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Abstract

The pin-ended, slender, Euler strut has been used as the archetypal buckling problem for many
years [1]. Even though it is not conventionally imperfection-sensitive (i.e., in which the magni-
tude of the buckling load is compromised by the presence of imperfections), initial geometric im-
perfections are still important, and 3D-printing now allows a versatility in geometric prescription
and accuracy previously unavailable. This paper focuses attention on Euler struts, primarily from
an experimental viewpoint, in which a second mode (full sine wave) initial shape, with varying
magnitude, is used to produce specimens, test them, and compare with the elementary theory.
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1. Introduction

Column buckling is characterized by the loss of stability of the trivial (straight) equilibrium
configuration: the column finds it energetically easier to bow out sideways rather than deforming
axially [2]. Buckling commonly occurs in a variety of slender structures in which there is a degree
of compressive axial loading, with the relative geometric simplicity of a one-dimensional beam-
column providing a natural introductory context [3–6]. Given the nominal symmetry of the system
we recognize this as a pitchfork bifurcation [7, 8]. Furthermore, in contrast to imperfection-
sensitive structures (like cylindrical shells) there is a degree of positive post-buckled stiffness, and
it is this feature that categorizes this bifurcation as super-critical [7].

No real structure is truly symmetric, with the direction and nature of buckling depending on
a number of quite subtle, apparently secondary factors like any initial geometric imperfection
(lack of straightness), load eccentricity, or the presence of a small lateral load [8]. However, in
bifurcation theory the role of symmetry-breaking parameters is well-recognized, and clearly the
practical buckling of a column evolves in a preferred direction and in a preferred deflected shape.
Although, underlying this whole process is a linear eigenvalue problem, the onset of buckling is
by no means characterized by a sudden criticality, but rather the (rapidly) increasing deflection
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Figure 1: Pinned column with second mode imperfection.

when the axial load approaches the underlying critical load. It is the form of this deflection, and
how it is related to the initial (prescribed) shape, that comprises the focus of the current paper.

In general axially-loaded structures, there are often a myriad of forms by which a real structure
might deviate from its pristine model. For linear structures this is hardly an issue, but in the context
of buckling, it is crucially important. The form of initial geometric imperfection, which might be
somewhat random in nature, has often been taken as the first buckling mode shape, partly for
analytic expediency, but also because the ensuing shape (eigenvector) is somewhat natural, e.g.,
the boundary conditions are automatically satisfied [9]. For the case of a pin-ended strut it is
natural to assume the initial geometric imperfection might take the form of a Fourier series, in this
case sine waves, and using the first buckling mode shape (a half-sine-wave) is a reasonable choice
given its typical dominance, and this is confirmed by many experimental studies. But this does
beg the question: if the strut has an initial shape that is not in the form of the first buckling mode,
but say the second buckling mode (a full-sine-wave), how does this form, and its magnitude,
influence subsequent buckling behavior? A similar question was posed in Ref. [10] using an
analytic (elastica) approach. The current paper attacks this problem using carefully produced
physical specimens utilizing the impressive resolution capabilities of 3D-printers [11, 12]. We
also make use of the Southwell plot [13] to not only access buckling load estimates but also to
extract posteriori confirmation of initial imperfections.

2. Formulation of basic problem

Fig. 1 depicts a prismatic pin-ended column of length1 L with flexural rigidity EI under axial
load P. Assuming the slope is small, the linear differential equation governing the deflected shape
Y(X) is given by

EI Y ′′(X) + PY(X) = −PY0(X) (1)

where Y0(X) is the initial deflection when unstrained. The initial deflection is chosen as

Y0(X) = A sin
2πX

L
(2)

which corresponds to a shape in the form of the second buckling mode of the perfect column, with
an initial amplitude Y0(L/4) = A. The boundary conditions are Y(0) = Y(L) = 0.

1The length L used in this paper is the pin-to-pin length, as opposed to the arc length. The two are compared in
Appendix A.
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Figure 2: Theoretical load p versus lateral deflection—(a) relative deflection y and (b) total deflection y+y0—at quarter
point for varying imperfection amplitude a. The dashed portions are practically unreachable because the system will
buckle in the first mode at p = (1π)2 before reaching higher load.

The following nondimensional variables are defined:

x = X/L, y = Y/L, y0 = Y0/L, a = A/L, p = PL2/EI (3)

The nondimensional deflection of the column is given by

y(x) = c sin
√

p x +
p a

(2π)2 − p
sin 2πx (4)

where c is arbitrary at the buckling loads p = (nπ)2, n = 1, 2, ..., and c = 0 otherwise.
Fig. 2(a) graphically portrays Eq. (4). In particular, the second term in Eq. (4), which corre-

sponds to the second buckling mode imperfection, is shown for varying imperfection amplitude a.
These curves asymptote to the second Euler buckling load, p = (2π)2. However, under monotoni-
cally increasing load (starting from zero), once the first Euler buckling load, p = (1π)2, is reached,
the first term in Eq. (4) is activated, and the column deforms into its first buckling mode with no
further increase in load. This is apparent when a small initial imperfection in the form of the first
buckling mode is included:

y0(x) = ε sin πx + a sin 2πx (5)

in which case the deflection of the column is given by

y(x) =
pε

(1π)2 − p
sin πx +

p a
(2π)2 − p

sin 2πx (6)

For arbitrarily small imperfection ε, the leading term blows up when the first Euler buckling load,
p = (1π)2, is reached. Loads greater than (1π)2 cannot be achieved experimentally without some
form of external perturbation to remote equilibria.

Fig. 2(b) shows the total deflection at quarter point, y(0.25) + y0(0.25), which has a non-zero
value under zero load (i.e., the initial imperfection amplitude a). For p less than the first buckling
load, the total deflection at the quarter point is given by

y(0.25) + y0(0.25) =
p a

(2π)2 − p
+ a ≡

a
1 − p/(2π)2 (7)
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Experimentally, the total deflection field will be measured, and the total deflection at the quarter
point will be estimated using Fourier analysis. The second (nondimensional) Fourier coefficient
a2 (see Eq. (10) below) will serve as a measure of y(0.25) + y0(0.25). Equating the expression for
y(0.25) + y0(0.25) given in Eq. (7) to a2 and rearranging terms,

a2 =
a

1 − p/(2π2)2 ⇒ a2 =
p

(2π)2 a2 + a (8)

and substituting p = PL2/EI,

a2 =

(
(2π)2EI

L2

)−1

a2P + a (9)

which shows that values of a2, if plotted against a2P, will fall on a straight line [13]. This line
intersects the vertical or a2-axis at a point (0, a), and its inverse slope ((2π)2EI/L2) is a measure of
the second buckling load. Application of this result to the experimental measurements will afford
an estimate of the second critical buckling load, as well as an estimate of the initial imperfection
amplitude a: the well-known ‘Southwell plot’ [13].

2.1. Finite element analysis
The foregoing theory is based on first-order stability assumptions and does not accurately cap-

ture the post-buckled behavior. In this section, some of the results from the first-order analysis
are verified with a nonlinear finite element analysis. To wit, a beam with second mode initial im-
perfections is numerically simulated in OpenSees [14]. Twenty corotational elastic beam-column
elements are used to model the beam, and the initial imperfection is seeded numerically by pre-
scribing the node locations according to Eq. (2). Under displacement control loading using the
end-shortening as the reference point, an axial load is applied up to an end shortening of 100% of
the pin-to-pin length L (i.e., extremely large deflections). Fig. 3(a) shows the nondimensionalized
total lateral deflection at the quarter point, which when compared to Fig. 2(b) clearly illustrates the
nonlinear effects at large deflections. For all cases except a = 20%, the load exceeds the second
Euler buckling load, p = (2π)2. However, such large loads are not reached in these cases (i.e.,
a = 1.25%, 2.5%, 5%, and 10%) if the first buckling mode is seeded into the initial imperfection
(Fig. 3(b)), and buckling at the first Euler buckling load, p = (1π)2, is observed. Note that very
small first-mode initial imperfections—ε/a = 5 × 10−6 (see Eq. (5))—were used, validating the
practical infeasibility of reaching the loads in excess of p = (1π)2.

The only case that did not bifurcate at p = (1π)2 with a first-mode imperfection of ε = 5(10−6)×
a was an initial second-mode imperfection of a = 20%. Additional analyses were conducted
for this case, considering larger first-mode initial imperfections: ε/a = 5 × 10−3, 5 × 10−2, and
5 × 10−1. Fig. 4 shows the load versus total lateral deflection for these cases, which exhibit an
increased rate of deflection when approaching the first Euler buckling load. While bifurcation-like
behavior is observed, a second-mode initial imperfection of a = 20% represents an extreme initial
imperfection, which falls outside of what is traditionally or reasonably thought of as a column.

Additional analyses were also conducted to determine the second-mode imperfection required
to overcome the bifurcation at the first buckling load. Using the bisection method between a =

10% and 20%, it was found that a second-mode imperfection of a = 19.2% was needed to observe
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Figure 3: Finite element analysis: load p versus total lateral deflection y + y0 at quarter point for varying second-mode
imperfection amplitude a: (a) without and (b) with small first-mode imperfection ε = 5(10−6) × a. The markers
indicate the end shortening: 25% (◦), 50% (O), 75% (.), and 100% (�) of the span length.
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Figure 4: Finite element analysis: load p versus total lateral deflection y + y0 at quarter point for varying first-mode
imperfection amplitude ε for a second-mode imperfection of a = 20%. The markers indicate the end shortening: 25%
(◦), 50% (O), 75% (.), and 100% (�) of the span length.

a bifurcation at p = (1π)2 with a first-mode imperfection of ε = 5(10−6) × a. Note that this cor-
responds to a first-mode imperfection of 9.6(10−7) × L, which is practically infeasible to regulate.

3. Experimental Procedure

Relatively slender columns were fabricated with a consumer-grade 3D printer (Taz 6, Lulzbot,
Loveland, CO). The specimens were printed out of PolyLite PLA [15], which has a published
bending modulus of 3.283 ± 0.132 GPa. The “standard” (default) settings were used in the slicing
software (Cura v21.08) for all specimens. The test specimens were designed to have varying initial
imperfection amplitude A with a constant pin-to-pin length of 254 mm (variable arc-length). The
design is shown in Fig. 5(a). Six initial imperfection amplitudes were used: A = 3.175, 6.35, 12.7,
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Figure 5: (a) Test specimen nominal dimensions and (b) 3D-printed specimens.
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Figure 6: Photographic images of the experimental setup (a) and pin fixture (b).

25.4, 38.1, and 50.8 mm. These amplitudes correspond to non-dimensional amplitudes a = 1.25%,
2.5%, 5%, 10%, 15%, and 20%, respectively. The three 3D-printed test specimen are shown in
Fig. 5(b).

The ends of the columns were designed to snap onto rotary loading pins to mimic friction-
free pinned boundary conditions (see Fig. 6). Each pin fixtures was composed of a loading pin
between mounted ball bearings. The pin fixtures were attached to the load heads in a Universal
Testing Machine (5543, Instron, Norwood, MA) equipped with a load cell to measure the applied
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Figure 7: Image processing procedure followed to extract column shape: (a) original photo, (b) image with grey
thresholding to locate pins, (c) image with grey and red thresholding to locate column, and (d) identified pins and
column.

axial load. The compressive load was measured simultaneously with the end shortening during the
displacement-controlled load tests. The load rate was varied (between 1 mm/min and 50 mm/min)
with the maximum end shortening (0.5 mm to 100 mm); this was done because the specimens with
smaller imperfections were much more sensitive to end shortening than were the specimens with
larger imperfections.

In addition to measuring the end shortening, the tests were paused at approximately 1-N incre-
ments in compressive load to photograph the deflected shape. These images were processed using
computer vision techniques to extract the deflected shape. Fig. 7 shows the image processing steps
followed to extract the data. First, grey thresholding was used to create a binary image (Fig. 7(b))
from the original image (Fig. 7(a)). By segmenting the image, the pin locations (bolt cap head)
were identified. Next, red thresholding was used to locate the red column against the blue back-
ground (see Fig. 7(a)). Because the pin fixtures are white, they passed the red thresholding, so the
union of the grey and red thresholded images was taken to eliminate the pins; the resulting image
with grey and red thresholding is shown in Fig. 7(c). Finally, connected component analysis (8-
connectivity based) was used on the grey/red thresholded image to identify the column. Fig. 7(d)
shows the identified pins and column for this particular photo.

The result of the image processing is a collection of pixel indices (I, J) of points (roughly
40,000) along the column, as well as the two pins. The points were in turn were used to estimate
the deflected shape. To this end, a Fourier analysis was conducted. The pin locations were used
to establish the span length (in units of pixels). The pixel indices (I, J) were then normalized by
this length to arrive at a nondimensional indices (i, j). The pixel indices were also translated and
rotated to establish the bottom pin as the origin with the top pin along the i (or “x”) axis. Next, the
Fourier coefficients an were fit to the pixel indices:

j(i) =

N∑
n=1

an sin(nπi) (10)

In the ordinary least squares fitting, N = 10 terms were retained, but the first two are of greatest
interest here because they represent the terms appearing in Eq. (4).
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Figure 8: Experimental load versus end shortening for varying imperfection amplitude a: (a) all data and (b) expanded
view in region of small end shortening. The dots indicate the load levels at which photographs were taken. The dashed
line indicates the theoretical Euler buckling load.

Note that the fitting procedure assumed a linear mapping between pixel indices and physical
dimensions. To try and ensure this was the case, the specimens were centered in the photos (see
Fig. 7(a)) and the camera was far enough away to keep the columns/pins within the central region,
occupying no more than 50% of the image height or width. Yet, there was still some degree of
parallax present in the images, distorting the measurements at the extremes. In particular, the bolt
cap heads that were tracked to represent the pin locations were at the very top and bottom of the
region of interest, so they did not align with the end of the columns due to the image distortion. A
correction was therefore required to adjust the span lengths. With this correction, better fits (i.e.,
containing primarily a1 and a2) were obtained, which are presented in the following section.

4. Results and Discussion

In Fig. 8, the compressive load P is plotted versus end shortening for the six experimental
specimens. For a = 1.25% to 10%, the load-shortening curves exhibit distinct buckling behavior
(end shortening rapidly increasing with small increase in compressive load) at around 5.3 N. A
similar type of behavior is seen for the case a = 15%, but is less pronounced. For the largest
imperfection (a = 20%), which is beyond the range of the simple theory, a change in the rate of
increase in end shortening is not observed up to 6 N; this level of load corresponded to a 100-mm
end shortening or 50% of its length.

For all but the largest imperfection used, the expected behavior is observed. That is, the column
experiences progressively increasing deflection (in the second buckling mode) with load until the
first buckling load is reached, at which point the column begins to deform into a combination of
the first and second buckling modes (Eq. (4)). The load at which buckling occurs is relatively
constant across the specimens: P = 5.5, 5.1, 5.3, 5.3, and 5.2 N for a = 1.25, 2.5, 5, 10, and 15%,
respectively. These buckling loads are consistent with the theoretical value P1 = 5.38 N, assuming
the nominal dimensions (Fig. 1) and the PLA material properties provided by the manufacturer
[15].
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Figure 9: Equilibrium shapes for varying imperfection amplitude a. The snapshots correspond to the black dots in
Fig. 8.
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Figure 10: Fitted Fourier coefficients for shapes acquired at indicated loads points in Fig. 8 (black dots). The dashed
line indicates the theoretical Euler buckling load.

The black dots in Fig. 8 correspond to the load levels at which photos were taken. Fig. 9
shows snapshots of the deflected shapes identified using image processing at each of these load
levels. The progression shows that the deflected shape initially is primarily in the second buckling
mode, and then a superposition of first and second buckling modes is present at larger loads/end
shortening.

Fig. 9 gives a qualitative representation of the equilibrium shape, whereas Fig. 10 quantifies
these shapes using a Fourier analysis. In Figs. 10(a) and 10(b), the fitted first and second Fourier
coefficients, â1 and â2, respectively, are shown. Up to a compressive load of 4 N, the first Fourier
coefficient â1 is very small (< 1%) in all cases. The second Fourier coefficient â2 starts at roughly
the initial imperfection amplitude, and then progressive increase with increasing load. The pro-
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â
2

a = 1.25%

a = 2.5%

a = 5%

a = 10%

a = 15%

a = 20%

Figure 11: Southwell plot: Fitted Fourier coefficient â2 plotted against the product â2 × compressive load P. Obser-
vations near the Euler buckling load have been rejected in estimating the best fitting straight lines (—); such instances
are distinguished by white marker edges.

gression follows the theoretical curves shown in Fig. 2(b). Once the first buckling load is reached,
â1 rapidly changes (increasing to ∼5%) indicating the initiation of the first buckling mode, whereas
â2 stagnates. For the largest imperfection used, a similar behavior is observed (abrupt change in
â1 with little change in â2), but the compressive load continues to increase. This is due less to the
initiation of the first buckling mode and more to the extreme deformations in this case—there is
nearly an inverted slope at the bottom pin (see a = 20% in Fig. 9), which cannot be captured with
a Fourier series.

Recasting the data, Fig. 11 exhibits the relation of â2 to â2 × P. The points for a given im-
perfection amplitude a fall closely on a straight line, in accordance with the relation of Eq. (9).
The observations are fitted using linear least squares, and the best fitting lines are shown. Only
the cases with load P below Euler buckling (i.e., up to about 4 N) are used in estimating the best
fitting lines. The instances that were rejected are distinguished by the marker edge color (white).
From the best fitted lines, estimates of the initial imperfection and buckling loads are given in
Table 1. There is excellent agreement between the nominal imperfection amplitudes and those

Table 1: Tabulated results from Southwell plot: a = nominal imperfection amplitude, â = imperfection amplitude
deduced from best-fitting line in Fig. 11, P̂2 = second buckling load estimated from inverse slope of best-fitting line in
Fig. 11, P̂1 = first (critical) buckling load estimated by dividing P̂2 by 4, and P1 as found from the load-end shortening
data in Fig. 8.

a (%) â (%) P̂2 (N) P̂1 (N) P1 (N) P̂1 ÷ P1

1.25 1.26 23.90 5.976 5.5 1.087
2.5 2.46 23.06 5.766 5.1 1.131
5 4.95 23.46 5.866 5.3 1.107

10 9.93 22.05 5.513 5.3 1.040
15 15.0 19.61 4.902 5.2 0.943
20 20.0 17.58 4.395 n/a n/a
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Figure 12: Experimental load versus end shortening for varying imperfection amplitude a under repeated load-
ing/unloading: (a) all data and (b) expanded view in region of small end shortening. The dashed line indicates
the theoretical Euler buckling load.

predicted using the Southwell plot. Note that, because the imperfection is in the second buckling
mode, the best fitting line does not directly estimate the Euler buckling load. Instead the second
buckling load is predicted (from the inverse slope), which must then be divided by 4 to predict the
first (critical) buckling load, P1. These estimated buckling loads are generally higher than those
estimated from Fig. 8.

Finally, the specimens were tested under cyclic loading to check the repeatability of the re-
sults. The specimens were subjected to three loadings and two unloadings in a continuous, cyclic
sequence. Fig. 12 shows the results of these tests. The load-deflection curves exhibit a little hys-
teresis, following different paths on loading and unloading, but the loading paths and unloading
paths are self-consistent. The buckling loads in Fig. 12 are slightly lower than those observed in
Fig. 8 for specimens with a = 1.25, 2.5, and 5%, but generally follow similar patterns. Overall,
the results show an acceptable level of repeatability.

5. Concluding remarks

This paper has considered the Euler strut with imperfection that takes the form of the second
buckling mode. Basic (linear) theory shows that the deflected shape follows the second buckling
mode until the Euler buckling load is reached, at which point the deflected shape comprises a
superposition of first and second buckling modes. Utilizing the resolution capabilities of a 3D
printer, columns were fabricated with different imperfection amplitudes (from 1.25% to 20% of
the pin-to-pin span length). Conventional measurements (compressive load and end shortening), as
well as enhanced measurements (full-field displacements based on image processing), were made
on the experimental specimens. Through a Fourier analysis, the components of the equilibrium
configurations in the first and second buckling modes were extracted. The experimental data
showed good agreement with the theoretical predictions, transitioning from only the second mode
to both the first and second modes at the Euler buckling load.
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Appendix A. Pin-to-pin length versus arc length

For the assumed initial imperfection (2), the arc length L0 is given by

L0 =

∫ L

0

√
1 + [Y ′0(X)]2 dX ≡

∫ L

0

√
1 + (2πA/L)2 cos2(2πX/L) dX (A.1)

This is an elliptic integral that does not afford a closed-form solution. Numerically integrating this
equation, the arc length for varying imperfection amplitude A is shown in Fig. A.13 in nondimen-
sional form. For small A/L, the arc length and pin-to-pin length are approximately the same (i.e.,
L0/L ≈ 1 for A/L < 2.5%). For the largest amplitude tested in this study (A/L = 20%), there is
roughly a 30% difference in the pin-to-pin length and the arc length. A more thorough analysis
would be based on solving the elastica problem (using a shooting method for example [10]) and
examining the load-deflection relation and its deviation from the harmonic form.
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