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Abstract

SLAU2 and AUSMPW+-, both categorized as AUSM-type Riemann solvers, have been extensively developed in gasdynamics.
They are based on a splitting of the numerical flux into advected and pressure parts. In this paper, these two Riemann solvers
have been extended to magnetohydrodynamics (MHD). The SLAU2 Riemann solver has the favorable attribute that its
dissipation for low-speed flows scales as O (M?), where M is the Mach number. This is the physical scaling required for low-
speed flows, and the dissipation in SLAU2 for MHD is engineered to have this low Mach number scaling. The AUSMPW+,
when its pressure flux is replaced with that of SLAU2, has the same low Mach number scaling. At higher Mach numbers,
however, the pressure-split Riemann solvers were found not to function well for some MHD Riemann problems, despite the
fact that they were engineered to have a dissipation that scales as O (|M|) for high Mach number flows. The HLLI Riemann
solver (Dumbser and Balsara in J Comput Phys 304:275-319, 2016) has a dissipation that scales as O (|M|), which makes
it unsuitable for low Mach number flows. However, it has very favorable performance for higher Mach number MHD flows.
Since the two families of Riemann solvers perform very well over a range of intermediate Mach numbers, the best way
to benefit from the mutually complementary strengths of both these Riemann solvers is to hybridize between them. The
result is an all-speed Riemann solver for MHD. We, therefore, document hybridized SLAU2-HLLI and AUSMPW+-HLLI
Riemann solvers. The hybrid Riemann solvers suppress the oscillations that appeared in single-solver solutions, and they also
preserve contact discontinuities, as well as Alfvén waves, very well. Furthermore, their better resolution at low speeds has
been demonstrated. We also present several stringent one-dimensional test problems.
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1 Introduction

Magnetohydrodynamics (MHD) simulations are crucially
important in many areas of science and technology such as
astrophysics [1-3], aerospace engineering [4], and nuclear
physics [5]. Such simulations are usually carried out with
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finite-volume codes, and most such codes rely on higher-
order Godunov technology. Higher-order Godunov schemes
use a higher-order spatial reconstruction, followed by the
application of a Riemann solver at zone boundaries to achieve
the designed higher-order spatial accuracy. When conjoined
with higher-order methods for temporal evolution, such
schemes provide a uniformly higher-order solution method.
The Riemann solver is an important building block in such
methods, and it is our intention in this paper to describe Rie-
mann solvers for MHD that operate well at all speeds.
Riemann solvers for gasdynamics only have to resolve
three distinct families of waves in one dimension. For high-
speed flow, this is usually accomplished with the use of
(flux difference splitting) FDS-based Riemann solvers. Sev-
eral Riemann solvers that operate successfully for Euler
flow have been presented. These include the exact Rie-
mann solver [6,7], the two-shock approximate Riemann
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solver [8,9], the Roe-type Riemann solver [10,11], the
HLL/HLLE/HLLEM Riemann solvers [12—-14], the local
Lax—Friedrichs (LLF) Riemann solver [15], and the HLLC
Riemann solvers [16,17]. It is also worth mentioning the
DOT (Dumbser—Osher—Toro) class of universal Riemann
solvers [18,19] and the HLLI Riemann solver [20], which
is also universal.

For MHD, seven waves appear in the Riemann prob-
lem which makes the design of the Riemann solver more
intricate. In other words, the MHD system admits fast,
Alfvén, and slow waves in both directions in addition to
an entropy wave. In MHD, the Roe-type solvers resolve all
these waves (7-wave or full-wave) [21-25]. The HLLD Rie-
mann solver of Miyoshi and Kusano [26] only resolves the
fast, Alfvén, and entropy waves (5-wave). The HLLC Rie-
mann solver [16,27,28] resolves only the fast waves and the
contact discontinuity. Recently, Dumbser and Balsara [20]
presented an HLLI Riemann solver which has the poten-
tial to be universal and complete. As applied to the MHD
system, it can resolve all the waves in the one-dimensional
MHD system as long as a complete set of eigenvectors is
given.

In gasdynamics, there are many lines of evidence to show
that the Roe and HLLC fluxes easily exhibit shock anomalous
solutions. In such situations, (flux vector splitting) FVS-
based methods seem to work much better. Such methods split
the numerical flux into an advected part and a pressure part.
Such FVS-based Riemann solvers for gasdynamics include
the advection upstream splitting method (AUSM)-type Rie-
mann solver (except for the first AUSM [29]) [30-34] which
resolves the sound and entropy waves. There is one over-
arching reason why FVS-based Riemann solvers are very
useful. The reason is that the FDS-based methods have the
wrong dissipation characteristics at low Mach numbers [32—
37]. To take the Roe-type Riemann solver as an example,
at lower Mach numbers, the dissipation continues to scale
as O(|M|), where M is the Mach number. However, at low
Mach numbers, physical arguments show that the dissipation
should scale as O (M?).! It is easy to see that for low Mach
numbers, say |M| < 0.1, the dissipation of the Roe-type Rie-
mann solver would be excessive, resulting in unphysically
excessive entropy generation. FVS-based, or pressure-split,
Riemann solvers provide more flexibility in their design, per-
mitting this favorable Mach number scaling to be achieved
at lower Mach numbers. Another line of evidence shows
that the Roe and HLLC fluxes easily exhibit shock anoma-
lous solutions (specifically, Roe and HLLC behave nearly
identically [38]), represented by the carbuncle phenomenon
[38—40], against which AUSM-type and HLL fluxes are rel-

! Remember that the pressure coefficient C p» being O(1), is written as
C, = 2Ap/(yM?pso), and hence, Ap o« M?2. See Appendix A of
[55] for more details.
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atively robust. In fact, there is a numerically expressed zone
inside the captured shock [34,39—-45] where no mathemati-
cal expression is valid. In this zone, full-wave solvers tend
to pick unphysical waves and augment them—this results
in unphysical growth of the carbuncle. In contrast, “less-
wave” solvers such as AUSM-type or HLL can suppress
such unphysical wave growth and propagation on account
of their built-in dissipation. Therefore, several attempts have
been made to use a less-wave solver (e.g., HLL) only at a
shock and adopt a full-wave flux (e.g., Roe, HLLC) else-
where [3,46]. SLAU2 [34,38] flux function is one of the
AUSM-type solvers and designed to add a proper amount of
dissipation only to the numerical shock zone. Thus, SLAU2
is robust against shock instabilities, while capable of resolv-
ing gasdynamic contacts or boundary layers [34] by itself.
Consequently, it can be a good ingredient of a hybrid solver.
This is our primary motivation for extending SLAU2 to
MHD in this paper. Such an extension would provide the
research community with an MHD Riemann solver with cor-
rect low Mach number scaling. Consequently, the first goal
of this paper is to design a SLAU2-based Riemann solver for
MHD.

While Roe-type or HLL-type solvers are employed in
open astrophysical MHD codes (e.g., [47-51]), there are a
very limited number of AUSM-type flux functions for MHD
applications, probably because of their lack of Alfvén wave
resolution. Only a few FVS-based Riemann solvers for MHD
have been presented in the literature. These include E-CUSP
[52] and AUSMPW+ [53,54]. While E-CUSP will not accu-
rately capture a stationary contact discontinuity in MHD,
AUSMPW+ will capture such a discontinuity. Similarly,
SLAU?2 can also capture such discontinuities, and this bene-
ficial feature is demonstrated for MHD in this paper. It is also
worth pointing out a fine point of difference between SLAU2
and AUSMPW+ in gasdynamic simulations. For gasdynam-
ics, AUSMPW+ is only designed to be a Riemann solver for
high-speed flows, whereas SLAU?2 is designed to be an all-
speed Riemann solver at least in the realm of gasdynamics.
Based on extensive testing, we found that within the realm of
stringent, high-speed MHD test problems, both SLAU2 and
AUSMPW+ Riemann solvers showed some deficiencies.
However, they were able performers for low-speed MHD
flows.

Several pressure-split solvers have already been improved
so that they can simultaneously treat low-speed and high-
speed flows accurately. This is often accomplished by
hybridizing a pressure-split scheme at lower Mach numbers
with a FDS-based Riemann solver at higher Mach numbers.
Since FDS-based Riemann solvers can be ruggedized for
high Mach number flows, this hybridization offers the best
of both worlds—The pressure-split Riemann solver gives
favorable low Mach number scaling, while the FDS-based
Riemann solver provides robust performance in high Mach
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number flows. Such hybrid Riemann solvers are available
for gasdynamics where they are sometimes called “all-
speed schemes (or Riemann solvers).” In some instances,
many user-specified parameters (such as “cutoff Mach num-
ber” [32,36]) are required when designing all-speed Riemann
solvers. A great deal of attention must be paid to the choice
of this cutoff Mach number; otherwise, the solution can be
troublesome [32,55,56]. The dissipation term of the SLAU2
Riemann solver for gasdynamics, however, was designed to
be automatically scaled to O (M 2) at low speeds, and hence,
needs no expert care by the user. We, therefore, realize that if
we can hybridize SLAU?2 with a FDS-based Riemann solver,
we can also offer the best of both worlds for MHD simu-
lations. For our choice of FDS-based Riemann solver, we
choose the HLLI Riemann solver [20] because it is a com-
plete Riemann solver that resolves all the waves in the MHD
system with a minimum of dissipation for higher Mach num-
ber flows. Consequently, the second goal of this paper is to
document a hybrid SLAU2-HLLI Riemann solver for MHD.
This gives us an all-speed Riemann solver for MHD with
favorable low Mach number scaling and robust performance
at high Mach numbers. In the course of our exploration, we
also found that we could redesign the AUSMPW+ Riemann
solver for MHD so as to endow it with good low Mach num-
ber scaling. This has enabled us to fulfill the third goal of this
paper which is to document a hybrid AUSMPW+-HLLIRie-
mann solver for MHD which also has very desirable all-speed
capabilities.

To anticipate the utility of all-speed solvers for MHD, let
us briefly consider the MHD flows in the Sun as an example.
In the solar photosphere, it is not unusual to have convec-
tive velocities of ~ 1 km/s with sound speeds of ~ 7 km/s.
However, in the solar corona and in the solar wind, veloc-
ities can range from 250 to 750 km/s with a sound speed
of ~ 100 km/s. A simulation that connects the solar photo-
sphere to the corona would, therefore, have to handle a range
of Mach numbers that goes from strongly subsonic to very
supersonic. The same simulation, with the same collocation
of variables on the mesh, would have to stably straddle this
entire range of Mach numbers. This highlights the need for
all-speed Riemann solvers for MHD flows. Let us now turn
attention to the convective zone in the Sun. At the base of the
solar convective zone, convective speeds can be a few km/s,
while the sound speed is less than or equal to 200 km/s.
In such situations, the anelastic approximation [57-59] has
been shown to be deficient [60—62] because it lacks a proper
treatment of the energy equation. Even the co-density formu-
lations [63—68] might be deficient in their treatment of energy
conservation. In contrast, the full Euler and MHD equations
are always energy conservative and it may be worthwhile to
ask whether the full equation set, treated explicitly and cou-
pled with an all-speed Riemann solver, might be up to the
task? We are not equipped to examine that issue in a com-

putational paper such as this. However, this paper does open
the door to a resolution of that question. We point out that in
order to examine this issue more thoroughly, we would need
a Riemann solver that operates with very low computational
cost at low Mach numbers. The SLAU2 Riemann solver is
one such very low-cost Riemann solver, whereas the HLLI
Riemann solver relies on a characteristic projection and is,
therefore, quite computationally costly. For that reason, we
design our all-speed Riemann solver in such a way that for
flows with a Mach number that is less than 0.1, we revert
exclusively to a low-cost SLAU2 Riemann solver for MHD.
We hope that this opens the door to treating solar convec-
tion with the fully compressible MHD equations rather than
cobbled-up equation sets like the anelastic approximation.
Furthermore, there are also low Mach flow regions in the
International Thermonuclear Experimental Reactor (ITER)
according to [69,70].

We confine the present work to one dimension (1D)
because multi-dimensional treatments of MHD inevitably
call for a divergence-free constraint on the magnetic field
(V- B = 0) [71-79]. There are several methods to guaran-
tee this divergence-free property, and the employed method
differs from one literature to another (for instance, Han
et al. [53] proposed AUSMPW+ for MHD and coupled
it with Dedner’s method [73], whereas E-CUSP for MHD
[52] was developed and tested with a constraint transport
method by Balsara and Spicer [72]). In this work, such
influences of the choice of divergence treatment method
are excluded from our 1D MHD discussion. (The multi-
dimensional performance, such as robustness against the
carbuncle phenomenon, is deferred to the future work.)
Nevertheless, as opposed to gasdynamics, the 1D govern-
ing equations for MHD contain multi-dimensional com-
ponents (y and z components of velocity and magnetic
field).

The plan of the paper is as follows. Section 2 describes
the governing equations. Section 3 will be dedicated to the
discretization of the governing equations, particularly to the
SLAU?2 and the SLAU2-HLLI in MHD. (AUSMPW+ and
AUSMPW+-HLLI in MHD are described in Appendix 1.)
Numerical examples will support the performance of the pro-
posed methods on stringent 1D MHD test problems in Sect. 4.
Finally, Sect. 5 will conclude the present work.

2 Governing equations

The governing equations are the compressible MHD equa-
tions as follows:

3Q 9F 3G

+ + M
at dx  dJy

— =0 1
0z ’ (1a)
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p pu
ou pu2 + pr — Bf
pU puUv — BB,
| pw _ | puw — BB,
Q= oE |’ F= puH — B, (u-B)
By 0
B, uBy —vB,

L B: | |  uB;—wB,

SR _ C ow _
pvu — ByB; pwu — B; By
pv? + pr — B% pwv  — B;By

Go| Prw  —ByB | pw? + pr — B?
pvH — By (u-B) |’ pwH — B, (u-B) |’
vBy —uBy wBy —uB;
0 wBy — vB;
vB; —wB, | L 0 |

(1b)

where Q is the vector of conservative variables, p den-
sity, w = (u, v, w)T is velocity, p gas pressure, pt total
pressure (pr = p + B%/2), B magnetic field [B> =
B-B;B = (B,, By, BZ)T], E total energy per unit mass
[E = (p/p)/(y — 1) + 0.5u? + v> + w?) + 0.5B%/p],
and H total enthalpy [H = E + (p/p)]. The working gas
is the calorically perfect gas with the specific heat ratio y.
The first five equations are the Euler equations, whereas the
6th—8th equations comprise Faraday’s law for MHD, which
is a subset of the Maxwell equations.

In 1D, the third and fourth terms are absent, and the 6th
equation is dropped. The divergence-free requirement for the
magnetic field (V - B = 0) is automatically satisfied, as long
as B, = const. [52]. Then, (1a) is solved with a 1D finite-
volume code and can be written in the delta form as:

At

AQ; = A (Fizi2 — Fiz12)., (2)
where AQ; is change in conservative variables in time, At
is the time step, Ax stands for the width of the cell (which
is uniform in this study), and F;+1,2 is the inviscid (Euler)
flux through the cell interface (which separates the cell i and
its neighbor cell i & 1), respectively. Details of the inviscid
fluxes are explained below.

3 SLAU2 and SLAU2-HLLI for MHD
3.1 SLAU2 for MHD

Han et al. [53] extended AUSMPW+, one of AUSM-type
solvers, and we had first followed their formulation in extend-
ing SLAU2 to MHD. However, our preliminary numerical
tests demonstrated oscillatory solutions in some cases. We
considered that the primary cause of the oscillations lies in
the dissipation term (final term) in the mass flux for low
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speeds, which affects not only the Euler equations (gas flow
field) but also the magnetic field governed by the Maxwell
equations. In fact, the dissipation term having low Mach scal-
ing was originally developed for gas dynamics, and there is
no reason to employ the same dissipation term for the mag-
netic field. Thus, the following method can be constructed
for 1D MHD. Let us begin from the Euler equations part,
i.e., the first five components of (1).

FSLAU2(Euler) = %W"I’Euler il Y ler
4Py + Bl Ve ‘; ‘I’Euler,B’
(3a)
Ve = (Lur vp wr HL)T,
Vo= (1 ur vk we Hg)
‘I’Euler,B = (O —Byr —Byr —B:L O)T’
fuers =0 —Bur —Byr —Box 0)',  (3b)
0
p
Priier = 8 s

Pt {—u; By —viBy —wrB. 1} Bi
+P~ - {—urByx,r — vrRBy,r — wrB. g} Bi)2

(3o

if M| >1

1 .
pt { 5 (14 sign (Mp)), Ga)

zll(ML +1)2@2—M;), otherwise,
(1 —sign (Mg)) . if Mgl > 1

P = (3e)
le(MR — 122+ Mg), otherwise,

where Biy = M as in [53]. Note that the fifth line
of (3¢) is proportional to By, and hence, it can be included
in (3b). For ease of comparison to [53], however, we simply

followed their expression here. The mass flux is

(m)sLavz = % {PL (“L + |‘7n|+) + PR (“R - Wn|_)
X (pr.r — PT,L)} , (4a)

c

Vol T = (1= )Val + glugl,
|Val™

= (1= g)|Val + glurl, (4b)
|—n’=,0L|ML|+,0R|uR| 4o)
oL + PR
g = —max [min (M, 0), —1]
x min [max (Mg, 0),1] € [0, 1], (4d)
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where pr is the total pressure (pr = p + B%/2), and

AN\2
x=(1-#)", (4e)
. 1 [u? +u?
M=min|[ 1.0, =,/ L—& |, (4f)
c 2
uy UpR
My =—, Mg= = (4g)
= w, (4h)

where c is, in this MHD case, the fast magnetosonic speed,

1 %/R
c =—-31a +
f.L/R = 5 Y9L/R LR

B2,.\° B2
+ (ai/RJrﬂ) —da} p—ER 4

: 2 _ YPLR
and ay /R is the gas speed of sound, e PTR

Then, the pressure flux is:

~ pr..+prr Pt —P~
(P)sLavz = > t—3 (pr.L — PT.R)
2 2
u/ +u _ . .
+y 5 (PP = 1) e, (4))
. pL+ PR
p=——, (4K)

2

for the gasdynamics part [1st—5th lines of (1)]. On the other
hand, the magnetic part, i.e., 7th—8th lines (we do not have
to solve the 6th line in 1D), is solved by HLL:

FsLau2zMaxwel) = FHLLMaxwell)
_ SRFL — S.Fr+ S.Sr (Qr — QL)

Sr —SL
(5a)

SRZmaX(ﬁ-l-Cf,R, UR +cr R, 0),
Sp=min(id —cfr, ur—cpr, 0), (5b)

where Sy /g are “signal” speeds traveling in left and right
directions, respectively, and & is the Roe-averaged [ 10] veloc-

ity,

JoLup + J/PRUR (50)
VPL+ /PR

With this simplification of the Faraday’s law treatment, the
robustness of SLAU2 is dramatically improved. The key idea

0=

behind this modification is that we have eliminated the low-
Mach-scaled dissipation term from the magnetic part, which
would have contaminated the magnetic field.

The idea of separately treating Faraday’s law and the Euler
equations is not new. Li [28] employed the HLLC flux for
the Euler equations while drawing on the HLL flux for the
Faraday law, since he found it unstable to use HLLC for both
the equations. Our proposal here is in the same spirit, where
the Euler equations are solved by SLAU2, whereas HLL is
used for the Faraday part.

Notice that the extremal left and right speeds in (5) use
the fast speeds. For strongly subsonic flow, this could provide
excessive dissipation to the magnetic fields. For low-speed
flow situations, we might prefer to use the Alfvén speeds
for the dissipation that is imparted to the magnetic fields.
Consequently, if we replace the magnetosonic speed, cr, in
(5b), with Alfvén speed, ca, we can take Alfvén waves into
account and enhance the stability at both shocks and Alfvén
discontinuities, according to our preliminary computations.

Sa.r = max (il +ca,r, ur + ca.r,0),
Sa,L =min (il —caz,ur —ca,z,0). (6)

The strong shock is detected by the pressure function bor-
rowed from AUSMPW+ flux function (but with ca-weight
included) [31,53],

2 2 3
. [ pr.L PT.R CA,L CAR
w = min , ) , (7a)
PT.R PT.L Capr Cap
where
B2
2 _ L/R
CA.L/R = . (7b)
PL/R

Thus, the following new signal speeds are useful in paying
attention to both the fast speed and Alfvén speeds.

SR.new = max ((1 —w) Sk + wSa R, 0) ,
Stonew = min ((1 — w) S; 4+ wSa,2.0), ®)

which will be substituted for (5a). The point here is that,
when there are no strong shocks in the solution (w ~ 1),
the flux (for the magnetic field only) is soon switched from
fast-speed-based HLL (5b) to the Alfvén-speed-based HLL
(6), while SLAU?2 for the Euler equation part is unaltered.
This version will be simply called “SLAU2” in this paper
and will be tested in Sect. 5.

We also point out that in the course of development of the
present SLAU2 solver, another version is also constructed in
which the Maxwell equations are simply treated by a standard
AUSM manner, i.e.,
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Fsrav2Maxwel) = € - (M+‘Ill\+/laxwell + M_‘I’K/laxwell)
+ PMaxwell, (9a)

\Illt/laxwell = (B%L’ BZ»L)T; q’l\?laxwe]l = (BY’R’ BZ’R)T ’

(9b)
P {—vr} Bijp + P~ - {~vg} Bip
Py = » 0
Maxwell (P+ A—wg) Bi) + P~ - {—wg} B2 (9¢)
where
5 (Mp + M)y, if M| =1
MF = 9d)
T+ 1?2, otherwise
3 (Mg — |Mgl), if |Mg| =1
M- — (%)
—1 (Mg —1)?,  otherwise

are commonly used Mach number functions among AUSM-
type solvers [30,31]. This version works just as well as the
previously proposed version. Consequently, all the numerical
results are shown from the previous version of SLAU2.

3.2 Hybrid SLAU2-HLLI for MHD

The HLLI Riemann solver [20] is very briefly reviewed here
because such a review makes it easier to explain to the reader
how the hybridization takes place between SLAU2 and HLLI
Riemann solvers. The HLLI flux is given by taking the HLL
flux and adding an anti-diffusive contribution to it, as shown
as follows:

SrF1L — StFr+ S.Sr (Qr — Q1)

Fuiu = Sk S,
S.Sk _
- (me* (Q) 8+ (Q) L. (Q) (Qz — Qu).,
(10a)
_ A, AS

8:(Q) =1I- 5S¢ (10b)

AZ = S AEIAD, (100)

1

Q=§(QL+QR), (10d)

where the scalar ¢ € [0, 1] is a flattener variable (whose
detailed definition is deferred to [80]) which responds to the
presence of strong shocks (HLL flux for ¢ = 0, while HLLI
for ¢ = 1). In principle, the matrices of right and left eigen-
vectors, i.e., Ry (6) and L, (6), can include the entire MHD
eigensystem, which yields a complete Riemann solver. How-
ever, we are usually only interested in improving the contact
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discontinuity and Alfven waves. Consequently, R, (Q) and
L. (6) could contain only the linearly degenerate intermedi-
ate right and left eigenvectors, and A, = A, (6) is diagonal
matrix of eigenvalues, as detailed in [20].

Now a low Mach number scaling can be introduced into
the HLLI Riemann solver, with no additional user-specified
parameters, as shown in [81]. Remember that we have used
the following function x in SLAU2.

~\2
X:(I—M) , (4e)
—~ 1 [u? +u?
i =min 1.0 1 % (af)
C

Note that (1 — x ) approaches to zero at very low speeds, while
it is bounded by unity at supersonic speeds. Furthermore, it
needs no cutoff or reference Mach number (velocity), in con-
trast to the typical preconditioning used in all-speed HLLC
[82] or HLLE [83]. Then, with this (I — y), the fast and
Alfvén speeds are scaled to
cr—= (I=x)ep ca— (1= x)ea, (1)
where (1 — x) = 2M at low speeds. In other words, all the
characteristic waves appearing in the Riemann problem are
all shrunk to (1 — x) times their original value. This reduces
the dissipation from the HLLI Riemann solver in the low-
speed limit.

Keeping this in mind, it is possible to hybridize SLAU2
and HLLI as follows:

Fspavz-niir = x'Fseavz + (1 — x') Faer, (12a)
X =0-), (12b)
_~ K [u +u?
M =min|1.0,max [ =,/ £—8& — M, 0] |.
c 2
(12¢)

where K = 4.0 is found to be a robust choice (i.e., HLLI
is used entirely for M > 0.25), and the cutoff number is
prescribed as M., = 0.1 so that this solver turns to a full
“SLAU2” for M < 0.1 (where low-speed flow solvers are
favored, such as in the tachocline in the Sun [61,84]). This
solver is referred to as “SLAU2-HLLIL.” Note that x’ (not
x), K, and M, are introduced only for hybridization pur-
poses, and each of the SLAU2 or HLLI Riemann solvers is
still parameter-free. Moreover, the same idea will be used in
Appendix 1 to construct the ensuing “hybrid AUSMPW+—
HLLI Riemann solver.”

In this solver, HLLI is usually used at shocks, whereas
SLAU?2 is employed in low-speed portions of the flow, in
this 1D work. In multi-dimensional flows (not covered here,



Hybridized SLAU2-HLLI and hybridized AUSMPW+—-HLLI Riemann solvers for accurate, robust, and...

Table 1 Riemann problems

Problem P u v w V% B, B.

1: Brio-Wu (left) 1 0 0 0 1 Jar 0

(right) | 0.125 0 0 0 0.1 -Jar 0

2: Ryu-Jones (left) | 1.08 1.2 0.01 0.5 0.95 3.6 2
(right) 1 0 0 0 1 4 2

3: Colliding Flows (left) | 0.15 21.55 1 1 0.28 2 -1
(right) | 0.1 -26.45 0 0 0.1 2 1

4: Severe Shock tube (left) | 0.8129 | 1.801 | 0.3672 | 0.1836 | 0.4809 | 1.7856 | 0.8928

(right) 1 -1.7942 0 0 0.1 2 1

5: Contact (left) 1 0 0 0 1 0 0

(right) | 0.1 0 0 0 1 0 0

6: Alfvén Wave (left) 1/4m -1 1 -1 1 -1 1
(right) | 1/4m -1 -1 -1 1 1 1

though), however, this will not be the case: Directions per-
pendicular to the uniform flow or flows inside the boundary
layer will more likely adopt SLAU2. Indeed, it is reported
that solvers sensitive to characteristic speeds are more vul-
nerable to carbuncle phenomena in gasdynamics [39,40]. To
combat this problem, two different solvers are hybridized in
the literature, in which one solver is employed in the shock-
normal direction and the other in the shock-perpendicular
one (e.g., Roe and HLL for MHD in [3,46], HLLC and HLL
in [85], E-CUSP and HLL in [86]). Thus, in future work, the
present hybridization will be extended in a multi-dimensional
manner against carbuncle phenomena.

4 Numerical tests

An extensive series of 1D test cases were conducted (and
seven tests are selected here). We selected these tests because
we found that several unhybridized FVS-split solvers suc-
cessfully handled some problems but failed (diverged, or led
to unphysical solution) for the others, as will be demonstrated
here. Both the spatial and temporal orders of accuracy are two
by explicit second-order TVD [20]. The Courant number is

set to as 0.8, unless mentioned otherwise. The computational
space of unit length [— 0.5, 0.5] is uniformly divided by 400
cells for all the problems. Reference solutions are produced
by HLL flux on 4000 cells for the first four cases. Table 1 sum-
marizes Riemann problems from Sects. 4.1-4.7. Solutions of
only SLAU2 and SLAU2-HLLI will be presented here, and
those of AUSMPW +-type counterparts will be explained in
Appendix 1. For ease of comparison, however, the best solver
among SLAU2 type and AUSMPW+- type (with its desired
condition) in each problem is summarized in Table 2.

4.1 Brio—-Wu shock tube

This is a widely used MHD shock tube problem introduced
by Brio and Wu [21]. The initial conditions for left (L) and
right (R) states are

Problem 1 (Brio—Wu)

(psuvvsva’ By’BZ)L = (1507010’ 11 V47T’O)

for x <0,
(o u,v,w, p, By, B))gp = (0.125,0,0,0,0.1, =47, 0)
for x > 0,

@ Springer



K. Kitamura, D. S. Balsara

Table2 Best solvers

Problem Best solvers (desirable condition for such solvers)
1: Brio-Wu SLAU2, SLAU2-HLLI, AUSMPW+,
AUSMPW+-HLLI
2: Ryu—Jones SLAU2-HLLI, AUSMPW+, AUSMPW+-HLLI
3: Colliding AUSMPW+-HLLI (without low-speed care)
flows
4: Severe SLAU2-HLLI, AUSMPW+-HLLI (with
shock tube full-wave treatment)
5: Contact SLAU2, SLAU2-HLLI, AUSMPW+,

AUSMPW-+-HLLI

SLAU2-HLLI, AUSMPW+-HLLI (with
full-wave treatment)

SLAU2 (having low-speed care)

6: Alfvén wave

7: Low-speed
propagation

with B, = 0.75+/47 and y = 2.0. Computations are con-
ducted to a final time of + = 0.1. The results of SLAU2
are shown in Fig. 1. These results successfully reproduced
important physics, such as a (left running) fast rarefaction
wave around x ~ —0.1, a slow compound wave (x =~
—0.05), a contact discontinuity (x =~ 0.07), a slow shock
at x &~ 0.15, and a fast rarefaction wave (x ~ 0.3—0.36),
as in the reference solution or literature (e.g., HLLI [20]).
For this problem, SLAU2-HLLI showed indistinguishable
results. For that reason, we do not show the results from the
other Riemann solvers.

4.2 Ryu-Jones shock tube

This problem [22] involves all seven waves, and hence, it is
considered to be an important benchmark test case.

Problem 2 (Ryu—Jones)

(o u,v,w, p, B, B;)r = (1.08,1.2,0.01, 0.5, 0.95, 3.6, 2)
for x <0,
(p,u,v,w,p, By, B))r =(1,0,0,0,1,4,2)

for x > 0,

with B, = 2.0 and y = 5/3. The simulations are run to
a final time of + = 0.2. The results of SLAU2 are shown
in Fig. 2, along with those of SLAU2-HLLI. As seen, all
the features are again well captured by SLAU2 as in the
reference solution, with only small wiggles observed (Fig. 2,
x ~ —(0.2—0). These oscillations, however, do not appear if
SLAU?2 is hybridized with HLLI.

4.3 Colliding flows

High-speed flows from both sides collide in this problem
[88].
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Fig. 1 Problem 1 solutions, SLAU2; a density and b magnetic field
component By,

Problem 3 (Colliding)

(o, u,v,w, p, By, B;) =(0.15,21.55,1,1,0.28, =2, —1)
for x < 0,
(p,u,v,w, p, By, B)r = (0.1, —26.45,0,0,0.1,2, 1)

forx > O,

with B, = 0 and y = 5/3. Computations are conducted for
t = 0.04. Figure 3 shows the solutions. This is one of the
severe problems, and SLAU?2 exhibits a density overshoot
and oscillations after the shock (Fig. 3, x &~ —0.3), as well
as in SLAU2-HLLI.

4.4 Severe shock tube problem

In this problem, the following setup is used [88].

Problem 4 (Severe shock tube)

(o, u, v, w, p, By, B;), = (0.8129, 1.801, 0.3672, 0.1836,
0.4809, 1.7856, 0.8928)
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(a)

L7 tho

1.6
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Fig.2 Problem 2 solutions, SLAU2 and SLAU2-HLLI; a density and
b magnetic field component B,

0.7 rho
0.6 e
0.5
0.4
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0.2 o SLAU2
./ . SLAUZ-HLLI

0.1 —Reference
0.0

-0.5 -0.3 -0.1 0.1 0.3 0.5

Fig.3 Problem 3 solutions, density; SLAU2 and SLAU2-HLLI

for x < 0.1,
(p,u,v,w, p, By, B;)p = (1, —1.7942,0,0,0.1,2, 1)

for x > 0.1,

with B, = 4 and y = 5/3. Computations are conducted
for + = 0.4. The solutions are shown in Fig. 4 (SLAU2 and

SLAU2-HLLI). The magnetic field, By, is solved well by all
the four solvers (Fig. 4b). In this severe problem, however,
the density has unacceptable oscillations at x =~ 0.1-0.25
in SLAU2 (Fig. 4a). On the other hand, the oscillations are
indeed suppressed in SLAU2-HLLI (Fig. 4a), demonstrating
the benefit of the hybridization.

4.5 Contact discontinuity

This problem deals with a contact discontinuity.
Problem 5 (Contact discontinuity)

(pv l/l, v7 w’ pv Bya BZ)L = (17050703 17030) forx S 07
(p,u,v,w, p, By, B))r =(0.1,0,0,0,1,0,0) for x > 0,

with By = 1 and y = 1.4. Computations are conducted
for t = 0.25. As designed, all the solvers presented here
preserve the contact discontinuity (Fig. 5), represented by
SLAU?2. The exact treatment of isolated contact discontinu-
ities is crucial for achieving well-balanced schemes and is
analytically proved for SLAU2 in Appendix 2.

4.6 Alfvén wave discontinuity

In this problem, the following setup is employed.

Problem 6 (Alfvén discontinuity)

(10’ u,v,w, pa Byﬂ BZ)L = (1/4T[5 _17 1’ _17 1’ _1’ 1)
for x <0,

(lov u,v,w, p, Bya BZ)R - (1/4]-[5 _17 _19 _la 17 17 1)
for x > 0,

with By = 1 and y = 1.4. Computations are conducted

for t+ = 0.25. The solutions are shown in Fig. 6. As seen,
the SLAU2 smeared out the stationary Alfvén discontinu-
ity, obviously because of lack of Alfvén wave resolution.
The SLAU2-HLLI, on the other hand, perfectly preserves
the sharp jump in magnetic variables. Thus, the importance
of hybridizing with the HLLI full-wave solver has been con-
firmed.

4.7 Low-speed wave propagation

This final test case is not a Riemann problem, but useful in
assessing the performance of Riemann solvers at low speeds
in 1D. Here, the initial linear variations for pressure are given
by following equations from [89,90].

Problem 7 (Low speed)

p;i = eposin 2wx/n),
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4.5 tho
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Fig.4 Problem 4 solutions, SLAU2 and SLAU2-HLLI; a density and b magnetic field component B,

1.2 tho

1.0

0.8 o SLAU2

0.6 —Exact

0.4

0.2

0.0
-0.5 -0.3 -0.1 0.1 0.3 0.5

Fig.5 Problem 5 solutions, density; SLAU2

where B, = 0.001, background pressure py and density
being 1, and background velocity being 0.1. Here, one wave-
length A(= 0.05) is composed of n = 20 cells, and ¢ is
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Fig.6 Problem 6 solutions, magnetic field component By; SLAU2 and
SLAU2-HLLI

a small number 0.001, which stands for the magnitude of
pressure variation from the mean value.
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Fig.7 Problem 7 solutions

Figure 7 shows the pressure profiles in the first 20 cells at
t = 1 of the present problem. As time progresses, the wave
amplitude is known to decay. SLAU2, nevertheless, attained
the highest amplitude (17%), followed by SLAU2-HLLI
(14%). The Roe-type Riemann solver showed the smallest
amplitude (11%) which has no low Mach scaling, for refer-
ence.

Note that in steady multi-dimensional problems, these dif-
ferences will result in huge discrepancies from physically
valid solutions, as is evident in Appendix 3 or [33,35] (espe-
cially Fig. 13 in [33], in which SLAU preserved the initial
shape of a Rankine vortex very well whereas it had decayed
by Roe solution after long time computations). This will be
thoroughly covered in our next paper. In this 1D context,
however, the present problem may be the best way to demon-
strate the effects of low-speed scaling introduced in SLAU2
and SLAU2-HLLI, although it is considered a test for Euler
equations without the magnetic field.

5 Conclusions

SLAU?2, categorized as an AUSM-type Riemann solver, has
been extended to magnetohydrodynamics (MHD). SLAU2 is
equipped with a proper dissipation term for both high speed
and low speed flows. AUSMPW+, having no such term, has
also been suitably upgraded by using the dissipation term
from SLAU2. Despite their robust performance in gasdynam-
ics at super- and hypersonic speeds, these solvers were found
not to function well for MHD problems under extreme con-
ditions. While the SLAU2 and AUSMPW+ Riemann solvers
for MHD were able to solve several typical benchmark cases,
in a few severe, high Mach tests, they failed to obtain stable
solutions.

The HLLI Riemann solver, on the other hand, was not
designed for low Mach number flows. However, it has
very favorable performance for higher Mach number MHD

flows. Since the two families of Riemann solvers perform
very well over a range of intermediate Mach numbers, we
decided to hybridize between them, to obtain an all-speed
Riemann solver for MHD. That is, we proposed hybridized
SLAU2-HLLI and AUSMPW+-HLLI Riemann solvers.
The hybrid Riemann solvers suppressed the oscillations that
had appeared in single-solver solutions, and they also pre-
served contact discontinuities, as well as Alfvén waves, very
well. Furthermore, their better resolution at low speeds has
been demonstrated.

We presented several stringent one-dimensional test prob-
lems. The multi-dimensional extension is definitely the next
step and will appear as a future work.
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Appendices

Appendix 1: AUSMPW+-, AUSMPW+-HLLI,
AUSMPW+2, and AUSMPW+2-HLLI for MHD

The AUSMPW+ flux was already extended to MHD by Han
et al. [53]. This form, however, turned out to be unstable
in some numerical tests, as was the case with the original
SLAU?2. Thus, it is modified, as in SLAU2, in which the
gasdynamic part and magnetic part are handled differently,
as follows. The Euler part is

FAUSMPW-+(Buler) = M c10®L + Mpc10®g + PP,

1
+P7Pr + 3 (Fs,L +Fpr). (13a)
® = (p, pu, pv, pw, pE + pr)’,
T
Fg = (0, —Bi)2B., —Bi 2By, —B12B.,0) ", (13b)
T
P = (0, pr,0,0, =By (u-B)) ", (13¢)
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where B, = B“’LZB"R as in [53], and for m;,, = Mz +
Mg >0,

— _

M, =M} +Mg - [(1—w) -+ fr) — f],

Mg =My w-(1+ fr), (14a)
and for my,, < 0,

Mp=M; w-(1+fL),

Mp=Mg+M - [A—w) -1+ f)— frl. (14b)

The pressure-based weighting functions are given by:

3
w=1—min (pT—L ”T—R> (14¢)
PT,R PT,L
(B2~ 1), if pry £0,
fL/r = (14d)
0, if pr.s =0,
prs =P prL +P prr. (14e)

where the pressure flux, which was not given in [53] or [54],
is assumed as the standard AUSM form as (3d) and (3e) (that
drops off higher-order terms):

11+ sign (M1)) if |M] > 1
Pt = 3d)
zlt(ML + 122 —M;), otherwise,

3 (1 —sign (Mg)), if |[Mg| > 1
P = (3e)
(Mg — 1)? (24 Mg), otherwise,

and the mass flux switch, again not given in [53] or [54], is
assumed as follows (again dropping off higher-order terms):

3 My + ML), if|M| =1

Mt = (9d)
1ML+ 1)2, otherwise,
L (Mg — |Mgl)., if|Mg| > 1
M~ = (%)
—4]‘1 (Mg —1)?,  otherwise,
where
My ="E Mg ="E, (15a)
Cc c
¢=min(cr.L. crr), (15b)

that is, the minimum value of the left and the right ¢ (fast
magnetosonic speed) is taken.
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The magnetic part is common to SLAU2 for MHD and
hence omitted. Also, as in SLAU2, another version has also
been developed which does not use HLL but a simple AUSM
formin the magnetic part, and this works well as in the present
AUSMPW+. The solutions are not shown. Furthermore, the
same idea as in Sect. 3.2 will lead to “AUSMPW+-HLLI.”

The selected numerical results are shown in Fig. 8
for Problem 3 (Colliding Flow). In this problem, in con-
trast to SLAU2 and SLAU2-HLLI (Fig. 3), AUSMPW+
produces only small wiggles and very slight undershoot
(x & —0.0) that are similar in AUSMPW+-HLLI (Fig. 8).
For this particular high-speed test, AUSMPW+- suppressed
wiggles in SLAU2 which is designed for both high and
low speeds. For the other problems, SLAU2 represents
AUSMPW+, and SLAU2-HLLI does AUSMPW+-HLLI,
respectively, except for Problem 2 (Ryu—Jones shock tube) in
which SLAU2-HLLI, AUSMPW+-, and AUSMPW+-HLLI
removed small wiggles seen in SLAU2.

Furthermore, since AUSMPW+ does not have a low-
speed scaling term, we replaced its pressure flux with that of
the SLAU2, leading to “AUSMPW+2" and “AUSMPW +2—
HLLI” as follows:

_+ —_—
Fausmpw2Euter) = Mpc12®p + Mpeip®r
1
+ Pausmpw+2 + > (FB,. + FB.8) .
(16a)

Pausmpw 42

o ©

0
Pt {—u; By —viBy —wiB. 1} Bip
+P~ - {—urBy,g — VR By, — W B r} Bi2

(16b)
0.7 tho
0.6
0.5
0.4
0.3
0.2 > AUSMPW+
o — = AUSMPW+-HLLI
0.1 —Reference S
0.0
-0.5 -0.3 -0.1 0.1 0.3 0.5

Fig. 8 Problem 3 solutions, density; AUSMPW+ and AUSMPW+—
HLLI
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where
- - PT,.L + PT,R
(P)ausmpw+2 = (P)sLav2 = — 5
Pt — P~
+ T (PT,L - pT‘R)
2 2
us +u
+‘/% ~(PY4+P” —1)pc

(16¢)

is borrowed from SLAU?2. The rest of the parts are the
same with AUSMPW+ or AUSMPW+-HLLI, resulting in
AUSMPW+2 or AUSMPW+-2-HLLI, respectively. We con-
firmed that in all the previous test cases this change did not
affect the solutions. Let us mention that another all-speed
version of AUSMPW is available in [87] for gasdynamics.

Figure 9 shows the pressure profiles in the first 20 cells
att = 1 of Problem 7. AUSMPW+-2 preserved 13% of the
initial amplitude, followed by AUSMPW+2-HLLI (13%).
AUSMPW +-conserved slightly lower amplitude (12%), indi-
cating the small but actual effect of the low Mach scaling
introduced in AUSMPW+-2 and AUSMPW+2-HLLI. In this
problem, the SLAU2 showed the best performance (17%) and
the Roe was the worst (11%).

Appendix 2: Analysis of SLAU2 for MHD

As conducted in [53], the SLAU2 for MHD behaviors at con-
tact discontinuity and tangential discontinuity is compared
with analytical solutions.

1. Contact discontinuity: p; # pr,ur = ug = 0,vp =
VR, WL = WR,Byy = Byr,B; = Bpr,pL =
PR, By # 0. Thus, referring to (1b),

o pu
pou pu2 + pr — B)%
pU pouv — By B,
pw puUw — B:B;
Q= oE |’ F= ouH — By (u-B) |’
B 0
B, uBy —vBy
L B: | | uB;—wB;
- o _ S ow _
pou — By B, pwu — B;B;
pv? + pr — Bg pwv  — B;B,
G_| Prw —ByB | g pw? + pr — B2
pvH — B, (u-B) |’ pwH — B, (u-B) |’
vBy —uB, wBy —uB;
0 wBy —vB;
vB, —wB, | B 0

(1b)

fluxes from left to right cells are: Fi exact = prLur =

. 2. .
0; F2,exact = PT — Bxs FS,exact = _BxBy,La F4,exact =
—By Bz,L§ FS,exact = _Bx(ULBy,L + wLBz,L)§ (Fﬁ,exact
= 0); F7 exact = —VL By Fg exact = —wg By.

2. Tangential discontinuity: p;, # pg,ur =ug =0,vp #

VR, WL # WR,Byr # Byr, B # B, pr,L =
pT.R, By = 0. The corresponding analytical fluxes
are: Il exact = pLup = 0; F> exact = p1; F3exact =
0; F4,exact = 0; FS,exact = 0; (F6,exact = 0); F7,exact =
0; F8,exact =0.

In the SLAU2,

(m)spavz = % {PL (ML + ‘Vn}+>

+or (ur = V| ")

—% (pr.r — PT,L)} =0 (17)
and
(P)sLavz = PrL ZPT’R + Pt EP_ (pr.L — PT.R)
+V@'(P++P—l)55=m
(18)

at both discontinuities. Thus, the SLAU2 solutions are as
follows:

1. Contact discontinuity

(19a)
(19b)

Fi sLav2 = 0 = Fy exact;
2
Fr sLav2 = pr — By = F2 exact,
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(b)

Fig. 10 Gresho vortex test solutions (Mach number contours, 0 < M < 0.01). a SLAU2 and b Roe

B L+ B R H .
Fsstauz = — By 22 . YR o B.Bys = Fexacts Appendix 3: Gresho Vortex
(19¢) " Tn order to confirm the efficacy of SLAU2 at a low Mach
B. 1L+ B r i i
Fasiaus = —By = SR _BB.; = Fiexact. number, the Gresho Vqrtex [91] is solve'd using SLAU2
2 (a three-wave solver with low Mach scaling) and Roe (a
(19d) full-wave solver without low Mach scaling, as is the case
Fssiaus = —B, v Bop +wiBe L + VRBy R + WRB R also for the HLLI). The problem setup is as follows: A
’ 2 square domain of [0, 1] x [0, 1] is filled with 40 x 40
= =By (v1B:L +wiBy 1) = Fsexact:  (19¢)  square cells, with the periodic boundary condition. The ini-
tial condition depends on the radius » from the vortex center,
since Pt =P~ =0.5atu =0. .
“ (ke ¥0) = (05,05, ey r = /(r —x0% + (v — 302
F7 sLav2 = —vL By = F7, exact; (191)
=10, 21
Fg spau2 = —wp By = F3 exact- (19g) r 0 (2la)
o= (21b)
Thus, the contact discontinuity is preserved by SLAU2. sr, if0<r<02,
2. Tangential discontinuity up=12-5r if02=r=04 (2lc)
0, if r >04,
Similarly, po +12.5¢2, if0<r<02,
= +12.5r2 +4(1 = 5r —In(0.2) +1 . if02<r=<04,
Fi sLav2 = 0 = F1 exact, (20a) TP Crddmer @2 ey, '
F2 sLAv2 = PT = F2, exact, (20b) Po—=2+4nQ), ifr =04,
F3 sLau2 = 0 = F3 exact, (20c) (21d)
FasLavz = 0 = Fi exact, (20d)  here M is Mach number, M = 0.01, y is the specific heat
Fs sLau2 = 0 = F5 exact, (20e)  ratio, y = 1.4, and ug is the angular velocity, converted to
F1.s.a02 = 0 = F7_ exact, (20f)  Cartesian velocity components as
Fg sLau2 = 0 = Fg exact- (20g) Y — e
U = —ugsinf = —ug , (22a)
r
Therefore, the tangential discontinuity is also proved to be X — Xe
conserved. V= —upcost = ug ; (22b)
6 = arctan2 (y — ye, X — Xc) . (22¢)
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The computations are run for 20,000 steps with At =
1 x 107*(CFL ~ 0.4), i.e., until # = 2. The Mach num-
ber contours are compared in Fig. 10. The SLAU2 clearly
maintains the vortex structure, while it is smeared by the
Roe-type Riemann solver.

Note that this problem is 2D gasdynamic. The MHD

version of such a problem is left for future work, since multi-
dimensional MHD involves divergence-free treatment which
is beyond the scope of the present paper.
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