25]. Given
a set of points in R¢, a k-set is a collection of exactly k points
in the point set that are strictly separable from the rest of
points using a d — 1 dimensional hyperplane.

Consider a finite set P of n points in the euclidean space R.
A hyperplane h partitions it into P* = PNh* and P~ = PNh~,
called half spaces of P, where h* (resp. h™) is the open half
space above® (resp. below) h [17]. The hyperplane 4 in the

3We use the word above (resp. below) to refer to the half space that
does not contain (resp. contains) the origin.
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Figure 6: The k-sets of Figure 1 for k = 2.

Euclidean space R can be uniquely defined by a point p on
it and a d dimensional normal vector v orthogonal to it, and
has the following equation:

o[1]Gxy = pl1]) + v[2](xz = p[2]) + - - - + v[d](xq — pld]) = 1
3)
Ahalf space S of P is a k-set if card(S) = k. Without loss of
generality, we consider the positive half spaces and v[i] > 0.
That is, S C P is a k-set if 3 a point p and the positive
normal vector v such that S = h(p, v)* and card(h(p,v)*) =
k. For example, the empty set is a 0-set and each point in
the convex hull of P is a 1-set. We use S to refer to the
collection of k-sets of P;i.e., S = {S C P|S is a k-set}. For
example, Figure 6 shows the collection of k-sets for k = 2
for the dataset of Figure 1. As we can see, the 2-sets are
S ={{ti. t7}, {tz. t3}, {ts, ts} }.
If we consider items t € D as points in R¢, the notion of
k-sets is interestingly related to the notion of top-k items, as
the following arguments show:

e A hyperplane h(p, v) describes the set of all points with the
same score as point p, for the ranking function f with the
weight vector v, i.e., the set of attribute-value combinations
with the same scores as p based on the ranking function
f.

e If we consider a hyperplane h(p, v) where card(h(p,v)*) =

k, the set of points belonging to h(p,v)* is equivalent to

the top-k items of D for the ranking function with weight

vector v.

LEMMA 5. Let S be the collection of all k-sets for the points
corresponding to the items t € D. For each possible ranking
function f, there exists a k-set S € S such that top-k(f )=S.

Proor. We provide the proof by contradiction. Please re-
fer to Appendix C for the details. O

Based on Lemma 5, all possible answers to top-k queries
on linear ranking functions can be captured by the collection
of k-sets. This will help us in solving the RRR problem in
§ 5.2. As we shall explain in § 7, the best known upper bound
on the number of k-sets in R? and R? are O(nk'/?) [26] and
O(nk*?) [27]. For d > 3, the best known upper bound is
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O(n?-¢) [28], where ¢ > 0 is a small constant*. However, as
we shall show in § 6, in practice |S] is significantly smaller
than the upper bound.

In the technical report [29], we review the k-set enumera-
tion. For the 2D case, a ray sweeping algorithm (similar to
Algorithm 1) that follows the k-border finds the collection
of k-sets. For higher dimensions, the enumeration can be
modeled as a graph traversal problem [30]. The algorithm
considers the k-set graph G(V, E) in which the vertices are
the k-sets and there is an edge between two k-sets if the size
of their intersection is k — 1. We discuss the connectivity of
the graph, and explain how to traverse it and enumerate the
k-sets.

Next, we use the k-set notion for developing an approxi-
mation algorithm for RRR that guarantees a rank-regret of k
and a logarithmic approximation ratio on the output size.

5.2 MDRRR: Hitting-Set Based
Approximation Algorithm

As we discussed in § 5.1 the collection of k-sets contains
the set of all possible top-k results for the linear ranking
functions. As a result, a set of tuples X C D that contains at
least one item from each k-set is guaranteed to have at least
one of the items in the top-k of any linear ranking function;
which implies that X satisfies the rank regret of k. On the
other hand, since every k-set S = h(p, v)* is at least the top-k
of the linear function f with the weight vector v, a subset
X’ C D that does not contain any of the items of a k-set S
does not satisfy the rank regret of k.

One can see that given the collection of k-sets, our RRR
problem is similar to the minimum hitting set problem [31].
Given a universe of n items 9, and a collection of sets S
where each set S € 8 is a subset of D, the minimum hit-
ting set problem asks for the smallest set of items X’ € D
such that X’ has a non-empty intersection with every set
S of 8. The minimum hitting set problem is known to be
NP-complete [31] and the existing approximation algorithm
provides a factor of O(log n) from the optimal size c¢. A de-
terministic polynomial time algorithm with an improved
factor of O(6 log d¢) had been proposed by [22] for a specific
instance of this problem — the geometric hitting set prob-
lem — where ¢ is the Vapnik Chervonenkis dimension (VC-
dimension). The VC-dimension is defined as the cardinality
of the largest set of points Y C O that can be shattered by
S, i.e., the system introduced by S on Y contains all the
subsets of Y [32]. In the RRR problem, since the k-sets are
defined by half spaces, the VC-dimension is d (the number
of attribute) [22, 33].

*Note that this is polynomial for a constant d.
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Next we formally show the mapping of the RRR problem
into the geometric hitting set problem, and provide the detail
of approximation algorithm.

MAPPING TO GEOMETRIC HITTING SET PROBLEM: Given
a set space R = (D, S), where S is the collection of
k-sets and D = U §; is the set of points, find the

Vs; €S

smallest set X C D such that VS € S,3t € X s.t. t € S.

In MDRRR (Algorithm 3), we use the approximation algo-
rithm for the geometric hitting set problem that is proposed
in [22] using the concept of e-nets [34]. More formally, an e-
net of D for § is a set of points X C D such that X contains
a point for every S € S with size of at least €|D|. Algo-
rithm 3 shows the psudocode of MDRRR, the approximation
algorithm that uses the mapping to geometric hitting set
problem. The algorithm initializes the weight of each point
to one. It then iteratively, in polynomial time, selects (using
weighted sampling) a small-sized set of tuples X C D that
intersects all highly weighted sets in S. More formally if a
set X C D intersects each k-set S of S with weight larger
than eW(D), where W(D) is the total weights of of points
in D, then X is an e-net. If X is not a hitting set (lines 4-9),
then the algorithm doubles the weight of the points in the
particular sets S of S missed by X.

Discussion: In summary, considering the one-to-one map-
ping between the RRR problem and the geometric hitting set
problem over the collection of k-sets, we can see that:

e MDRRR guarantees rank-regret of k. That is because MDRRR
is guaranteed to return at least one item from each k-set
in S, the set of all top-k results.

e MDRRR guarantees the approximation ratio of O(d log dc),
where c is the optimal output size and d is the number of
attributes.

e MDRRR runs in polynomial time. This is because it has been
shown in [22] that the number of iterations the algorithm
must perform is at most O(c log "?'), where n’ is the number
of points in D, and c is the size of the optimal hitting set.
Moreover, recall that MDRRR needs the collection of k-
sets, which can be enumerated by traversing the k-set
graph [29] and runs in polynomial time.

Nevertheless, although it runs in polynomial time, the MDRRR
algorithm is quite impractical as described above. It needs
the collection of k-sets (S), as input. Therefore, its efficiency
depends on the k-set enumeration and the size of |S|. Al-
though, as we shall show in § 6, in practice the size of |S| is
reasonable and, as explained in the technical report [29], the
k-set graph traversal algorithm is linear in |S]|, the algorithm
does not scale beyond a few hundred items in practice. The
reason is that while exploring each k-set, it needs to solve
much as n linear programs, each of size n constraints over d
variables. This makes the enumeration extremely inefficient.
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Figure 7: Illustration of overlap between the k-sets of a sample of
20 items from the DOT dataset (c.f. § 6) while d = 2

Therefore, we need to explore practical alternatives to the
k-set enumeration algorithm.

Hence, we propose K-SET,, a sampling-based alternative
for the k-set enumeration. K-SET, is a randomized approach
based on the coupon collector’s problem [35] that considers
the one mapping between the linear ranking functions and
the k-sets and generates random ranking functions for k-set
enumeration. Further details about K-sSET, is provided in
Appendix A.

Let S, be the collection of k-sets discovered by k-SET,.
After finding S,, we pass it, instead of S to MDRRR. Since
K-SET, does not guarantee the discovery of all k-sets, the
output of the hitting set algorithm does not guarantee the
rank-regret of k for the missing k-sets. However, the missing
k-sets (if any) are expected to be in the very small regions
that has never been hit by a randomly generated function.
Also, the fact that the adjacent k-sets in the k-set graph vary
in only one item, further reduces the chance that a missing
k-set is not covered. Therefore, this is very unlikely that the
top-k of a randomly generated function is not within the
output.

On the other hand, since K-SET, finds a subset of k-sets, the
output size for running the hitting set on top of the subset
(i.e., Sy) is not more than the output size of running the
hitting set on S. As a result, the output size remains within
the logarithmic approximation factor.

5.3 MDRC: Function Space Partitioning

Given the collection of k-sets, the hitting set based approx-
imation algorithm MDRRR guarantees the rank-regret of k
while introducing a logarithmic approximation in its output
size. Despite these nice guarantees, MDRRR still suffers from
k-set enumeration, as it can only be executed after the k-sets
have been discovered. Therefore, as we shall show in § 6, in
practice it does not scale well for large problem instances.
One observation from the k-set graph is the high overlap
between the k-sets, as the adjacent k-sets differ in only one
item. As a result many of them may share at least one item.
For example, we selected 20 random items from the DOT
(Department of Transportation) dataset (c.f. § 6) while set-
ting d = 2. By performing an angular sweep of a ray from
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the x-axis to the y-axis while following the k-border (see
Figure 3), we enumerated the k-sets. In Figure 8, we illustrate
the overlap between these k-sets. The figure confirms the
high overlap between the k-sets where the item with id 2
appears in all except one of the sets. This motivates the idea
of finding these items without enumerating the k-sets. In
addition, the top-k of two similar functions (where the angle
between their corresponding rays is small) are more likely
to intersect.

We use these observations in this subsection and propose
the function-space partitioning algorithm mMmprc which (simi-
lar to the 2D algorithm 2DRRR) leverages Theorem 1 in its
design. The algorithm is based on the extension of Theorem 1
that bounds the rank of an item that appears in the top-k
of the functions corresponding to the corners of a convex
polytope in the function space.

MDRC considers the function space in which every function
(i.e., a ray starting from the origin) in R? is identified as a
set of d — 1 angles. Rather than discovering the k-sets and
transforming the problem to a hitting set instance, here our
objective is to cover the continuous function space (instead of
the discrete k-set space). Intuitively, we propose a recursive
algorithm which, at every recursive step, considers a hyper-
rectangle in the function space, and either assigns a tuple
to the functions in the space, or uses a round robin strategy
on the d — 1 angles to break down the space in two halves,
and to continue the algorithm in each half. This partitioning
strategy is similar to the Quadtree data structure [36]. The
reason for choosing this strategy is to maximize the similarity
of the functions in the corners of the hyper-rectangles to
increase the probability that their top-k sets intersect. MDRC
also follows a greedy strategy in covering the function space,
by partitioning a hyper-rectangle only if it cannot assign a
tuple to it.

Consider the space of possible ranking functions in R,
Thisisidentified by a set of d—1 angles©® = {01,0,,- -+ ,04-1},
where 0; € [0, 7/2]. To explain the algorithm, consider the
binary tree where each node is associated with a hyper-
rectangle in the angle space, specified by a range vector of
size d—1. The root of the tree is the complete angle space, that
is the hyper-rectangle defined between the ranges [0, 7/2] on
each dimension. Let the level of the nodes increase from top
to bottom, with the level of the root being 0. Every node at
level I uses the angle 0;5(4-1)+1 to partition the space in two
halves, the negative half (the left child) and the positive half
(the right child). Figure 8 illustrates an example of such tree
for 3D. The root uses the angle 6; to partition the space. The
left child of the root is associated with the rectangle specified
by the ranges {[0, /4], [0, £/2]} and the right child shows
the one by {[r/4,7/2],[0, 7/2]}. The nodes at level 1 use
the angle ;4.1 = 6, for partitioning the space.
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Figure 8: Illustration of space partitioning and the recursion tree
of Algorithm 5

At every node, the algorithm checks the top-k items in the
corners of the node’s hyper-rectangle and if there exists an
item that is common to all of them, returns it. Otherwise, it
generates the children of the node and iterates the algorithm
on the children. The algorithm combines the outputs of each
of the halves as its output. We implement MDRC as a recursive
algorithm (Algorithm 5). The algorithm is started by calling
MDRC (D, n,d, k,0,{[0, 7/2] |[V0 < i < d}).

As a running example for the algorithm, let us consider
Figure 8. The algorithm starts at the root, partitions the
space in two halves, as the intersection of the top-k of its
hyper-rectangle’s corners are empty, and does the recursion
at nodes b and c. The node ¢ finds the item ¢, which appears
in the top-k of all of its corners and returns it to a. Node b,
however, cannot find such an item and does the recursion by
partitioning its hyper-rectangle along the angle 8,. Nodes d
and e find the items t; and ¢, and return them to b which
returns {4, t. } to the root. The root returns {t, tq4, t. } as the
representative.

THEOREM 6. The algorithm MDRC guarantees the maximum

rank-regret of dk.

Proor. This proof uses Theorem 1 to extend the maxi-
mum rank bound from one dimensional ranges to (d — 1)
dimensions. Please find the details in Appendix C. O

Theorem 6 uses the result of Theorem 1 to provide an
upper bound on the maximum rank of the items assigned to
each hyper-rectangle, for the functions inside it. However, as
we shall show in § 6, the rank-regret of its output in practice
is much less. For all the experiments we ran, the output of
MDRC satisfied the maximum rank of k for all settings. Also,
following the greedy nature in partitioning the function
space, as we shall show in § 6, the output of MDRc in all
cases was less than 40. In addition, in § 6, we show that this
algorithm is very efficient and scalable in practice.

6 EXPERIMENTAL EVALUATION

6.1 Datasets
US Department of Transportation flight database (DOT)’: This
database is widely used by third-party websites to identify

Swww.transtats.bts.gov/DL_SelectFields.asp?
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the on-time performance of flights, routes, airports, and air-
lines. After removing the records with missing values, the
dataset contains 457,892 records, for all flights conducted
by the 14 US carriers in the last months of 2017, over the
scalar attributes Dep-Delay, Taxi-Out, Actual-elapsed-time,
Arrival-Delay, Air-time, Distance, Taxi-in, and CRS-elapsed
-time. For Air-time and Distance higher values are preferred
while for the rest of attributes lower values are better.

Blue Nile (BN)°: Blue Nile is the largest diamonds online
retailer in the world. We collected its catalog that contained
116,300 diamonds at the time of our collection. We consider
the scalar attribute Carat, Depth, LengthWidthRatio, Table,
and Price. For all attributes, except Price, higher values are
preferred. The value of the diamonds highly depend on these
measurement, small changes in these scores may mean a
lot in terms of the quality of the jewel: For example, while
the listed diamonds range from 0.23 carat to 20.97, minor
changes in the carat affects the price. We considered two
similar diamonds, where one is 0.5 carat and the other is
0.53 carat. Even though all other measures are similar for
both diamonds, the second is 30% more expensive than the
first one. This is also correct for Depth, LengthWidthRatio,
and Table. Such settings where slight changes in the scores
may dramatically affect the value (and the rank) of the items,
highlight the motivation of rank-regret.

Wine dataset’ : Each year, Wine Spectator publishes a list
of top wines reviewed over past 12 months. This annual
list honors successful wineries, regions and vintages around
the world. We collect their list of top wines for 2017. The
dataset contains 100 items, defined over the attributes rating,
vintage year, and price. We use this dataset in § 6.2 for
validating our proposal.

We normalize the values of datasets in a way that a value
v of a higher-preferred attribute A as v/max(A) and for each
lower-preferred attribute A, we do it as (max(A)—v)/max(A).

Next, we start the experiments by validating our proposal
in § 6.2, using the wine dataset. Then, we evaluate the per-
formance of the proposed algorithms in § 6.3.

6.2 Validation

Users of a dataset with multiple attributes may have different
preferences for finding the “best” fit for their need. Pareto-
optimal is the set that contains the best of any preference
function, however, may be large. A neat way of finding a
smaller subset is by defining a notion of regret and bounding
it for any specific user. While regret-ratio defines regret on
the score, rank-regret does it based on the ranking of items.
Let m, be the maximum score of an item in the dataset based
on f, while m, is the one for a subset of data. The subset

Swww.bluenile.com/diamond-search?

http://top100.winespectator.com/lists/
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satisfies a regret-ratio of ¢ for f, if 2% < §. The rank-
regret of the subset, on the other hand, is k, if it contains one
of the top-k of the dataset based on f.

A problem with considering score for defining regret is
that the actual scores assigned by the functions are usually
made up and do not carry a significant meaning. Further-
more, there might even be a non-linearity in the raw attribute
values themselves. That is, uniform changes in attribute val-
ues may not uniformly change the “quality” of an item with
that value. These motivate the rank difference as an alterna-
tive for defining the measure of regret. In this experiment,
we use our wine dataset to showcase this in real world.

Consider a user who prefers the wine with maximum
rating. Wine ratings are in the scale of 0 to 100. In our
dataset, the wine with the maximum rating is "Clos des Pa-
pes Chateauneuf-du-Pape" with the rating of 98. A regret
of 6 points on the rating gives a small regret-ratio of 0.06.
The small regret-ratio indicates the containment of a good
“representative” for the user’s choice. Note that any subset
that contains a wine with rating of 92 satisfies this regret-
ratio. However, a wine with this ranking is even below the
median of the dataset based on rating! An example of such a
wine is "Volver Alicante Tarima Hill Old Vines". On the other
hand, consider a subset that satisfies the rank-regret of top-6
(top-6%, in other words). Such a subset should contain one
of the top 6 wines based on rating, a good approximation for
the top-1. "Cantina del Pino Barbaresco Ovello" (with rating
of 97) is such a good representative.

A similar story happens for a ranking function that con-
siders the combination of vintage year and rating with equal
weights on the normalized values. In this case, an item that
satisfies the small regret-ratio of 0.05 falls in the middle of the
ranked list, i.e., half of the wines in the dataset approximate
the top choice based on this function better than it does.

6.3 Performance Evaluation

After validating our proposal, here we study the performance
of our algorithms. In addition to the efficiency, we evaluate
the effectiveness of the proposed algorithms. That is, we
study if the algorithms can find a small subset with bounded
rank-regret based on k. We consider the running time as the
efficiency measure and the rank-regret of output set, as well
as its size, for effectiveness. Computing the exact rank-regret
of a set needs the construction of the arrangement of items
in the dual space which is not scalable to the large settings.
Therefore, in the experiments for estimating the rank-regret
of a set in MD, we draw 10,000 functions uniformly at random
(based on Lines 4 to 6 of Algorithm 4) and consider them for
estimating the rank-regret.
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6.3.1 Setup. All experiments were performed on a Linux
machine with a 3.8 GHz Intel Xeon processor and 64 GB
memory. The algorithms are implemented using Python 2.7.

Algorithms evaluated. In addition to the theoretical analy-
ses, we evaluate the algorithms proposed in this paper. In § 4,
we proposed 2DRRR, the algorithm that uses Theorem 1 to
transform the problem into one dimensional range covering.
This quadratic algorithm guarantees the approximation ratio
of 2 on the maximum rank regret of its output. In this section,
we shall show that in all the cases it generated an output
with maximum rank of k. For 2D, we implemented the ray-
sweeping algorithm (similar to Algorithm 1) that enumerates
the k-sets by following the changes in the k-border (Figure 3).
We also implemented the k-set graph based enumeration[29]
for MD. We did not include the results here, but we observed
that it does not scale beyond a few hundred items (that is
because it need to solve much as O(nk) linear programs for
a single k-set). Instead, we apply the randomized algorithm
K-SET, for finding the k-sets (while setting the termination
condition ¢ to 100). The MD algorithms proposed in § 5 are
the hitting-set based algorithm MDRRR and the space function
covering algorithm MDRc. As we explained in § 1 and 7, all
of the existing algorithms proposed for different varieties of
regret-ratio consider the score difference, as the measure of
regret and apply the optimization based on it. Still to verify
this, we consider comparing with them as the baseline. As
we shall further explain in § 7, [5, 14] propose similar approx-
imation algorithms for the regret-ratio minimizing problem
with controllable additive approximation factors. Both of
these works are based on discretizing the function space and
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transforming the problem into hitting set instances [14, 16].
We adopt the HD-RRMS algorithm [5] as baseline.

Default values. For each experiment, we study the impact
of varying one variable while fixing others to their default
values. The default values are as following: (i) dataset size
(n): 10,000, (ii) number of attributes (d): 3, and (iii) k: top-1%.

6.3.2 2D Results. We use a ray sweeping algorithm, sim-
ilar to Algorithm 1, to enumerates the k-sets by following
the changes in the k-border. We also use the ray sweeping
to find out the (exact) rank regret of a set in 2D. Due to
the space limitations, for 2D, we only provide the plots for
the DOT dataset. Figures 9 and 10 show the performance of
the algorithms for varying the dataset size (n) from 1000 to
400,000. The running times of 2DRRR and MDRRR are domi-
nated by the time required by the sweeping line algorithms
for finding the ranges (Algorithm 1) and the k-sets. Since
these two algorithms have similar structure, their running
times are similar. Still, because the sweeping ray algorithm is
quadratic, these algorithms did not scale beyond 100K items.
On the other hand MDRc does not depend on finding the k-set
or sweeping a line. Rather, it partitions the space until top-k
of two corners of each range intersect. Due to the binary
search nature of the algorithm that breaks the space by half
at every iteration, soon the functions in the two ends of each
range become similar enough to share an item in their top-k.
Therefore, the algorithm performs very well in practice, and
scales well for large settings. For example, it took less than a
second to run MDRC for 100K items, while 2DRRR and MDRRR
required several thousand seconds. See Figure 9. In Figure 10,

time (sec) - logscale
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and all other plots with, two y-axes, the left axis show the
rank-regret and the right one is the output size. The dashed
green line show the border for the rank-regret of 1%.

The algorithm 2DRRR guarantees the optimal output size.
For all settings its output also had the rank-regret of less
than k, confirming that it returned the optimal solution. On
the other hand, MDRRR guarantees the rank-regret of k and
provides the logarithmic approximation ratio on its output
size. This is also confirmed in the figure, where the rank
regret of the output of MDRRR is always below the green line.
However, the size of its output is more than the optimal for
two (out of three) settings. the space partitioning algorithm
MDRRR provides the output which in all cases satisfied the
rank-regret of k and also its output size was the minimum,
confirming that it also discovered the optimal output. In
Figures 11 and 12, we fix the dataset size and other variables
to the default and study the effect of changing k on the
efficiency of the algorithm and the quality of their outputs.
Similar to Figure 9, 2DRRR and MDRRR have similar running
times (due to applying the ray sweeping algorithm) and MDRC
runs within a few milliseconds for all settings. On the other
hand, in Figure 12, the output size of MDRC is in all cases,
except one, equal to the optimal output size (of 2DRRR) while,
due to its logarithmic approximation ratio, the hitting set
based MDRRR generates larger outputs.MDRRR guarantees
the rank-regret of k, which is confirmed in the figure. MDRC
also provided the maximum rank-regret of k for all settings
and 2DRRR did so for all, except k = 0.004% for which its
maximum rank regret was slightly above the threshold.

k-set size. Next, we compare the actual size of k-sets with
the theoretical upper-bounds, using the k-seT, algorithm.
To do so, we select the DOT and BN datasets, set number
of items to 10K and study the impact of varying k and d.
The results are provided in Figures 13, 14, 15, and 16. The
left-y-axis in the figures show the size and the right-y-axis
show the running time of the x-set, algorithm. The hor-
izontal green line in the figures highlight the number of
items n = 10K. Figures 13 and 15 show the results for vary-
ing k for DOT and BN, respectively. First, as observed in
the figures, the actual sizes of the k-sets are significantly
smaller than the best known theoretical upper-bound for
3D (O(nk®/?) [27]). In fact, the number of k-sets is closer to
n than the upper-bounds. Second, the number of k-sets for
k = 10% is significantly larger than the number of k-sets
for smaller values of k. Recall that the k-sets are densely
overlapping, as the neighboring k-sets in the k-set graph
only differ in one item. As k increases (up until k = 50%), for
each node of the k-set graph the number of candidate transi-
tions to the neighboring k-sets increases which affect |S| as
well. Although significantly smaller than the upper bound,
still the sizes are large enough to make the k-set discovery
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impractical for large settings. For example, running the -
SET, algorithm for the DOT dataset and k = 10% took more
than ten thousand seconds. The observations for varying d
(Figures 14 and 15) are also similar. Also, the gap between
the theoretical upper-bound for d > 4 and the actual k-sets
sizes show how loose the bounds are.

6.3.3 MD Results. Here, we study the algorithms pro-
posed for the general cases where d > 3. MDRRR is the hit-
ting set based algorithm that, given the collection of k-sets,
guarantees the rank-regret of k and a logarithmic increase
in the output size. So far, the 2D experiments confirmed
these bounds. The other algorithm is the space partition-
ing algorithm mpRc which is designed based on Theorem 1.
Given the possibly large number of k-sets and the cost of
finding them (even using the randomized algorithm x-seT,),
this algorithm is designed to prevent the k-set enumeration.
MDRC uses the fact that the k-sets are highly overlapping and
recursively partitions the space (see Figure 8) into several
hypercubes and stops the recursion for each hypercube as
soon as the intersection of the top-k items in its corners is
not empty. This algorithm performs very well in practice, as
after a few iterations, the functions in the corners become

output size

output size

output size
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similar enough to share at least one item in their top-k. Also,
the maximum rank-regret of the item that appear in the top-k
of the corners of the hyper-rectangle for the functions in-
side the hypercube is much smaller than the bound provided
in Theorem 6. We so far observed it in the 2D experiments
where in all cases the rank-regret of the output of MDRC is
less than k, while the output size also was always close to
the optimal output size.

In addition to these algorithms, we compare the efficiency
and effectiveness of our algorithms against, Hp-RrMs [5], the
recent approximation algorithm proposed for regret-ratio
minimizing problem. Since HD-RRMS takes the index size as
the input, we first run the MDpRrc algorithm and pass its output
size to HD-RRMs. Having a different optimization objective
(on the regret-ratio), as we shall show, the output of HD-
RRMs fails to provide a bound on the rank-regret. In the first
experiment, fixing the other variables to their default values,
we vary the dataset size n from 1000 to 400,000 for DOT and
from 1000 to 100,000 for BN®. Figures 17, 18, 23, and 24 show
the results. Figures 17 and 18, 23 show the running time of the
algorithms for DOT and BN, respectively. Looking at these
figures, first MDRRR did not scale for 100K items. The reason
is that MDRRR needs the collection of k-sets in order to apply
the hitting set. For a very large number of items even the
K-SET, algorithm does not scale. HD-RRMs has a reasonable
running time in all cases. MDRc has the least running time
for large values of n and in all cases it finished in less than a
few seconds. The reason is that after a few recursions, the
functions in the corners of the hypercubes become similar
and share an item in their top-k. Figures 18 and 24 show
the effectiveness of the algorithms for these settings. The
left-y-axes show the maximum rank-regret of an output set
while the right-y-axes show the output size. The green lines
show the rank-regret of k border. First, the output size for all
settings is less than 20 items, which confirm the effectiveness
of algorithms for finding a rank-regret representative. As
explained in § 5.2, MDRRR guarantees the rank-regret of k,
which is observed here as well. As expected, HD-RRMs fails
to provide a rank-regret representative in all cases. Both for
DOT and BN, the maximum rank-regret of the output of
HD-RRMs are close to n, the maximum possible rank-regret.
For example, for DOT and n =400K, the rank-regret of HD-
RRMS was 112K, i.e., there exists a function for which the
top-1 based on the output of HD-RRMS has the rank 112,000.
Based on Theorem 6, for these settings, the rank-regret of
the output of MDRc is guaranteed to be less than 4k for all
cases. However, in practice we expect the rank-regret to be
smaller than this. This is confirmed in both experiments for
DOT (Figure 18) and BN (Figure 24) where the output of
MDRC provided the rank-regret of k.

8Due to the space limitations, the MD experiment results of BN are provided
in Appendix B.

275

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

Next, we evaluate the impact of varying the number of
dimensions. Setting n to 10,000 and k to 1% of n (i.e. 100), we
the number of attributes, d, from 3 to 6 for DOT and from 3
to 5 for BN. Figures 19, 20, 25, and 20 show the results. The
running times of the algorithms for DOT and BN are provided
in Figures 19 and 25. Similar to the previous experiments,
since the hitting set based algorithm MDRRR requires the
collection of k-sets, it was not efficient. Both HD-RRMS and
MDRC performed well in both experiments. On the other hand,
looking at Figures 20 and 20 HD-RRMs fails to provide a rank-
regret representative, as in all settings there the rank-regret
of its output was several thousands, while the maximum
possible rank-regret is n = 10, 000. The outputs of proposed
algorithms in § 5, as expected, satisfied the requested rank-
regret. Interestingly, the output of MDRC had a lower rank-
regret, especially for DOT where its rank-regret was around
10 for all settings. The output of both MDRRR and MDRC was
less than 40, for all settings and both datasets, which confirm
the effectiveness of them as the representative.

In the last experiment, we evaluate the impact of vary-
ing k. For both datasets, while setting n to 10,000 and d
to 3, we varied k from 0.1% of items (i.e., 10) to 10% (i.e.,
1000). Figures 21, 22, 27, and 28 show the results. Looking
at Figures 21 and 27 which show the running time of the
algorithms for DOT and BN, respectively, MDRRR had the
worst performance, and it got worse as k increased. The bot-
tleneck in MDRRR is the k-set enumeration, and (looking at
Figures 13 and 15) it increased by k, as the number of k-sets
increased. Both HD-RRMS and MDRC were efficient for all set-
tings. One interesting fact in these plots is that the running
time of MDRC decreases as k increases. This is despite the fact
that, as showed in Figures 13 and 15, the number of k-sets in-
creased. The reason for the decrease, however, is simple. The
probability that the top-k of corners of a hypercube share an
item increases when looking at larger values of k where each
set contains more items. Although HD-RrRMS was efficient in
all settings, similar to the previous experiments it fails to
provide a rank-regret representative as the rank-regret of its
output is not bounded. The outputs of MDRRR and MDRc, on
the other hand, had smaller rank-regret than the requested k
in all settings for both datasets. Again, the output sizes in all
settings were less than 20, which confirm the effectiveness
of them as the rank-regret representative.

6.3.4 Summary of results. To summarize, the experiments
verified the effectiveness and efficiency of our proposal. While
the adaptation of the regret-ratio based algorithm HD-RRMS
fails to provide a rank-regret representative, 2DRRR, MDRRR,
and MDRC found small sets with small rank-regrets. Although
the rank-regret of the outputs of 2DRRR and MDRC can be
larger than k, in our experiments and our measurements
those were always below k. MDRRR provided small outputs
that as expected, always guarantees the rank-regret of k.
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Interestingly, the output size of MDRC was around the size
of the one by MDRRR, which verifies the effect of the greedy
behavior of MDRrc. The output sizes in all the experiments
were less than 40, confirming the effectiveness of the rep-
resentatives. The quadratic 2DRRR and the hitting-set based
algorithm MDRRR scaled up to a limit, whereas MpRC had low
running time at all scales.

7 RELATED WORK

The problem of finding preferred items of a dataset has been
extensively investigated in recent years, and research has
spanned multiple directions, most notably in top-k query
processing [37] and skyline discovery [4]. In top-k query
processing, the approach is to model the user preferences
by a ranking/utility function which is then used to preferen-
tially select tuples. Fundamental results include access-based
algorithms [38-41] and view-based algorithms [42, 43]. In
skyline research, the approach is to compute subsets of the
data (such as skylines and convex hulls) that serve as the
data representatives in the absence of explicit preference
functions [3, 4, 44]. Skylines and convex hulls can also serve
as effective indexes for top-k query processing [19, 45, 46].
Efficiency and effectiveness have always been the chal-
lenges in the above studies. While top-k algorithms depend
on the existence of a preference function and may require a
complete pass over all of the data before answering a single
query, representatives such as skylines may become over-
whelmingly large and ineffective in practice [5, 6]. Stud-
ies such as [7, 8] are focused towards reducing the skyline
size. In an elegant effort towards finding a small representa-
tive subset of the data, Nanongkai et al. [9] introduced the
regret-ratio minimizing representative. The intuition is that
a “close-to-top” result may satisfy the users’ need. Therefore,
for a subset of data and a preference function, they consider
the score difference between the top result of the subset
versus the actual top result as the measure of regret, and
seek the subset that minimizes its maximum regret over all
possible linear functions. Since then, works such as [5, 10—
12, 14-16, 47] studied different challenges and variations of
the problem. Chester et al. [13] generalize the regret-ratio
notion to k-regret, in which the regret is considered to be
the difference between the top result of the subset and the
actual top-k result (instead of the top-1 result). They also
prove that the problem is NP-complete for variable number
of dimensions. [14, 15] prove that the k-regret problem is NP-
complete even when d = 3, using the polytope vertex cover
problem [21] for the reduction. As explained in § 2, this also
proves that our problem is NP-complete for d > 3. For the
case of two dimensional databases, [13] proposes a quadratic
algorithm and [5] improves the running time to O(nlog n).
The cube algorithm and a greedy heuristic [9] are the first
algorithms proposed for regret-ratio in MD. Recently, [5, 14]
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independently propose similar approximation algorithms
for the problem, both discretizing the function space and
applying the hitting set, thus, providing similar controllable
additive approximation factors. The major difference is that
[5] considers the original regret-ratio problem while [14]
considers the k-regret variation. Note that the above prior
works consider the score difference as the regret measure,
making their problem setting different from ours, since we
use the rank difference as the regret measure.

The geometric notions used in this paper, such as arrange-
ment, dual space, and k-set, are explained in detail in [17].
Finding bounds on the number of k-sets of a point set do not
lead to promising results on the upper bound of the size of S.
Lovasz and Erdos [48, 49] initiated the study of k-set notion
and provided an upper bound on the maximum number of
k-sets in R%. The problem in R? has also been studied in [50-
53]. The best known upper bound on the number of k-sets in
R? and R? are O(nk'/®) [26] and O(nk*/?) [27], respectively.
For higher dimensions, finding an upper bound on the num-
ber of k-sets has been extensively studied [17, 28, 51, 54]; the
best known upper bound is O(n?~¢) [28], where ¢ > 0 is a
small constant. The problem of enumerating all k-sets has
been studied in [55, 56] for 2D and [30] for MD.

8 FINAL REMARKS

In this paper, we proposed a rank-regret measure that is eas-
ier for users to understand, and often more appropriate, than
regret computed from score values. We defined rank-regret
representative as the minimal subset of the data containing at
least one of the top-k of any possible ranking function. Using
a geometric interpretation of items, we bound the maximum
rank of items on ranges of functions and utilized combina-
torial geometry notions for designing effective and efficient
approximation algorithms for the problem. In addition to
theoretical analyses, we conducted empirical experiments
on real datasets that verified the validity of our proposal.
Among the proposed algorithms, MDRC seems to be scalable
in practice: in all experiments, within a few seconds, it could
find a small subset with small rank-regret.
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APPENDIX
A K-SETg: SAMPLING FOR k-SET
ENUMERATION

Here we propose a sampling-based alternative for the k-set

enumeration, based on the many to one mapping between

the linear ranking functions and the k-sets. That is, while a k-
set is the top-k of infinite number of linear ranking functions,
every ranking function is mapped to only one k-set, the set

of top-k tuples for that function. Instead of the exact enumer-
ation of the k-sets, which requires solving expensive linear

programming problems for the discovery of the k-sets, we

propose a randomized approach based on the coupon collec-
tor’s problem [35]. The coupon collector’s problem describes

the “collect the coupons and win” contest. Given a set of
coupons, consider a sampler that every time picks a coupon

uniformly at random, with replacement. The requirement is

to keep sampling until all coupons are collected. Given a set

of v coupons, it has been shown that the expected number

of samples to draw is in ©(v log v). We use this idea for col-
lecting the k-sets by generating random ranking functions

and taking their top-k results as the k-sets. This is similar
to the coupon collector’s problem setting, except that the

probabilities of retrieving the k-sets are not equal. For each
k-set, this probability depends on the portion of the function
space for which it is the top-k. Therefore, rather than ap-
plying a k-set enumeration algorithm, k-seT, (Algorithm 4),
repeatedly generates random functions and computes their
corresponding k-sets, stopping when it does not find a new
k-set after a certain number of iterations. The algorithm re-
turns the collection of k-sets it has discovered, as S,. Recall
that the function space in MD, is modeled by the universe of
origin-starting rays. The set of points on the surface of the
(first quadrant of the) unit hypersphere represent the uni-
verse of origin-starting rays. Therefore, uniformly selecting
points from the surface of the hypersphere in R?, is equiva-
lent to uniformly sampling the linear functions. Algorithm 4
adopts the method proposed by Marsaglia [57] for uniformly
sampling points on the surface of the unit hypersphere, in
order to generate random functions. It generates the weight
vector of the sampled function as the absolute values of d
random normal variables. We note that since the k-sets are
not collected uniformly by K-SET,, its running time is not the
same as coupon collector’s problem, but as we shall show in
§ 6, it runs well in practice.
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C PROOFS

THEOREM 2. The algorithm 2DRRR is in O(n? log n).

Proor. The complexity of the algorithm 2DRRR depends is
determined by Algorithms 1 and 2. Algorithms 1 first orders
the items based on x in O(nlogn). Then in applies a ray
sweeping from the x-axis toward y and at every intersection
applies constant number of operations. The upper bound
on the number of intersections in O(n?) and therefore, it
is the running time of Algorithms 1. Calling Algorithm 1,
generates at most n ranges, each for an item. Every iteration
of Algorithm 2 is in O(nlog n) as it applies a binary search
on the set of uncovered intervals for each unselected item,
and the number of uncovered intervals is bounded by O(n).
Given that the output size is bounded by n, Algorithm 2 is
in O(n?log n). |

THEOREM 3. The output size of 2DRRR is not more than the
size of the optimal solution for RRR.

output size

output size

output size
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Proor. Following the k-border, while sweeping a ray from
x-axis to y, the top-k results change only when a line above
the border intersects with it. For example, in Figure 3, mov-
ing from x-axis to y, in the intersection between d(#;) and
d(ty), the top-2 changes from {7, t;} to {t7, t3}. Consider the
collection of the top-k results and the range of angles of rays
(named as top-k regions) that provide them. Now consider
the ranges that are generated by Algorithm 1 for each item.
Let us name them here as the ranges of items. These ranges
mark the first and last angle for which an item is in top-k. For
each top-k region R, let the set items that their ranges cover
it be Sg. Each top-k region is covered by each and every item
in its top-k. In addition the ranges of some other items cover
each top-k region. Therefore, Sg is a superset for the top-k of
R. An optimal solution with the minimum number of items
from the collection of supersets that contains at least one
item from each set, is not larger than the minimum number
of such items from the collection of subsets. As a result, the
output size of 2DRRR is not greater that the size of the optimal
solution for the RRR problem. O

THEOREM 4. The output of 2DRRR guarantees the maximum
rank-regret of 2k.

Proor. The proof is straightforward, following the Theo-
rem 1. For each item t, Algorithm 1 finds a range that in its
beginning and its end, ¢ is in the top-k. Therefore, based on
Theorem 1, the rank of ¢ for each of the functions inside its
range is no more than 2k. Algorithm 2 covers the function
space with the ranges generated by Algorithm 1. Hence, for
each function, there exists an item ¢ in the output where
Vf(t) < 2k. O

LEMMA 5. Let S be the collection of all k-sets for the points

corresponding to the items t € D. For each ranking function
f, there exists a k-set S € S such that top-k(f )=S.

Proor. The proof is straight-forward using contradiction.
Consider a ranking function f with the weight vector w
where the top-k is Sy and Sy does not belong to S. Let ¢
be the item for which V¢(t) = k. Consider the hyperplane
h(t, w). For all the items in ¢’ € Sy f(¢') < f(¢) and for all
items in D\S¢, f(t') > f(t). Hence, all the items in S¢ fall in
the positive half space of h —i.e., h(t, w)" = S¢. Since |S¢| is
k, card(h(t,w)*) = k. Therefore h(t, w)* = Sy is a k-set and
should belong to S, which contradicts with the assumption
that is does not belong to the collection of k-sets. O

THEOREM 6. MDRC guarantees the maximum rank-regret of
dk.

Proor. The proof of this theorem is based on Theorem 1.
We also consider the arrangement lattice [17] for this proof.
Every convex region in the (d — 1)-dimensional space is con-
structed from the d — 2 dimensional space convex facets as
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its borders. Each of the facets are constructed by d — 3 dimen-
sional facets, and this continues all the way down until the
(0 dimensional) points. For example, the borders of a convex
polyhedron in 3D, are two dimensional convex polygones;
the borders of the polygones are (one dimensional) line seg-
ments, each specified by two points. The arrangement lattice
is the data structure that describe the convex polyhedron by
its i dimensional facets - V 0 < i < d. The nodes at level i of
the lattice show the i dimensional facets, each connected to
its i — 1 dimensional borders, as well as the i + 1 dimensional
facets those are a border for.

Now, let us consider the hyper-rectangle of each of the
leaf nodes in the recursion tree of Mprc (c.f. Figure 8) and
let t be the tuple that appeared at the top-k of all corners
of the hyper-rectangle. Consider the arrangement lattice for
the hyper-rectangle of the leaf node and let us move up from
the bottom of the lattice, identifying the maximum rank of ¢
at each level of it. Since ¢ is in the top-k of both corners of
each line segment in level 1, based on Theorem 1, its rank
for each point on the line is at most 2k. Level 2 of the lattice
shows the two dimensional rectangles, each built by the line
segments at level 1. For every point inside each rectangle
at level 2, consider a line segment on the rectangle’s affine
space starting from one of its corners, passing through the
point and ending on the edge of the rectangle. Since the rank
of the point on the corner is less than k and for any point
on the edge less than 2k, based on Theorem 1, the rank of ¢
for the points inside the rectangles at level 2 of lattice is at
most k + 2k = 3k. Similarly, consider each hyper-rectangle
at level i of the lattice. The hyper-rectangle is built by the
(i — 1) dimensional hyper-rectangle at level i — 1. For every
point inside the i dimensional hyper-rectangle, consider the
line segment starting from a corner of the hyper-rectangle,
passing through the point and hitting the edge of it. By
induction, the rank of t on the (i — 1) dimensional edges of
hyper-rectangle is at most ik. Therefore, since the rank of
t on the corner is at most k, based on Theorem 1, its rank
for the point inside the i dimensional hyper-rectangle is at
most k + ik = (i + 1)k. Therefore, the rank of ¢ for every
point inside the (d — 1) dimensional hyper-rectangle (the top
of the lattice) is at most k + (d — 1)k = dk. MDRc partitions
the function space into hyper-rectangles that, for each, there
exists an item ¢ in the top-k in all of hyper-rectangle’s corners
(included in the output). The rank of ¢ for every point inside
the hyper-rectangle is at most dk. Since every function in
the space belongs to a hyper-rectangle, there exists an item
in the output that guarantees the rank of dk for it. m]
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D PSEUDOCODE OF ALGORITHMS

Algorithm 1 rinprANGES
Input: 2D dataset D, n, k

1: heap = new min-heap(); visited = new set()
2: L = sort D based on x
3: fori=1ton—-1do

4 if L;[2] < Li;+1[2] /% skip if L; dominates L;y; */ then
. Liyi[1-Li[1]

5: heap.push( (arctan m, Li))

6 end if

7: end for

8: fori=1tokdob[L;]=0

9: while heap is not empty do

10: (0, t) = heap.pop() // let i be the index of ¢ in L
11: if i == k then

12: if b[L;1] == null then b[L;1] =6
13: e[Li] = 0
14: end if

15: swap L; and Lj4q

16:  if (L;—1[1] < L;[1] or L;—1[2] < L;[2]) and (L;-1, L;) ¢ visited)

then ; .
17: heap.push( (arctan %, Li—y))
18: visited.add((L;-1, L;))
19: end if

200 if (Li+1[1] < Lis2[1] or Lis1[2] < Lisa[2] and (Lis1, Liv2) ¢

visited) then

. Liso[1]-Lixa[1] .
21: heap.push( (arctan m Liy1))
22: visited.add((L;+1, Li+2))

23: end if

24: end while

25: fori=1tokdoe[L;]=m/2
26: return b, e

Algorithm 2 2prrr
Input: 2D dataset D, n, k

1: b,e = FindRanges(D,n,k)
2: ¥ = new set()
3: U =[(0,+), (12, 4)]
4: while |U| > 0 do
5: Ccov,y, =05
6: for t; in D\¥ do
7: if b[t;] == null then continue
8: k = the index of the element in U that b|[¢;] fall before it (found
by applying binary search)
9: if Ug[2] == 4 then cov = min(Ug[1], e[¢;]) — b[¢i]
else cov = max(0, e[#;] — U[1])
10: if cov > cov,, then t = ¢;; cov,, = cov; k;, = k
11: end for
12:  Y.add(z)
13: if U, [2] ==+ then
14: if Ug,,+1[1] < e[¢] then remove Uy, and U, 1
15: else Ug,, [1] = e[t]
16: else
17: if Uy, [1] > e[t] then
18: U .insert(k,n, (b[t], 4)); U.insert(k,, + 1, {e[t], F))
19: else
20: Uk, [1] = b[t]
21: end if
22: end if
23: end while
24: return ¥
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Algorithm 3 mprrr
Input: collection of k-sets S

1:
2:
3:
4:

e wm

12:
13:
14:

D= U §;
Vs;eS
Set weight of each point to one

while True do
X = Select the e-net
if X is not hitting set then
for Sin S do
if points in a set k-set S missed by X then
Double the weights of the points in S
end if
end for
else
return X
end if
end while

Algorithm 4 x-set,

Input: dataset O, termination condition ¢

1:
2:
3:

oo

15:
16:

S, = {} ,counter=0

while counter< ¢ do
// generate a sample function
fori=1toddo

w; = [N(0,1)| // N(0,1) draws a sample from the standard

normal distribution
end for
// find the corresponding k-set
S = top-k(D, f)
if S € S, then
counter = counter+1

else
add Sto S,
counter = 0
end if
end while

return (S,)

Algorithm 5 mpre
Input: The dataset D, n, d, k, level of the node: [, ranges: R

1:

C = corners of the hypercube specified by R

2: 1= N top-k(D, c;
VeieC op-k(D ci)

: mid =

DO\]Q\W-BUJ

: if |I| > 0 then return I[1]
ci=1%d-1)+1

R[i][llgR[il[Z]
IR=rR=R

: IR[i][2] = mid; rR[i][1] = mid;
: return MpRC (D, n,d, k, [ + 1, IR)U mprC (D, n, d, k, I + 1, rR)
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