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ABSTRACT

A fifth order finite volume WENO reconstruction scheme is proposed in the framework of orthogonally -
curvilinear coordinates for solving hyperbolic conservation equations. The derivation employs a piecewise
parabolic polynomial approximation to the zone averaged values (Q;) to reconstruct the right (qi"), mid-
dle (M), and left (q;) interface values. The grid dependent linear weights of the WENO are recovered by
inverting a Vandermonde - like linear system of equations with spatially varying coefficients. A scheme
for calculating the linear weights, optimal weights, and smoothness indicator on a regularly - /irregu-
larly - spaced grid in orthogonally - curvilinear coordinates is proposed. A grid independent relation for
evaluating the smoothness indicator is derived from the basic definition. Finally, a computationally effi-
cient extension to multi - dimensions is proposed along with the procedures for flux and source term
integrations. Analytical values of the linear weights, optimal weights, and weights for flux and source
term integrations are provided for a regularly - spaced grid in Cartesian, cylindrical, and spherical co-
ordinates. Conventional fifth order WENO - ]S can be fully recovered in the case of limiting curvature
(R— o0). The fifth order finite volume WENO - C (orthogonally - curvilinear version of WENQO) recon-
struction scheme is tested for several 1D and 2D benchmark tests involving smooth and discontinuous

flows in cylindrical and spherical coordinates.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Weighted essentially non - oscillatory (WENO) reconstruction
schemes have been considered among popular numerical ap-
proaches for solving one - and two - dimensional hyperbolic con-
servation laws [1-7]. Finite volume methods deal with the volume
averages, which changes only when there is an imbalance of the
fluxes across the control volume [2]. Flux evaluation at an inter-
face requires an important task of reconstructing the cell averaged
value at the interface [2]. High order reconstruction is preferred
for the cases of complex flow phenomena including discontinu-
ous flows [8,9], smooth flows with turbulence [10,11], aeroacoustics
[11], sediment transport [12] and magnetohydrodynamics (MHD)
[13-15]. There is a plethora of high order reconstruction schemes
such as ENO [16], targeted ENO (TENO) [17], total variation dimin-
ishing (TVD) [2], discontinuous Galerkin [11], piecewise parabolic
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method (PPM) [2,18-20], spectral schemes [21], and flux recon-
struction methods [22]. However, WENO has received attention by
its virtue of attaining a convexly combined very high order of con-
vergence for smooth flows aided with ENO strategy for maintain-
ing a high order accuracy even for the discontinuous flows [2,16].
Therefore, a number of variants of WENO schemes have been pro-
posed for both structured and unstructured grids such as central
and compact WENO schemes [23-31].

The conventional WENO scheme is specifically designed for the
reconstruction in Cartesian coordinates on uniform grids [4,5]. For
an arbitrary curvilinear mesh, the procedure of using a Jacobian,
in order to map a general curvilinear mesh to a uniform Cartesian
mesh, is employed [16]. However, the employment of Cartesian-
based reconstruction scheme on a curvilinear grid suffers from a
number of drawbacks, e.g., in the original PPM paper [18], recon-
struction was performed in volume coordinates so that algorithm
for a Cartesian mesh can be used on a cylindrical/spherical mesh.
However, the resulting interface states became first order accurate
even for smooth flows [18]. Another example can be the volume
average assignment to the geometrical cell center of finite vol-
ume instead of the centroid [32-34]. The reconstruction in general
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coordinates can be performed with the aid of two techniques:
genuine multi - dimensional reconstruction and dimension - by -
dimension reconstruction [16]. Genuine multi - dimensional re-
construction is computationally expensive and highly complicated
since it considers all of the finite volumes while constructing the
polynomial [16]. A better approach is to perform a dimension -
by - dimension form of reconstruction since it consists of less
expensive one - dimensional sweeps in every dimension. More-
over, a number of engineering and scientific problems considered
in Cartesian, cylindrical, and spherical coordinates can be tackled
using regularly - spaced and irregularly - spaced grids.

A breakthrough in the field of high order reconstruction in
these coordinates is the application of the Vandermonde - like lin-
ear systems of equations with spatially varying coefficients [2]. It is
reintroduced in the present work to build a basis for the derivation
of the high order WENO schemes. Mignone [2] restricted the work
to the usage of the third order WENO approach with the weight
functions provided by Yamaleev and Carpenter [35] and did not
extend it to multi - dimensions (2D and 3D). In Mignone’s paper
[2], modified piecewise parabolic method (PPMs) of order ~ 2 — 3
gave better results when compared with the modified third order
WENO. However, the latter reconstruction scheme gave consistent
values for all the numerical tests performed. Also, there is a drop
of accuracy in the modified third order WENO scheme for dis-
continuous flow cases [2] when the standard weights derived by
Jiang and Shu [4] are used, as they are specifically restricted to the
Cartesian grids.

The motivation for the present work is to develop a fifth or-
der finite volume WENO - C reconstruction scheme in orthogo-
nally - curvilinear coordinates for regularly - spaced and irregu-
larly - spaced grids [36,37]. It is based on the concepts of linear
weights by Mignone [2] and optimal weights, smoothness indica-
tors by Jiang and Shu [4]. Also, the present work provides a com-
putationally efficient extension of this scheme to multi - dimen-
sions and deals with the source terms straightforwardly.

The present work is divided into four sections. Section 2 in-
cludes the fifth order finite volume WENO - C reconstruction pro-
cedure for a regularly - [irregularly - spaced grid in orthogonally -
curvilinear coordinates. It is followed by Section 3 in which 1D and
2D numerical benchmark tests involving smooth and discontinu-
ous flows in cylindrical and spherical coordinates are presented.
Finally, Section 4 concludes the paper. Appendix at the end is di-
vided into two sections. The first section includes the analytical
values of the weights required for WENO - C reconstruction and
flux/source term integration for standard uniform grids, whereas
the second section includes linear stability analysis of the proposed
scheme.

2. Fifth order finite volume WENO - C reconstruction
2.1. Finite volume discretization in curvilinear coordinates

The scalar conservation law in an orthogonal system of coordi-
nates (x1, X, X3) having the scale factors hq, hy, h3 and unit vectors
(é1, &y, €3) in the respective directions, is given in Eq. (1).

Q
VF=S 1

FTiR (1)

where Q is the conserved quantity of the fluid, F = (F, K, ) is the

corresponding flux vector, and S is the source term. The divergence
operator is further expressed in the form of Eq. (2).

1

V= fhoh

|:88x1(h2h3F1) ; a%(hlhgm + ai3(h1h25):| @)

Eq. (1) is discretized over a computational domain comprising
Ny x Ny x N3 cells in the corresponding directions with the grid

sizes given in Eq. (3).

AXyi=Xpi0 =Xy, AXpj=Xp 51 =X 1,

- X3,k—% (3)

For the sake of simplicity, the notation (i, j, k) is mentioned as i
where i € Z3; and Z3 is a vector of coordinate index in the compu-
tational domain with 1<i<Nj, 1<j<N,, and 1<k <Nj3. Also, the
position of a cell interface orthogonal to any direction (d) is given
by &, and it is denoted by i+ led For example, i + 261 refers to
the i+ 1 interfaces of the cell i in &; direction. The cell volume is
given in Eq. (4).

AVij = / / / ““h hshsdy dxadxs @)
3k

Axzp = X3 k1

The flux F; is averaged over the surface - area A; of the interface
i+ 1@, as given in Eq. (5).

E,i+%é1 = / 3k+7 / 2J+7 F1h2h3dX2dX3 (5)

+2e1

where the cross - sectional area A is provided in Eq. (6).

Litlg
Here the scale factors h,, h3 are the functions of the position vec-
tor at the interface i+ 1.

VIS R N7
A1,i+%é1 = hzhngde3 (6)
X3k Xz.;; 1

Similarly, the expressions for the other directions (d = 2, 3) can
be obtained by cyclic permutations. The final form of the dis-
cretized conservation law can be derived by integrating Eq. (1) over
the cell volume and applying the Gauss theorem to the flux term
yielding Eq. (7), where Q; and §; are respectively the conservative
variable and the source term averaged over the finite volume i.

d = 1 ~ _
P N Xd: I:(AdFd)pr%ed (AdFd),,,ed] =S5 (7)

In cylindrical coordinates, (x1, X3, x3)=(R, 0, z), (hq, hy, h3)=(1,

R, 1), and Eq. (7) transforms into Eq. (8).

EQ_; _ (ﬁRR)H_% (FRR),_,e (FQ)H%@H - (ﬁe)i_%éH
at AVg; RIAQJ
(E)i+%éz - (I;:Z)i_%éz
— Az, +5; (8)

where (. By, E) are the surface averaged flux vector (F) compo-
nents in (R, 6, z) directions and AVg; = (Ri2+1 —Ri2 1)/2 is the cell
7 =2
radial volume.
In spherical coordinates, (xq, x5, x3)=(r, 0, @), (hq, hy, h3)=(1,
r, rsinf), and Eq. (7) transforms into Eq. (9).

0 Q_l (Erz)i+%~ (Frrz)l_,e (FgSiTl@)i+%éH — (ﬁgSiﬂg)i_%éﬁ
ot AV Fi AW
A0 Bpivge, — (Fplise, o5 ©)
A/'Lj i Ay

where (E,I%,Ep) are the surface averaged flux vector components
in (r, 6, ¢) directions and the remaining geometrical factors are
provided in Eq. (10).

3 _ 3 _r3
AV, = Uiy 7Ty, =2 7“';1 r.2 2
3 3 (ri+1 — rl_%)
Apj = costf% - cos@H% (10)
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Table 1
One - dimensional Jacobian (g—g) values for the regularly -
spaced grids for volumetric operations.

Coordinates Direction(s)

Cartesian XYz £0

Cylindrical R £l
0,z £0

Spherical T £2
% sin&
¢ &0

2.2. Evaluation of the linear weights

A non - uniform grid spacing with zone width A§; :EHl -
2
51‘_% is considered having & e(x;, x,, x3) as the coordinate along
the reconstruction direction and §; 41 denoting the location of the
2

cell interface between zones i and i+ 1. Let Q; be the cell average
of conserved quantity Q inside zone i at some given time, which
can be expressed in form of Eq. (11).

Gi= V/ @ 0 ae (1)

5

where the local cell volume AV; of ith cell in the direction of re-
construction given in Eq. (12)

&1 0V
AV :/ P ed 12

g—g is a one - dimensional Jacobian whose values for volumet-

ric operations are summarized in Table 1 for structured grids in
standard coordinates.

Now, our aim is to find a pth order accurate approximation to
the actual solution by constructing a (p — 1)th order polynomial
distribution, as given in Eq. (13).

Qi(E)=aio+ai1(§ —§N+ai (5 —E)7+...+ a1 (5 )"
(13)

where a;,, corresponds to a vector of the coefficients which to be
determined and & can be taken as the cell centroid. However,
the final values at the interface are independent of the particular
choice of £ and one may as well set § = 0 [2]. Mathematically,
the cell center refers to the position & = (§i11,2 + &i_1,2)/2, while
the cell centroid refers to the position & = AV;/A§; of cell i, in
the direction of consideration. Unlike the cell center, the centroid
is not equidistant from the cell interfaces in the case of curvilinear
coordinates, and the cell averaged values are assigned at the cen-
troid [2]. Further, the reconstruction method has to be locally con-
servative, i.e., the polynomial Q;(§) must fit the neighboring cell
averages, satisfying Eq. (14).

/ NG

i+s—j

d&‘ AV1+5Q1+5 for —ip<s<ig (14)

&

where the stencil includes i; cells to the left and i; cells to
the right of the ith zone such that i; +ig +1 = p. Implementing
Egs. (12) and (13) in Eq. (14) along with a simplification leads to a
p x p linear system (15) in the coefficients {a;}.

IBi—iL,O e ﬂi_iL,p_1 Qio Q_i—iL

Bivig.p-1/ \lip-1 Qitiy

Bitiz.0

where

Brosn = — / (e ee) Ve (16)

Bk, i

Eq. (15) can be written in the short notation using a p x p ma-
trix B with the rows ranging from s = —ij, ..., ig and columns rang-

ing fromn=0,...,p—-1.

p-1 _

ZBsnai.n = Qiys (17)
n=0

However, evaluation of the reconstruction coefficients ga;; in
Egs. (15) and (17) requires zone averaged values Q;, thus, increas-
ing the computational cost of the whole process as it needs to be
evaluated at every time step. The coefficients {q;,} extracted from
Eq. (15) will also satisfy condition (18).

p-1
q,Jr = hm Q;(é) = Zaln(gwf Eic)HQ
|+% n=0
p-1
4 = lim Q,@)_Zam(s,_, £ (18)
n=0

A more efficient approach for evaluating left and right interface
values is using a linear combination of the adjacent cell averaged
values [2], as given in Eq. (19).

i
F= ) WG (19)

S=—if

From Eq. (17), after inverting the matrix B, we get relation (20).

i
Qin = Z CnsQiys (20)

S=—i|

where C = B! corresponds to the inverse of matrix B, which will
exist only if matrix B exists and is nonsingular.
After combining Eqs. (18) and (20), we get

p-1 i

£ Z Z CnsQi+s (gii% - %_ic)n

n=0 \s=—i;

=)
Il

= ZQH—S chs(gil *%‘) (21)

S=—1i;

By comparing Eqgs. (19) and (21), we can extract the matrix of
weights w".

p-1
Wi =) CuslEy — 0" (22)
n=0

Since, Cps = (CT)sn = ((BT)"1)gn, Eq. (22) can be finally written
in the form of Eq. (23).

Z (BT)TlS 1 S

s=—1i;

=Gy - 60" (23)

Therefore, it is evident that the weights w are shown to sat-
isfy Eq. (24) [2], which is the fundamental equatlon for reconstruc-
tion in orthogonally - curvilinear coordinates.

T
Biio Bizi,p-1 Wf_iL 1

: : - : (24)
:8i+iR,p71 wi (g:ii% - %-l'c)p71

i,ig

Bitiz.0
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Also, the grid dependent linear weights (wl.is) satisfy the nor-
malization condition (25) [2]. ’

IR
S wE =1 (25)

S=—I|,

Some important remarks on the linear weights in the proposed
scheme are as follows:

1. Eq. (24) is capable of evaluating the grid generated linear
weights for any regularly - [irregularly - spaced grid in or-
thogonally - curvilinear coordinates. In this paper, regularly -
spaced grids refer to the case where A£; is a constant,
whereas the irregularly - spaced grids refer to when it is
not a constant value. So, these definitions exclude unstruc-
tured and non - orthogonal grids. It is observed that these
weights are independent of the mesh size for standard reg-
ularly - spaced grid cases, but depend on the grid type. Also,
they can be evaluated and stored (at a nominal cost) inde-
pendently before the actual computation, after the grid type
is finalized.

2. For fifth order WENO, three sets of third order (p = 3) sten-
cils (S;) are chosen namely

L So(l.fz,l.fl,l‘) o 7l.L=2,l.R=O
e S1(i—-1,i,i+1) s —ip=1,ig=1
o Sy(ii+1,i42) 1 —if = 0,ig = 2.

In addition to this, another symmetric stencil S5 :: (i —2,i—
1,i,i+1,i+2) is used to extract the values of the optimal
weights in the Section 2.3.

3. The final interface values (19) and the linear weights depend
only on the order of the reconstruction polynomial and not
on &f, which can be set to zero [2].

4. The values are simpliﬁed when the Jacobian is a simple

power of & i.e. 5 =&™. Then, B;,, of Eq. (16) can be writ-
ten in the 51mp11ﬁed form (26).
n+m+1 n+m+1
o m+ 1 §1+s+2 E1+s—— 26
/3i+s4n T n+m+1 §m+1] Em+1 (26)
i+s+3 i+s—3
5. For the spherical - meridional coordinate, f;,, of

Eq. (16) becomes highly complex as (‘}V =sin&). The
value of B;,, can be computed from Eq. (27) and needs
to be solved numerically e.g., by using LU decomposition
method.

1 " n kr
) - - | n—k ) it
Prosn = o, —eas, 1 (k) (67 teos(& + )
k
_gi?:kcos;(é,vH + Tn):l (27)

where is. refers to i+s+ 3.

6. Eq. (24) can also be used to compute the point - values of
Q&) at any other points than the interfaces e.g., the cell
center (g; M), The value at the cell center is obtained by set-
ting the rlght hand side of the matrix (24) as (1,0,0,...,0)T
with &f = 0, which is important in the case of nonhnear sys-
tems of equations where the reconstruction of the primitive
variables is done instead of the conserved variables [2].

7. The linear positive (w;’), middle (w{.‘/’) and negative (w;)
weights for the WENO reconstruction for the standard cases
of regularly - spaced grid in Cartesian, cylindrical, and spher-
ical coordinates are summarized in the Appendices A.l1,
A.2.1, and A.3.1 respectively. The analytical solutions for
the spherical - meridional coordinate (6) and irregularly -
spaced grid are highly intricate and case - specific respec-
tively. Thus, they are not mentioned in this paper as they
need to be dealt numerically.

The weights and the stencil are denoted by w”’, and SP* re-
spectively, where k is sequence of the weight - applled cell with
respect to the cell considered for reconstruction (i), p is the order
of reconstruction (p =i, +ig+ 1), I is the stencil number, and ‘%’
represents the positive and negative weights i.e. weights for recon-
structing right (+) and left (-) interface values respectively. The
derivation of middle (mid — value) linear weights (WPM) also fol-
low the same procedure, however, their usage along w1th middle
optimal weights might introduce oscillations due to their possibly
negative values, as seen for WENO JS [38].

The reconstructed values q l represents the pth-order recon-
structed value at right (4) or left (-) interface of ith cell on sten-
cil I. The formulation for the interpolated values at the interface
for the WENO reconstruction are given by the linear system of
Eq. (28), where i; and iz depend on the stencil L

ig
= > wiQus (28)

Ss=—1i

2.3. Optimal weights

The weights which optimize the sum of the lower order inter-
polated variables into a higher order accurate variable, are known
as optimal weights [4,5]. For the case of fifth order WENO interpo-
lation, the third order interpolated variables are optimally weighed
in order to achieve fifth order accurate interpolated values as given
in Eq. (29) for the case of p = 3.

Z lqll (29)

where Ci is the optimal weight for the positive/negative cases

(Zp 1)+

on the 1th finite volume. CM for mid - value weights also fol-
low the same procedure. So, Eqs (24) and (26) are used again to
evaluate the weights for the fifth order (2p — 1 = 5) interpolation
(ip = 2,ig = 2). The fifth order interpolated variable at the interface
is equated with the sum of optimally weighed third order interpo-
lated variables, as given in Eq. (29). The optimal weights Cfl are

evaluated by equating the coefficients of Q resulting in (2p—1)
equations with p unknowns. For the fifth order WENO - C recon-
struction, the case is simplified to a system of linear equations as
given in Eq. (30), by selecting Q;_,, Q;, and Q;, coefficients to re-
duce the computational cost.

52 5e
ct Wio—2. ct = Wio+2.
0= 3k ¢ 2T 3

0.-2 2,42

5+ + 3+ + 3+
CcE — Wzoo_C oWioo ~ C 2Wizo 30
1= 3= (30)
’ Wito

Some remarks regarding the optimal weights are given below:

1. The summation of the optimal weights always yield unity
value and their value is independent of the coefficients of Q
equated in Eq. (29).

2. Since weights are independent of the conserved variables,
optimal weights are also constants for a selected orthogo-
nally - curvilinear mesh and can be computed in advance
with a little storage cost.

3. The analytical values in the Cartesian, cylindrical - radial,
and spherical - radial coordinates for a regularly - spaced
grid are provided in Appendices A.1.3, A.2.3, and A.3.3 re-
spectively.

4. The only case where the optimal weights are mirror - sym-
metric is of the regularly - spaced grid in Cartesian coordi-
nates. The optimal weights are the same as of the conven-
tional fifth order WENO reconstruction [3,4] in this case and



402 M.A. Shadab, D. Balsara and W. Shyy et al./ Computers and Fluids 190 (2019) 398-424

also when i— oo (limiting curvature) in the case of regu-
larly - spaced grid cases in the cylindrical - radial and spher-
ical - radial coordinates.

5. The weights for spherical - radial coordinates are much more
complex. For spherical coordinates, it is advised to use the
fifth order weights and linear weights to evaluate the opti-
mal weights or use direct numerical operation after mesh
generation since the analytical values of optimal weights
contain high order (i'®) terms. Moreover, the concept of op-
timal weights can be completely removed with the aid of
central WENO [23,25,27] or WENO - AO [7] type modifi-
cation to the present work. However, the present work re-
mains general and provides the backbone to such recon-
struction techniques.

2.4. Smoothness indicators and the nonlinear weights

The smoothness indicators are the nonlinear tools employed
to differentiate in between a smooth and a discontinuous flows
[4,5] on a stencil. They are employed in order to discard the dis-
continuous stencils and maintain a high order accuracy even for
the discontinuous flows. From the original idea of Jiang and Shu
[4], the present analysis is performed. Jiang and Shu [4] proposed
a novel technique of evaluating the smoothness indicators. Since
the smoothness indicator varies with the grid index i and stencil
S; in the present scheme, it is denoted as (IS;;) in the remainder
of the paper. The idea involves minimization of the L,—norm of
the derivatives of the reconstruction polynomial, thus, emulating
the idea of minimizing the total variation of the approximation.
The mathematical definition of the smoothness indicator is given
in Eq. (31) [3,4].

= Sy ¢ dm 2 A £2m-1
IS, = Z/g (@Q“@» AEP"IdE 120, p-1
m=1"5j-1

(31)
To evaluate the value of IS;), a third order polynomial interpolation
on ith cell is required using positive and negative reconstructed
values by stencil S;, as given in Eq. (32).
Qii(€) =ajp0+ a1 (& — &) + ;2§ — &F)? (32)

Let &1 —&f =§", & 10§ =-§. and §" +&~ = A§;. The
polynomial will satisfy the constraints (33) for all kinds of finite
volumes.

§.1 -
TQu)E=Q . g =QiGLy) (33)

Finally, we get the values of the a;;q, a;;;, and a;5.

6Q-l‘€j7$i+ + qa%‘f (S,‘7 - 2§i+) + Q{lff (S,’+ - 2“;:,'7)

it = € +E )
2q171 (5; - 2€i+) - 6Q-l (g,i - S,‘Jr) - 2q1+1 (S,’+ - 2%-1'7)
i = E+5)
(G5 -2Qi+q5)
Qi = w (34)

For the regularly - spaced grids, the values of £+ and £~ are con-
stant throughout the grid, which are given below for the standard
coordinates.

o Cartesian coordinates: (x, y, z) direction: &+ =&~ = ATE
£+ = AR(% _
1237_6) £ = AR(% + u}—_e) where i = AR/Ri,1,5 (6, 2) di-

rection: £t =£- = ATg

¢ Cylindrical coordinates: Radial (R) direction:

o Spherical coordinates: Radial (r) direction: &+ = Ar(% -

2i-1 - 1 2i-1 . :
m) £ = Ar(i + m) where i= Ar/rii1
Meridional (6) direction: §t=0,_1—06f, E- =—(6f -
2

0. 1cosh. 1 —sinb.
177 177 -

2
cos6. 1 —cosO (¢)
2

0, 1) where 6f =
2

sr=g-=5

These values on a regularly - spaced grid in Cartesian coordi-
nates (§t =&~ = ATé) transform relation (31) into the one given in
[4,39].

Now, putting the values of a;;o, a;;;, and a;;, obtained from
Eq. (34) in Eq. (32) and then finally evaluating the smoothness
indicator from Eq. (31) yields the following fundamental relation
(35) for evaluating the smoothness indicators in the proposed
scheme.

IS;; = 4(39Q7 — 39Qi(q;, + q7) + 10((q;)? + (q;)?) +19¢;,q7))
(35)

Some remarks regarding the smoothness indicators are as fol-
lows:

direction:

e Eq. (35) is a general relation for every standard grid and de-
pends only on the third order reconstructed variables at the
interface (g;°).

. ql.i are the third order reconstructed variables obtained from
Eq. (28) after using suitable grid dependent linear weights.

e For a regularly - spaced grid in Cartesian coordinates, the
formulation for fifth order WENO - C is the same as of
WENO - JS [3,4,39] after the linear weights are substituted.

The nonlinear weight (a),.il) for the WENO - C interpolation is
defined as follows [3,4].

ot
o= =012 (36)
2o %
where
c*
+ L 1=0,1,2 (37)

AT xS

where € is a small positive number used to avoid denominator be-
coming zero [9]. Its value is a small percentage of the typical size
of the reconstructed variable Q; in such a way that Eq. (37) stays
scale invariant [9]. Typically, its value is chosen to be 106 [4,9,39].
The choice of non-linear weight is not unique. There is another
set of non-linear weight formulation proposed by Henrick and Co-
workers [40-42] using the same smoothness indicator definitions,
which can enhance the accuracy at smooth points especially at
smooth extrema [9,40,41]. The final interpolated interface values
are evaluated from Eq. (38).

p-1

@p-1)+ + _p+

Gt =) ol (38)
1=0

2.5. Extension to multi-dimensions

The interface values calculated after the initial application are
the point values only when the domain is 1D. For 2D and 3D do-
mains, the reconstructed variables are line and area average val-
ues respectively [2,43,44]. If these values are used to evaluate flux,
the scheme drops down to the second order of accuracy [2,43,44].
Buchmiiller and Helzel [44] proposed a very simple and effective
way of achieving the original order of accuracy, just by using one
point at each boundary. In this section, we are simply extending
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Fig. 1. High order interface flux evaluation procedure. Left: Mid - point value reconstruction at each interface inside a cell using adjacent interface average values. Right:
Line averaged flux evaluation by solving the Riemann problem at each mid - point and averaging using five adjacent points.

their work from Cartesian grids to general grids in orthogonally -
curvilinear coordinates.

For the sake of simplicity, a 2D grid in orthogonally-curvilinear
coordinates having unit vectors &; and &, in the corresponding or-
thogonal directions is considered, as shown in Fig. 1. After recon-
structing the left and the right interface averaged values in the first
WENO sweep, the second sweep is performed to yield the point
values. For the 3D case, line averaged values are yielded at this
point and thus, require another reconstruction of line averaged val-
ues in the direction orthogonal previous reconstructions to obtain
the point values. The Jacobian values for the conversion from vol-
ume averaged value to point values are summarized in Table 1.
Since this is the same principle as what we have already described
in Sections 2.2 and 2.3, the theory and derivation are not discussed
again. However, this time, the line average values are converted to
the point values at the mid - point of the interface with the aid
of adjacent interfaces’ line averaged values. Also, since the quan-
tities have been reconstructed using WENO scheme in the first
face - normal sweep (blue - colored left face in &, direction), as
shown in Fig. 1 (left), the second sweep of interface in the tan-
gential direction &; doesn’t require WENO procedure because it al-
ready contains the required smoothness information. Thus, fifth or-
der accurate weights required for the mid - point value evaluation
can be directly calculated by considering £ in &, direction with the
same fifth order centered stencil, § = 0, and substituting &; in the
place of &ii% in Eq. (24). The values of the weights are the fifth or-

der weights in the corresponding direction as evaluated earlier in
Section 2.3. Then, the fluxes can be evaluated from the left and the
right hand side conserved variables at the interface by solving the
Riemann problem [45]. In the future, the method will be extended
to gas - kinetic scheme (GKS) [46].

The evaluated fluxes at the mid - points of the interfaces are
averaged using polynomial interpolation, as shown in Fig. 1. One-
dimensional Jacobians for flux integration are coordinate specific.
Since the final integrated value is a surface averaged value, it is in-
herently related only to the corresponding two dimensions of that
surface. For example, while integrating in spherical (r — 6) plane,
the one - dimensional Jacobians are & (not £2) and unity (not sin&)
in r and 6 directions respectively. This is because the averaging
procedure is independent of the third dimension ¢ which adds rd¢
term to the integration. So, the altered one - dimensional Jacobians
for 2D planar averaging are summarized in Table 2.

Table 2
One - dimensional Jacobian (@’V
regularly - spaced 3D grids.

) values for interface flux reconstruction for the

)
o)

Grid type Face coordinates (i — j) m =L

9E; 9E;
Cartesian x-y),y-2),x-2) 1 1
Cylindrical (r—0) & 1
(r—2),0 -2 1 1
Spherical (r—0),(r-¢) & 1
6 —¢) sin 1

Consider a pth order accurate polynomial of any variable, say
flux Q in this case, joining p consecutive points, say mid - points
of the interface as represented in Fig. 1 (right). It can be expressed
in the same form as provided in Eq. (13), which takes the matrix
form given in Eq. (39).

Qio

QE) = (1 (E-&9 & —£97) (39)
Qi p-1

But this time, instead of calculating the point values from the
line averaged values, vice - versa operation is performed. Eq. (13) is
valid for the values from i — i; (leftmost value) to i+ ig (rightmost
value), where i} + iz +1 = p. A system of p equations is obtained
after substituting the values at each considered point, the matrix

form of which is given in Eq. (40).

Qi 1 G, —-8D) (&, — &SP
Qi—ij+1 B 1 Gy -8 (&iips1 — EHPT
Qi 1 Gy —£0) vty — £
Qi
aiq
X : (40)
ai.;;—l

where Q is any-arbitrary variable which needs to be averaged in
[5_1.&, 1] It can be written in a much simpler matrix form given
2 2

in Eq. (41).

(Q] = [XI][A] (41)
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where [Q=1[Qi i Qi iys1:-- - Q)" [X1] =
1 Gy — 8D (i, —EO)P!
1 Gy =8 Giips1 —EHP!
. ) and [A] =
1 Gy &) (Eivig — D!

lai0. a1, ... Qi pq]"

Using the same procedure as described in Sections 2.2 and
2.3 and performing the average of the polynomial as given
in Eq. (39) similar to Eq. (11) over the domain [&;_;,,&i1/2],
Eq. (42) is obtained.

Q; = [X1][A] (42)

< s )03V 1l )19V
where [XT] = [ 2 ;" (6 — 600 B2t o [, € - 6! Blds ...
2 2

§.1
Sl * € - gor Bt |
=7

From Egs. (41) and (42), a general form of equation for integra-
tion from a lower dimension to a higher dimension can be derived,
as given by Eq. (43).

Q; = {[X1[X1]-"}[Q]

The term {[XI|[XI]-1} includes the weights essential for con-
verting the mid - point interface flux values to the line averaged
interface flux values, as shown in Fig. 1 (right). The next integra-
tion sweep in the transverse direction yields the area - averaged
flux values at the interface. The weights for integrations in the
corresponding directions are provided in Appendices A.1.4, A.2.4,
and A.3.4 for the standard cases. Integration is preferred to be per-
formed in the exact vice - versa fashion as of reconstruction from
the surface averages.

(43)

2.6. Source term integration

The source terms need to be dealt with extreme accuracy since
any contamination in it might deteriorate the high order accuracy.
The source term integration is performed based on the works by
Mignone [2]. For 1D test cases, it is preferred to reconstruct the
mid - point of each cell using WENO procedure, weights of which
are provided in Appendices A.1.5, A.2.5, and A.3.5. Reconstructing
at Gauss - Lobatto 4 points (fifth order) instead of mid - point
and performing quadrature also yields the same results (not shown
in the paper), therefore, mid - point reconstruction with 3 point
Simpson quadrature is advised.

The present work is a significant extension to Mignone [2] since
point values are considered for the source term evaluation, un-
like the constant radius averages [2], which can only achieve sec-
ond order of accuracy in multi - dimensional problems [43,44].
The theory for deriving the weights for the source term integra-
tion is exactly the same as of flux integration given in Section 2.5.
However, reconstruction of the source - term integration is per-
formed in every dimension, so the original one - dimensional Ja-
cobians given in Table 1 can be used for the integration. If non -
radial integration is performed in the first place, ‘1/R’ factor in all
of the tangential terms at R=0 will yield an infinite value, so
only numerators are integrated with the original weights. More-
over, since the source terms contain ‘1/R’ factor, the radial integra-
tion weights need to be regularized [2], by reconsidering the inte-
gration of Eqé (41) with a regularized factor of the source term in
Eq. (14) i.e. sz% %"’%)g—‘gdé = AV,Q;. where Q represents the orig-

=2
inal source term (e.g., if Q; = (p;i/R;), then Q; = p;) in this context.

First integration tangential to the surface is performed in one
direction involving five points, to calculate the line average value
of the source term. In the next step, five line averaged values
are integrated in the transverse direction to the first sweep,
tangential to the interface as shown in Fig. 2 (left). Finally, a face
normal interpolation is performed by utilizing the face averaged
source terms of six faces i.e. (i—5/2)*, (i—-3/2)*, (i—-1/2)",
(i+1/2)~,(+3/2)",(i+5/2)~ faces, as illustrated in
Fig. 2 (right). The weights for the source term integration are
provided for the standard cases in Appendices A.1.5, A.2.5, and
A.3.5. In addition to the approach discussed above, interior points
can also be used to evaluate the source terms. For 1D tests, it is
feasible to utilize the mid - point values and perform Simpson
quadrature to achieve fifth order accuracy using the weights
given in the appendix. However, evaluation at the interior points
becomes very expensive in multi - dimensions.

2.7. WENO - C final algorithm

The final algorithm for WENO - C reconstruction is as follows:

o After mesh - generation, calculate the values of linear and
optimal weights, fifth order middle (mid - value) interpo-
lation weights, weights for interface flux and source term
integration in every dimension. For standard uniform grids,
weights are provided in the appendix.

e Convert the volume averaged conservative variables into
the interface averaged values by one - dimensional WENO

~

€2

~

€2

Fig. 2. Fifth order source term integration procedure. Left: Fifth order using middle values. Right: Sixth order integration using face values.
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sweeps in &;,8;, and &; directions using the evaluated

weights and smoothness indicator given in Eq. (39). Refer to

Sections 2.2, 2.3, and 2.4,
o Perform reconstruction of the interface averaged variables to
mid - line averages values in the plane of the interface. Per-
form another reconstruction of the mid - line values in the
orthogonal direction to the previous reconstruction in the
plane of the interface, to achieve the point value at the mid -
point of the interface. Refer to Section 2.5.
Calculate flux at the mid - point of each interface by solving
the Riemann problem [45].
Perform volume and surface averaging of the source and flux
terms respectively using dimensional - by - dimension ap-
proach by the weights provided in the appendix. Key tip:
If all of the source terms contain ‘1/R’ factor, it is advised
not to involve radius (1/R) term in the tangential averaging,
if performed before the radial averaging. While radial aver-
aging, regularized relations are preferred, if the considered
points contain R = 0 terms. Refer to Sections 2.5 and 2.6.

3. Numerical tests

In this section, several tests on scalar and nonlinear system
of equations are performed to analyze the performance of the
WENO - C reconstruction scheme. The test cases include scalar ad-
vection (1D) on regularly - | irregularly - spaced grids, smooth (1D)
and discontinuous inviscid flows (1D/2D) governed by a system of
nonlinear equations (Euler equations) on regularly - spaced grids
in cylindrical and spherical coordinates. For the sake of compari-
son solely on the grounds of the high order reconstruction, time
marching in all WENO reconstructed 1D test cases is achieved by
explicit third order TVD Runge - Kutta scheme [2,47]. For 2D test
cases, explicit fifth order Runge - Kutta scheme [44], is employed
to reduce the computation time. Since high order spatial recon-
struction with a lower order time marching requires a lower effec-
tive value of CFL number (or time step) to check the dominance of
temporal errors over spatial errors, the empirical formula to eval-
uate the time step is given in Eq. (44).

At = Ca|:max ( ) Z (Alj?zss/ff>i|1 (44)

where C, is the CFL number, D is the number of spatial dimen-
sions d, while Al; and A4 are the grid length and maximum signal
speed inside zone i in the direction &y. ss and tt are the spatial and
temporal orders of convergence respectively.

For all tests performed in this paper, the initial condition on
the conserved variables is averaged over the corresponding fi-
nite volumes AVj; using seven - point Gaussian quadrature in a
dimension - by - dimension fashion. Numerical benchmark test
cases for the scalar conservation laws are reported in Section 3.1,
while the verification tests for nonlinear systems are presented in
Section 3.2.

In this paper, different boundary conditions have been used and
their implementation is discussed here. At symmetry or reflecting
type boundary, the variables inside the boundary cell (i) are copied
to their corresponding ghost cell (—i) except for the velocity nor-
mal to the boundary, which becomes negative for the ghost cells.
However, for the zero - gradients and free boundary conditions,
the value at the boundary cell is directly copied to all of the ghost
cells.

Errors €; are computed using the L; discrete norm defined in
Eq. (45). In case of a linear system, Q is a generic flow quantity
while in case of a nonlinear system of equations, error in density

p is considered.

Y10 - Q1A

aQ=—7F—"— (45)
AV

where summation is performed on all finite volumes AV; with
Qiref to be the volume average of the reference (or exact) solution.
Finally, the experimental order of convergence (EOC) is computed
from Eq. (46).

lo €(Q)
J (e{ @
N,
log(‘f;1 )
[T Ng
d=1
where the superscript ¢ and f refer to the coarse and fine mesh
respectively and N is the number of finite volumes in é; direction.

EOC =

3.1. Scalar advection tests

As a first benchmark, 1D scalar advection equations Eq. (48) in
cylindrical - radial and spherical - radial coordinates, and
Eq. (52) in spherical - meridional coordinates are solved. Two dif-
ferent tests (tests A and B) are performed on a regularly - spaced
grid, while test A is also performed on an irregularly - spaced grid.
Test A subsumes a monotonic profile while test B is a more strin-
gent test involving a non - monotonic profile. For the irregularly -
spaced grid, the grid spacing increases linearly with the radial dis-
tance. The summation of all zone lengths is fixed, i.e., length of
the computational domain and the number of cells N is given. A
parameter Ratio is introduced in Eq. (47) which is an indicator of
the level of non - uniformity in the computational domain.

Ratio =
Grid spacing of any cell in an N -cell uniform grid
Grid spacing of the first cell (or the smallest cell) in an N -cell nonuniform grid

(47)

3.1.1. Advection equation in cylindrical - radial and spherical - radial
coordinates

The governing 1D scalar advection equation in cylindrical - ra-
dial and spherical - radial coordinates is formulated in Eq. (48).
BQ m

+ sm R (é Q) = (48)

where the £™ is the one - dimensional Jacobian and therefore,
m=1 and 2 respectively correspond to cylindrical - radial and
spherical - radial coordinates. Velocity v varies linearly with the
radial coordinate & i.e. v =« and o = 1. Eq. (48) admits an exact
solution given in Eq. (49).

QI (§,t) = e ™MVQ(Ee ", 0) (49)

where Q(£e~%t,0) is the initial condition. For the present case, a
Gaussian profile, given in Eq. (50), is employed.

Q(§,0) = e ¢ (50)

where a and b are constants. For the two test cases, {a = 10, b = 0}
is employed for test A which yields a monotonically decreasing
profile and {a=16,b = 1/2} is employed for test B corresponds
to a more stringent non - monotonic profile having a maxima at
& =1/2. The computational domain extends from & =0 to & =2
consisting of N zones, where boundary conditions include symme-
try at the origin (§ = 0) and zero - gradient at £ = 2. Computations
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Fig. 3. Spatial profiles at t = 1 for the radial advection problem in cylindrical - radial (top) and spherical - radial (bottom) coordinates for the present scheme and modified
WENO3 by Mignone [2]. Left and right figures correspond to test A {a = 10, b = 0} and test B {a = 16, b = 1/2} respectively .

are performed until t = 1 with CFL number of 0.9 and the interface
flux is computed using Eq. (51).

Fiﬁ = ;[vi+;(Qi+1 +Q") - |Vi+%|(Qi11 +Qi+)i| (51)

Fig. 3 shows the spatial variation of Q with the radial distance
(¢ =R) for the two test cases (tests A and B) on a uniform grid
in cylindrical - radial (top) and spherical - radial (bottom) coordi-
nates. For a monotonically decreasing profile (test A), even N> 64
gives accurate results for both the test cases. However, for test B,
N = 64 yields slightly lower peaks than the exact solution. When
compared with modified WENO3 scheme of Mignone [2], a slightly
higher peak is observed for test A, since it is a less severe test case.
The differences are much more prominent while performing test B.
It can be observed that the peaks of N = 64 for test B in Fig. 3 are
significantly higher than modified WENO3 and the other schemes
proposed in [2].

From the experimental order of convergence (EOC) Table 3, it is
clear that WENO - C approaches to the desired fifth order of con-
vergence. The same tests performed in Cartesian coordinates using

conventional WENO and present WENO - C (both are equivalent)
showed same errors and order of convergence (not shown here),
and similar behavior as of the cylindrical and spherical grid cases.
When compared with modified WENO3 and the other schemes
proposed in [2], present results indicate a superior performance in
terms of accuracy and order of convergence.

Fig. 4 illustrates the spatial variation of the conserved variable
Q on a non - uniform grid (N = 16) during test A. It can be clearly
interpreted from the plot that the numerical results approach to-
wards the exact solution with an increase in Ratio (defined in
Eq. (47)), i.e., biasing towards the origin. It can be well analyzed
from Table 4 that a considerable reduction in errors is observed
along with a rapid increase of EOC to desired fifth order when the
grid spacing is biased towards the origin.

3.1.2. Advection equation in spherical - meridional coordinates
The governing 1D scalar advection equation in spherical -
meridional coordinates is given in Eq. (52).

aQ 1 0

ar + W@(sméqw =0 (52)
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L; norm errors and experimental order of convergence (EOC) for radial advection test in cylindrical -
radial and spherical - radial coordinates at t =1 for test A {a = 10,b =0} and test B {a = 16,b = 1/2}
for the present scheme and modified WENO3 by Mignone [2].

407

Cylindrical Spherical
Test A Test B Test A Test B
N €1(Q) Or, €1(Q) O, €1(Q) O, €1(Q) O,
WENO - C (Proposed scheme)
32 9.22E-05 -, 1.07E-02 - 1.19E-05 - 3.94E-03 -
64 1.14E-05 3.016 2.10E-03  2.356 1.28E-06 3.208 7.94E-04 2312
128 491E-07  4.537 1.95E-04 3.425 5.28E-08 4.602 7.44E-05 3415
256 1.94E-08 4.663 9.39E-06 4.378 2.16E-09 4.610 3.58E-06 4.378
512 6.20E-10 4965 3.14E-07 4.900 6.34E-11 5.093 1.19E-07  4.906
1024  5.81E-11 3.415 1.02E-08  4.941 4.53E-12 3.806 3.88E-09 4.942
Modified WENO3 [2]
32 2.12E-04 - 1.26E-02 - 2.22E-05 - 4.79E-03 -
64 291E-05  2.871 3.95E-03 1.682  2.84E-06 2974 1.50E-03 1.682
128 446E-06  2.712  8.24E-04 2267 4.70E-07 2.601 3.15E-04  2.254
256 6.18E-07 2.854 1.26E-04 2.714 6.83E-08 2.786  4.84E-05 2.700
512 7.95E-08 2967 1.63E-05 2940 8.90E-09 2943 6.31E-06 2.945
1024  9.97E-09  2.991 2.06E-06 2999 1.12E-09 2990 7.97E-07 2.993
0.14 0.05 =
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Fig. 4. Spatial profiles at t = 1 for the radial advection problem (test A: {a = 10, b = 0}) using N = 16 with different values of Ratio (degree of non - uniformity) in cylindrical -

radial (left) and spherical - radial (right) coordinates.

where the velocity v varies linearly with the 6 coordinate i.e. v =
o and o = 1. Eq. (52) admits an exact solution given in Eq. (53).

sin (e*“f")

ref _ ot —at
QY (E 1) = e ——LQ(e70.0) (53)
A 1D computational grid spanning the interval 6 [0, 7 /2] is
divided into N zones. Initial condition (t = 0) for the problem is

given in Eq. (54).

[Wosg(e—w)}z 0 —bl <z

Q0.0) = a (54)

0 otherwise

where a and b are constants. Two different tests are performed
namely, test A with {a =10, b= 0} yielding a monotonically de-
creasing profile and a more stringent test B {a = 16, b = 7 /a} re-
sulting in a non - monotonic profile having a maxima at 6 = 7 /a.
The computational domain extends from 6 =0 to 6 = /2, where
the boundary conditions include symmetry at the origin (6 = 0)
and zero - derivative at 8 = /2. Computations are performed till

t =1 with CFL number of 0.9 and the interface flux is computed
using Eq. (51).

Fig. 5 shows the variation of conserved variable Q with an-
gle O for both the tests. For test A, even N =16 give accurate
results, while for test B, N>32 provide a good approximation of
the exact solution. Table 5 illustrates the achievement of the de-
sired fifth order of convergence for both the test cases. When the
results obtained by the present scheme are compared with the
previously proposed schemes (Table 2 of [2]), it can be realized
that WENO - C shows superior performance. For the non - uni-
form mesh case, a fifth order of convergence is still preserved with
a rapid achievement, as summarized in Table 6. Moreover, Fig. 6
shows that mesh biasing leads to a significant reduction in the er-
rors when compared with a uniform mesh of the same number of
cells.

3.2. Euler equations based tests

The present reconstruction scheme is now tested for more
challenging test cases involving nonlinear systems of equations,
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Table 4

L; norm errors and experimental order of convergence (EOC) for the radial advection problem (test
A: {a =10, b = 0}) with different values of Ratio (degree of non - uniformity) in cylindrical - radial
and spherical - radial coordinates.

Ratio =1 Ratio = 2 Ratio = 4 Ratio = 8
N €1(Q) O, €1(Q) O, €1(Q) O, €1(Q) O,
Cylindrical

16 5.54E-04 - 1.85E-04 - 1.70E-04 - 1.80E-04 -

32 9.22E-05  2.587 3.44E-05 2429 278E-05 2.607 3.03E-05 2.573
64 1.14E-05 3.016  1.81E-06 4.247 1.26E-06 4468 1.39E-06 4.440
128 491E-07 4537 7.89E-08 4.519 547E-08 4.523 5.96E-08  4.548

Spherical
16 5.32E-05 - 240E-05 - 2.19E-05 - 247E-05 -
32 1.19E-05 2.167 4.48E-06 2.420 3.81E-06 2.523  4.20E-06  2.557
64 1.28E-06  3.208  2.33E-07 4.267 1.72E-07 4.475 1.92E-07 4.449
128 528E-08 4.602 9.64E-09 4.594 6.90E-09 4.635 7.57E-09  4.669
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Fig. 5. Spatial profiles at t =1 for the scalar advection problem in spherical - meridional coordinates with different mesh points. Left and right subfigures refer to test A
{a=10,b =0} and B {a = 15, b = 7 /a} respectively.

Table 5
L; norm errors and experimental order of convergence (EOC) for scalar advection
test in spherical - meridional coordinates coordinates at t = 1 for test A {a = 10,b =
0.14 - 0} and test B {a = 16, b = 7 /a} respectively.
)
= Test A Test B
%5)%3 = Ratio = 1.0
012 % A Ratio = 2.0 N €1(Q) o, €1(Q) o,
| E\ v Ratio = 3.0
[ o Ratio = 4.0 32 1.71E-04 - 1.57E-03 -
0.1 V%( — — — - Exact solution 64 1.99E-05 3.103 2.11E-04 2.894
[ \ 128 7.10E-07 4.808 1.62E—05 3.699
- & 256 2.25E-08 4978 4.81E-07 5.078
0.08 - A
[ )
o B \
0.06 |- Y ) . Lo ) )
- &\ i.e.,, Euler equations. Although primitive variable reconstruction
s A is preferred in the past due to the well - behaved results,
0041 1y in the case of curvilinear coordinates, the involvement of the
i %\ higher order derivatives in the extraction of the primitive vari-
0.02 - A ables causes spurious oscillations [2]. Therefore, we restrict our
i kS . . .
I Yo work to the reconstruction of the conserved variables instead
0 | R e aom soe = a0 s of computationally expensive and intricate primitive variable re-
0 0.5 . L1 15 construction. Maximum characteristic speed is employed to eval-
Angle (in radians) .
uate the time step from Eq. (44). Several tests are performed

in cylindrical and spherical coordinates to investigate the es-
Fig. 6. Spatial profiles at t = 1 for the scalar advection problem (test A: {a =10,b = sentially non - oscillatory property of WENO - C for discon-

0}) using N = 16 with different values of Ratio (degree of non - uniformity) in spher- tinuous flows and the convex combination property for smooth
ical - meridional coordinates. flows



M.A. Shadab, D. Balsara and W. Shyy et al./ Computers and Fluids 190 (2019) 398-424

Table 6

409

Ly norm errors and experimental order of convergence (EOC) for the scalar advection problem (test A:
{a =10,b = 0}) in spherical - meridional coordinates with different values of Ratio (degree of non -

uniformity).
Ratio =1 Ratio = 2 Ratio = 4 Ratio =8
N €1(Q) O, €1(Q) O, €1(Q) O, €1(Q) O,
16 7.43E-04 - 4.27E-04 - 4.61E-04 - 5.05E-04 -
32 1.71E-04 2,120 9.18E-05 2.217 1.01E-04 2.195 1.16E-04  2.128
64 1.99E-05 3.103 8.33E-06 3.463 9.13E-06 3.465 1.07E-05 3.438
128  7.10E-07 4.808 2.45E-07 5.085 2.72E-07 5.069 3.24E-07 5.040

3.2.1. Isothermal radial wind problem

The isothermal 1D radial wind problem is performed to analyze
the deviations of spatial reconstruction schemes near the origin in
curvilinear coordinates [2]. The general form of Euler equation in
1D Cartesian / cylindrical - radial |/ spherical - radial coordinates
can be written in the form of Eq. (55).

P pvE™ 0
A G R (ov? 4+ p)é™ | = | mp/é (55)
E (E + p)vE™ 0

where p is the mass density, v is the radial velocity, p is the pres-
sure, E is the total energy, and m =0, 1, and 2 for Cartesian, cylin-
drical - radial (¢ = R), and spherical - radial (§ = r) coordinates re-
spectively. For an isothermal flow, the energy equation is discarded
whereas Eq. (56) serves as the adiabatic equation of state (EOS).

p 1 5
where y =5/3 is assumed for this case. At £ =0, axisymmetric
boundary conditions apply, while at the outer edge, density, pres-
sure, and scaled velocity (v/€) have zero gradients. The initial con-
ditions are provided in Eq. (57) and the interface flux is evaluated
with Lax-Friedrichs scheme with local speed estimate [48].

p(€.0)=1;  v(.0)=100;  p(§.0)=1/y (57)

The computational domain spanning 0<£& <2 is divided into
N =100 points. The spatial profiles of density (p; left) and scaled
velocity (v/&; right) are plotted in Fig. 7 after one integration

(56)

step At =7 x 10-5 for the case of cylindrical and spherical grid.
Here, £ represents the location of the centroid as discussed in
Section 2.4. By comparing it with the previously published results
[2,49], it can be noted that the density and the scaled velocity
remain linear and no signs of deviations are observed near the
origin.

3.2.2. Acoustic wave propagation

A smooth problem involving a nonlinear system of 1D gas
dynamical equations is solved to test fifth order accuracy. The
original problem, introduced by Johnsen and Colonius [50], is
adapted to cylindrical and spherical coordinates [51]. The govern-
ing equations and the initial conditions for this test are provided in
Egs. (55, 56) and (58) respectively.

p(r,0)=1+¢f(r), u(0)=0, pr0)=1/y+&f(r) (58)
with the perturbation,

SO if 0.4 <1 < 0.6
fn = {0 ' otherwise (59)

where y = 1.4. A sufficiently small & (¢ = 10~4) yields a smooth
solution. The interface flux is evaluated using Lax - Friedrichs
scheme with local speed estimate [48] with a CFL number
of 0.3.

The initial perturbation splits into two acoustic waves travel-
ing in opposite directions. The final time (t = 0.3) is set such that
the waves remain in the domain and the problem is free from the

099 ,_ Cylindrical coordinates
| — —O— = Spherical coordinates
0.985 -
. |
2 |
£ 098
4 -
a
o - —C =80 — 9 = D= D= 0= =0—= =0 =0
0.975 =
L 1 | 1 1 |
0.97
0 2 4 6 8 10

i (zone index)

993 ,_ Cylindrical coordinates
| — —O— - Spherical coordinates
99.28 |~
- L
Z
‘2 99.26 -
% G — S — O G——O
> L
= L
2
§99.24 -
wnn -
99.22 |-
L 1 1 1 1 |
99.2
0 2 4 6 8 10
i (zone index)

Fig. 7. Spatial profiles of density p (left) and scaled radial velocity v/& (right) for the isothermal radial wind problem [2,49] with constant density after one timestep in
cylindrical - radial (orange, diamonds) and spherical - radial (blue, circles) coordinates. Only the region close to the origin shown. No deviation in density and scaled velocity

observed near the origin.
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Fig. 8. Spatial profiles of density (p) acoustic wave propagation problem [50,51] at time ¢t = 0.3 in cylindrical - radial (left) and spherical - radial (right) coordinates.

Table 7

L; norm errors and experimental order of convergence (EOC) for acoustic wave
propagation test in cylindrical - radial and spherical - radial coordinates coordinates
att =0.3.

Cylindrical Spherical
N €1(Q) O, €1(Q) O,
16 1.01E-05 - 7.98E-06 -
32 4.91E-06 1.036 3.90E-06 1.033
64 6.74E-07 2.865 5.40E-07 2.852
128 3.24E-08 4.380 2.59E-08 4.383
256 1.27E-09 4.670 1.01E-09 4.675

boundary effects. The computational domain of unity length is uni-
formly divided into N different zones i.e. N = 16, 32, 64, 128, 256.
Although an exact solution known up to O(¢2) is known, the so-
lution on the finest mesh N = 1024 is taken as the reference. Er-
ror in density is evaluated from Eq. (45). Fig. 8 illustrate the spa-
tial variation of density at t = 0.3 inside the domain in cylin-
drical - radial (left) and spherical - radial (right) coordinates.
The location of the peaks is same. However, the height of the
peaks differs due to different one - dimensional Jacobians for
both the coordinates. From Table 7, it clear that the scheme ap-
proaches the desired fifth order of convergence (EOC) for both the
cases.

3.2.3. Sedov explosion test

Sedov explosion test is performed to investigate code’s ability
to deal with strong shocks and non - planar symmetry [52]. The
problem involves a self - similar evolution of a cylindrical/spherical
blastwave from a localized initial pressure perturbation (delta -
function) in an otherwise homogeneous medium. Governing equa-
tions for this problem are the same as given in Eq. (55) earlier. For
the code initialization, dimensionless energy € (¢ = 1) is deposited
into a small region of radius ér, which is three times the cell size
at the center. Inside this region, the dimensionless pressure P(/) is
given by Eq. (60).

o 3(y — e
07 (m+2)wsrm+D)

where y =1.4 and m=1,2 for cylindrical, spherical geometries
respectively. Reflecting boundary condition is employed at the cen-

(60)

ter (r = 0), whereas boundary condition at r =1 is not required for
this problem. The initial velocity and density inside the domain are
0 and 1 respectively and the initial pressure everywhere except the
kernel is 10—>. Due to reflecting boundary condition at the center,
the high pressure region (kernel) consists of 6 cells, i.e., 3 ghost
cells and 3 interior cells. As the source term is very stiff, the CFL
number set to be 0.1. The final time is t = 0.05. The analytical re-
sults of the developed self - similar blastwave are available in the
literature [52,53].

Fig. 9 shows the variations in density, velocity, and pressure
with radius on a uniform grid (N = 100, 200) in 1D cylindrical -
radial and spherical - radial coordinates along with their analytical
values [53]. The peak values of pressure, velocity, and density show
similar behavior as given in [51], but the locations of the shocks
are different due to different € and final time values.

3.2.4. Sod test

Sod test [54] is considered in 1D cylindrical - radial, spherical -
radial, and 2D cylindrical (r — ) coordinates. For 1D radial cases,
governing equation is given in Eq. (55), while governing equation
for cylindrical (r — 6) coordinates is given in Eq. (61).

P PV PV
Ofpv| 10 (ovi+pr| 10| puy
at | pvg ror| pvvr rof | pvi+p
pe (pe+p)vr (pe+p)vg
0
_ | b+ pvp)/r (61)
—pUrlp /T
0

where terms (pvé) /T and (pvyvy)[r are related to the centrifugal
and Coriolis forces respectively. In this problem, the interface flux
is evaluated with HLL Riemann solver [55]. The initial condition
consists of two regions (left and right states) inside the domain
separated by a diaphragm at r = 0.5 as provided in Eq. (62).

P 1 0 0.125

vv| _|O]. v | 0

Vo oy Vo - 0 (62)
p/, 1 P/ 0.1
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Fig. 9. Variation of density (first row), velocity (second row), and pressure (third row) with the radius for cylindrical - radial (left column) and spherical - radial (right
column) coordinates for the Sedov explosion test [51,52]. Domain is restricted to R = 0.4 for the sake of clarity.
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Density

Fig. 11. Variation of density with the radius at t = 0.2 for cylindrical (r — ) coor-
dinates in the Cartesian plane for the modified Sod test [51,54].

The computational domain (0<r<1) for 1D tests is uni-
formly divided in N zones (N = 100, 500), while for the 2D test,
the computational domain (0<r<1, 0<6 <m/2) is uniformly
divided into 100 x 100 zones in the corresponding directions.
The boundary conditions for 1D cases are not required, how-
ever, for 2D case, symmetry of conserved variables at r =0 (ex-
cept radial velocity which is antisymmetric) is considered along
with outflow boundary condition applied to all other boundaries
(r=1, =0, and 6 =m/2). The computation is performed till
t =0.2 with a CFL number of 0.3. For first order and second or-
der (MUSCL [56]) spatial reconstruction, Euler time marching and
Maccormack (predictor - corrector) schemes [57] are respectively
employed.

Fig. 10 shows the spatial profiles of density, velocity, and pres-
sure for Sod test case in 1D/2D cylindrical coordinates (left) and
1D spherical - radial (right) coordinates. WENO - C performs bet-
ter than first order and second order (MUSCL [56]) reconstruction
techniques. The 2D test results exactly overlap with the 1D test re-
sults in cylindrical coordinates. Fig. 11 shows the spatial variation
of the density in the 2D Cartesian plane at time t = 0.2. When
compared with the results obtained from fifth order finite differ-
ence WENO [51], it is clear that WENO - C yields similar but less
oscillatory results.

3.2.5. Modified 2D Riemann problem in cylindrical (R - z) coordinates

The final test for the present scheme involves a modified 2D
Riemann problem in cylindrical (R — z) coordinates, as illustrated
in Fig. 12. The problem corresponds to configuration 12 of [58] in-
volving two contact discontinuity and two shocks as the initial
condition, resulting in the formation of a self - similar struc-
ture propagating towards the low density - low pressure region
(region 3). To make the problem symmetric about the origin, the

Table 8

pe=1
pa=1
u, = 0.5145
El op=1 N = 0s
E| p=o08 Jis S, ps=05313
>~
% U, = + Uz = 0
g J12 S vy =0
ks v, =0 23, V3~
p2=1
p2=1
u, = 0.5145
z v, = 0.5145
I
r

Fig. 12. A schematic of modified 2D Riemann problem in cylindrical (r — z) coordi-
nates.

original problem [58] is rotated by an angle of 45 degrees in
the clockwise direction. The governing equations are provided in
Eq. (63).

o PURR pVz 0
9o |, 10| (pug+pR | 9 pvev: | [ p/R
ot| pv. | 'ROR OURVR az| pv2+p || O

pe (pe+ p)urR (pe+p)v; 0

(63)

The computations are performed until t = 0.2 with a CFL num-
ber of 0.5 on a domain (1, z) = [0,1] x [0,1] divided into 500 x 500
zones. The boundary conditions include symmetry at the center
(except for the antisymmetric radial velocity) and outflow else-
where. For the first order and second order (MUSCL [56]) spa-
tial reconstructions, Euler time marching and Maccormack (pre-
dictor - corrector) schemes [57], are respectively employed. Rich
small - scale structures in the contact - contact region (region
1) can be observed from Fig. 13 for WENO - C reconstruction,
when compared with first and second order MUSCL reconstruc-
tion. Structures are highly smeared for the case of first order
reconstruction.

In terms of computational cost, the above Riemann problem
is tested in terms of CPU times for different schemes and mesh
sizes with Intel Core i7 - 7700 CPU @ 2.80GHz (8 CPUs). As
summarized in Table 8, WENO - C along with fifth order RK
has an added computational cost with respect to the low or-
der schemes due to more sophisticated operations for spatial re-
construction, flux and source terms quadratures in the six inter-
mediate stages at each time step. However, for a residual based
study, the present scheme might be faster due to higher order of
convergence.

CPU run-times (in seconds) for the modified Riemann problem in cylindrical (r — z) coor-

dinates for different schemes and mesh sizes.

Discretization

CPU time (s) for mesh size = Nx N

Spatial Temporal
First order Euler
Second order (MUSCL) MacCormack
Fifth order (WENO - C)  RK order 5

502 1002 200? 5002
0.613 1.637 5.448 51.291
2.140  3.609 8.211 128.391
3.915 11.793  92.333 1327.788
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4. Conclusions

0.2

sions.
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Appendix A. WENO - C reconstruction weights

The fifth order finite volume WENO - C reconstruction scheme
provides a more general framework in orthogonally - curvilin-
ear coordinates to achieve high order spatial accuracy with min-
imal computational cost. Analytical values of linear weights, opti-
mal weights, weights for mid - point interpolation, and flux/source
term integration are derived for the standard grids. The proposed
reconstruction scheme can be applied to both regularly - spaced
and irregularly - spaced grids. A grid independent smoothness in-
dicator is derived from the basic definition. For uniform grids, the
analytical values in Cartesian, cylindrical - radial, and spherical -
radial coordinates for R— oo conform to WENO - JS. A simple and
computationally efficient extension to multi - dimensions is em-
ployed. 1D Scalar advection tests are performed in curvilinear co-
ordinates on regularly - spaced and irregularly - spaced grids fol-
lowed by several smooth and discontinuous flow test cases in 1D
spherical coordinates and 1D/2D cylindrical coordinates, which tes-
tify for the fifth order accuracy and ENO property of the scheme.
For a multi - dimensional test case, only the interface values are
considered to integrate the source term, while for 1D test cases,
mid - point values are also used. As a final note, it is emphasized
that the present scheme can be extended to arbitrary order of ac-
curacy and different techniques of reconstruction in multi - dimen-

The current research is supported by Hong Kong Research Grant
Council (16207715, 16206617) and National Natural Science Foun-
dation of China (11772281, 91530319).

Weights for a uniform grid in Cartesian coordinates are pro-
vided for the sake of completeness of the present scheme and ease

0' P olx i : in understanding of the reader. Also, cylindrical (z, 6) and spher-
' ical (¢) coordinates discussed in the later sections require same
weights as of Cartesian coordinates.
Al.l Linear weights
U In case of Cartesian coordinates (x, y, z), the linear weights
are obtained by putting m =0 in Eq. (26) and then inverting the
B—matrix in Eq. (24).
k  Positive (right) weights:

3 : : S .. 3 3 3
Sgt(i—2,i—1,0) : (wl§_,. wi_ wii )=
34 (s y o 13+ 3+ 3+ ) _
ST—-14i41) = (W) wigwii )=
3+ (5 : . 3+ 3+ 3+ _
y STi+1i+2): (Wi,Z.O’Wi,2.+1’Wi,2,+2) =
0.2 . . .
e Middle (mid - value) weights:
3M (3 ; N 3M 3M M
| | s SM@Gi—2,i—1,i) :: (wmfz, wit .. w;’fo’O)
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Fig. 13. Density contours with different reconstruction techniques (first order (top), 1 ( ) ( i1,-1""i.1.0 "1’“)
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« Negative (left) weights:
3— (s ; PN 3— 3—
Sg(i—2,i—1,0):x (wlg_, Wiy _ | wig,)= ( 3
15 1
3— (i ] . 3— 3— 3—
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A1.2. Fifth order interpolation weights
« Positive (right) weights:

W5+ W5+ W5+

1 13 47 9 1
54 ..
St (W:0 22 Wio—1Wio0 Wio .41 10+2)_<*v @@E‘E)

e Middle (mid - value) weights:

3 29 1067 29 3
So¥ (WG o WGy Wikl Wikt WiG42) = (@ ~280° 960 480" @)
« Negative (left) weights:
. _ _ _ _ _ 1 9 47 13 1
S5 (Wig o Wio 1 Wigo Wios1e Wio 42) :< 20°20° 60° 60 ﬁ)

A1.3. Optimal weights
The linear weights in Cartesian coordinates in (x, y, z) coordinates are constants, thus, the optimal weights are also constants. Moreover,
positive and negative weights are mirror - symmetric for this case.

* Positive (right) weights:: (G, Gy, G,) = ( b3 13—0)

« Middle (mid - value) weights:: (Cf%.C}.C1) = (~ gb. %3~

* Negative (left) weights:: (G, C;;.C,) = (13—0 3, %0)
Al.4. Weights for interface value integration
Weights for the interface value integration to yield line - [face - averaged flux with different integration points are provided as follows:

: ; . M M M M M y_(_ 17 77 83 77 _ 17_
« Fifth order quadrature (all middle values)::  (w;_,, w} 1’W10’Wi,+1’wi.+2)_< 5760 T440° 960 TA40° 5760)

wi

+ - - - _(n _ B
w; 12 Wi2 Wiss Wissp) = (1440~ 480> 720° 720 ~ 480° 1440

o Sixth order quadrature (all interface values):: (w;" PR

i,—-5/2°

A1.5. Weights for source term integration
Since one - dimensional Jacobian is unity for Cartesian coordinates, weights for flux and source term integrations are the same. For 1D
case, 3 point based Simpson quadrature can also be used to attain fifth order accuracy. Few quadratures are given below:

» 3 point Simpson quadrature (2 interface, 1 middle values):: (w 12 {V{),wl +1/2) (6 % é)

o Fifth order quadrature (all middle values):: Refer to Appendix A.1.4
o Sixth order quadrature (all interface values):: Refer to Appendix A.1.4

A2. Cylindrical coordinates

The weights for WENO - C reconstruction and integration in cylindrical (6, z) coordinates are the same as of Cartesian coordinates
because the one - dimensional Jacobians are unity. However, the weights in the radial direction are different as the one - dimensional
Jacobian is €. Their values are given in this section.

A2.1. Linear weights
The linear weights for the radial coordinate R are independent of the grid spacing and depend only on the index number i (i =
R, 1/AR), as given below. In the vanishing curvature (R— oo and therefore i— oo), the linear weights of the conventional WENO re-
2

construction in Cartesian coordinates can be recovered.

i ; : . 3+ ; PN 3+ _ o (=5+2i)(4-9i+4i2) —23+45i-14i2 (=1+2i)(85-90i+22i2) \ c3+ (;
« Positive (right) weights: Sy (i—2,i—1,1) : (w0 2 Wip, 100) (12(73“”(]73”#), O3 233D ST -

T 2(-1420) (—1-i+i2)’ 12(1+i-i2)°  12(1-i-3i2+23)

3+ 3t )_((—1+2i)(4+9i+4i2) —1149i+10i2 (3+20)(~1422) )

,2,0° Wi,2,+1’ i, 2 +2 12(1420) (—14i+i2) * 12(=1+i+i2) "~ 12(142i) (~1+i+i2)

Lii+1): Wi owiiwh

391 (14082 Lo 142 a3 o )
oWl 11+1):( (=3+42i)(=1422)  1149i-10i 4+i+14i2-8i )S3+(l,l+1,l+2) .

(w
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; iy ; @M i1 ) - 3M 3M 3M \ _ 5+3i—7i242i3 —4-iti2  (=142i)(91-95i+23i%)
e Middle (mid value) weights: SgM(i—2,i—1,i) (Wz‘.o,fz’wi,o,fl’wi,o,o)—(727264,42161274313’12(1,3,4,-2)’ A A3

3M (i . . 3M 3M ,3M oy _ [ 3-2i 13 142i \3M(i ; : . 3M  103M My _
S;TA—=1 i+ Wi wiio.wii ) = (—24+48i’ 12 24—481‘)52 (i+1i+2)m W5 Wi Wiy o) =

(=1420)(19+49i+23i2)  —4-i+i2  (34+2i)(=1=i+i?)
24(1420) (—1+i+i2) ° 12(=14i+i2)  24(1420) (—1+i+i2)

; ; . By ; N 3— 3— 3— \ _ (=542i)(1-4i+2i%)  8-29i+10i2 (=1+2i)(17-17i+4i%) 3— s
* Negative (left) weights: Sg=(i—2.,i—1.0):1 (W5 . Wo 4 Wigg) = (‘ 1203120 (13+7)" 1201 342)" 12342013 ) o1 U~

;s . 3— 3— 3— _ (=3420) (= 14i+4i%)  10+11i-10i2 _—1+2i+6i2—4i3 3— (i : ; . 3— 3— 3— _
Lii+T)m Wiy Wiy Wigq) = (12(71+2i)(—1—i+12)’ 12(14i-12) * 12(1-i-3i24283) S i+l i+2): (Wipo Win i Wiz i) =

((—1+2i)(17+46i+22i2) 8—17i—14i2 (3+2i)(—1+i+4i2)>

21420 (—1+i+2) * 12(=1+i+i2)* 12(1+20) (—1+i+i2)

A2.2. Fifth order interpolation weights
e Positive (right) weights:

5+ .. 5+ S5+ S5+ 5+ 5+
Soh (WI,O,—Z’WI',Ofl’Wi.O,O’Wi.0,+1’Wi<0,+2)_

( (=5 + 2i) (4 — 102 + 3i%)
30(—1 + 2i)(12 + 16i — 1312 — 68 + 314)”

(=3 + 2i)(164 + 45i — 380i2 — 75 + 78i%) 1276 + 1395i — 1300% — 5253 + 282
120(—1+20)(12 + 16i — 132 — 6 + 3i4) * 120(12 + 16i — 132 — 68 + 3i4)

(1 +2i) (—228 + 465 — 60i% — 175 + 54i*) (3 +2i) (=12 + 15i + 202 — 25 + 6i%) )
40(—1+20)(12 + 161 — 1322 — 68 + 3i4)  40(—1 + 2i)(12 + 16i — 1312 — 6 + 3i4)

o Middle (mid - value) weights:

S (WIS WM W Wil ):(3(—5+2i)  29(-3+2i) 1067 29+58i  3(3+2i) )
o - £0,—2> Ti,0,—1> i,0,0° i0,+1 70,42 640(—1+2i)" 480(—1+2i)" 960 ’ 480 — 960i° 640(—1 + 2i)

» Negative (left) weights:

o s s e s e (=5 + 20)(4 — 4i — 191 + % + 6i%)
So (Wz“o,—z’ Wio-1Wioo Wio41 Wi,o.+2) = <_ 40(—1 + 20) (12 + 16i — 131 — 6 + 31%)°
(=3 +2i)(56 — 36i — 261i%2 — 41i3 + 54i*) 1128 + 1652i — 1183i2 — 603> + 282i*
40(—1 +2i)(12 + 16i — 13i2 — 6i3 4 3i4) °’ 120(12 + 16i — 13i2 — 6i3 + 3i4)
~ (142i)(-168 + 628i — 137i* — 237 + 78i*) (3 +2i) (-3 + 8i + 8i* — 12° + 3i) )
120(=1 4+ 2i)(12 + 16i — 13i2 — 6i3 + 3i*) * 30(—1 + 2i)(12 + 16i — 13i2 — 6i3 + 3i4)

A2.3. Optimal weights
The optimal weights in cylindrical - radial R coordinates are given below. It is observed that the weights are not mirror - symmetric
and are independent of the grid spacing but depend only on the index number i (i = Ri+l/AR).
2

e Positive (right) weights:: (

CH.CH.Ch) = 2(=3+2i)(1-3i+i%) (4-10i2+3i%) 3(=1—i+i?) (96—-192i—191i2+500i3 —83i4 —154i°+48i5)
1,0’ 70,17 71,27 T\ 5(=1+2i)(4-9i+4i2) (12+16i—13i2—63+3i%)*  10(—142i2)(4—9i+4i2) (12+16i—13i2—6i3+3i4)  ’

3(142i) (= 14i+i?) (—12+15i+20i2 —25i3 +6i4)
10(—1+20) (—1+42i2) (12+16i—13i2—63+3i%)

: . : . (M My _ (  9(=3+11i-9i242i%) 22449i-49:2 _  9(142i)(=1+i+i%)
+ Middle (mid - value) weights:: (G. G, C) _( 80(—1+20) (—1-i+i2)* 40(1+i—2) *  80(~1+2i)(~1-i+i2)
(€. C C*)—( 3(=3+2i) (1-3i+i%) (4—4i—19i2+i3+6i%) 3(=1—i+i?) (24—112i—9i%2 +412i3 —133i% —134i°+48i)
0G1:Go) =

* Negative  (left)  weights:: 001G T0(—1+420) (1—4i422) (12+ 161132 —68+37) " 10(1—4i-422) (—1 +1+42) (121161132 —653431%)

2(142i) (= 14i+i2) (—3+8i+8i2—12i3+3i4)
5(—1+2i) (—1+i+4i2) (12+16i—132—63+3i%)
A2.4. Weights for interface value integration
For 2D cases, one - dimensional Jacobian is the same as of source - term integration, given in Table 1. The weights for quadrature in
the radial direction are given below, where R; is the radius of cell center.

5760R, °  1440R; ° 960° ~ 1440R; ° — ~ 5760R;
154— 34K

» Fifth order quadrature (all middle values):: (w} ,, wM | wM w¥  wM ) = (17(2AR_R1') TIAR-R) 863 T7(AR+R;) ]7(2AR+R1')>

. ; . + + + — - - — R 31 43AR 401 _

o Sixth order quadrature (all interface values):: (Wi,—S/Z’Wi,_3/2’Wi,—1/2’Wi,+1/2’wi,+3/2’wi,+5/2)_( 20160 * 480 T 20160R; * 720
3AR

299AR 401 , 299AR _ 31 _ 43AR 4Ry )

= e S Y | S
3360K; > 720 T 3360R;* ~ 480 ~ 20160K;> ~ 20160

From Table 2, it is clear that for 3D cases, one - dimensional Jacobian is altered for surface integrals. Therefore, the weights for surface
averaging are different. For (R — z) and (6 — z) coordinates, the one - dimensional Jacobians are unity for both the sweeps. But for (R —6)
case, the R—directional integration can be performed by the weights given earlier in this section and 6—directional integration using the
same weights as of Cartesian case, given in A.1.4.
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A2.5. Weights for source term integration

For source term integration, the one - dimensional Jacobian is the original value as summarized in Table 1. But in this case, regular-
ization is performed to get rid of ‘1/R’ factor. Apart from the radial integration, the weights for 6— and z—directional integration are the
same as of Cartesian weights given in A.1.5. Weights for r—directional integration are given below:

¢ 3 point Simpson quadrature (2 interface, 1 middle values)::
AR 2 AR+2R,~>

2R 3 T12R;

1. Original weights:  (w/_, ,. wh, W) = (% _

2. Regularized weights: (W}, ,. WM, Wi q0) = (6%1_, %Ri’ GiRi)
o Fifth order quadrature (all middle values)::

1. Original weights: Refer to Appendix A.2.4

: ; (WM M AM AM sM Y 863 _ 17
2. Regularized weights: (wl._iz,wiﬁl,wm,wi,“,WHZ) = ( 57 5760&)

o Sixth order quadrature (all interface values)::
1. Original weights: Refer to Appendix A.2.4

. . PP - o o o o _( n 31 401 401 31 11
2. Regularized weights: (Wi,—S/Z'Wi,—3/2’Wi,—1/2’ W12 Wi 30 Wl-'+5/2) = (1440&,, 480K, * 720K;* 720, > ~ 480R;* 1440,31.)

A3. Spherical coordinates

The weights for WENO - C reconstruction and integration in spherical (¢) coordinates are the same as of Cartesian coordinates because
the one - dimensional Jacobian is unity. However, the weights in spherical - radial and spherical - meridional directions are different as
the one - dimensional Jacobians are £2 and siné respectively for the volumetric operations.

A3.1. Linear weights

The weights for the radial coordinate r are independent of the grid spacing and depend only on the index number i (i =r, 41 /Ar) of
the grid, as given below. Again, in the vanishing curvature (R— oo and therefore i — oo), the linear weights of the conventional WENO
reconstruction in Cartesian coordinates can be recovered. Also, for the case of spherical - meridional coordinate (6), analytical solutions
are highly complex. Therefore, application of direct numerical inversion is advised.

« Positive (right) weights:

Set(i—2,i-1,0) = (W3+ w3t wit

(19 — 15i + 3i2) (12 — 48i + 72i%2 — 45i3 + 10i*)
i0-2> "i0,-1° i.o,o) =

9(36 — 198i + 471i2 — 540% + 315i4 — 90/ + 10i6)’
(7 9i +312)(219 — 768 + 9631 — 450/ + 70i*)

18(36 — 198i + 47112 — 5403 + 315i4 — 90/ + 10i6)’
(1 — 3i + 3i2) (1725 — 3552i + 2709i% — 9003 + 110i%)

18(36 — 198i + 47112 — 5408 + 315/ — 90 + 10i°)

ST—10,i+1) = (w)]_, wio wiT

(7 - 9i + 3i%) (3 — 9i% + 10i*)
i1.-1"i1.0° 1,1.+1) =

" 18(4 — 6i — 9i2 + 2083 + 15i% — 30i> + 10i6)’
(1 = 3i + 3i2) (69 + 96i — 63i2 — 9013 + 50i) (1 + 3i+ 3i2)(12 — 48i + 72i% — 453 + 10i4)
18(4 — 6i — 9i2 + 2013 + 15i% — 305 + 10i®) * 9(4 — 6i — 9i2 + 203 + 15i4 — 305 + 10i6)

3+ (5 1 : . 3 3 3
S3 AT 42) 5 (W30 Wha 0 Wi 2 9(4 + 61— 977 — 208 + 157 + 306 + 100)

(14 3i +31%) (69 — 96i — 63i2 + 903 4 50i) (7 +9i + 312) (3 — 9% + 10i%)
18(4 1 6i — 912 — 208 + 151 + 305 + 10i) ° 18(4 + 6i — 92 — 20 + 15 + 30 + 10°)

) <(1 —3i+ 3i%) (12 + 48i + 72i* + 45 + 10i*)

e Middle (mid—value) weights:

i o o sy (19— 1504 3i2)(<20 4 58i — 2112 — 20 + 10i%)
Sot(i=2.i-1i)= (vaO’Z’W'?O’l’Wi-OYO)‘( 72(36 — 198 + 47172 — 5408 + 315/ — 905 + 105)’
(7 — 9i + 31%)(—223 + 590i — 222i% — 401 + 20i*)
72(36 — 1981 + 4712 — 5408 + 3151 — 905 1 10/)’

(1 —3i+3i2)(3773 — 7672i + 5781i% — 1900i> + 230i*)
72(36 — 198i + 471i2 — 540i3 + 315i4 — 90i> + 10i6)

o 7 — 90+ 312)(7 + 4i — 211 — 208 + 10i*)
MG -1 1) (wM VR VI (¢
S LT (Wi, Wi, witlLa) ( 72(4— 6i — 97 + 208 + 150 — 305 + 10/)”

(1 — 3i+312)(317 + 482i — 22212 — 5208 + 260i%) (1 + 3i + 3i2)(—20 + 58i — 212 — 2083 + 101'4))

72(4 — 6i — 9i2 4 2083 + 154 — 30> + 10i6) * 72(4 — 6i — 9i2 + 208 + 15i* — 30i> + 10i6)
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(1 —3i+3i%)(212 + 890i + 1461i2 + 980i* + 230i*)
72(4 + 6i — 9i2 — 2013 + 15i% + 301> + 10i6) '

(1 +3i+3i2)(125 — 106i — 222i2 — 40i® + 20i*) (7 +9i + 3i%)(7 + 4i — 21i% — 20i> + 10i*) )

3M (i , o (u3M W3M L 3M
MG i+ 1,142) i (W, wi o owi o) = (

72(4 + 6i — 912 — 2083 + 15i% + 3045 + 10i6) °  72(4 + 6i — 9i% — 201> + 15i4 + 30> 4 10i6)

o Negative (left) weights:

Se(i-2i-1,0) (W?,a,_z’ W?,E,—r w

3 ) _(_  (19-15i + 3i2) (4 — 22i + 51i2 — 408 + 10i*)
10,0/ ™ 18(36 — 198i + 471i2 — 540:3 + 315i* — 90i> + 10i6)’

(7 — 9i + 3i?) (50 — 248i + 507i% — 290:> + 50i*) (1 —3i+3i?)(187 — 367i + 267> — 85i% + 10i*) )

18(36 — 198i + 471i2 — 540i3 + 315i% — 901> + 10i6) " 9(36 — 198i + 471i% — 540i3 + 315i* — 90i> + 10i6)

i .. _ _ _ (7 — 91+ 3i2)(1 —i — 3i%2 + 5i3 + 10i%)
ST—-10i+1) o (Wi, wiyo,w} ):(

141 9(4 — 6i— 9i% + 208 + 151 — 300 + 105)’
(1= 3i 4 32)(62 + 100i — 332 — 11083 + 50i%) (1 + 3i + 3i2) (4 — 22i + 51i% — 40 + 10i%)
18(4 — 6i — 912 + 201 + 151 — 301 + 10i) ° 18(4 — 6i — 9i% + 201 + 15/ — 30/ + 10°)

o a oy (1304 31)(92 + 394i + 6693 + 46073 + 110i*)

S 1L T42) 5 (W Wi Wi o) = ( 18(4 + 6i — 92 — 208 + 151 + 305 + 10)

| (1+3i+312)(34 - 88i+33% + 170° + 701%)  (7+9i+32)(1 —i — 32 + 57 + 10i%)
18(4 + 6 — 92 — 208 + 15/ + 30 + 10®) ' 9(4 + 6 — 92 — 208 + 15/ + 308 + 10i%)

A3.2. Fifth order interpolation weights
o Positive (right) weights:

Sot (W%,_zv WIS 1 Wit o Wid e Wf’.&u)
_ (19 — 15i + 3i2) (16 — 60i2 + 94i* — 45i6 + 7i8)
- 90(48 — 48i — 164i2 4 200i3 4 390i4 — 399i5 — 161i6 4 210i7 — 35i° + 7i10)’

(7 — 9i + 3i2) (508 + 240i — 1740i2 — 7953 + 2417i* + 930i5 — 780i° — 17517 + 91i®)
180(48 — 48i — 164i2 + 2001 + 390i4 — 39955 — 16116 + 210i” — 351 + 7i10)
(1 - 3i + 3i2)(8132 + 15120i — 5700i2 — 203253 + 3863i4 + 8670i5 — 1800i® — 12257 + 329i8)
180(48 — 48i — 164i2 + 2001 + 390i4 — 39975 — 1616 + 210i’ — 3519 + 7i10)
(1 + 3i + 3i2) (4212 — 15120i + 16560i% + 12751 — 11517i* + 4350i% + 1620i® — 12257 + 189i®)
180(48 — 48i — 16412 + 20013 + 390i4 — 399/ — 1616 + 210i7 — 3519 + 7i10)
(7 + 9i + 3i2) (108 — 240i — 12012 + 6453 — 223i* — 5105 + 510i® — 175i7 + 21i®)
180(48 — 48i — 164i2 + 2001 + 390i4 — 399i5 — 16116 + 210i” — 351 + 7i10)

)

’

)

o Middle (mid—value) weights:

SM .. (105M 5M SM ., 5M 5M
Sp0 (Wi.O,—Z’ Wio.-1> Wio.0 Wio,+1 Wz‘.o,+2)

s

_( (19— 15i + 3i2) (176 + 128i — 660> — 752i% + 562i* + 468i> — 183i® — 84i” + 21i®)
B 1920(48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 161i6 + 210i” — 35i° + 7i10)

(7 — 9i + 3i2) (9972 + 10866i — 30895i% — 48744i% + 13939i* + 22846i°> — 4576i°5 — 3248i” + 812i%)

B 5760(48 — 48i — 164i? + 200i3 4 390i* — 399i> — 161i6 + 210i7 — 35i° + 7i10)
(1 —3i+ 3i?) (314028 + 637134i — 104105i — 9112564 + 83561i* + 404654i> — 65174i° — 59752i7 + 14938i®)
5760(48 — 48i — 164i2 + 200i3 + 390i* — 3991 — 161i® + 210i7 — 35i° + 7i10) ’

(1 +3i + 3i%)(—29028 + 70866i + 20855i> — 75744i> + 2689i* + 27346i° — 4576i° — 3248i7 + 812i®)
5760(48 — 48i — 164i2 + 200i3 + 390i* — 399i°> — 161i6 + 210i7 — 35i° + 7i10)

(7 +9i + 3i%) (324 + 378i + 12151 — 75213 — 1313 + 121815 — 18316 — 84i7 4 21i®)
1920(48 — 48i — 1642 + 2008 + 390i4 — 3995 — 161i° + 210i7 — 351 + 7i10)

5

)

o Negative (left) weights:
5— v (15— 5 5— 05— 5-—
So = (Wi,o,_zv Wio.—1° Wio.0 Wio.+1° Wi.0,+2)

_(_ (9-15i+ 3i2)(16 — 16i — 60i% 4 96i + 222i* — 51i°> — 127i® + 7i" + 21i®)
B 180(48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 16116 + 210i” — 35i° + 7i10)’
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(7 — 9i + 3i%) (344 — 164i — 1350i + 1184i> + 4888i* + 1071° — 1663i® — 2877 4 189i%)
180(48 — 48i — 164i% + 200i3 + 390i* — 399> — 161i6 + 210i7 — 35i° + 7i10) ’

(1 —3i+ 3i?)(7064 + 15196i — 310i> — 21376i> + 368i* + 9431i°> — 1163i® — 1407i” + 329i®)
180(48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 1616 + 210i” — 35i° + 7i10) '

(14 3i+ 3i%)(696 — 3516i + 6850i% — 1544i> — 4388i* 4 23294° + 543i® — 55317 + 91:%)
180(48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 1616 + 210i” — 35i° + 7i10) '

(7 +9i + 3i%) (12 — 42i + 251 + 132i% — 91i* — 122i° 4+ 151i° — 5617 + 7i%) )

90(48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 16116 + 210i” — 35i° + 7i10)

A3.3. Optimal weights
The analytical values of the optimal weights for spherical - radial r coordinates are highly intricate but are grid spacing independent
and are given below for the uniform grid, where the index number i =r; L1/AT
2

o Positive (right) weights::

Chy ( (36 — 198i + 471i2 — 5403 + 315i4 — 90i® + 10i6) (16 — 60i2 + 94i* — 45i6 + 7i8)
.27 —

+ C+
Co- G 10(12 — 48i + 72i%2 — 45i3 + 10i4) (48 — 48i — 164i2 + 200:3 + 390i4 — 399> — 161i® + 210i7 — 35i° + 7i10)’

1,00 7i,1°

(4 — 6i — 92 + 2013 + 15i* — 30i° + 10i%) (2592 — 9216i + 1908i% + 29520i> — 27762i* — 36204i> + 61932 ...
10(3 — 9i2 + 10i4) (12 — 48i + 72i2 — 453 + 10i4) (48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 161i6 + 210i” — 35i° + 7i10)

... — 667517 — 291268 + 12558i° + 3036i1° — 2695i'! + 420i'%)
10(3 — 9i2 + 10i4) (12 — 48i + 72i%2 — 45i3 + 10i%) (48 — 48i — 164i2 + 200i3 + 390i* — 399i> — 161i6 + 210i” — 35i° + 7i10)’

(4 + 6i — 9% — 208 + 15i* 4 30i> 4 10i®) (108 — 240i — 120> + 645i% — 223i* — 510i> 4 510i® — 175i7 + 211'8))

10(3 — 9i? + 10i*) (48 — 48i — 164i? + 200i3 + 390i* — 399i> — 161i® + 210i7 — 35i° + 7i10)

o Middle (mid-value) weights:: (C%, cM.cM) =

3(36 — 198i + 471i% — 5403 + 315i* — 90i> + 10i°) (176 + 128i — 660i? — 752i> + 562i* + 468> — 183i® — 84i” + 21i®)
80(—20 + 58i — 21i2 — 20i3 + 10i*) (48 — 48i — 164i% + 200i> + 390i* — 399i> — 161i6 + 210i” — 35i° + 7i10)

(4 — 6i — 9i% + 20i% + 15i* — 30i> + 10i%) (81696 + 135168i + 487832i2 — 4731761> — 1302479i* + 832366i° + 1162664i5 — 754472i"
(80(7 + 4i — 21i2 — 2013 + 10i4) (—20 + 58i — 21i2 — 2043 + 10i*) (48 — 48i — 164i2 + 200i + 390i* — 399i> — 161i¢ + 210i7 — 35i° + 7i10))

—362767i® +292130i° 4 17034i1° — 41160i'" + 6860i'?)
(80(7 + 4i — 21i2 — 20i3 + 10i*) (—20 + 58i — 21i%2 — 20i3 + 10i*) (48 — 48i — 164i2 + 200i3 + 390i4 — 399i> — 161i + 210i” — 35i% + 7i10))’

_3(4+6i- 9i2 — 208 + 15i* 4 30i° + 10i®) (—324 + 378i + 1215i% — 7523 — 1313i* + 1218i° — 183i6 — 84" + 21i8)>

80(7 +4i — 21i2 — 203 + 10i4) (48 — 48i — 164i2 + 200i% + 390i4 — 399i> — 161i6 + 210i” — 35i° + 7i10)

* Negative (left) weights:: (€. GGy =

(36 — 198i + 471i2 — 540% + 315i* — 90i° + 10i6) (16 — 16i — 60 + 96i> 4 222i* — 51i° — 127i6 4 7i7 + 21i®)
10(4 — 22i + 51i2 — 40i3 + 10i*) (48 — 48i — 164i2 + 200i3 + 390i* — 399> — 161i6 + 210i” — 35i° + 7i10)

(4 — 6i — 9i% 4 201> + 15i* — 30i° 4 10i6) (17856 — 78336i 4 24528i> + 525848i> — 493806i* — 1868490i° + 2594599i + 3894831/ ...
(10(4 — 22i + 51i% — 40i% 4 10i) (1 — i — 3i% + 5i3 + 10i4) (69 + 96i — 63i% — 90i> + 50i4) (48 — 48i — 164i> + 200i> + 390i* — 399i> — 161i¢ + 210i” — 35i° + 7i10)

... —4959771i8 — 39806317 + 5852829110 + 3275191 — 247784312 + 642525i'3 + 299640i% — 163450i'> + 21000i16)
(10(4 — 22i + 51i2 — 408 + 10i4) (1 — i — 312 + 58 + 10i4) (69 + 96 — 6312 — 9013 + 50i4) (48 — 48 — 164iZ + 20083 + 390i* — 39955 — 16116 + 210i” — 350 + 7i10)’

(44 6i — 9% — 2013 4 15i* + 3045 + 10i6) (12 — 42i + 252 + 132i3 — 91i4 — 12245 + 151i6 — 567 + 71’3))
10(1 — i — 3i% + 58 + 10i%) (48 — 48i — 164i2 4 20043 + 390i* — 399i5 — 161 + 210i7 — 351 + 7i10)
A3.4. Weights for interface value integration
In 2D case, the original weights for interpolation might be used according to the situation. In z coordinates, the weights are the same as
of Cartesian grids given in A.1.4. Weights for §—directional integration are complex and advised to be computed numerically. r—directional
integration weights are given below, where r; is the radius of the cell center.

. . —69Ar?+1904Arr;—476r2 321 Ar? —4312Arr; 4215612
 Fifth order quadrature (all middle values):: (WM _ wM _  wM wM  wM )= — L, — L,
i,—2° i, -1""i0 i+2 13440(Ar?+12r2) 3360(Ar*+12r2)

i,+1°

2240(Ar?+12r2) 3360(Ar?+12r2) ’ 13440(Ar?+12r7)
» Sixth order quadrature (all interface values):: (wl.ts/z, Wit3/2, w;_:]/z, Wiy W30 WE+5/2) =
15AT" — 12Ar7; + 30817 —129Ar” + 172Arr; — 2604r? 897 Ar* — 3588 Arr; + 112287 897 Ar” + 3588 Arr; + 1122812
( 3360(Ar% +12r2) 3360(Ar* + 1212) ’ 1680(Ar? +12r2) ’ 1680(Ar? +12r2)
129A1% + 172Arr; + 26042 15A1% + 12Arr; + 30817
B 3360(Ar* + 1212) " 3360(Ar* +12r2) )

1835Ar2+24164r7  321Ar2+4312Arr;+215617 69Ar2+1904Arr1~+476r].2)
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For 3D cases, one - dimensional Jacobian values are given in Table 2. For (r — ) and (r — ¢) planes, the one directional sweeps in r
direction can be evaluated from the weights given in A.2.4 and 6— or ¢—directional integration weights given in A.1.4. For (6 — ¢) planes,
analytical values are complex as one - dimensional Jacobians are unity and sin&. Thus, they require direct numerical procedure.

A3.5. Weights for source term integration
The one - dimensional Jacobian values for this case are given in Table 1. The original and regularized quadrature values in ¢ direction
can be computed from A.1.5, 8 direction by direct numerical operation, and radial (r) direction from the weights given below:

¢ 3 point Simpson quadrature (2 interface, 1 middle values)::
3Ar2-20Arr+20r2  2(Ar*+20r2)  3Ar2+20Arr;+20r?
10Ar2+120r7  ° 5(Ar+12r7)"  10Ar*+120r7

1. Original weights: (W,.tl/z,w%,wifﬂ/z) = (

. . . Pt AM  A— _ Ar—2r; 8r; Ar+2r;
2. Regularized weights: (Wi,—l/Z’ Wi Wi,+1/2) = (

T oafi? A’ Al
« Fifth order quadrature (all middle values)::
1. Original weights: Refer to Appendix A.3.4
. : . ~ ~ A ~ ~ 172Ar—r; 77(Ar—r; 863r; T7(Ar+r; 17(2Ar+r;
2. Regularized weights: (W}, Wi | Wi W | W1, ,) = (480((Ar2+121ii2)’ _120(gr2+112)ri2)’ 80(Ar2+l12ri2)’ 120(£r2+1x2)rl.2)’ _480((Ar2+121;i2))
e Sixth order quadrature (all interface values)::
1. Original weights: Refer to Appendix A.3.4

. . N N N o o o —3Ar+154r; 43Ar—1302r;  —897Ar+5614r;
2. Regularized weights: wi wi o, o Wt W W , W = L, L, L
g g ( i,—=5/2> 7i,-3/2> 7i,-172° Vi 4172 Vi 43/2 l.+5/2) 1680(Ar2+12r7) " 1680(Ar*+12r?) " 840(Ar®+12r2)’
897Ar+5614r;  43Ar+1302r; 3Ar+154r
840(Ar2+12ri2)’ 1680(Ar2+12ri2)’ 1680(Ar2+12ri2)

Appendix B. Stability analysis of WENO - C for hyperbolic conservation laws

For WENO - C to be practically useful, it is crucial that it enables a stable discretization for hyperbolic conservation laws when coupled
with a proper time - integration scheme. In this section, we analyze WENO - C scheme for model problems involving smooth flow in 1 - D
Cartesian, cylindrical - radial, and spherical - radial coordinates, based on a modified von Neumann stability analysis [59].

B1. Model problem in 1D

We consider scalar advection Eq. (B.1) in 1D Cartesian, cylindrical - radial, and spherical - radial coordinates.

Q 1 0 A%
7+ avoe e (52

where Q is the conserved variable, (dV/9§) =&™ is the one - dimensional Jacobian where m =0, 1, and 2 in Cartesian, cylindrical -
radial, and spherical - radial coordinates. Boundary conditions are not considered in the present approach to reduce the complexity of the
analysis. Assuming a uniform grid 0=§; <&, <... <& <... <&x =00 with §=iA¢ and &, — & =A& V iand (i+1/2) denotes the
boundaries of the finite volume i. In the finite volume framework, Eq. (B.1) transforms into Eq. (B.2), which can be further approximated
by conservative scheme given in Eq. (B.3).

0% L (FQEp0) ~FQE 12.0) (2)
3t = _AVi i+1/2» - i-1/2» B

)Qv):O £e[0,00, £>0 (B.1)

. Unstable region

Stable region

— Spatial spectrum

— — = Rescaled spatial
spectrum

Fig. B14. Rescaled spectrum (with maximum stable CFL number & = 1.44) and stability domains of fifth - order WENO - C in Cartesian coordinates (m = 0) in a complex
plane.
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and
% = _ALVI_(FA;'H/Z ~F.ap) (B.3)
where
- 1 §iv12 V(1)
Qe =gy [0 T )de (B4)
and
o 5i+1/2 av(é-, l‘)
AV, = /E/ (735 )dg (B5)

Theyes numerical flux 13,~+1/2 is replaced by the Lax-Friedrichs flux, as given in Eq. (B.6), with & =maxq|F'(Q)|.
o, 17 - _ . B
Fii= 5[ (F@) +F@)-a@ - 0] (86)

where + and - denote right and left sides of an interface respectively. For this particular problem, let v =1 in Eq. (B.1). Therefore, only the
values on the left side of the interface are considered, i.e., F,1,, —F_1,, = [Q(3V/08)] 11,2 —[Q(3V/3§)]7i_1 2. For the time integration,
we use a TVD Runge - Kutta (RK) method. A n—stage RK method for the ODE Q; = L(Q) has the general form as shown in Eq. (B.7).

ko = Q(t)

1-1
k] = Z(a“KJ-F,B“AtL(kJ)), I=1,....n (B7)
j=0

where k; denotes the solution after Ith stage, and Q(t + t) = k. An RK method is total variation diminishing (TVD) if all the coefficients
ajj and Bj; are nonnegative. The CFL coefficient of such a scheme is given by Eq. (B.8).

¢ = ming i {o/ B} (B.8)
For TVD RK order 3 scheme, the CFL coefficient is ¢ = 1.

B2. von Neumann stability analysis

Based on the von Neumann stability analysis, the semi - discrete solution can be expressed as a discrete Fourier series, as given in
Eq. (B.9).

N/2
A = Y Qe  wceR (B.9)
k=—N/2

where j = +/—1. By the superposition principle, only one term in the series can be used for analysis, as illustrated in Eq. (B.10).

Q(t) = Qu(t)e™, 6 = w AE (B.10)
By substituting Eq. (B.10) in Eq. (B.3), we can separate the spatial operator L, as given in Eq. (B.11).

[—_ (Firp —F12) L [QV/38)], , —[QOV/IE)]_,, 2(60Q (B11)
- N% - AV T AE )
where the complex function z(6) is the Fourier symbol. By substituting the values of Q, 2 and Q4 2 using fifth order positive weights

of cells (i—1) and i respectively for a smooth solution, the value of z(8)) can be evaluated using Eq. (B.12).

m+1 2 5+ :m . ilo 5+ : j(1-1)6,

2(0) = sy — (i— 1)<m+1>lZ I:Wi,o,llme] C= Wil 0= DT k] (B.12)
-2

where index number i =§; 1,,/A§, (i—1) =&;_1,,/A% and m =0, 1, and 2 represents Cartesian, cylindrical - radial, and spherical - radial

coordinates. Let Q,." = Q;(t") be the numerical solution at time t" = nAt. We define the amplification factor g in Eq. (B.13) by substituting

(B.10) into the fully - discrete system.

Q' =g2)Q!", Zx=-0z(6y). k=-N/2,....N/2 (B.13)

where o = At/AE. Therefore, the linear stability domain of an explicit time-stepping scheme is S; = {Z: |g(2)| < 1}. Also, we define the
spectrum S of a spatial discretization scheme in Eq. (B.14) [59].

S={-z(6): 6,c0,A0,2A0,2m}, AO =2 A& (B.14)
The stability limit is thus the largest CFL number & such that the rescaled spectrum &S lies inside the stability domain S;.
6S¢eS; (B.15)

For the third - order Runge-Kutta scheme, the amplification factor g is given in Eq. (B.16).

g =1+%+ 1n + 15 (B.16)
2 6
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. Unstable region

Stable region

—— Spatial spectrum

——~— Rescaled spatial
spectrum

(a) Legend

———r—————— ——————————
3

-4 -3 -2 -1 0 1

() i =20,5 =1.48 (f) i = 50,6 = 1.46

(g) i = 100,56 = 1.45

Fig. B15. Rescaled spectrums (with maximum stable CFL number &) and stability domains of fifth - order WENO - C in cylindrical coordinates (m = 1) in a complex plane
for different index numbers i.

Boundaries of the stability domain 9S; = {Z : |g(?)| = 1} is found by setting g(Z) = e/¢ and solving Eq. (B.17).
2 4+32 +6Z+6+6e% =0 (B.17)

As for the figures in this section, the stable and unstable regions are shown as off - white and blue regions respectively for TVD RK
order 3. The stability domain depends on temporal discretization and is thus fixed irrespective of the spatial discretization scheme.

Given the spectrum S and the stability domain S;, the maximum stable CFL number of this scheme can be computed by finding the
largest rescaling parameter &, so that the rescaled spectrum still lies in the stability domain. Using interval bisection, we find the CFL
number of the proposed WENO - C scheme with TVD RK order 3 time marching.
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. Unstable region

Stable region

—— Spatial spectrum

——~— Rescaled spatial
spectrum

(a) Legend

———r—————— ——————————

-4 -3 -2 -1 0 1

(e) i =20,5 = 1.50 (f) i = 50,6 = 1.48

(g) i = 100,5 = 1.46

Fig. B16. Rescaled spectrums (with maximum stable CFL number &) and stability domains of fifth - order WENO - C in spherical coordinates (m = 2) in a complex plane for
different index numbers i.

For the Cartesian case as shown in Fig. B.14, the maximum CFL number value obtained is 1.44, similar to a previous study [59]. It can be
observed respectively from Figs. B.15 and B.16 for cylindrical - radial and spherical - radial coordinates that the spatial spectrums S differs
with the index numbers i due to the geometrical variation of the finite volume. Some regions (i = 1, 2) require boundary conditions and
thus, are not considered in the present analysis. The values of CFL number for cylindrical - radial and spherical - radial coordinates lie in
between 1.45 to 1.52 and 1.25 to 1.52 respectively. As a final remark, it can be concluded that the proposed scheme will be stable with
third or higher order of RK method with an appropriate value of CFL number.



424 M.A. Shadab, D. Balsara and W. Shyy et al./Computers and Fluids 190 (2019) 398-424

References

[1] Titarev V, Toro E. Weno schemes based on upwind and centred TVD fluxes.
Comput Fluids 2005;34(6):705-20.

[2] Mignone A. High-order conservative reconstruction schemes for finite vol-
ume methods in cylindrical and spherical coordinates. ] Comput Phys
2014;270:784-814.

[3] Titarev VA, Toro EF. Finite-volume WENO schemes for three-dimensional con-
servation laws. ] Comput Phys 2004;201(1):238-60.

[4] Jiang G-S, Shu C-W. Efficient implementation of weighted ENO schemes. ]
Comput Phys 1996;126(1):202-28.

[5] Liu X-D, Osher S, Chan T. Weighted essentially non-oscillatory schemes. ] Com-
put Phys 1994;115(1):200-12.

[6] Balsara DS, Shu C-W. Monotonicity preserving weighted essentially non-oscil-
latory schemes with increasingly high order of accuracy. ] Comput Phys
2000;160(2):405-52.

[7] Balsara DS, Garain S, Shu C-W. An efficient class of WENO schemes with adap-
tive order. ] Comput Phys 2016;326:780-804.

[8] Dumbser M, Iben U, Munz C-D. Efficient implementation of high order un-
structured WENO schemes for cavitating flows. Comput Fluids 2013;86:141-68.

[9] Shu C-W. High order weighted essentially nonoscillatory schemes for convec-
tion dominated problems. SIAM Rev 2009;51(1):82-126.

[10] Dumbser M, Boscheri W. High-order unstructured Lagrangian one-step
WENOfinite volume schemes for non-conservative hyperbolic systems: appli-
cations to compressible multi-phase flows. Comput Fluids 2013;86:405-32.

[11] Shu C-W. High-order finite difference and finite volume WENO schemes
and discontinuous Galerkin methods for CFD. Int ] Comput FluidDyn
2003;17(2):107-18.

[12] Crnjari¢-Zic N, Vukovié S, Sopta L. Extension of ENO and WENO
schemes to one-dimensional sediment transport equations. Comput Flu-
ids 2004;33(1):31-56.

[13] Jiang G-S, Wu C-c. A high-order WENO finite difference scheme for the equa-
tions of ideal magnetohydrodynamics. ] Comput Phys 1999;150(2):561-94.

[14] Balsara DS. Divergence-free reconstruction of magnetic fields and WENO
schemes for magnetohydrodynamics. ] Comput Phys 2009;228(14):5040-56.

[15] Balsara DS, Rumpf T, Dumbser M, Munz C-D. Efficient, high accuracy
ADER-WENO schemes for hydrodynamics and divergence-free magnetohydro-
dynamics. ] Comput Phys 2009;228(7):2480-516.

[16] Casper ], Atkins H. A finite-volume high-order ENO scheme for two-dimen-
sional hyperbolic systems. ] Comput Phys 1993;106(1):62-76.

[17] Fu L, Hu XY, Adams NA. A family of high-order targeted ENO schemes for com-
pressible-fluid simulations. ] Comput Phys 2016;305:333-59.

[18] Colella P, Woodward PR. The piecewise parabolic method (PPM) for gas-dy-
namical simulations. ] Comput Phys 1984;54(1):174-201.

[19] Colella P, Sekora MD. A limiter for PPM that preserves accuracy at smooth
extrema. ] Comput Phys 2008;227(15):7069-76.

[20] McCorquodale P, Colella P. A high-order finite-volume method for conservation
laws on locally refined grids. Commun Appl MathComput Sci 2011;6(1):1-25.

[21] Wang ZJ. Spectral (finite) volume method for conservation laws on unstruc-
tured grids. Basic formulation. ] Comput Phys 2002;178(1):210-51.

[22] Huynh HT. A flux reconstruction approach to high-order schemes including
discontinuous Galerkin methods. In: 18th AIAA computational fluid dynamics
conference; 2007. p. 4079.

[23] Levy D, Puppo G, Russo G. Central WENO schemes for hyperbolic systems of
conservation laws. ESAIM 1999;33(3):547-71.

[24] Cravero I, Puppo G, Semplice M, Visconti G. CWENO: uniformly accurate re-
constructions for balance laws. Math Comput 2018;87(312):1689-719.

[25] Cravero I, Puppo G, Semplice M, Visconti G. Cool WENO schemes. Comput Flu-
ids 2018;169:71-86.

[26] Levy D, Puppo G, Russo G. A third order central WENO scheme for 2d conser-
vation laws. Appl Numer Math 2000;33(1-4):415-21.

[27] Lahooti M, Pishevar A. A new fourth order central WENO method for 3d hy-
perbolic conservation laws. Appl Math Comput 2012;218(20):10258-70.

[28] Semplice M, Coco A, Russo G. Adaptive mesh refinement for hyperbolic
systems based on third-order compact WENO reconstruction. ] Sci Comput
2016;66(2):692-724.

[29] Zhu ], Qiu ]J. A new third order finite volume weighted essentially non-oscilla-
tory scheme on tetrahedral meshes. ] Comput Phys 2017;349:220-32.

[30] Zhu J, Qiu ]J. New finite volume weighted essentially nonoscillatory schemes
on triangular meshes. SIAM ] Sci Comput 2018;40(2):A903-28.

[31] Castro M], Semplice M. Third-and fourth-order well-balanced schemes for the
shallow water equations based on the CWENO reconstruction. Int ] Numer
Methods Fluids 2018.

[32] Monchmeyer R, Muller E. A conservative second-order difference scheme for
curvilinear coordinates-part one-assignment of variables on a staggered grid.
Astron Astrophys 1989;217:351.

[33] Falle SAEG. Self-similar jets. Mon Not R Astron Soc 1991;250(3):581-96. doi:10.
1093/mnras/250.3.581.

[34] Ziegler U. A semi-discrete central scheme for magnetohydrodynamics on or-
thogonal-curvilinear grids. ] Comput Phys 2011;230(4):1035-63.

[35] Yamaleev NK, Carpenter MH. A systematic methodology for constructing high-
-order energy stable WENO schemes. ] Comput Phys 2009;228(11):4248-72.

[36] Shadab MA, Balsara D, Shyy W, Xu K. Fifth order finite volume WENO in gen-
eral orthogonally-curvilinear coordinates. 2017. arXiv:171106212.

[37] Shadab MA, Xing ], Xu K. Fifth-order finite-volume WENO on cylindrical grids.
In: International conference on spectral and high-order methods (ICOSAHOM),
Imperial College London, UK; 2018. (accepted for publication).

[38] Shi ], Hu C, Shu C-W. A technique of treating negative weights in
WENOschemes. ] Comput Phys 2002;175(1):108-27.

[39] Luo J, Xu K. A high-order multidimensional gas-kinetic scheme for hydrody-
namic equations. Sci China Technol Sci 2013;56(10):2370-84.

[40] Henrick AK, Aslam TD, Powers JM. Mapped weighted essentially non-oscil-
latory schemes: achieving optimal order near critical points. ] Comput Phys
2005;207(2):542-67.

[41] Borges R, Carmona M, Costa B, Don WS. An improved weighted essen-
tially non-oscillatory scheme for hyperbolic conservation laws. ] Comput Phys
2008;227(6):3191-211.

[42] Don W-S, Borges R. Accuracy of the weighted essentially non-oscillatory con-
servative finite difference schemes. ] Comput Phys 2013;250:347-72.

[43] Zhang R, Zhang M, Shu C-W. On the order of accuracy and numerical perfor-
mance of two classes of finite volume WENO schemes. Commun Comput Phys
2011;9(3):807-27.

[44] Buchmiiller P, Helzel C. Improved accuracy of high-order WENO finite volume
methods on cartesian grids. ] Sci Comput 2014;61(2):343-68.

[45] Toro EF. Riemann solvers and numerical methods for fluid dynamics: a practi-
cal introduction. Springer Science & Business Media; 2013.

[46] Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its
connection with artificial dissipation and Godunov method. ] Comput Phys
2001;171(1):289-335.

[47] Gottlieb S, Shu C-W. Total variation diminishing Runge-Kutta schemes. Math
Comput Am Math Soc 1998;67(221):73-85.

[48] Rusanov VV. The calculation of the interaction of non-stationary shock waves
and obstacles. USSR Comput Math Math Phys 1962;1(2):304-20.

[49] Blondin JM, Lufkin EA. The piecewise-parabolic method in curvilinear coordi-
nates. Astrophys ] Suppl Ser 1993;88:589-94.

[50] Johnsen E, Colonius T. Implementation of WENO schemes in compressible
multicomponent flow problems. ] Comput Phys 2006;219(2):715-32.

[51] Wang S, Johnsen E. High-order schemes for the euler equations in cylindri-
cal/spherical coordinates. 2017. arXiv:170104834.

[52] Fryxell B, Olson K, Ricker P, Timmes F, Zingale M, Lamb D, et al. Flash: an
adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear
flashes. Astrophys J Suppl Ser 2000;131(1):273.

[53] Kamm JR, Timmes F. On efficient generation of numerically robust SEDOVso-
lutions. Tech. Rep.. Technical Report LA-UR-07-2849, Los Alamos National Lab-
oratory; 2007.

[54] Sod GA. A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws. ] Comput Phys 1978;27(1):1-31.

[55] Harten A, Lax PD, Van Leer B. On upstream differencing and Godunov-type
schemes for hyperbolic conservation laws. In: Upwind and high-resolution
schemes. Springer; 1997. p. 53-79.

[56] Van Leer B. Towards the ultimate conservative difference scheme. V. A sec-
ond-order sequel to Godunov’'s method. ] Comput Phys 1979;32(1):101-36.

[57] MacCormack RW. A numerical method for solving the equations of compress-
ible viscous flow. AIAA ] 1982;20(9):1275-81.

[58] Lax PD, Liu X-D. Solution of two-dimensional Riemann problems of gas dy-
namics by positive schemes. SIAM ] Sci Comput 1998;19(2):319-40.

[59] Liu H, Jiao X. WLS-ENO: weighted-least-squares based essentially non-oscilla-
tory schemes for finite volume methods on unstructured meshes. ] Comput
Phys 2016;314:749-73.


http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0001
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0002
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0003
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0004
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0005
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0006
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0007
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0008
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0009
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0010
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0011
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0012
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0013
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0014
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0015
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0016
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0017
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0018
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0019
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0020
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0021
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0022
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0023
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0024
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0025
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0026
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0027
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0028
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0029
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0030
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0031
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0032
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0032
https://doi.org/10.1093/mnras/250.3.581
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0034
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0035
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0035
http://arxiv.org/abs/171106212
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0036
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0037
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0038
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0039
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0040
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0041
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0042
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0043
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0044
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0045
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0046
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0047
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0047
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0048
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0049
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0049
http://arxiv.org/abs/170104834
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0050
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0051
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0052
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0053
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0054
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0054
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0055
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0055
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0056
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0056
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0056
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0057
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0057
http://refhub.elsevier.com/S0045-7930(18)30798-9/sbref0057

	Fifth order finite volume WENO in general orthogonally - curvilinear coordinates
	1 Introduction
	2 Fifth order finite volume WENO&#x00A0;-&#x00A0;C reconstruction
	2.1 Finite volume discretization in curvilinear coordinates
	2.2 Evaluation of the linear weights
	2.3 Optimal weights
	2.4 Smoothness indicators and the nonlinear weights
	2.5 Extension to multi-dimensions
	2.6 Source term integration
	2.7 WENO&#x00A0;-&#x00A0;C final algorithm

	3 Numerical tests
	3.1 Scalar advection tests
	3.1.1 Advection equation in cylindrical&#x00A0;-&#x00A0;radial and spherical&#x00A0;-&#x00A0;radial coordinates
	3.1.2 Advection equation in spherical&#x00A0;-&#x00A0;meridional coordinates

	3.2 Euler equations based tests
	3.2.1 Isothermal radial wind problem
	3.2.2 Acoustic wave propagation
	3.2.3 Sedov explosion test
	3.2.4 Sod test
	3.2.5 Modified 2D Riemann problem in cylindrical (R&#x00A0;-&#x00A0;z) coordinates


	4 Conclusions
	Acknowledgements
	Appendix A WENO&#x00A0;-&#x00A0;C reconstruction weights
	A1 Cartesian coordinates
	A1.1 Linear weights
	A1.2 Fifth order interpolation weights
	A1.3 Optimal weights
	A1.4 Weights for interface value integration
	A1.5 Weights for source term integration

	A2 Cylindrical coordinates
	A2.1 Linear weights
	A2.2 Fifth order interpolation weights
	A2.3 Optimal weights
	A2.4 Weights for interface value integration
	A2.5 Weights for source term integration

	A3 Spherical coordinates
	A3.1 Linear weights
	A3.2 Fifth order interpolation weights
	A3.3 Optimal weights
	A3.4 Weights for interface value integration
	A3.5 Weights for source term integration


	Appendix B Stability analysis of WENO&#x00A0;-&#x00A0;C for hyperbolic conservation laws
	B1 Model problem in 1D
	B2 von Neumann stability analysis

	References


