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Abstract—Data analysis impacts virtually every aspect of our
society today. Often, this analysis is performed on an existing
dataset, possibly collected through a process that the data
scientists had limited control over. The existing data analyzed
may not include the complete universe, but it is expected to
cover the diversity of items in the universe. Lack of adequate
coverage in the dataset can result in undesirable outcomes such
as biased decisions and algorithmic racism, as well as creating
vulnerabilities such as opening up room for adversarial attacks.

In this paper, we assess the coverage of a given dataset
over multiple categorical attributes. We first provide efficient
techniques for traversing the combinatorial explosion of value
combinations to identify any regions of attribute space not
adequately covered by the data. Then, we determine the least
amount of additional data that must be obtained to resolve
this lack of adequate coverage. We confirm the value of our
proposal through both theoretical analyses and comprehensive
experiments on real data.

I. INTRODUCTION

In the current age of data science, it is commonplace to

have a learning algorithm trained based on some dataset. This

dataset could be collected prospectively, such as through a sur-

vey or a scientific experiment. In such a case, a data scientist

may be able to specify requirements such as representation

and coverage. However, more often than not, analyses are

done with data that has been acquired independently, possibly

through a process on which the data scientist has limited,

or no, control. This is often called “found data” in the data

science context. It is generally understood that the training

dataset must be representative of the distribution from which

the actual test/production data will be drawn. More recently,

it has been recognized that it is not enough for the training

data to be representative: it must include enough examples

from less popular “categories”, if these categories are to be

handled well by the trained system. Perhaps the best known

story underlining the importance of this inclusion is the case of

the “google gorilla” [1]. An early image recognition algorithm

released by Google had not been trained on enough dark-

skinned faces. When presented with an image of a dark African

American, the algorithm labeled her as a “gorilla”. While

Google very quickly patched the software as soon as the story

broke, the question is what it could have done beforehand to

avoid such a mistake in the first place.

The Google incident is not unique: there have been many

other such incidents. For example, Nikon introduced a camera

feature to detect whether humans in the image have their

eyes open – to help avoid the all-too-common situation of the

camera-subject blinking when the flash goes off resulting in an

image with eyes closed. Paradoxically for a Japanese company,

their training data did not include enough East Asians, so that

the software classified many (naturally narrow) Asian eyes as

closed even when they were open [2]. Similarly, HP webcams

were not able to detect black faces [3] due to inadequate

coverage in the training data [4].

The problem becomes critical when it comes to data-driven
algorithmic decision making. For example, judges, probation

and parole officers are increasingly using algorithms to assess

a criminal defendant’s likelihood to re-offend [5]. Consider a

tool designed to help the judges in sentencing criminals by

predicting how likely an individual is to re-offend. Such a

tool can provide insightful signals for the judge and have the

potential to make society safer. On the other hand, a wrong

signal can have devastating effects on individuals’ lives. So

it is important to make sure that the tool is trained on data

that includes adequate representation of individuals similar to

each criminal that will be scored by it. In § V-B, we study

a real dataset of criminals used for building such a tool,

published by Propublica [5]. We shall show how inadequate

representation might result, for example, in predicting every

widowed Hispanic female as highly likely to re-offend.

While Google’s resolution to the gorilla incident was to

“ban gorillas” [6], a better solution is to ensure that the

training data has enough entries in each category. Referring to

the issue as “disparate predictive accuracy”, [7] also highlights

that the problem often is due to the insufficient or skewed

sample sizes. If the only category of interest were race, as

in (most of) the examples above, there are only a handful

of categories and this problem is easy. However, in general,

objects can have tens of attributes of interest, all of which

could potentially be used to categorize the objects. For ex-

ample, survey scientists use multiple demographical variables

to characterize respondents, including race, sex, age, economic

status, and geographic location. Whatever be the mode of data

collection for the analysis task at hand, we must ensure that

there are enough entries in the dataset for each object category.

Drawing inspiration from the literature on diversity [8], we

refer to this concept as coverage.

Note that the mentioned examples, including the Google in-

cident, are surely not sampling cases where the data scientists

poorly chose the samples from a large database. Rather, they

somehow collected, or acquired, a dataset, and then failed to

realize the lack of coverage for dark-skinned faces.
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Lack of coverage in a dataset also opens up the room

for adversarial attacks [9]. The goal in an adversarial attack

is to generate examples that are misclassified by a trained

model. Poorly covered regions in the training data provide the

adversary with opportunities to create such examples.

Our goal in this paper is two-fold. First, we would like to

help the dataset users to be able to assess the coverage, as a

characterization, of a given dataset, in order to understand such

vulnerabilities. For example, we propose to use information

about lack of coverage as a widget in the nutritional label [10]

of a dataset. Once the lack of coverage has been identified,

next we would like to help data owners improve coverage

by identifying the smallest number of additional data points

needed to hit all the “large uncovered spaces”.

Given multiple attributes, each with multiple possible val-

ues, we have a combinatorial number of possible patterns,

as we call combinations of values for some or all attributes.

Depending on the size and skew in the dataset, the coverage

of the patterns will vary. Given a dataset, our first problem

is to efficiently identify patterns that do not have sufficient

coverage (the learned model may perform poorly in portions of

the attribute space corresponding to these patterns of attribute

values). It is straightforward to do this using space and time

proportional to the total number of possible patterns. Often,

the number of patterns with insufficient coverage may be far

fewer. In this paper, we develop techniques, inspired from set

enumeration [11] and association rule mining (apriori) [12],

to make this determination efficient. We shall further discuss

this and the related work in § VI.

A more interesting question for the dataset owners is what

they can do about lack of coverage. Given a list of patterns

with insufficient coverage, they may try to fix these, for

example by acquiring additional data. In the ideal case, they

will be able to acquire enough additional data to get sufficient

coverage for all patterns. However, acquiring data has costs,

for data collection, integration, transformation, storage, etc.

Given the combinatorial number of patterns, it may just not

be feasible to cover all of them in practice. Therefore, we

may seek to make sure that we have adequate coverage

for at least any pattern of � attributes, where we call �
the maximum covered level. Alternatively, we could identify

important pattern combinations by means of a value count,
indicating how many combinations of attribute values match

that pattern. Hence, our goal becomes to determine the patterns

for the minimum number of items we must add to the dataset

to reach a desired maximum covered level or to cover all

patterns with at least a specified minimum value count. Since

a single item could contribute to the coverage of multiple

patterns, we shall show that this problem translates to a hitting

set [13] instance. Given the combinatorial number of possible

value combinations, the direct implementation of hitting set

techniques can be very expensive. We present an approximate

solution technique that can cheaply provide good results.

We note that not all combinations of attribute values are of

interest. Some may be extremely unlikely, or even infeasible.

For example, we may find few people with attribute age

as “teen” and attribute education as “graduate degree”. A

human expert, with sufficient domain knowledge, is required

to be in the loop for (i) identifying the attributes of interest,

over which coverage is studied, (ii) setting up a validation
oracle that identifies the value combinations that are not

realistic, and (iii) identifying the uncovered patterns and the

granularity of patterns that should get resolved during the

coverage enhancement.

II. PRELIMINARIES

We consider a dataset D with d low-dimensional categorical

attributes, A = {A1, A2, ..., Ad}. Where attributes are

continuous valued or of high cardinalities, we consider using

techniques such as (a) bucketization: putting similar values

into the same bucket, or (b) considering the hierarchy of

attributes in the data cube for reducing the cardinalities. Each

tuple t ∈ D is a vector with the value of Ai being t[i]
for all i = 1, ...d. In addition, the dataset also contains the

“label attributes” Y = {y1, · · · , yd′} that contain the target

values. The label attributes are not considered for the coverage

problem. In practice, a user may be interested in studying the

coverage over a subset of “attributes of interest”. In such cases,

the problem is limited to those attributes. For instance, in a

dataset of criminals, attributes such as sex, race, and age can

be attributes of interest while the label attribute shows whether

or not the criminal has re-offended. In the rest of the paper, we

assume A1 to Ad are the attributes of interest and simply name

them as the set of attributes. The cardinality of an attribute

Ai is ci. Hence, the total number of value combinations is

Πd
k=1ck. For a subset of attributes Ai ⊆ A, we use the notation

cAi
= Π∀Aj∈Ai

cj to show the number of value combinations

for Ai.

Definition 1 (Pattern). A pattern P is a vector of size d, in
which P [i] is either X (meaning that its value is unspecified)
or is a value of attribute Ai. We name the elements with value
X as non-deterministic and the others as deterministic.

An item t matches a pattern P (written as M(t, P ) = �), if

for all i for which P [i] is deterministic, t[i] is equal to P [i].
Formally:

M(t, P ) =

{
�, ∀i ∈ [1, d] : P [i] = X or P [i] = t[i]

⊥, otherwise
(1)

For example, consider the pattern P = X1X0 on four binary

attributes A1 to A4. It describes the value combinations that

have the value 1 on A2 and 0 on A4. Hence, for example,

t1 = [1, 1, 0, 0] and t2 = [0, 1, 1, 0] match P , as their values

on all deterministic elements of P (i.e., A2 and A4) match the

ones of P . On the other hand, t3 = [1, 0, 1, 0] does not match

the pattern P . That is because P [2] = 1 while t3[2] = 0.
Using the patterns to describe the space of value combina-

tions, we now define the coverage notion as follows:

Definition 2 (Coverage). Given a dataset D over d attributes
with cardinalities c = {c1 · · · cd}, and a Pattern P based on
c and d, the coverage of P is the number of items in D that
match P . Formally: cov(P,D) = |{t ∈ D | M(t, P ) = �}|.
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When D is known, we can simplify cov(P,D) with cov(P ).
We would like a high enough coverage for each pattern, to

make sure it is adequately represented. How high is enough

is expected as an input to our problem, and is expected to

be determined through statistical analyses. There is a long

tradition of computing the “power” of an experiment design,

to determine the subject pool size (corresponding to coverage)

required to obtain statistically meaningful results. Borrowing

the concept from statistics and central limit theorem, the rule

of thumb suggests the number of representatives to be around

30. For example, Sudman [14] suggests that for each “minor

subgroup” a minimum of 20 to 50 samples is necessary. This

is what we also observed in our experiments (§ V-B). Using

such, or other, techniques, we will assume that a Coverage
threshold, τ , has been established for each pattern.

Definition 3 (Covered/Uncovered Pattern). A pattern P is said
to be covered in a dataset D if its coverage is greater than
or equal to the specified coverage threshold: cov(P,D) ≥ τ .
Otherwise, the pattern P is said to be uncovered.

Each pattern describes a region in the space of value

combinations, constrained by its deterministic elements. We

define the level of each pattern P , shown as �(P ), as the

number of deterministic elements in it. Patterns with fewer

deterministic elements (smaller level) are more general. For

example, consider two patterns P1 =1XXX and P2 =10X1

on four binary attributes A1 to A4. �(P1) = 1 and �(P2) = 3.

While only the value combinations 1001 and 1011 match P2,

any value combination with value 1 on A1 matches P1.

The set of value combinations that match a pattern P may

be a subset of the ones that match a more general pattern P ′.
We say that P is dominated by P ′ (or P ′ dominates P ). For

example, the pattern P2 =10X1 is dominated by the pattern

P1 =1XXX.

Definition 4 (Parent/Child Pattern). A pattern P1 is a parent
of a pattern P2 if P1 can be obtained by replacing one of
the deterministic elements in P2 (say P2[i]) with X . We can
equivalently say that P2 is a child of pattern P1.

In general, patterns can each have multiple parents and

multiple children. A pattern with all elements being non-

deterministic has no parent and a pattern with all elements

being deterministic has no child.

If a pattern is uncovered, all of its children, and their chil-

dren, recursively, must also be uncovered. When identifying

uncovered patterns, it is redundant to list all these dominated

uncovered patterns: doing so just makes the output much

larger, and much harder for a human to digest and address.

Therefore, our goal is to identify the uncovered patterns that

are not dominated by more general uncovered ones.

Definition 5 (Maximal Uncovered Pattern (MUP)). Given a
threshold τ , a pattern P is maximal uncovered, if cov(P ) < τ ,
while for any pattern P ′ parent of P , cov(P ′) ≥ τ .

With these definitions, we formally state our first problem as:

Problem 1 (MUP Identification Problem). Given a dataset D
defined over d attributes with cardinalities c, as well as the
coverage threshold τ , find all maximal uncovered patterns M.

While there usually are far fewer MUPs than uncovered

patterns, the worst case remains bad, as we show next.

Theorem 1. No Polynomial time algorithm can guarantee the
enumeration of the set of maximal uncovered patterns.

The proof is by construction of an example with an expo-

nential number of MUPs. Details in the technical report [15].
Not all MUPs are problematic. For example, if some com-

bination of attribute values is known to be infeasible, the

corresponding pattern will necessarily be uncovered. A domain

expert can examine a list of MUPs and identify the ones that

can safely be ignored. The remaining are considered material.
In many situations, large uncovered regions in the dataset

are more harmful than narrow uncovered regions. Following

this observation, for a dataset D, we define the maximum
covered level as the maximum level up until which there is

enough coverage in the dataset. Formally:

Definition 6 (Maximum Covered Level). Let M be the mate-
rial MUPs for a dataset D. Then, the maximum covered level
of D is the maximum level λ such that ∀P ∈M, �(P ) > λ.

In light of the above, we would like to have as large a

maximum covered level as possible for a dataset.

Problem 2 (Coverage Enhancement Problem). Given a
dataset D, its set of material MUPs MD, and a positive
integer number λ, determine the minimum set of additional
tuples to collect such that, after the data collection, the
maximum covered level of D is at least λ.

We can consider variants of the coverage enhancement

problem where we seek to attain some other coverage property

rather than satisfy a maximum coverage level. For example,

instead of the level of a pattern P , one could consider the

number of value combination matching it.

Definition 7 (Value Count). Let AP be the set of correspond-
ing attributes for non-deterministic elements of a pattern P .
The value count of P is the number of value combinations
matching P . That is, cAP

= Π∀Aj∈AP
cj .

For example, consider the pattern P = X1X0 over binary

attributes A = {A1, · · · , A4}. AP = {A1, A3}. Hence, the

number of value combinations matching P is cAP
= 2×2 = 4.

The coverage enhancement problem can be modified to require

that every pattern P in D be covered if the value count of P is

at least v. As further explained in § IV, the proposed solution

can easily be extended for such alternative measures.
Next, in Theorem 2, we study the complexity of the cover-

age enhancement problem.

Theorem 2. The Coverage Enhancement Problem is NP-hard.

We prove the theorem using an interesting polynomial-time

reduction from the vertex cover (VC) problem [13]. Please

find the details in the technical report [15].
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III. MUP IDENTIFICATION

In this section, we study Problem 1, MUP identification,

and propose efficient search and pruning strategies for it.

A. Naı̈ve

A single pass over the dataset can suffice, with one counter

for each pattern. With one pass, we obtain the count for each

pattern, and can determine which patterns are uncovered. We

can then compare each pair of uncovered patterns, {Pi,Pj}. If

Pi dominates Pj , then the latter is not maximal, and can be

removed from the list of uncovered patterns discovered. After

all pairs of uncovered patterns have been processed, and the

ones not maximal eliminated, then the remaining uncovered

patterns are the desired maximal uncovered patterns.

Suppose there are d attributes. Each element of a pattern can

either be non-deterministic, or a value from the corresponding

attribute. As such, there are ci + 1 choices for each attribute

Ai, resulting in a total of c+A = Πd
k=1(ci + 1) patterns. We

need one counter for each pattern, or a total space of O(c+A).
The time taken to find all uncovered patterns is O(n × c+A),
where there are n tuples in the dataset. Let the total number

of uncovered patterns found be u. Then an additional O(u2)
time is required to find the maximal uncovered patterns from

among these. Thus, the total time required is O(n c+A + u2).
While the additional time due to the second term will usually

be smaller than the first term, we note that u could be as large

as c+A, and is usually much larger than the number of maximal

uncovered patterns. As a toy example, consider Example 1.

Example 1. Consider a dataset D with binary attributes A1,
A2, and A3, containing the tuples t1 : 010, t2 : 001, t3 : 000,
t4 : 011, and t5 : 001. Let the coverage threshold be τ = 1.

The dataset in Example 1 has one MUP 1XX. In addition

to the MUP, the other 8 uncovered patterns (dominated by the

only MUP) are 1X0, 1X1, 10X, 11X, 100, 101, 110, and 111.

B. Pattern Graph

In the naı̈ve algorithm, we computed all uncovered patterns,

only to eliminate those that were not maximal. It would appear

that we could do less work if we could exploit relationships

between patterns. Specifically, patterns have parent/child rela-

tionships, as discussed in § II. We can represent relationships

between patterns by means of a pattern graph, and use this

data structure to find better algorithms.

Definition 8 (Pattern Graph). Let P be the set of all possible
patterns defined over d attributes with cardinalities c. Pattern
graph of P is the graph G(V,E) where V = P . There is
an edge between every pair of nodes P and P ′ that have a
parent-child relationship. Every edge is between two nodes at
adjacent levels, the parent node being one level smaller than
the child node.

Figure 1 shows the pattern graph for Example 1. The value

of P [i] for a node in the pattern graph is either X or one of the

values the corresponding attribute can take. Hence, the total

number of nodes in a pattern graph defined over d attributes

Fig. 1: The pattern graph for three binary attributes

is c+A = Πd
k=1(ck + 1). For instance, the pattern graph in

Figure 1 contains (2 + 1)3 = 27 nodes. Any pattern graph

has only one node XX · · ·X at level 0. In Figure 1, the

patterns at level 1 are directly connected to XXX as those

are its children. The pattern 0XX , the left-most node at level

1, is connected to the patterns 00X , 0X0, 01X , and 0X1
at level 2. That is because, those have exactly one less X
and their value for the first attribute is 0. As explained in

§ II, the number of value combinations matching P (with

non-deterministic attributes AP ) is cAP
= Π∀Aj∈AP

cj . The

number of non-deterministic attributes of a pattern P with

level �(P ) is d−�(P ). For example, in Figure 1, every pattern

at level 1 contains 3−1 = 2 non-deterministic elements. Since

the cardinality of all attributes is ci = 2, the number of value

combinations matching each pattern at level 1 is 2 × 2 = 4.

Hence, in general, the patterns with smaller levels are more

general, i.e., more value combinations match them. Each node

at level � contains d− l non-deterministic elements. There are(
d
�

)
such combinations in all. The deterministic elements can

take any value in the cardinality of the corresponding attribute.

Hence, for the special case where all attributes have the same

cardinality ci = c, total number of nodes at level � are
(
d
�

)
c�.

For example, in Figure 1, there are
(
3
1

)
21 = 6 nodes at level 1

and
(
3
2

)
22 = 12 nodes at level 2. The node of a pattern P in

the pattern graph has
∑
∀Ai∈AP

ci edges to the nodes at level

�(P ) + 1. If all attributes have equal cardinalities of ci = c,
each node at level � has c(d− �) edges to nodes at level �+1.

Hence, the total number of edges in such a graph is:

d−1∑
�=0

c(d− �)

(
d

�

)
c� = c× d× (c+ 1)d−1

This is confirmed in Figure 1, where there are totally 54 edges.

C. PATTERN-BREAKER (the top-down algorithm) and
PATTERN-COMBINER (the bottom-up algorithm)

In this section we propose the top-down and bottom-up al-

gorithms PATTERN-BREAKER and PATTERN-COMBINER, that

lead to the design of our final MUP identification algorithm,

DEEPDIVER. Due to the space limitations, we provide a sketch

of these algorithms and refer the reader to the technical

report [15] for further details.

PATTERN-BREAKER starts from the general patterns at

the top of the pattern graph and moves down by breaking

them down to more specific ones. It uses the “monotonicity”
property of coverage to prune some parts of the pattern graph.

That is, if a pattern P is uncovered, all of its children and

descendants (the nodes at level greater than �(P ) that have a
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Fig. 2: Tree transformation for Figure 1 based on Rule 1.

path to it) are also uncovered. Also, none of those children

and descendants can be a MUP, even if it has a parent that

is covered. Hence, this subgraph of the pattern graph can

immediately get pruned. In the BFS traversal of the pattern

graph, the algorithm enforces Rule 1, states in the following,

to ensure that each MUP candidate is generated exactly once.

Rule 1. A node P with the coverage more than the threshold τ ,

generates the candidate nodes at level �(P ) + 1 by replacing

the non-deterministic elements in the right-hand side of its

right-most deterministic element with an attribute value.

Theorem 3. Enforcing Rule 1 guarantees that each MUP
candidate is generated exactly once.

By enforcing Rule 1, the pattern graph is transformed to

a tree. For example, Figure 2 shows the corresponding tree

(generated by following Rule 1) for the pattern graph of

Figure 1.

The other algorithm PATTERN-COMBINER, performs a

bottom-up traversal of the pattern graph. It uses an observation

that the coverage of a node at level � of the pattern graph

can be computed using the coverage values of its children at

level � + 1. The algorithm also uses the monotonicity of the

coverage to prevent the complete traversal of the graph. That

is, the coverage of a node is not less than the coverage of any

of its children. It starts from the most specific patterns, i.e.,

the patterns at level d of the graph, computes the coverage

of each by passing over the data once. The algorithm then,

keeps combining the uncovered patterns at each level to get the

coverage of the candidate nodes at level �− 1. The uncovered

nodes at level � that all of their parents at level �−1 are covered

are MUPs. PATTERN-COMBINER transforms the pattern graph

to a forest, in order to make sure every node is generated

once. Rule 2 guarantees the transformation. Figure 3 shows

the transformation of Figure 1 to a forest, based on Rule 2.

Rule 2. A node P with the coverage less than the threshold τ ,

generates the candidate nodes at level �(P ) − 1 by replacing

the deterministic elements with value 0 in the right-hand side

of its right-most non-deterministic element with X .1

Theorem 4. Enforcing Rule 2 guarantees each MUP candi-
date is generated exactly once.

D. DEEPDIVER: Fast search space pruner

PATTERN-BREAKER traverses over the covered regions of

the pattern graph before it visits the uncovered patterns.

1Note that this rule is not specific to the binary attributes. All we require is that one
of the values of each attribute is mapped to 0.

Fig. 3: Forest transformation for Figure 1 based on Rule 2.

Therefore, it does not perform well when a large portion of

the pattern graph is covered. Conversely, PATTERN-COMBINER

traverses over the uncovered nodes first; so it will not perform

well if most of the nodes in the graph are uncovered. When

most MUPs are in the middle of the graph, both algorithms do

poorly because they have to traverse about half of the graph.

In this subsection, we propose DEEPDIVER, an algorithm that

tries to quickly identify some MUPs and use them to prune

the search space.

The monotonicity property creates an opportunity to prune

the search space: none of the ancestors or descendants of
a given MUP can be MUP. PATTERN-BREAKER tends to

traverse level by level over the covered regions of the pattern

graph before it visits the uncovered patterns. As a result, the

moment it reaches out to a MUP, it already has visited its

ancestors and does not take the advantage of pruning the

nodes dominating the MUPs. PATTERN-COMBINER, on the

other hand, starts off in the uncovered regions; initially, the

nodes being visited early are at the bottom of the pattern

graph. It gradually moves up level by level until it hits the

MUPs. Therefore, when the MUPs are discovered the descen-

dants have already been visited and, as a result, PATTERN-

COMBINER does not take the advantage of pruning the nodes

dominated by MUPs.

With the above observations, we propose DEEPDIVER, a

search algorithm that tends to quickly find MUPs, and use

them to limit the search space by pruning the nodes both

dominating and dominated by the discovered MUPs. Since

each MUP is the child of a covered node, instead of scanning

through the covered/uncovered patterns level by level, DEEP-

DIVER takes a path down to find an uncovered node.

Initially, DEEPDIVER(Algorithm 1), following a DFS strat-

egy, takes a path down until it reaches into an uncovered region

in the graph. However, the discovered uncovered pattern is not

necessarily a MUP, as some of its other parents (other than its

generator) might also be uncovered. For instance in Example 1,

assume that in the first iteration, the algorithm take the path

XXX → X0X → 10X. The nodes XXX and X0X are covered,

but 10X is not. Still the uncovered node 10X is not a MUP

as it has the uncovered parent 1XX. Therefore, after finding

an uncovered node, DEEPDIVER changes direction and starts

moving up to find a MUP. To do so, it checks the parents of

the current node to see if any of them are uncovered. If there

exists such a parent, it moves to the parent and continues until

it finds a MUP. Upon discovering a MUP, DEEPDIVER prunes

all of its ancestors and descendants, and continues the search

for other MUPs in the regions that are still not pruned. The

algorithm stops when all of the nodes in the pattern graph are
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Algorithm 1 DEEPDIVER

Input: Dataset D with d attributes having cardinalities c and threshold τ
Output: Maximal uncovered patterns M
1: Let S = an empty stack
2: push X · · ·X to S
3: while S is not empty do
4: P = pop a node from S
5: uncoveredF lag = a flag indicating if P is uncovered
6: if P is dominated by M then
7: continue
8: else if P dominates M then
9: uncoveredF lag = true

10: else
11: cnt = cov(P,D)
12: uncoveredF lag = cnt < τ
13: end if
14: if uncoveredF lag is true then
15: Let S′ = an empty stack
16: while S′ is not empty do
17: P ′ = pop a node from S′
18: P ′ = generates parent nodes of P ′ by replacing one determin-

istic cell with X .
19: for P ′′ ∈ P ′ do
20: cnt′ = cov(P ′′,D)
21: if cnt′ < τ then push P ′′ to S′; break
22: end for
23: add P to M
24: end while
25: else
26: Q = generate nodes on P and c based on Rule 1
27: push Q to S
28: end if
29: end while
30: return M

pruned.

Here we extend the notion pattern dominance to MUP

dominance, as follows:

Definition 9 (MUP Dominance). Given a pattern P and a
set of MUPs M, P is dominated by M, if there exists a
pattern P ′ ∈ M such that P is dominated by P ′. Similarly,
P dominates M, if there exists a pattern P ′ ∈ M such that
P dominates P ′.

Based on the Definition 9, a node being dominated by MUPs

is not a MUP. DEEPDIVER uses this property to limit the search

space by pruning all descendants of the MUPs. Similarly, the

nodes that dominate MUPs are out of the search space. We

use inverted indices for efficiently checking MUP dominance.

See the technical report [15] for details.

IV. COVERAGE ENHANCEMENT

Every MUP represents a part of the value combinations

space for which there are not enough observations in the

dataset. For example, consider a dataset defined over three

ternary attributes A1, A2, and A3, in which MUPs are XX1,

0XX, and 20X. Figure 4 shows the matches for the patterns

XX1, 0XX, and 20X, as the red, green, and blue cubes,

respectively. The more general MUPs show larger uncovered

regions in the data. For example in Figure 4, the cube of the

more general patterns XX1 and 0XX contain 9 combinations,

whereas the one for the pattern 20X contains 3 combina-

tions. While we may be willing to leave some small regions

uncovered, we would like to cover at least the large ones.

For example, not having enough representatives in a dataset

for single black males over the age of sixty may be less

of a problem than not having enough black males. Figure 5

shows the distribution of the levels of the MUPs for a real

experiment on our AirBnB dataset (c.f. § V) with n = 1000
items and d = 13 attributes, while τ = 50. There are several

thousand MUPs in this setting. This indicates the high expense

of covering them all. However, as the distribution has a bell-

curve shape, while most MUPs appear at levels 5 and 6, there

is only one MUP at level one and less than forty in level two.

Data acquisition is usually costly. If the data are obtained

from some third party, there may be direct monetary payment.

If the data are directly collected, there may be a data collection

cost. In all cases, there is a cost to cleaning, storing, and

indexing the data. To minimize these costs, we would like

to acquire as few additional tuples as possible to meet our

coverage objective.

Before discussing further technical details, we would like to

emphasize the necessity of human-in-the-loop after the MUP

discovery. Not all the MUPs that are discovered are meaningful

and some of them may even be invalid. Therefore after the

MUP discovery, a domain expert should evaluate and mark

out the MUPs that are not problematic. In addition, we require

the expert to set up a validation oracle as a set of rules

that identifies if a value combination is semantically correct

or not. For example, any value combination that contains

{gender=Male, isPregnant=True} is semantically incorrect.

Definition 10 (Validation Rule). A validation rule is a set of
pairs {〈Ai, Vi〉, · · · }, where Ai is an attribute and Vi is a set
of values for Ai. Given a pattern P and a validation rule R

,we say P satisfies R, if ∀〈Ai, Vi〉 ∈ R: P [i] ∈ Vi.

Definition 11 (Validation Oracle). A validation oracle con-
tains a collection of validation of rules. Given a pattern P

,the oracle returns true if P satisfies none of its validation
rules. It returns false otherwise.

The human expert sets up the validation oracle by identify-

ing the collection of validation rules. Later on, in this section,

we call the validation oracle to enforce the rules that result

in the semantic appropriateness (validity) of the output of the

coverage enhancement algorithm.

As formally defined in § II as Problem 2, for a given value λ
,our objective is to collect the minimum number of additional

tuples such that after the data collection the maximum covered

level of D is at least λ. It is not enough to cover the MUPs

with levels � ≤ λ, we must cover all uncovered patterns (not

necessarily maximal) with level �(P ) = λ. We use Mλ to refer

to the set of uncovered patterns at level λ. Finding this set is

not difficult: details in [15].

We take Example 2 as a running example in this section.

Example 2. Consider a dataset D with 5 attributes A1 to
A5 where A2 and A3 are ternary attributes while the other
attributes are binary. Suppose the maximal uncovered patterns
are as shown in Figure 7.
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Fig. 4: The matches of three patterns
XX1: green, 0XX: red, and 20X: blue
in a data set with ternary attributes A1,
A2, and A3.
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Fig. 5: Distribution of MUPs in AirBnB
dataset for n = 1000 items and d = 13
attributes, while τ = 50.

Fig. 6: The bipartite graph for λ = 1
for Figure 4.

P1 XX01X
P2 1X20X
P3XXXX1
P4 02XXX
P5 XX11X
P6 111XX
P7 X020X

Fig. 7: MUPs of Ex-
ample 2.

Let λ be 2. Uncovered patterns of Example 2 with level 2, i.e.

Mλ, are P1 to P6. Our objective is to cover all these patterns.

If we use an alternative problem formulation, the set of

patterns to cover may be different. For example, if we wish

to cover all patterns with value count of at least v, we must

enumerate uncovered patterns that meet this value count cri-

terion. Once this (straightforward) enumeration is completed,

thereafter the alternative problem formulation can be solved

in exactly the same way. A potential naive idea may be to

acquire enough additional tuples separately for each pattern

we are required to cover. However, this “solution” acquires

much more than the minimum data required, because each

tuple may contribute to the coverage of multiple patterns. What

we need is to choose tuples carefully to find the minimum

number needed to cover all the uncovered patterns of interest.

This problem translates to a hitting set [13] instance.

A. Transformation to hitting set

Hitting Set Problem: Given a set U of elements and a

collection S of non-empty subsets of U , the objective is

to find the smallest subset of elements C ⊆ U such that

∀S ∈ S, ∃ e ∈ C where e ∈ S.

The transformation is as follows:

• U : The set of possible value combinations translates to the

universe of items U .

• S: Each uncovered pattern in Mλ is the representative of

the set of value combinations matching it. Hence, S is the

collection of sets represented by the uncovered patterns.

This can be viewed as a bipartite graph with the value

combinations in the first part and the uncovered patterns in

the second part. There is an edge between a combination and

a pattern if the combination matches the pattern. The objective

is to select the minimum number of nodes in the first part that

hit all the patterns in the second part. Figure 6 shows the

bipartite graph for λ = 1 in Figure 4.

While the hitting set problem is NP-complete, the greedy

approach guarantees a logarithmic approximation ratio for

it [13]. At every iteration, the greedy approximation algorithm

selects the item (value combination) that hits the maximum

number of un-hit sets (patterns). It continues until all the sets

get hit. In Figure 6, for instance, a run of the greedy algorithm

picks 001 as it hits both patterns and then stops.

At every iteration, the algorithm needs to find the value

combination that hits the maximum number of un-hit patterns.

This is inefficient due to the exponentially large number of the

P1P2P3P4P5P6

A1 = 0 1 0 1 1 1 0

A1 = 1 1 1 1 0 1 1

A2 = 0 1 1 1 0 1 0

A2 = 1 1 1 1 0 1 1

A2 = 2 1 1 1 1 1 0

Fig. 8: The inverted indices for
values of attributes A1 and A2 in
Example 2.

Fig. 9: The tree data structure used
for computing the number of patterns
a value combination hits.

value combinations and potentially exponential number of the

patterns to hit. Hence, in the following, we develop an efficient

implementation of the greedy algorithm.

B. Efficient implementation of the greedy algorithm

Consider the set of patterns we want to hit by the value

combinations. We use inverted indices to keep track of the

uncovered patterns. The i-th element of each pattern is either

a value of Ai or is non-deterministic. For each attribute value

vj of Ai, we create an inverted index to point to the patterns

with either a non-deterministic element or an element with

value vj in the i-th position. We use this to filter out the

patterns that do not match a value combination with value vj
on Ai. For example, Figure 8 shows the indices for the values

of A1 and A2 for P1 to P6 in Example 2. The first row shows

the inverted index for A1 = 0. All columns of the row, except

P2 and P6 are 1; that is because a value combination having

A1 = 0 will not match P2 or P6, but still can match other

patterns. Having the inverted indices for the attribute values,

we use a tree data structure and design a greedy threshold-

based algorithm to find the value combination that hits the

maximum number of remaining patterns.

Consider a full tree data structure (Figure 9) with depth d
(the number of attributes). Let m be the number of patterns

that we want to hit. The root has c1 children, each showing

a value for attribute A1. Similarly, every node at level i has

ci children, each representing an attribute value of Ai. For

instance, in Example 2, the depth of the tree is d = 5; the

root node has two children standing for A1 = 0 and A1 = 1.

Since c2 = 3, each of these two nodes will have three children

A2 = 0, A2 = 1, and A2 = 2. Each path in the tree from

the root to a leaf shows a value combination. In [15], we
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show how to use the inverted indices for finding the number

of remaining patterns a value combination hits.

Using this structure, we design the threshold-based algo-

rithm GREEDY (pseudo-code in[15]) that uses the hit-count

of its best-known value combination to prune the tree. The

algorithm traverses through the tree data structure in a DFS

manner and, starting from the root, it calls the validation

oracle before generating each child of a node, to make sure

it is semantically meaningful. As a result, it will output only

the value combination that are valid. The algorithm computes

the bit vector of valid children of a node by applying the

binary AND operation between the current bit vector and the

inverted index of each of its children. The algorithm uses the

best-known value combination as a lower-bound threshold to

prune the tree. If the children of the current node are leaf

nodes and the best of them hits more patterns than the best-

known value combination, the best option gets updated. For

the other nodes, the algorithm prioritizes the children of the

current node based on the number of 1’s in their bit-vectors.

Then, starting from the one with the max count, until the

number of 1’s in the bit-vectors is more than the best-known

hit count, it recursively checks if it can find a better value

combination in the subtrees of the children. The algorithm

keeps collecting the value combinations that hit the maximum

number of remained patterns until all of the patterns in Mλ get

hit. As an implementation note, when the algorithm selects

a value combination, it takes the intersection of the patterns

it hits to find a more general pattern that any of its matching

value combinations hit the same set of patterns. It provides

more freedom to the user in the data collection.

V. EXPERIMENTAL EVALUATION

We conducted comprehensive experiments on real data to

both validate our proposal and to study the efficiency of the

proposed algorithms in practice.

A. Experimental Setup
Datasets. Three real datasets were used for the experiments:

• COMPAS2: ProPublica is a nonprofit organization that pro-

duces investigative journalism. They collected and published

the COMPAS dataset as part of their investigation into

racial bias in criminal risk assessment. The dataset contains

demographics, recidivism scores, and criminal offense in-

formation for 6,889 individuals. We used the attributes sex
(0: male and 1: female), age (0: under 20, 1: between 20

and 39, 2: between 40 and 59, and 3: above 60), race (0:

African-American, 1: Caucasian, 2: Hispanic, and 3: other

races), and marital status (0: single, 1: married, 2:

separated, 3: widowed, 4: significant other, 5: divorced, and

6: unknown) for studying the coverage.

• AirBnB3: AirBnB is a popular online peer to peer travel

marketplace that provides a framework for people to lease

or rent short-term lodging. We use a collection of the infor-

mation of approximately 2 million real properties enlisted

2www.propublica.org/datastore/dataset/compas-recidivism-risk-score-data-and-analysis
3www.airbnb.com

in AirBnB. The website provides 41 attributes for each

property, out of which 36 are boolean attributes, such as

TV, internet, washer, and dryer.

• BlueNile4: Blue Nile is the largest online diamond retailer

globally. We collected its catalog containing 116,300 dia-

monds at the time of access. The dataset has 7 categorical

attributes for the diamonds, namely shape, cut, color,

clarity, polish, symmetry, and florescence with

cardinalities 10, 4, 7, 8, 3, 3, and 5, respectively.

Hardware and Platform. The experiments were conducted

on a Linux machine with a 3.8 GHz Intel Xeon processor and

64 GB memory. The algorithms were implemented in Java.

Experiments plan. We want to study coverage in real data.

Are there indeed uncovered patterns? Are these likely to cause

errors in prediction or analysis? We also want to study the

performance of the proposed algorithms, both for MUP iden-

tification and for coverage enhancement. We studied both these

sets of questions on all three datasets. In the interests of space,

we report only the most salient results. In particular, we focus

on the COMPAS dataset for the first set of questions, since

the negative consequences of lack of coverage are potentially

more severe than for other datasets where the impact may be

limited to errors in analytical results. We focus on the AirBnB

dataset for the performance questions, since this is the largest

of the three datasets. Since attributes of AirBnB are binary, we

supplement with the BlueNile dataset to highlight situations

where its much higher cardinality of attribute values matters.

B. Validation

1) Issues with Coverage in Real Data: Consider four demo-

graphical attributes sex, age, race, and marital status,

as the attributes of interest in the COMPAS dataset. We

investigate the lack of coverage in this dataset with regard

to these four attributes to show the risks of using it for

important tasks such as assessing a criminals’ likelihood to re-

offend and sentencing them accordingly. Setting the threshold

to 10, all the single attribute values contain more instances

than the threshold. Still, there totally are 65 MUPs in this

dataset, out of which 19 are in level � = 2, 23 in level

� = 3, and 23 in level � = 4. Besides other MUPs, the

existence of 19 level two MUPs in the dataset emphasizes

the potential of bad predictions for large spaces in the data

cube. To highlight one example, the MUP XX23 shows the

lack of coverage for widowed Hispanics. The dataset contains

only two instances matching this pattern and interestingly

both of them have offended multiple times. In the absence of

enough representatives for the minority subgroup, the trained

model, will likely generalize, not sticking to the couple of

examples it has seen for the minority subgroup. However, the

generalization becomes problematic when the “behavior” in

the subgroup is different and the generalization is misleading.

This means that the model may not do a good job in modeling

the behaviour of minority sub-groups. Of course, we use the

4www.bluenile.com/diamond-search?
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MUP identification to raise a signal for these lack of coverage

cases. Whether or not it is problematic, needs the human expert

in the loop. Lack of coverage in this dataset shows the risk of

using it for predicting the behavior of individuals for under-

represented groups; it, therefore, questions the decisions made

based on such predictions. To show case an effect of the lack

of coverage, next we use this dataset for training a classifier.

2) Lack of coverage’s effect: After showing the lack of cov-

erage in the COMPAS dataset, next we conduct an experiment

to show its effect on accuracy of a prediction task. Using the

scikit-learn package (version 0.20) on Python, we trained a

decision tree as the classifier, while using sex, age, race,

and marital status as the observation attributes. Using the

attribute prior-count, we created the binary label attribute

that shows if a criminal has re-offended. First, using the cross-

validation, we observed that the trained model has acceptable

accuracy and f1 measures of 0.76 and 0.7 over a random test

set. Relying on these numbers, a data scientist may consider

using this model for predicting the behaviour of criminals.

However, in this experiment we show that these measures does

not necessarily show the good performance for the minorities.

We focus on the minority class of Hispanic Females (HF),

as there are only 100 of those in the dataset. We chose this

group, specifically because we were limited to the records in

the dataset, and were not able to collect additional data points.

Hispanic Females was (i) a minority subgroup small enough

that removing its instances would not noticeably change the

size of the training data, while (ii) there were “enough” tuples

of this group in the dataset (100 tuples) that we could show

case the impact of additional data collection. We considered

a randomized set of 20 (out of the 100) HF as the test set

for studying the prediction over this group. Since we not only

wanted to study the effect of the lack of coverage, but also the

coverage enhancement, we created 5 training sets (using the

remaining 80 HF criminals), containing {0, 20, 40, 60, 80} HF

plus all other records not in this demographic. We used these

datasets for training the classifier and calculated its accuracy

and f1 measure for predicting our test set of 20 HF. Figure 10

shows the results. The x-axis shows the datasets, while the left

and right y-axes show the accuracy and f1 measure for each

setting. Collecting the additional data points should result in

more accurate for the under-represented groups, as those are

to provide a better understanding of those, while not having a

major impact in the overall accuracy. This is confirmed in the

figure, as the overall accuracy remained on 76% in all settings.

We also observed that overall f1-measure did not change from

0.7. First, one can see that the dataset that does not have

any HF, has an unacceptable performance for this class, as

its accuracy is less than 50%. The next observation is that the

accuracy and f1 measures improve as the lack of coverage is

resolved by adding more HF to the training data. The reduction

in the slope of the accuracy curve around 40 suggests that it

can be a good choice for the coverage threshold. Interestingly,

this is aligned with the central limit theorem’s rule of thumb of

30. In a similar experiment, we considered two other minority

subgroups, (1. Female - Other Races (FO) and 2. Male - Other

Races (MO)) for which there existed at least 20 records in

the dataset that we could consider as the test data. Removing

the records of these demographics from the training data, the

accuracy of the model was 39% for FO and 59% for MO. The

accuracy different between the two groups shows the higher

similarity in the “behaviour” of MO to other records in the

training data.

3) Coverage Enhancement Quality: In previous experi-

ment, we showed the quality of coverage enhancement in

the sense that it increases the model performance for the

under-represented groups, while not impacting the overall

performance of the model. In this experiment, we show the

role of human-in-the-loop by setting up the validation oracle

and identifying the MUPs to be covered. Enforcing the rules

of validation oracle while expanding the tree data structure

used by the coverage enhancement algorithm GREEDY, the

semantic appropriateness (validity) of the output of the cover-

age enhancement algorithm is guaranteed. We consider the

MUPs discovered in § V-B1 while targeting to satisfy the

coverage level of 2. In the validation oracle, we rule out (a) the

combinations with marital status being unknown and (b) the

age group below 20 being not single. Coverage enhancement

suggests to collect {over 60, other races, widowed}, {between

20 and 40, Hispanic, widowed}, {over 60, significant other},
{other races, divorced}, and {other races, widowed}.
C. Performance Evaluation

We evaluate the performance of (i) the three MUP identifi-

cation algorithms PATTERN-BREAKER, PATTERN-COMBINER,

and DEEPDIVER, as well as (ii) the coverage enhancement al-

gorithm. The Naı̈ve algorithm for MUP identification (§ III-A)

did not finish for any of the settings within the time limit.

Therefore, we did not include it in the results. For the coverage

enhancement problem, we compare the GREEDY algorithm

(§ IV-B) with the direct implementation of the hitting set’s

approximation algorithm (naı̈ve). We use our largest dataset,

i.e. AirBnB, as the default and test the algorithms’ perfor-

mances under various coverage threshold (τ ) on both AirBnB

and BlueNile. We varied the number of attributes (d) and

the size of the dataset (n) on our largest dataset, that is

AirBnB. In addition to the proposed algorithms, for MUP

identification, we also consider comparing with APRIORI, the

following adaptation of apriori algorithm [12]: we consider

each 〈attribute,value〉 as an item and find the frequent item-

sets. For each such item-set we find its parents (the item-

sets that include the item-set and one more item). For each

such parent, if all of its children are frequent, we find the

corresponding pattern and add it to the set of MUPs. We un-

derstand that because the items are considered independently

in the frequent item-set mining, not all item-set represent a

valid pattern. For instance, consider the items I1 = 〈A1, 0〉
I2 = 〈A1, 1〉. Then the item-set {I1, I2} does not represent

a valid pattern. Furthermore, this algorithm considers a much

larger search space (lattice) to explore, compared to the pattern

graph our algorithms explore. For instance, consider a case

where there are 10 attributes, each with cardinality 5. The
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tion, varying threshold
(n = 1M, d = 15)
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Fig. 12: BlueNile: MUP iden-
ticication, varying threshold (n =
116,300, d = 7)
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Fig. 13: AirBnB: MUP identicica-
tion, varying data size
(τ = 0.1%, d = 15)
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Fig. 14: AirBnB: MUP identicica-
tion, varying dimension (n = 1M, τ
= 0.1%)
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size of the pattern graph is (5+1)10, around 60 million nodes,

whereas after considering each attribute-value as an item, the

size of the defined lattice is 25×10, around 1015.

1) MUP identification - varying threshold: For AirBnB, we

varied the coverage threshold from 0.0001% (most patterns are

covered) to 1% (most patterns are uncovered). The dataset size

was set to one million, and the number of attributes was set

to 15. For BlueNile, we had 7 attributes and 116,300 records.

We varied coverage from 0.001% (threshold = 1) to 1%.

Results. The runtimes are shown in Figure 11 (AirBnb)

and Figure 12 (BlueNile). The x-axis denotes the different

threshold rate values. The left-y-axis is the runtime in seconds,

while the right axis and the bars show the output size (number

of MUPs). In addition, Figure 11 also contains the results

for APRIORI, the adaptation of the apriori algorithm for

discovering the MUPs. As explained in § V-C, this algorithm

suffers from multiple facts that makes it unsuitable for MUP

discovery. First, the lattice data structure it has to explore

can be extensively larger than the pattern graph. Second, it

needs to generate the parents of the frequent item-sets to find

the infrequent item-sets that all of their children are frequent.

Finally, not all the discovered item-sets represent valid MUPs.

This is confirmed in this experiment where it only finished

for one settings in less than 100 seconds. For instance for

threshold of 0.001% it took 516 sec. to finish. As expected,

we observed the same behaviour in other experiments as

well. Hence, in the rest of experiments, we only focus on

evaluating the algorithms we proposed in this paper. When

the threshold increases, larger regions in the space become

uncovered and more general MUPs with smaller levels appear

in the results. This is the reason for the drop in the runtime

of PATTERN-BREAKER in Figure 11 and Figure 12. Recall

that PATTERN-BREAKER is a top-down search algorithm, and

generally returns faster when the MUPs are higher in the

pattern graph (having small levels). In contrast, PATTERN-

COMBINER’s runtime increases as the PATTERN-COMBINER

is a bottom-up search algorithm and, hence, terminates faster

when the MUPs are low in the pattern graph (when the space is

mostly covered) as shown in Figure 11 and Figure 12. In tests

with AirBnB, these two algorithms have similar speeds when

the threshold is around 0.01%, in which case, most MUPs

appear in the middle of the graph. Meanwhile, Figure 11 also

shows that DEEPDIVER is as fast, if not faster, as the other two

algorithms in all situations. This suggests that the efficiency
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of DEEPDIVER is more robust to the actual data coverage

status. As for BlueNile, Figure 12 also suggests DEEPDIVER is

the best in all cases, whereas PATTERN-COMBINER is always

slower. Still the gap between PATTERN-COMBINER with the

two other algorithms is larger. The high cardinality of the

attributes in BN is the key to this behavior. In this situation,

the width of the pattern graph quickly increases. The lowest

level (level 7) of the pattern graph in this case has more

than 100K nodes, whereas for 7 binary attributes, it is 128.

Therefore, due to the significant width of the graph in the

bottom-level, PATTERN-COMBINER (the bottom-up algorithm)

loses its efficiency.

2) MUP identification - varying data size: Setting the

number of attributes to 15 and threshold to 1%, we evaluated

the three MUP identification algorithms on data samples of

various sizes from 10K to 1M and measured the runtime.

Results. Figure 13 shows the runtime plots. The x-axis denotes

the size of test dataset; the left-y-axis denotes the runtime in

seconds and the right-y-axis (and the bars) show the number

of MUPs. All three algorithms had running time only slightly

impacted by data set size, taking less than 100 seconds in

all settings. The effort is driven more by the number of

patterns, which is independent of data set size. The PATTERN-

COMBINER algorithm checks the actual dataset only for the

bottom layer of the pattern graph and so the data set size

has no effect on most of its computation. PATTERN-BREAKER

and DEEPDIVER need to check the data for computing the

coverage of the intermediate nodes, so data set size does

matter. However, the use of inverted indices limits the impact.

3) MUP identification - varying data dimensions: Simi-

larly, we evaluate the scalability of the proposed algorithm as

the number of attributes (d) increases. With a dataset size of

one million records and the threshold set at 1%, we measured

the overall runtime of all three algorithms with the dataset

projected down to between 5 and 17 dimensions.

Results. In Figure 14, the x-axis denotes the number of

attributes, while the left-y-axis and right-y-axis (the bars)

denote the runtime in seconds and the output size, respectively.

The size of the pattern graph increases exponentially with the

number of attributes. The number of MUPs and the algorithm

running times also increase exponentially. Still, all algorithms

managed to finish in a reasonable time (under two minutes)

for up to 17 attributes.

As the number of attributes increases, the number of MUPs

increases exponentially, but those become the combination of

more attributes. While the MUPs with fewer are harmful and

important to discover, the MUPs with more attributes are too

specific, and hence, less interesting. For example, while lack

of coverage for Hispanic males in a dataset is an important fact

to discover, not having enough married Hispanic males under

the age of 20 is less harmful. Limiting the exploration level

to a certain number, allows the MUP identification algorithms

to scale for datasets with tens of attributes and still finding

the risky MUPs. We evaluated this by limiting the MUP

discovery level in Figure 15 while using DEEPDIVER for the

identification. As observed in the figure, the algorithm was

able to quickly find MUPs of up to level 2 (the MUPs that

are the combinations of one or two attributes) for even 35

attributes in around 10 sec.

4) Coverage enhancement - varying threshold: Recall that

the objective is to identify the minimum additional data to

collect, such that after the data collection the maximum

coverage level is not less than λ, i.e. there are no uncovered

patterns on or above a given level λ. Setting the number of

items to 1M in the AirBnB dataset and number of attributes

to 13, we vary the threshold rate from 10−6 to 0.01 while

choosing different maximum coverage levels from 3 to 6.

Results. Figure 16 represents the experiment results. The x-

axis shows threshold and the y-axis provides the runtime in

seconds. First, the single blue triangular tick mark in the top-

left of the plot shows the only setting for which the naı̈ve

algorithm finished within the time limit. GREEDY, on the other

hand, finished in a few seconds for all settings. The next

observation is that, as expected, the runtime of the GREEDY

algorithm increases by the level; that is because it needs to

collect more data points to ensure that there is no uncovered

pattern on or above level λ, i.e., ∀P ∈M : �(P ) ≥ λ. Also,

as the threshold rate increases the MUPs move to the top of the

pattern graph. Therefore, more regions in the space become

uncovered and more data points are required to guarantee the

given maximum coverage level. As a result, the algorithm’s

runtime increases by the threshold.

5) Coverage enhancement - varying data dimensions:
Lastly, we study the effect of the number of attributes on the

performance of GREEDY, as well as input and output sizes.

Using the AirBnB dataset, while setting the number of items to

1M and the threshold to %1, we vary the number of attributes

from 5 to 35, and the max. coverage level from 3 to 6.

Results. Figure 17 shows the runtime of the algorithm, while

Figure 18 provides information about the input and output

sizes. Here, by the input size, we refer to the number of

uncovered patterns (to cover) at the given level λ while the

output size is the number of additional data points to collect.

First, as explained above, increasing the maximum coverage

level increases the runtime of the algorithm, as the output size

increases. This is also reflected in Figure 18, as for a fixed

number of attributes, both the input and output size increase

in orders of magnitude. Similarly, increasing the number of

attributes increases the size of the pattern graph exponentially,

and also does the algorithm runtime (Figure 17) and the

output size (Figure 18). Still, recall that lack of coverage

for the patterns that are the combination of a few attribute

values (having smaller levels) is more harmful than the ones

in the form of the combination of several attribute values.

Looking at Figure 17, while solving the coverage enhancement

problem for larger levels takes more time, the algorithm has

a reasonable performance for resolving the lack of coverage

for smaller values of maximum coverage level. Finally, in

Figure 18, applying the greedy approximation algorithm, the

output sizes are significantly smaller than the input sizes for
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each setting. That is because every value combination in the

output hits multiple uncovered patterns in the input.

VI. RELATED WORK

Diversity, as a general term for capturing the quality of

a collection of items on the variety of its constituent ele-

ments [8], is an important issue in a wide range of contexts, in-

cluding social science [16], political science [17], information

retrieval [18], and big data environments and data ethics [19],

[8]. Facility dispersion problems [20] tend to disperse a set of

points such that the minimum or average distance between

the pair of points is maximized. Also, techniques such as

determinantal point process (DPP) have been used for diverse

sampling [21], [22]. A recent work [23] considers diversity

as the entropy over one discrete low-cardinality attribute. Our

definition of coverage can be seen as a generalization of this,

defined over combinations of multiple attributes.

The rich body of work on sampling, especially in the

database community, aims to draw samples from a large

database [24], [25]. Our goal in this paper is to ensure that

a given dataset (often called as “found data”) is appropriate

for use in a data science task. The dataset could be collected

independently, through a process on which the data scientist

have limited, or no, control. This is different from sampling.

Technically speaking, there are similarities between the

algorithms provided in this paper and the classical powerset

lattice and combinatorial set enumeration problems [11], such

as data cube modeling [26], frequent item-sets and association

rule mining [12], data profiling [27], and data cleaning [28].

While such work, and the algorithms such as apriori, traverse

over the powerset lattice, our problem is modeled as the

traversal over the pattern graph which has a different struc-

ture (and properties) compared to a powerset lattice. Hence,

those techniques cannot be directly applied here. We provided

some rules for traversing the pattern graph that are inspired

from the set enumeration tree [11], one-to-all broadcast in

a hypercube [29], and lattice traversal heuristic proposed

in [27]. In § IV, we modeled the data collection problem as

a hitting set instance (an equivalent of the set cover problem).

Further details about this fundamental problem can be found

in references such as [13], [30].

VII. FINAL REMARKS

In this paper, we studied lack of coverage as a risk to using a

dataset for analysis. Lack of coverage in the dataset may cause

errors in outcomes, including algorithmic racism. Defining the

coverage over multiple categorical attributes, we developed

techniques for identifying the spots not properly covered by

data to help the dataset users; we also proposed techniques

to help the dataset owners resolve the coverage issues by

additional data collection. Comprehensive experiments over

real datasets demonstrated the validity of our proposal.

Following ideas such as [14], in MUP identification prob-

lem, we considered a fixed threshold across different value

combinations, representing “minor subgroups”. We consider

further investigations on identifying threshold value and minor

subgroups, as well as other alternatives for future work.
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