
Conditional Compilation is Dead,

Long Live Conditional Compilation!

Paul Gazzillo

University of Central Florida

paul.gazzillo@ucf.edu

Shiyi Wei

University of Texas at Dallas

swei@utdallas.edu

Abstract—Highly-configurable systems written in C form our
most critical computing infrastructure. The preprocessor is inte-
gral to C, because conditional compilation enables such systems
to produce efficient object code. However, the preprocessor makes
code harder to reason about for both humans and tools. Previous
approaches to this challenge developed new program analyses
for unpreprocessed source code or developed new languages
and constructs to replace the preprocessor. But having special-
purpose analyses means maintaining a new toolchain, while
new languages face adoption challenges and do not help with
existing software. We propose the best of worlds: eliminate the
preprocessor but preserve its benefits. Our design replaces pre-
processor usage with C itself, augmented with syntax-preserving,
backwards-compatible dependent types. We discuss automated
conditional compilation to replicate preprocessor performance.
Our approach opens new directions for research into new com-
piler optimizations, dependent types for configurable software,
and automated translation away from preprocessor use.

Keywords—conditional compilation, preprocessor, C language,
variability, dependent types

I. INTRODUCTION

Highly-configurable software such as the Linux kernel and

the Apache web server form our most critical infrastructure,

underpinning everything from high-performance computing

clusters to Internet-of-Things devices. Keeping these systems

secure and reliable is essential. This software’s variability,

i.e., its ability to be configured and compiled with various

combinations of features, enables one codebase to target

different hardware and application-specific requirements. The

Linux kernel, for instance, runs web servers, cell phones,

refrigerators, and more.

Some of the largest and most configurable software is

written in C. Linux, for instance, has more than 14,000 config-

uration options. Unfortunately, standard practice for these and

most C software is the decades-old practice of implementing

variability ad-hoc with brittle tools. In particular, developers

need to hand-code configurations directly in source code with

extensive preprocessor encodings, which appear as much as

every couple of lines [1]. The preprocessor supports condi-

tional compilation, where the compiler, given configuration

options, produces different object code from the same source

code. Conditional compilation is what enables the extreme

customizability of a single codebase like the Linux kernel.

Supported in part by NSF CCF Awards #1840934 and #1816951

What is wrong with using the preprocessor for implement-

ing variability? Due to the lack of support for variability in the

C language itself, developers have to hand-code conditional

compilation with the preprocessor, which opens the door to

errors appearing in any variation of the compiled code. The

tight coupling between the preprocessor and C language makes

it difficult to understand, debug, and maintain the software.

Due to this difficulty, software tools for C rarely consider the

preprocessor usage fully [2], [3], [4], [5].

We argue the use of the preprocessor has created a dilemma:

(1) the preprocessor is so entrenched in C development that it

is integral to the C language, and (2) the preprocessor is such

a serious impediment to the quality of C code that software

tools cannot be expected to work well with unpreprocessed

code. To the best of our knowledge, our community has tried

to resolve this dilemma with two main research directions.

The first direction is to improve the state of the art in

software tools for C. In recent years, researchers have made

significant progress in developing variability-aware analyses

that work on unpreprocessed C code, including new and

modified algorithms for parsing [6], [7], [8], data-flow anal-

ysis [9], [10], [11], type-checking [12], and rewriting [13].

Nevertheless, there is still a lack of tools that can effectively

detect critical bugs in real-world configurable software such as

Linux across all configurations. More importantly, we believe

this direction is not sustainable. It does not directly tackle the

fundamental issue in developing configurable C software, i.e.,

hand-coding configurations with the preprocessor lead to bugs

and performance issues. In addition, research on “variability-

oblivious” program analysis marches on. Trying to maintain

a variability-aware toolchain in parallel means having to play

catch up with substantial engineering effort.

The second direction is to develop new preprocessors [14],

[15] or adopt better development practices for config-

urable system software. Feature-Oriented Software Design

(FOSD) [16] has brought new programming language con-

structs and paradigms, such as variational data structures [11],

the choice calculus and variational programming [17], and

variational execution [18], [19]. These approaches make fea-

tures, i.e., configuration options, explicit in the language,

which enables easier analysis on configurable code [16].

Language adoption, however, depends on more than just good

science; it depends on social factors as well [20]. In spite

of its known issues, C remains a popular language [21].

105

2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas and Emerging Results (ICSE-
NIER)

978-1-7281-1758-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICSE-NIER.2019.00035

Preprocessor

Front-End

Middle-End/Back-End

Conditional Compilation

Front-End

Middle-End/Back-End

Current Compiler Our Approach

Source Code

Object Code

Macro

Values

Program

Values

Fig. 1: Comparison of compiler phases.

Moreover, even if all new projects adopted good development

methodologies, there are still pervasive C codebases like the

Linux kernel that benefit from continued tool development.

We instead outline a new direction that resolves the dilemma

by striking a balance between replacing the preprocessor (to

enable tool support) and preserving the use of C (to ease

adoption). Ideally, we would like to eliminate preprocessor us-

age altogether. The preprocessor’s value proposition, however,

is high-performance object code. Our approach uses existing

C constructs plus a syntax-preserving extension to the type

system to support some common usage of the preprocessor.

To replicate the performance benefits of the preprocessor, we

present a new conditional compilation phase in the compiler.

Our approach entails the following changes to the use of

C for configurable code. (1) Replace the use of preprocessor

conditionals with C conditionals when used within functions,

as recommended by GCC coding standards [22]. (2) Replace

the use of preprocessor macros with C variables for configu-

ration options. (Section II). (3) Extend the C type system with

dependent types that control the existence of declarations via

expressions of C variables (Section III).

Due to the changes above, we propose a new compiler phase

that supports automated conditional compilation by taking C

variable values at compile-time. The compiler uses these val-

ues to resolve dependent type expressions and C conditionals

as much as possible to produce efficient object code. A side

benefit of this approach is that there is no distinction between

compile-time and run-time variability. The developer is free

to use the same program for either. The compiler is then

free to optimize as much at compile-time as possible and add

instrumentation to support run-time configuration.

Finally, our approach introduces interesting new research

questions for our community to investigate (Section IV), in-

cluding new compiler optimizations and automated translation.

II. OVERVIEW

Our goal is to replace preprocessor usage with automated

conditional compilation that results in good object file size

and performance. Figure 1 compares the compilers before

and after removing the preprocessing phase and adding our

proposed conditional compilation phase. The difference is that

compile-time configuration options are no longer passed via

preprocessor macros. Instead, C variable values may be passed

at compile-time. The conditional compilation phase uses these

1 #ifdef CONFIG_INPUT_MOUSEDEV_PSAUX

2 if (imajor(inode) == 10)

3 i = 31;

4 else

5 #endif

6 i = iminor(inode) - 32;

(a) Implementation with the preprocessor.

1 bool CONFIG_INPUT_MOUSEDEV_PSAUX;

2 if (CONFIG_INPUT_MOUSEDEV_PSAUX) {

3 if (imajor(inode) == 10)

4 i = 31;

5 else

6 i = iminor(inode) - 32;

7 } else {

8 i = iminor(inode) - 32;

9 }

(b) Implementation with our approach.

Fig. 2: Configurable control flow. Adapted from Linux

v2.6.33.3 drivers/input/mousdev.c.

values to optimize the resulting object code by removing code

infeasible for a specific configuration.

The benefits of this approach are that there is only a

single language used to implement configurable code, and

conditional compilation is instead automated by the compiler.

The preprocessor allows implementation of just about any

program semantics, leading to poor tool support. Without the

preprocessor, tools work with a simpler semantics and need

not support the full power of the preprocessor.

We believe this approach can be implemented in an existing

compiler, since most of the C language definition remains un-

changed. There are two possible places to insert the phase in an

existing compiler: just after parsing or just after type checking.

Since we reuse existing syntax, the parser requires little or no

change. In this case, the new phase will take all configuration

options at compile-time and produce a transformed abstracted

syntax tree with any configuration conditions resolved. In the

latter case, C’s static semantics are augmented with dependent

types and a new phase is added after type-checking. This

phase takes uses any given configuration options to resolve

conditionals at compile-time, but produces run-time instru-

mentation to select types according to runtime program values.

A combination of both phases may be possible.

To illustrate how this approach works, take the code

snippet in Figure 2a. This example from the Linux ker-

nel source code uses an #ifdef to alter the pro-

gram, depending on whether the preprocessor macro

CONFIG_INPUT_MOUSEDEV_PSAUX is defined or not.

When the macro is defined, the program contains a complete

if-then-else construct, i.e., lines 2-4 and 6. Line 6 is outside

of the preprocessor conditional, so it is in all configurations.

When the macro is not defined, the resulting object code con-

tains no branch; only the assignment from line 6 is included.

Figure 2b shows how this code snippet would be imple-

mented in our approach. The macro is replaced with the C

variable declared on line 1, while the preprocessor conditional

106

is replaced with a C conditional on line 2. Notice that the

two versions of the program in Figure 2 are equivalent in

meaning. The if-then-else branch conditioned on imajor is

only evaluated when CONFIG_INPUT_MOUSEDEV_PSAUX

is defined, and the assignment from line 6 of Figure 2a still

appears in all configurations, i.e., in both branches on lines 6

and 8. The use of C conditionals is more restrictive than

#ifdefs. We consider this a benefit, since the “anything

goes” freedom of the preprocessor leads to poor tool support.

The downside is that the performance benefits of the prepro-

cessor are lost, because the resulting object code for Figure 2b

is larger and slower compared to the #ifdef version. Our

version has an extra branch due to line 2, which the prepro-

cessor would have resolved at compile-time. Furthermore, the

branch on line 3 will always appear in the object code, unlike

the preprocessor version, because the configuration option is

a program variable with a value unknown at compile-time.

To replicate the performance benefits of the preprocessor,

our proposed compiler phase allows program variables to be

set at compile-time, akin to partial evaluation. The compiler

can remove the code for disabled configuration options without

relying on preprocessor directives. The branches on lines 2

and 3 in Figure 2b are optimized away via constant prop-

agation and dead code elimination, as long as the value of

CONFIG_INPUT_MOUSEDEV_PSAUX is known at compile-

time. With constant folding, even expressions involving C vari-

ables (e.g., CONFIG_USB && CONFIG_PAGES > 0) can

be evaluated at compile-time and used to perform conditional

compilation via dead code elimination.

GCC coding standards [22] even recommend using C

conditionals over preprocessor conditionals when possible,

and Linux developers have been converting #ifdefs to C

conditionals1. This practice, however, only converts control

structure, not the conditional expressions, which are still

preprocessor macros. Macros are still used to provide constants

to the compiler.

Overall, our approach expands on best practices that prefer

C conditionals over preprocessor conditionals by replacing

preprocessor usage entirely. C program variables are used

in place of macros, which requires the compiler to accept

program values at compile-time. This solution allows the

compiler to optimize away code controlled by unselected

configuration options.

III. DEPENDENT TYPES FOR CONDITIONAL COMPILATION

Transformation of #ifdefs to C conditionals is not

enough, because #ifdefs may appear anywhere in C code,

including around declarations and function definitions. Since

we use C variables as configuration options, type declarations

can now include C variables. The existence of a declaration is

predicated on C variables, which leads us to adopt the use of

dependent types [23] in order to support configurable code.

Figure 3a, another code snippet extracted from the Linux

kernel source, shows a common use of the preprocessor to

1https://lkml.org/lkml/2015/5/20/484

1 struct {

2 u16 i_inline_size;

3 #ifdef CONFIG_QUOTA

4 qsize_t i_reserved_quota;

5 #endif

6 }

(a) Implementation with the preprocessor.

1 bool CONFIG_QUOTA;

2 struct {

3 u16 i_inline_size;

4 qsize_t __attribute__((config (CONFIG_QUOTA)))

i_reserved_quota;

5 }

(b) Implementation with our approach.

Fig. 3: Configurable struct definition. Adapted from Linux

v4.18 fs/ext/ext4.h.

1 #ifdef CONFIG_SMP

2 extern void cpu_load_update_active(struct rq *this_rq);

3 #else

4 static inline void cpu_load_update_active(struct rq *
this_rq) { }

5 #endif

(a) Implementation with the preprocessor.

1 bool CONFIG_SMP;

2 extern void __attribute__((config (CONFIG_SMP)))

cpu_load_update_active(struct rq *this_rq);

3 static void __attribute__((config (!CONFIG_SMP)))

cpu_load_update_active(struct rq *this_rq) { }

(b) Implementation with our approach.

Fig. 4: Configurable function definition. Adapted from Linux

v4.18 kernel/sched/sched.h.

configure the fields of a struct. i_reserved_quota is only

a field of the struct when the macro CONFIG_QUOTA is

defined. This can be seen as a variational data type [11].

Figure 3b shows how our approach can support such usage

without the preprocessor. We specify the condition on the

struct field in line 4 using an attribute specifier2 in the type

declaration. Attributes are part of the GCC version of the C

grammar and are used for optimization, but we repurpose this

syntax to express predicates. A Boolean expression of program

variables describes the conditions under which the declaration

exists. In this example, the expression is CONFIG_QUOTA.

Note that this version of the program will compile with a

standard C compiler, if it ignores the attributes. Our proposed

compiler, however, can produce more efficient object code for

certain configurations, since it does not have to lay out memory

for the struct field when its predicate does not hold.

The type predicates also allow for multiple type declarations

of the same identifier. Figure 4a shows two different declara-

tions of the same function. The first (line 2) is an extern

declaration, while the second (line 4) declares the function to

be static and defines its (empty) body. Using the attribute

2https://gcc.gnu.org/onlinedocs/gcc/Attribute-Syntax.html

107

specifiers, Figure 4b shows how different configurations of the

function are declared with the mutually exclusive predicates

CONFIG_SMP and !CONFIG_SMP. While these declarations

are valid C syntax, this program will not compile with the

current C compiler due to the multiple declarations of the same

identifier. This requires our conditional compilation phase to

compile correctly.

Our approach uses dependent types to represent the vari-

ability previously encoded with the preprocessor. The use of

dependent types has been discussed before but dismissed as

too limited for expressing variability, and because they are

undecidable in general [24]. When used only for conditional

compilation, however, this dependent typing scheme is decid-

able, because any program values used in type specifications

are provided at compile-time.

Allowing dependent types for expressing configurable code

opens the door to more sophisticated uses. Suppose we allow

compilation without the values necessary to resolve configu-

ration conditions at compile-time. The compiler then has the

opportunity to perform static type checking and optimization

across multiple configurations simultaneously. Also, blurring

this line between compile-time and run-time configuration

is possible because our approach makes no distinction be-

tween the two. Previous work on dependent types has shown

that adding run-time checks can still make type-checking

decidable [25]. This usage of dependent types enables run-

time variability: for configuration options not provided at

compile-time, the compiler can add instrumentation to read

and evaluate configuration conditions at run-time, much like

variability-aware execution [19]. Moreover, by falling-back

to run-time variability, the user building the software is free

to choose between compile-time and run-time configuration

without having to rewrite any code.

IV. RESEARCH DIRECTIONS

Several research questions emerge from our approach that

guide future work: What new compiler optimization algorithms

can improve conditional compilation? Dead code elimination

works in some cases, but new optimizations may be nec-

essary to match hand-coded preprocessor usage. How much

existing C code can be translated automatically? Previous

work on parsing and transforming unpreprocessed C code

supports the possibility for automatic translations in such

cases [6], [7], [13]. Empirical studies of preprocessor use in

real-world code will help guide new translation algorithms that

infer dependently-typed C. How easily can existing program

analysis and bug-finding techniques be repurposed? While

problems with analyzing unpreprocessed C can be eliminated,

the semantics of the new type system may still need new

theory and development for existing C analyses. What are the

formal semantics of the new type system, and what correctness

properties can be proved? Proving safety properties, such as

the lack of null-pointer errors, would be useful across all

configurations. Adding dependent types to existing formal

semantics for C can enable verification of configurable C code.

How can the compiler efficiently support both compile-time

and run-time variability at the same time? New optimization

algorithms can make the compiled object-code efficient, even

when configuration options are not known at compile-time.

V. CONCLUSION

In this paper, we present a new research direction to

resolve the dilemma of preprocessor usage, showing how some

preprocessor usage can be replaced with C itself while still

retaining the benefits of conditional compilation. Our position

is that both compile-time and run-time variability should be

represented in the same language. We argue that C code

without the preprocessor will be easier to understand and

debug, while preserving C syntax will help adoption. Our

design leads to dependent types for configurable type dec-

larations and compiler optimizations to automate conditional

compilation. Our research opens new optimization, translation,

and verification challenges for our community to investigate.

REFERENCES

[1] M. D. Ernst, G. J. Badros, and D. Notkin, “An empirical analysis of C preprocessor

use,” IEEE TSE, pp. 1146–1170, Dec 2002.

[2] D. Le, E. Walkingshaw, and M. Erwig, “#ifdef confirmed harmful: Promoting

understandable software variation,” in IEEE VL/HCC, 2011, pp. 143–150.

[3] S. Schulze, E. Jurgens, and J. Feigenspan, “Analyzing the effect of preprocessor

annotations on code clones,” in IEE SCAM, 2011, pp. 115–124.

[4] F. Medeiros, C. Kästner, M. Ribeiro, S. Nadi, and R. Gheyi, “The love/hate

relationship with the C preprocessor: An interview study,” in ECOOP, 2015, pp.

495–518.

[5] J. Melo, F. B. Narcizo, D. W. Hansen, C. Brabrand, and A. Wasowski, “Variability

through the eyes of the programmer,” in ICPC. IEEE Press, 2017, pp. 34–44.

[6] C. Kästner et al., “Variability-aware parsing in the presence of lexical macros and

conditional compilation,” in OOPSLA, Oct. 2011, pp. 805–824.

[7] P. Gazzillo and R. Grimm, “SuperC: Parsing all of c by taming the preprocessor,”

in PLDI. ACM, 2012, pp. 323–334.

[8] A. Garrido and R. Johnson, “Analyzing multiple configurations of a C program,”

in ICSM, Sep. 2005, pp. 379–388.

[9] E. Bodden, T. Tolêdo, M. Ribeiro, C. Brabrand, P. Borba, and M. Mezini,

“SPLLIFT: Statically Analyzing Software Product Lines in Minutes Instead of

Years,” in PLDI. ACM, 2013.

[10] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre, and C. Lengauer, “Scalable

analysis of variable software,” in ESEC/FSE. ACM, 2013, pp. 81–91.

[11] E. Walkingshaw, C. Kästner, M. Erwig, S. Apel, and E. Bodden, “Variational Data

Structures: Exploring Tradeoffs in Computing with Variability,” in Onward! ACM,

2014, pp. 213–226.

[12] C. Kästner, K. Ostermann, and S. Erdweg, “A Variability-aware Module System,”

in OOPSLA. ACM, 2012, pp. 773–792.

[13] A. F. Iosif-Lazar, J. Melo, A. S. Dimovski, C. Brabrand, and A. Wasowski,

“Effective Analysis of C Programs by Rewriting Variability,” CoRR, 2017.

[14] B. McCloskey and E. Brewer, “ASTEC: A New Approach to Refactoring C,” in

ESEC/FSE. ACM, 2005, pp. 21–30.

[15] C. Kästner, “Virtual separation of concerns: Toward preprocessors 2.0,” Magdeburg,

Germany, 5 2010.

[16] S. Apel, D. Batory, C. Kstner, and G. Saake, Feature-Oriented Software Product

Lines: Concepts and Implementation. Springer Publishing Company, Incorporated,

2013.

[17] S. Chen, M. Erwig, and E. Walkingshaw, “A Calculus for Variational Program-

ming,” in ECOOP, 2016, pp. 6:1–6:28.

[18] H. V. Nguyen, C. Kästner, and T. N. Nguyen, “Exploring variability-aware

execution for testing plugin-based web applications,” in ICSE, 2014, pp. 907–918.

[19] C.-P. Wong, J. Meinicke, L. Lazarek, and C. Kästner, “Faster variational execution

with transparent bytecode transformation,” in OOPSLA. ACM Press, 2018.

[20] L. A. Meyerovich and A. S. Rabkin, “Socio-PLT: Principles for Programming

Language Adoption,” in Onward! ACM, 2012, pp. 39–54.

[21] IEEE, “Interactive: The Top Programming Languages 2018,” last

accessed Sep 30, 2018. [Online]. Available: https://spectrum.ieee.org/static/

interactive-the-top-programming-languages-2018

[22] GNU, “Coding Standards,” last accessed Sep 30, 2018. [Online]. Available:

https://www.gnu.org/prep/standards/standards.html#Conditional-Compilation

[23] P. Martin-Löf, “Constructive mathematics and computer programming,” in Logic,

Methodology and Philosophy of Science, vol. 104, 1982.

[24] S. Chen, M. Erwig, and E. Walkingshaw, “Extending Type Inference to Variational

Programs,” ACM TOPLAS, 2014.

[25] J. Condit, M. Harren, Z. Anderson, D. Gay, and G. C. Necula, “Dependent Types

for Low-Level Programming,” R. De Nicola, Ed. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2007, pp. 520–535.

108

