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Summary

In this paper, we present a novel pressure-based semi-implicit finite volume
solver for the equations of compressible ideal, viscous, and resistive magnetohy-
drodynamics (MHD). The new method is conservative for mass, momentum,
and total energy, and in multiple space dimensions, it is constructed in such a
way as to respect the divergence-free condition of themagnetic field exactly, also
in the presence of resistive effects. This is possible via the use of multidimen-
sional Riemann solvers on an appropriately staggered grid for the time evolution
of the magnetic field and a double curl formulation of the resistive terms. The
new semi-implicit method for theMHD equations proposed here discretizes the
nonlinear convective terms as well as the time evolution of the magnetic field
explicitly, whereas all terms related to the pressure in the momentum equation
and the total energy equation are discretized implicitly, making again use of a
properly staggered grid for pressure and velocity. Inserting the discrete momen-
tum equation into the discrete energy equation then yields a mildly nonlinear
symmetric and positive definite algebraic system for the pressure as the only
unknown, which can be efficiently solved with the (nested) Newton method
of Casulli et al. The pressure system becomes linear when the specific inter-
nal energy is a linear function of the pressure. The time step of the scheme is
restricted by a CFL condition based only on the fluid velocity and the Alfvén
wave speed and is not based on the speed of the magnetosonic waves. Being
a semi-implicit pressure-based scheme, our new method is therefore particu-
larly well suited for low Mach number flows and for the incompressible limit
of the MHD equations, for which it is well known that explicit density-based
Godunov-type finite volume solvers become increasingly inefficient and inac-
curate because of the more and more stringent CFL condition and the wrong
scaling of the numerical viscosity in the incompressible limit. We show a rel-
evant MHD test problem in the low Mach number regime where the new
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semi-implicit algorithm is a factor of 50 faster than a traditional explicit finite
volume method, which is a very significant gain in terms of computational effi-
ciency. However, our numerical results confirm that our new method performs
well also for classical MHD test cases with strong shocks. In this sense, our new
scheme is a true all Mach number flow solver.

KEYWORDS

all Mach number flow solver, compressible low Mach number flows, divergence-free, finite
volume schemes, general equation of state, ideal magnetohydrodynamics, pressure-based method,
semi-implicit, viscous and resistive MHD

1 INTRODUCTION

Since their invention by Harlow and Welch,1 pressure-based semi-implicit finite difference schemes on staggered grids
have become widespread over the last decades for the solution of the incompressible Navier-Stokes equations with and
without moving free surface, see, eg, other works,2-14 for a nonexhaustive overview of some of the most important con-
tributions. An early application of semi-implicit schemes to compressible gas dynamics was the method of Casulli and
Greenspan,15 but their scheme was not conservative and therefore unable to solve problems including shock waves. In
the field of numerical methods for high Mach number compressible flows, typically explicit density-based Godunov-type
finite volume schemes16-25 are preferred, since they are by construction conservative and thus allow the correct compu-
tation of shock waves. Therefore, the application of semi-implicit methods to compressible flows with shock waves is
still quite rare, and some recent developments in this direction have been made only very recently in other works,26-31
where new conservative pressure-based semi-implicit schemes have been proposed that are also suitable for the simula-
tion of flow problems including shock waves. Concerning the numerical simulation of compressible magnetized plasma
flows governed by the ideal or viscous and resistive magnetohydrodynamics (MHD) equations, only very little work has
been done so far concerning the development of semi-implicit schemes. The existing semi-implicit schemes for MHD
either apply only to the incompressible or anelastic case, or they are not based on a conservative formulation, see, eg,
other works.32-36 The declared aim of this paper is therefore to close this gap and to propose a new conservative and
pressure-based semi-implicit finite volume method for the solution of the compressible ideal and viscous and resistive
MHD (VRMHD) equations that applies both to high Mach number flows with shocks as well as to low Mach number or
even incompressible flows. It is well known that explicit density-based solvers become increasingly inefficient and inac-
curate in the low Mach number regime and therefore an implicit time discretization is needed. However, discretizing
all terms implicitly would lead to a highly nonlinear nonsymmetric system with a large number of unknowns (density,
velocity, pressure, andmagnetic field), for which convergence is very difficult to control. Therefore, the new semi-implicit
finite volume (SIFV) method proposed in this paper uses instead an explicit discretization for all nonlinear convective
terms and for the time evolution of themagnetic field, whereas an implicit discretization is only employed for the pressure
terms. This judicious combination leads in the end to only one mildly nonlinear and symmetric positive definite system
for the fluid pressure as the only unknown. The properties of the pressure system allow the use of the Newton-type tech-
niques of Casulli et al,37-40 for which convergence has been rigorously proven. Due to the implicit pressure terms, the time
step of our new scheme is only restricted by the fluid velocity and the Alfvén wave speed, and not by the speeds of the
magnetosonic waves. For this reason, themethod proposed in this paper is a true allMach number flow solver.We empha-
size again that compared to a fully implicit density-based scheme, the chosen semi-implicit pressure-based method has
several advantages: (i) in our scheme, the scalar pressure field at the new time level is the only unknown, whereas in
fully implicit density-based solvers, the entire state vector of the MHD equations with its eight quantities is unknown;
this choice substantially simplifies the solution of the final equation system in our semi-implicit approach compared to a
fully implicit one; (ii) the final pressure system of the proposed semi-implicit scheme is onlymildly nonlinear for general
equations of state (EOS), and it is even linear for the ideal gas EOS; in contrast, the resulting algebraic system of a fully
implicit scheme for the MHD equations is always highly nonlinear; (iii) the pressure system in our scheme is symmetric
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and positive definite and the stencil involves only the cell and its direct neighbors, whereas a fully-implicit density-based
solver will in general lead to a nonsymmetric system and thus requires more complex iterative solvers.
Modern computer codes for the solution of the MHD equations are mainly based on second or higher order

Godunov-type finite volume schemes41-50 or on the discontinuous Galerkin (DG) finite element framework.49,51-56 In all
these methods, the proper discretization of the magnetic field is of fundamental importance due to the well-known
divergence-free constraint which the magnetic field must satisfy. Various solutions to this problem have been proposed
in the literature so far and they can be essentially classified in two main categories: (i) the first class contains the exactly
divergence-free methods, following the ideas of Balsara and Spicer42,57 and which requires the electric field at the ver-
tices of each element and thus a multi-dimensional Riemann solver58-63; (ii) the the second class uses divergence cleaning
techniques, like either the Powell source term64 based on the symmetric form of the MHD equations found by Godunov65
or the hyperbolic generalized Lagrangian multiplier (GLM) approach of Munz et al66 and Dedner et al.67 The method
proposed in this paper falls into the first class of exactly divergence-free schemes.
The rest of the paper is organized as follows: for the sake of simplicity and to facilitate the reader, we first present our

new algorithm only for the ideal MHD equations in one space dimension, see Section 2. Computational results for the
one-dimensional case are shown in Section 3. The extension of themethod to the two-dimensional case, including viscous
and resistive effects and a divergence-free evolution of the magnetic field is presented in Section 4. A set of classical
benchmark problems for the ideal and VRMHD equations is then solved in Section 5, showing the performance of the
method in the low Mach number limit as well as its robustness for shocked flows. Finally, in Section 6 we give some
concluding remarks and an outlook to future work.

2 NUMERICAL METHOD FOR THE IDEAL MHD EQUATIONS IN ONE
SPACE DIMENSION

2.1 Governing PDE
The ideal MHD equations in one space dimension read as follows:

𝜕
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⎛⎜⎜⎜⎜⎜⎜⎜⎝
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= 0. (1)

Here, time is denoted by t ∈ R+
0 , whereas x ∈ Ω = [xL, xR] ⊂ R is the spatial coordinate within the computational

domain Ω. As usual, the fluid density and the fluid pressure are denoted by 𝜌 and p, respectively; v = (u, v,w) is the
velocity field and the magnetic field vector is B = (Bx,By,Bz); the total energy density is given by 𝜌E = 𝜌e + 𝜌k + m =
𝜌e+ 1

2
𝜌v2+ 1

8𝜋
B2, where 𝜌k = 1

2
𝜌v2 is the kinetic energy density of the fluid andm = 1

8𝜋
B2 is the magnetic energy density;

e = e(p, 𝜌) is the specific internal energy per unitmass given by the so-called EOS,which is in general a nonlinear function
of the fluid pressure and density. However, for an ideal gas, e and thus 𝜌e are linear functions in p. In density-based
Godunov-type finite volume schemes the EOS is typically required in the form p = p(e, 𝜌), which can be obtained by
solving the expression e = e(p, 𝜌) for the pressure. Another important quantity that we will use in this paper is the
so-called specific enthalpy, which is defined as h = e + p∕𝜌 and which allows to rewrite the first part of the flux for the
total energy density as follows: u(𝜌E + p + m) = u(𝜌k + 2m) + h(𝜌u). The eight eigenvalues of the MHD system (1) are

λ1,8 = u ∓ c𝑓 , λ2,7 = u ∓ ca, λ3,6 = u ∓ cs, λ4 = u, λ5 = 0, (2)

with
ca = Bx∕

√
4𝜋𝜌, c2s =

1
2

(
b + c −

√
(b + c)2 − 4bxc

)
, c2

𝑓
= 1
2

(
b + c +

√
(b + c)2 − 4bxc

)
. (3)

Here, ca is the Alfvén wave speed, cs is the speed of the slow magnetosonic waves, cf is the one of the fast magnetosonic
waves, and c is the adiabatic sound speed that can be computed from the equation of state p = p(e, 𝜌) as c2 = 𝜕p∕𝜕𝜌 +
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p∕𝜌2𝜕p∕𝜕e, which reduces to the well-known expression c2 = 𝛾p∕𝜌 for the ideal gas EOS. In the previous expressions, we
have also used the abbreviations b2 = B2∕(4𝜋𝜌) and bx = Bx∕

√
4𝜋𝜌. For a detailed discussion of the MHD equations and

its eigenstructure, see the work of Roe and Balsara68 and references therein. Similar to the compressible Euler equations,
the crucial terms that give rise to the fast and slow magnetosonic wave speed cf and cs are the pressure term px in the
momentum equation and the enthalpy term (h𝜌u)x in the total energy equation. Therefore, these terms will have to be
discretized implicitly in our semi-implicit numerical method in order to avoid a CFL condition based on themagnetosonic
wave speeds cf and cs, whereas all remaining terms do not include the pressure and can therefore be discretized explicitly.
In Section 2.3, we present a detailed discussion of the eigenvalues of an appropriately split MHD system in order to
properly motivate our choice for discretizing certain terms explicitly and others implicitly. For a detailed analysis in the
case of the compressible Euler and the shallow water equations, see the works of Casulli et al.15,69

2.2 Ideal gas EOS
Our numerical scheme is presented for a general nonlinear equation of state e = e(p, 𝜌). However, in order to compare
with previously published results in the literature, we will use the ideal gas EOS for all numerical test problems reported
later. The ideal gas EOS in the sought form e = e(p, 𝜌) can be obtained from the so-called thermal equation of state
p = p(𝜌,T) and the so-called caloric equation of state e = e(T, 𝜌) by eliminating the temperature. For the ideal gas, the
thermal and caloric equations of state take the well-known form

p
𝜌
= RT, and e = cvT, (4)

with the specific gas constant R = cp − cv, and the specific heat capacities cv and cp at constant volume and at constant
pressure, respectively. From (4), one easily obtains

e = e(p, 𝜌) =
p

(𝛾 − 1)𝜌
, (5)

which is linear in the pressure p and where 𝛾 = cp∕cv denotes the so-called ratio of specific heats. For more general
cubic equations of state, the reader is referred to the famous work by Van der Waals70 and more recent extensions.71-73 For
completely general equations of state for real fluids, see the works of Wagner et al.74,75

2.3 Split form of the MHD system
Following the seminal paper of Toro and Vázquez76 on the Euler equations, we now decide to split the flux of the MHD
system (1) into a convective-type flux and a pure pressure flux, where the convective-type flux has to be understood in a
more general sense in the MHD context due to the presence of the Alfvén waves. Note that the Toro and Vázquez (TV)
splitting is substantially different from the flux vector splittings proposed in other works77-79 since only in the TV splitting
the resulting convective flux is totally free of any pressure terms. Writing PDE (1) formally as

𝜕Q
𝜕t

+ 𝜕f
𝜕x

= 0, (6)

with Q = (𝜌, 𝜌v, 𝜌E,B) the vector of conservative variables and the flux vector f given in (1), we write the split system
now as

𝜕Q
𝜕t
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𝜕x

+ 𝜕fp
𝜕x

= 0, (7)

with the convective-type flux f c and the pure pressure flux fp given as follows:
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0
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0
0
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. (8)
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Recall that we have h = e(p, 𝜌) + p∕𝜌 andm = 1
8𝜋
B2 as well as 𝜌k = 1

2
𝜌v2 according to the definitions in Section 2.1. It is

obvious that f c does not contain any contribution of the pressure p, whereas fp involves only the density 𝜌, the pressure
p and the velocity component u and does not involve any contribution from the magnetic field. In this sense, our new
splitting is the closest possible to the TV splitting since our pressure system is exactly the same as the one obtained by
Toro andVázquez.76 Note in particular also that the split form (7)with (8) chosen in this paper is different fromall splittings
of the MHD system proposed in Balsara et al.80 It is easy to check that the convective subsystem

𝜕tQ + 𝜕xf c = 0 (9)

has the following eigenvalues

λc1,8 = u ∓
√

B2
4𝜋𝜌

, λc2,7 = u ∓ Bx√
4𝜋𝜌

, λc3,4 = 0, λc5,6 = u, (10)

whereas our pressure subsystem
𝜕tQ + 𝜕xfp = 0 (11)

is identical to the Toro and Vázquez pressure system and therefore has the eigenvalues

λp1 =
1
2

(
u −

√
u2 + 4c2

)
, λp2,3,4,5,6,7 = 0, λp8 =

1
2

(
u +

√
u2 + 4c2

)
, (12)

ie, the pressure subsystem is always subsonic, independent of B. With subsonic we mean here that there is always one
negative eigenvalue λp1 < 0, a multiple zero eigenvalue and one positive eigenvalue λp8 > 0. Recall that for the ideal gas
EOS, we have c2 = 𝛾p∕𝜌. Looking at the eigenvalues (12) of the pressure subsystem, it becomes obvious that for low
Mach number flows, ie, when the ratio M = u∕c ≪ 1, or even more in the incompressible limit when M → 0, the
terms appearing in the pressure subsystem need to be discretized implicitly, whereas the eigenvalues of the convective
subsystem (10) suggest that an explicit discretization of the convective subsystem is still possible unless the Alfvén speed
ca gets large, eg, because the magnitude of the magnetic field ‖B‖ gets large or because the density gets low. In the latter
case, also the magnetic field needs to be discretized implicitly, but this is not the scope of the present paper.

2.4 Semi-implicit discretization on a staggered grid
The ideal MHDEquations (1) are discretized on a staggered grid, which is typical for semi-implicit schemes applied to the
incompressible Navier-Stokes and shallow water equations.1,9 In the staggered grid, the primary control volumes are the
intervalsΩi = [xi− 1

2
, xi+ 1

2
] of lengthΔxi = xi+ 1

2
−xi− 1

2
with barycenters located in xi = 1

2
(xi− 1

2
+xi+ 1

2
). The number of primary

control volumes is denoted byNx. TheNx + 1 dual control volumes areΩi+ 1
2
= [xi, xi+1]with the associated mesh spacing

Δxi+ 1
2
= xi+1−xi = 1

2
(Δxi+Δxi+1). The entire nonlinear convective subsystem (9) will be discretized on the primary control

volumes, whereas the pressure subsystem (11) is discretized as usual on the combination of the two staggered grids,
defining the discrete pressure pni in the centers of the primary cells Ωi, whereas the discrete velocity uni+ 1

2

in the pressure

system is located at the cell boundaries. In order to combine the discretization of the convective subsystem on the main
grid with the discretization of the pressure subsystem on the staggered mesh, we will need to average quantities from the
main grid to the dual grid and vice versa. This is simply obtained by the following conservative averaging operators:

Qn
i =

1
2

(
Qn
i− 1

2

+Qn
i+ 1

2

)
, Qn

i+ 1
2

= 1
2

1
Δxi+ 1

2

(
ΔxiQn

i + Δxi+1Qn
i+1

)
. (13)

At this point, we would like to emphasize that the use of a staggered grid arrangement is necessary for the implicit
part of the algorithm in order to obtain a final pressure system that is symmetric and positive definite and that has a
computational stencil that involves only the cell itself and its direct edge neighbors.

2.4.1 Convective subsystem
The convective terms collected in f c are now discretized on the main grid using a standard explicit first- or second-order
accurate finite volume scheme of the form

Q∗
i = Qn

i −
Δt
Δxi

(
f c
i+ 1

2

− f c
i− 1

2

)
, (14)
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which yields the intermediate state vectorQ∗
i that does not yet contain the contribution of the pressure terms. Throughout

this paper, we employ the simple Rusanov-type flux

f c
i+ 1

2

= 1
2

(
f c
(
Q+
i+ 1

2

)
+ f c

(
Q−
i+ 1

2

))
− 1
2
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2

−Q−
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2

)
, (15)

where Q−
i+ 1

2

and Q+
i+ 1

2

denote the left and right boundary extrapolated states at the cell interface xi+ 1
2
and smax =

maxl(|λcl (Q−
i+ 1

2

)|, |λcl (Q+
i+ 1

2

)|) is the maximum signal speed of the convective subsystem at the interface. For a first-order

scheme, one simply has Q−
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2

= Qn
i and Q

+
i+ 1

2

= Qn
i+1, whereas a second-order MUSCL-Hancock-type TVD scheme

is obtained by setting Q−
i+ 1

2

= wi(xi+ 1
2
, tn+

1
2 ) and Q+

i+ 1
2

= wi+1(xi+ 1
2
, tn+

1
2 ), where wi(x, t) is a space-time polynomial

reconstruction of the state vector in each cell Ωi that reads

wi(x, t) = Qn
i +

ΔQn
i

Δxi
(x − xi) + 𝜕tQn

i (t − tn). (16)

The space-time expansion coefficients in (16) are given by

ΔQn
i

Δxi
= minmod
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ΔQn
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Δxi

, (17)

with the usual minmod slope limiter function.25 Since the mass conservation equation and the PDE for the transverse
momentum in y and z direction do not contain the pressure, we can immediately set 𝜌n+1i = 𝜌∗i , (𝜌v)

n+1
i = (𝜌v)∗i and

(𝜌w)n+1i = (𝜌w)∗i . In one space dimension, no divergence-free treatment of the magnetic field is necessary, and therefore,
we also have Bn+1i = B∗

i . This completes the description of the explicit part of the scheme.

2.4.2 Pressure subsystem
The pressure subsystem involves only the x-momentum equation and the total energy equation. The semi-implicit
discretization of the x-momentum equation reads

(𝜌u)n+1
i+ 1

2

= (𝜌u)∗
i+ 1

2

− Δt
Δxi+ 1

2

(
pn+1i+1 − pn+1i

)
, (18)

where the pressure is now taken implicitly, whereas the explicit operator for the discretization of the nonlinear convective
terms, ie, for the computation of (𝜌u)∗

i+ 1
2

has been detailed previously. Note that (𝜌u)∗
i+ 1

2

is located on the dual mesh and

therefore has to be averaged from the main grid to the dual mesh via (13). According to a previous work,30 a preliminary
discretization of the total energy equation is now chosen as follows:

Δxi
(
𝜌n+1i e

(
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)
+ 1
2

(
(𝜌k)n+1
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2

+ (𝜌k)n+1
i+ 1

2

)
+mn+1

i
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2

(𝜌u)n+1
i+ 1

2
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i− 1

2

)
. (19)

The tilde symbols indicate that a further discretization step is necessary that will be explained later. Inserting the discrete
momentum Equation (18) into the discrete energy Equation (19) and using mn+1

i = m∗
i yield the following preliminary

system for the unknown pressure:

Δxi𝜌n+1i e
(
pn+1i , 𝜌n+1i

)
− Δt2

⎛⎜⎜⎝
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1
2

(
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2
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(𝜌u)∗
i+ 1

2
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2

(𝜌u)∗
i− 1

2

)
, (20)

which has exactly the same structure as the one obtained in the previous work30 for the compressible Euler equations.
Therefore, following the same reasoning as explained in the same work,30 the quantities marked with a tilde symbol
cannot be discretized directly at the new time tn+1 since, in this case, the resulting pressure systemwould become strongly
nonlinear and difficult to control. To circumvent the problem, we employ a simple Picard iteration, as suggested in Casulli
and Zanolli.39 The Picard iteration index will be denoted by r in the following. This yields the following iterative scheme,
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which requires only the solution of the followingmildly nonlinear system for the pressure pn+1,r+1i at each Picard iteration

Δxi𝜌e
(
pn+1,r+1i

)
− Δt2

⎛⎜⎜⎝
hn+1,r
i+ 1

2

Δxi+ 1
2

(
pn+1,r+1i+1 − pn+1,r+1i

)
−
hn+1,r
i− 1

2

Δxi− 1
2

(
pn+1,r+1i − pn+1,r+1i−1

)⎞⎟⎟⎠ = bri , (21)

with the abbreviation 𝜌e(pn+1,r+1i ) = 𝜌n+1i e(pn+1,r+1i , 𝜌n+1i ) and the known right-hand side

bri = Δxi
(
(𝜌E)∗i −m∗

i −
1
2

(
(𝜌k)n+1,r

i− 1
2

+ (𝜌k)n+1,r
i+ 1

2

))
− Δt

(
hn+1,r
i+ 1

2

(𝜌u)∗
i+ 1

2

− hn+1,r
i− 1

2

(𝜌u)∗
i− 1

2

)
. (22)

Note that the density 𝜌n+1i = 𝜌∗i and the magnetic energy m
n+1
i = m∗

i are already known from the explicit discretization
(14); hence, in (21), the new pressure is the only unknown. Using a more compact notation, the above system (21) can be
written as follows:

𝝆e(pn+1,r+1) + Trpn+1,r+1 = br, (23)

with the vector of the unknowns pn+1,r+1 = (pn+1,r+11 , … , pn+1,r+1i , … , pn+1,r+1Nx
). The vector br contains the

known right-hand side of (21). Matrix Tr is symmetric and at least positive semidefinite and takes into account
the linear part of the system, whereas the nonlinearity is contained in the vector function 𝝆e(pn+1,r+1) =
(Δx1𝜌n+11 e(pn+1,r+11 , 𝜌n+11 ), … ,Δxi𝜌n+1i e(pn+1,r+1i , 𝜌n+1i ), … ,ΔxNx𝜌

n+1
Nx

e(pn+1,r+1Nx
, 𝜌n+1Nx

)), which means a componentwise eval-
uation of the internal energy density in terms of pressure and density. We stress again that the density 𝜌n+1i at the new
time level is already known from (14), ie, for the solution of the mildly nonlinear system, the equation of state can be
considered as a function of pressure alone, with a given density.
The time step, the mesh spacings, and the enthalpy h are nonnegative quantities, and we suppose that the specific

internal energy e(p, 𝜌) is a non-negative, non-decreasing function whose derivative w.r.t. the pressure is a nonnegative
function of bounded variation. Thanks to the semi-implicit discretization of the pressure subsystem on the staggered
mesh, the matrix Tr in system (21) is symmetric and at least positive semi-definite, which is quite a remarkable property,
considering the complex structure of theMHDsystem (1). It is therefore possible to employ the same (nested)Newton-type
techniques for the solution of (23) as those proposed and analyzed by Casulli et al.37-40 For all implementation details and
a rigorous convergence proof of the (nested) Newton method, the reader is referred to the above references. The iterative
Newton-type techniques of Casulli et al have already been used with great success as building block of semi-implicit
finite volume schemes in different application contexts, see other works.13,14,81-85 Due to the properties of Tr, the linear
subproblems within the Newton-type algorithm can be solved at the aid of a matrix-free conjugate gradient method or
with the Thomas algorithm for tridiagonal systems in the one-dimensional case. Note that, for the ideal gas EOS, the
resulting system (23) becomes linear in the pressure; hence, one single Newton iteration is sufficient to solve (23). From
the new pressure pn+1,r+1i , the momentum density at the next Picard iteration can be obtained as

(𝜌u)n+1,r+1
i+ 1

2

= (𝜌u)∗
i+ 1

2

− Δt
Δxi+ 1

2

(
pn+1,r+1i+1 − pn+1,r+1i

)
. (24)

The new pressure and momentum are both needed to update the enthalpies at the element interfaces as well as the
kinetic energy contribution to the total energy at the new time level. As already observed in previous works,30,39 it is
sufficient to carry out only very few Picard iterations to obtain a satisfactory solution. In all test problems presented in this
paper, we stop the Picard process after rmax = 2 iterations. At the end of the last Picard iteration, we set pn+1i = pn+1,r+1i ,
(𝜌u)n+1

i+ 1
2

= (𝜌u)n+1,r+1
i+ 1

2

, hn+1
i+ 1

2

= hn+1,r+1
i+ 1

2

and update the total energy density using the conservative formula

(𝜌E)n+1i = (𝜌E)∗i −
Δt
Δxi

(
hn+1
i+ 1

2

(𝜌u)n+1
i+ 1

2

− hn+1
i− 1

2

(𝜌u)n+1
i− 1

2

)
. (25)

Finally, in order to proceed with the next time step, we still need to average themomentum back from the staggeredmesh
to the main grid by using the averaging operator (13) from the dual mesh to the main grid.
From (14), (18), and (25), it is obvious that the scheme is written in a conservative flux form for all conservation

equations and the averaging operators between main and dual grid are also conservative; hence, the proposed method
is locally and globally conservative for mass, momentum, and total energy. For this reason, the method is able to handle
flows with very strong shocks properly, as shown via several numerical test problems in the next section. Its stability is
only restricted by a mild CFL condition based on the eigenvalues of the convective subsystem λcl and is not based on the
speed of the magnetosonic waves cs and cf. This makes the method particularly well suited for the discretization of low
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Mach number flows, as long as the ratio of Alfvén speed to fast magnetosonic wavespeed ca∕cf is small or at most of the
order of the flow velocity. For large Alfvén speeds ca, the present method is not efficient, and the magnetic field needs to
be discretized implicitly.

2.4.3 Equivalent fully discrete one-step FV scheme
Since our staggered semi-implicit finite volumemethod is conservative, it can also bewritten in an equivalent fully discrete
one-step flux form that is given in this section.However,we stress that, in practice, the scheme is implemented as discussed
in the previous sections and not in the form presented here. We give the fully discrete one-step form only for the sake
of completeness, assuming a uniform grid spacing Δx to ease notation. Inserting the definition of the star quantities Q∗

i
into (18) and making use of the conservative averaging operators (13), after some calculations, one can write the discrete
momentum equation in x direction equivalently as

(𝜌u)n+1i = (𝜌u)ni −
Δt
Δx

(
𝑓
𝜌u
i+ 1

2

− 𝑓
𝜌u
i− 1

2

)
, (26)

with the numerical momentum flux

𝑓
𝜌u
i+ 1

2

= 1
4

(
𝑓
c,𝜌u
i− 1

2

+ 2𝑓 c,𝜌u
i+ 1

2

+ 𝑓
c,𝜌u
i+ 3

2

)
− 1
4
Δx
Δt

(
(𝜌u)ni+1 − (𝜌u)ni

)
+ 1
2
(
pn+1i + pn+1i+1

)
. (27)

Here, 𝑓 c,𝜌u
i+ 1

2

denotes the numerical flux component for the variable 𝜌u in the flux vector f c
i+ 1

2

used in Equation (14). It is

obvious from (27) that this is not a simple two-point flux, as it is used in standard Godunov-type finite volume methods.
The term in the second bracket represents an additional numerical viscosity that comes from the averaging to the dual
staggered grid and back. It is similar to the numerical viscosity in the FORCE scheme of Toro and Billet and its extensions,
see other works,86-88 where also an averaging procedure of the conservation law onto a dual edge-based staggered mesh is
employed. The fully discrete energy Equation (25) can be written as

(𝜌E)n+1i = (𝜌E)ni −
Δt
Δx

(
𝑓
𝜌E
i+ 1

2

− 𝑓
𝜌E
i− 1

2

)
, (28)

with the numerical energy flux
𝑓
𝜌E
i+ 1

2

= 𝑓
c,𝜌E
i+ 1

2

+ hn+1
i+ 1

2

(𝜌u)n+1
i+ 1

2

, (29)

where
(𝜌u)n+1

i+ 1
2

= 1
2
(
𝜌uni + (𝜌u)ni+1

)
− 1
2
Δt
Δx

(
𝑓
c,𝜌u
i+ 3

2

− 𝑓
c,𝜌u
i− 1

2

)
− Δt

Δx
(
pn+1i+1 − pn+1i

)
. (30)

The discrete mass conservation equation is already given by (14), since 𝜌n+1i = 𝜌∗i . The same Equation (14) holds for the
transverse velocity components v and w and in one space dimension it holds as well for the magnetic field.

3 NUMERICAL RESULTS IN 1D

In this section, we apply our new semi-implicit finite volume scheme to a set of Riemann problems of the ideal MHD
equations, some of which have been introduced and analyzed in other works.89-92 The eigenstructure of the ideal MHD
equations has been discussed in Roe and Balsara,68 whereas the exact Riemann solver used for the comparisons presented
in this paper has kindly been provided by Falle and Komissarov.93,94 For an alternative exact Riemann solver of the MHD
equations, see the work of Torrilhon.95 In all our tests, we use a computational domain Ω = [− 0.5, + 0.5] that is dis-
cretized at the aid of 1000 pressure control volumes (apart from RP0, for which only 100 points have been used), which is
only slightly more than the typical resolution of 800 elements chosen for the explicit finite volume schemes used in.95-97
In RP1-RP4 the Courant number is set to CFL = 0.9, based on the maximum eigenvalues of the convective subsystem
and a second order MUSCL-type TVD scheme is used for the discretization of the explicit terms. For RP0, we use a con-
stant time step size of Δt = 0.1. The initial condition for all Riemann problems consists in a constant left and right state
that are separated by a discontinuity located at xd. The initial data as well as the value for xd are reported in Table 1. The
ratio of specific heats is 𝛾 = 5

3
for all cases. The comparison between the numerical solution obtained with the new SIFV

scheme and the exact solution is presented in Figures 1-5. The first Riemann problem (RP0) is just a sanity check in order
to verify that our new SIFV method is able to resolve isolated steady contact waves without magnetic field exactly. This
property follows trivially from the chosen discretization and is also confirmed in our numerical experiments, see Figure 1.
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TABLE 1 Initial states left and right for the density 𝜌, velocity vector v = (u, v,w), the
pressure p and the magnetic field vector B = (Bx ,By,Bz) for the Riemann problems of the ideal
classical magnetohydrodynamics equations. In all cases 𝛾 = 5∕3. The initial position of the
discontinuity is xd = 0 for RP0, RP1, and RP4, whereas it is xd = −0.1 for RP2 and RP3

Case 𝜌 u v w p Bx By Bz

RP0 L: 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
R: 0.125 0.0 0.0 0.0 1.0 0.0 0.0 0.0

RP1 L: 1.0 0.0 0.0 0.0 1.0 3
4

√
4𝜋

√
4𝜋 0.0

R: 0.125 0.0 0.0 0.0 0.1 3
4

√
4𝜋 −

√
4𝜋 0.0

RP2 L: 1.08 1.2 0.01 0.5 0.95 2.0 3.6 2.0
R: 0.9891 -0.0131 0.0269 0.010037 0.97159 2.0 4.0244 2.0026

RP3 L: 1.7 0.0 0.0 0.0 1.7 3.899398 3.544908 0.0
R: 0.2 0.0 0.0 -1.496891 0.2 3.899398 2.785898 2.192064

RP4 L: 1.0 0.0 0.0 0.0 1.0 1.3
√
4𝜋

√
4𝜋 0.0

R: 0.4 0.0 0.0 0.0 0.4 1.3
√
4𝜋 −

√
4𝜋 0.0
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FIGURE 1 Exact and numerical solution for Riemann problem RP0 (isolated steady contact wave) solving the ideal
magnetohydrodynamics equations with the new semi-implicit finite volume (FV) scheme. The density is shown at a final time of t = 10,
confirming that our scheme is able to preserve steady contact waves exactly

Riemann problem (RP1) is the one of Brio and Wu,89 for which it is well known that all standard finite volume
schemes produce a compound wave instead of the wave pattern suggested by the exact Riemann solver. Only the random
choice method of Glimm98 was able to reproduce the correct solution in this case, as discussed in the work of Falle and
Komissarov.93 Therefore, despite the disagreement with the exact solution in the density profile, our numerical results
are in line with others published in the literature. Furthermore, the numerical results obtained for the magnetic field
component By agree well with the exact solution. The second Riemann problem (RP2) goes back to Ryu and Jones90 and
presents a wave pattern composed of discontinuities in all seven waves of the MHD system. The agreement between our
numerical solution and the exact solution is very good in this case. In addition, problem RP3 contains seven waves, but
compared to RP2, the two left waves are rarefactions and not shocks. Moreover, in this case, the semi-implicit finite vol-
ume scheme is able to capture the wave pattern properly, apart from the weak right-moving shock. In the last Riemann
problem (RP4), our scheme has some difficulties in capturing the second wave from the left at the given grid resolution,
but this behavior is similar to what was also observed in previous works.92,99 The profile of the magnetic field component
By is well reproduced in this case.
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FIGURE 2 Exact and numerical solution for Riemann problem RP1 solving the ideal magnetohydrodynamics equations with the new
semi-implicit finite volume (FV) scheme. Density (left) and magnetic field component By (right) at time t = 0.1
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FIGURE 3 Exact and numerical solution for Riemann problem RP2 solving the ideal magnetohydrodynamics equations with the new
semi-implicit finite volume (FV) scheme. Density (left) and magnetic field component By (right) at time t = 0.2

Overall, we can conclude that the numerical results obtained with our new algorithm are in line with those previously
published in the literature. However, at this point, it is important to stress that our semi-implicit finite volume scheme
is a so-called pressure-based solver, which is particularly tailored to work in the low Mach number regime or even in the
incompressible limit of the equations, whereas all standard explicit finite volume schemes that are typically used for the
solution of the MHD equations are so-called density-based methods, which are unable to deal with the incompressible
limit of the equations. It is therefore quite remarkable to observe that the new pressure-based semi-implicit method per-
forms almost as well as standard Godunov-type schemes in this set of Riemann problems. Encouraged by these results, in
the next section, we now present the extension to the viscous and resistive case in two space dimensions, where particular
care needs to be taken in order to obtain an exactly divergence-free formulation of the scheme.
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FIGURE 4 Exact and numerical solution for Riemann problem RP3 solving the ideal magnetohydrodynamics equations with the new
semi-implicit finite volume (FV) scheme. Density (left) and magnetic field component By (right) at time t = 0.15
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FIGURE 5 Exact and numerical solution for Riemann problem RP4 solving the ideal magnetohydrodynamics equations with the new
semi-implicit finite volume (FV) scheme. Density (left) and magnetic field component By (right) at time t = 0.16

4 EXTENSION TO VISCOUS FLOWS IN MULTIPLE SPACE DIMENSIONS

4.1 Governing equations
In multiple space dimensions, the VRMHD equations read

𝜕

𝜕t

⎛⎜⎜⎜⎝
𝜌
𝜌v
𝜌E
B

⎞⎟⎟⎟⎠ + ∇ ·

⎛⎜⎜⎜⎜⎜⎝

𝜌v
𝜌v⊗ v +

(
p + B2

8𝜋

)
I − 1

4𝜋
B⊗ B

vT
(
𝜌E + p + 1

8𝜋
B2

)
− 1

4𝜋
vTB⊗ B

B⊗ v − v⊗ B

⎞⎟⎟⎟⎟⎟⎠
= ∇ · Fv, (31)
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with the identity matrix I and the viscous flux tensor Fv = (f v, gv) defined as

Fv(V,∇V) =

⎛⎜⎜⎜⎜⎜⎝

0
𝜇

(
∇v + ∇vT − 2

3
(∇ · v)I

)
𝜇vT

(
∇v + ∇vT − 2

3
(∇ · v)I

)
+ λ∇T + 𝜂

4𝜋
BT

(
∇B − ∇BT

)
𝜂
(
∇B − ∇BT

)
⎞⎟⎟⎟⎟⎟⎠
. (32)

Here, Q = (𝜌, 𝜌v, 𝜌E,B) and V = (𝜌, v,T,B) are the vectors of conserved and primitive variables, respectively, T is the
temperature given by the thermal equation of state T = T(p, 𝜌), 𝜇 is the kinematic viscosity, λ is the thermal conductivity,
and 𝜂 is the electric resistivity of the fluid. The Prandtl number is defined as Pr = 𝜇𝛾cv∕λ. It is interesting to note that, for
the MHD system in two and three space dimensions, the number of variables contained in the vectors of conserved and
primitive quantitiesQ andV does not increase with respect to the one-dimensional case, whereas the number of indepen-
dent coordinate directions obviously increases. In order to extend our new semi-implicit scheme to the ideal and to the
VRMHD equations in multiple space dimensions, special care must be taken concerning the∇ ·B = 0 constraint, ie, the
divergence of the magnetic field must remain zero for all times if it was initially zero. Several strategies have been devel-
oped in the literature in the past to satisfy the divergence constraint exactly or approximately, see, eg, the well-known
divergence-free schemes for MHD of Balsara and Spicer57 and subsequent work by Balsara,42,58,59 the discretization pro-
posed by Powell et al45,64 based on the symmetric hyperbolic form of the MHD equations found by Godunov,65 or the
hyperbolic divergence-cleaning approach ofMunz et al66 andDedner et al.67 Since we already use a staggeredmesh for the
semi-implicit discretization of the pressure subsystem, it is very natural to employ the strategy of Balsara and Spicer,42,57
which also adopts a staggered mesh for the time evolution of the magnetic field. In this paper, we properly extend this
technique to deal also with the resistive terms. For that purpose, it has to be noted that, with∇ ·B = 0, the resistive term
can be rewritten in terms of a double curl operator as 𝜂∇ · (∇B − ∇BT) = −𝜂∇ × ∇ × B, and therefore, the induction
equation for the magnetic field reads

𝜕B
𝜕t

+ ∇ × E = 0, (33)

with the electric field vector given by
E = −v × B + 𝜂∇ × B, (34)

which reduces to the standard expression E = −v × B for the ideal MHD equations (𝜂 = 0), in which displacement
currents are typically neglected. For a physically more complete description, the full set of Maxwell equations would be
needed, including the time evolution equation of the electric field. Again, we split the MHD system into a first subsystem
that contains the convective and the viscous terms that will both be discretized explicitly, whereas the second one is again
the pure pressure subsystem that will be discretized implicitly, ie, we write

𝜕Q
𝜕t

+ ∇ · (Fc − Fv) + ∇ · Fp = 0, (35)

with

Fc = (f c, gc) =

⎛⎜⎜⎜⎜⎝
𝜌v

𝜌v⊗ v +mI − 1
4𝜋
B⊗ B

vT(𝜌k + 2m) − 1
4𝜋
vTB⊗ B

B⊗ v − v⊗ B

⎞⎟⎟⎟⎟⎠
, Fp = (fp, gp) =

⎛⎜⎜⎜⎝
0
pI

(𝜌v)h
0

⎞⎟⎟⎟⎠ . (36)

4.2 Semi-implicit discretization
The computational domain Ω is discretized by the control volumes of a primary grid denoted by Ωi,𝑗 = [xi− 1

2
, xi+ 1

2
] ×

[𝑦𝑗− 1
2
, 𝑦𝑗+ 1

2
]. To ease notation, in the following, we suppose an equidistant mesh spacing of size Δx and Δy in x and y

direction and the corresponding number of cells is denoted by Nx and Ny, respectively. The edge-based staggered dual
control volumes in x direction are denoted byΩi+ 1

2
,i = [xi, xi+1]×[𝑦𝑗− 1

2
, 𝑦𝑗+ 1

2
], whereas the control volumes of the staggered

dual grid in y direction are Ωi,𝑗+ 1
2
= [xi− 1

2
, xi+ 1

2
] × [𝑦𝑗, 𝑦𝑗+1], ie, overall the method uses a set of three overlapping grids,

each of which entirely covers the domain Ω. The averaging operators from the main grid to the dual grids read

Qn
i+ 1

2
,𝑗
= 1
2

(
Qn
i,𝑗 +Qn

i+1,𝑗

)
, Qn

i,𝑗+ 1
2

= 1
2

(
Qn
i,𝑗 +Qn

i,𝑗+1

)
, (37)
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whereas the averaging from the two dual grids to the main grid is given by

Qn
i,𝑗 =

1
2

(
Qn
i− 1

2
,𝑗
+Qn

i+ 1
2
,𝑗

)
, Qn

i,𝑗 =
1
2

(
Qn
i,𝑗− 1

2

+Qn
i,𝑗+ 1

2

)
. (38)

4.2.1 Convective and viscous subsystem
The viscous and convective subsystem is discretized with an explicit finite volume scheme of the type

Q∗
i,𝑗 = Qn

i,𝑗 −
Δt
Δx

(
fi+ 1

2
,𝑗 − fi− 1

2
,𝑗

)
− Δt

Δ𝑦

(
gi,𝑗+ 1

2
− gi,𝑗− 1

2

)
, (39)

where the numerical fluxes at the element interfaces contain both the nonlinear convective as well as the viscous terms
and therefore read

fi+ 1
2
,𝑗 =

1
2

(
f c
(
Q−
i+ 1

2
,𝑗

)
+ f c

(
Q+
i+ 1

2
,𝑗

))
− 1
2
sxmax

(
Q+
i+ 1

2
,𝑗
−Q−

i+ 1
2
,𝑗

)
− 1
2

(
f v
(
Vn
i+ 1

2
,𝑗+ 1

2

,∇Vn
i+ 1

2
,𝑗+ 1

2

)
+ f v

(
Vn
i+ 1

2
,𝑗− 1

2

,∇Vn
i+ 1

2
,𝑗− 1

2

))
, (40)

with the boundary extrapolated values Q±
i+ 1

2
,𝑗
and the maximum signal speed in x direction sxmax computed as in the

one-dimensional case. The expression for the numerical flux gi,𝑗+ 1
2
is obviously very similar to the one for fi+ 1

2
,𝑗 ; hence, it is

not necessary to report it here. The second order MUSCL-Hancock scheme in two space dimensions is a straight-forward
extension of the one-dimensional case shown previously and is well known, so we can omit the details. For the viscous
flux, we define the corner variables

Vn
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,𝑗+ 1

2

= 1
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(41)

and the corner gradients of the vector of primitive variables given by
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)
. (42)

4.2.2 Divergence-free evolution of the magnetic field
In multiple space dimensions, it is of fundamental importance to evolve the magnetic field in a consistent manner that
respects the divergence-free condition ∇ · B = 0 exactly also on the discrete level. For this purpose, we follow the works
of Balsara and Spicer42,57 and introduce the magnetic field components on the staggered mesh as (Bx)ni+ 1

2
,𝑗
and (B𝑦)ni,𝑗+ 1

2

.

The normal magnetic field components can then be evolved in time by a discrete form of the induction Equation (33) as
follows:
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, (43)
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2
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)
, (44)

with the electric field component in z direction given by a multi-dimensional Riemann solver (see, eg, other works58-63) as
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Note that, in (45), the last line accounts for the resistive term and is an approximation to the z component of the curl of
B using the corner gradients computed in (42). The velocity vector in the corner has already been computed via (41). It is
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easy to check that the scheme (43)-(44) is exactly divergence-free in the discrete sense

(Bx)n+1i+ 1
2
,𝑗
− (Bx)n+1i− 1

2
,𝑗

Δx
+

(B𝑦)n+1i,𝑗+ 1
2

− (B𝑦)n+1i,𝑗− 1
2

Δ𝑦
= 0 (46)

if the magnetic field was discretely divergence-free at the initial time t = 0. Note that, in 2D, it is sufficient to take
(Bz)n+1i,𝑗 = (Bz)∗i,𝑗 from (39). After the update of the staggered magnetic fields Bx and By via (43)-(44), the cell-centered
magnetic field vector Bn+1i,𝑗 is obtained by averaging the staggered quantities back from the dual grid to the main grid. It
has to be stressed that in the multidimensional case in general Bn+1i,𝑗 ≠ B∗

i,𝑗 , ie, the cell-centered quantity B
∗
i,𝑗 obtained

from (39) is only an auxiliary quantity that is overwritten by the averages onto the main grid of the consistently evolved
magnetic field components (Bx)n+1i+ 1

2
,𝑗
and (B𝑦)n+1i,𝑗+ 1

2

, which are themain quantities that represent the discrete magnetic field

in our scheme. The cell-centered magnetic field is needed in order to compute the energy density of the magnetic field
mn+1
i,𝑗 that is used later in the pressure subsystem.

4.2.3 Pressure subsystem
In two space dimensions, the discrete momentum equations read
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where pressure is taken implicitly, whereas all nonlinear convective and viscous terms have already been discretized
explicitly via the operators (𝜌u)∗

i+ 1
2
,𝑗
and (𝜌v)∗

i,𝑗+ 1
2

given in (39). A preliminary form of the discrete total energy equation

reads
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Here, we have used again the abbreviation 𝜌e(pn+1i,𝑗 , 𝜌n+1i,𝑗 ) = 𝜌n+1i,𝑗 e (pn+1i,𝑗 , 𝜌n+1i,𝑗 ). Inserting the discrete momentum
Equations (47) into the discrete energy Equation (48) and making tilde symbols explicit via the simple Picard iteration,
as in the one-dimensional case, leads to the following discrete wave equation for the unknown pressure:
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with the known right-hand side
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We stress that the density 𝜌n+1i,𝑗 = 𝜌∗i,𝑗 is already known from (39) and the energy of the magnetic field mn+1
i,𝑗 is already

known after averaging the staggered normal magnetic field components that have been evolved via (43) and (44) onto the
main grid. The system for the pressure (49) is again a mildly nonlinear system of the form (23) with a linear part that is
symmetric and at least positive semidefinite. Hence, with the usual assumptions on the nonlinearity detailed in Casulli
and Zanolli,40 it can be again efficiently solved with the nested Newton method of Casulli and Zanolli.39,40 Note that in
the incompressible limitM → 0, following the asymptotic analysis performed in other works,100-104 the pressure tends to a
constant and the contribution of the kinetic energy 𝜌k can be neglectedw.r.t. 𝜌e. Therefore, in the incompressible limit, the
system (49) tends to the usual pressure Poisson equation of incompressible flow solvers. In each Picard iteration, after the
solution of the pressure system (49), the enthalpies at the interfaces can be recomputed and themomentum is updated by
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from which (𝜌k)n+1,r+1i,𝑗 can be computed after averaging onto the main grid. At the end of the Picard iterations, the total
energy is updated as
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, (53)

whereas the final momentum is averaged back onto the main grid. This completes the description of our new
divergence-free semi-implicit algorithm for the VRMHD equations in the multidimensional case.

5 NUMERICAL RESULTS IN 2D

In all the following numerical test problems, the ideal gas equation of state is used to make the results comparable with
existing data in the literature. For applications with general EOS, see a previous work.30 If not specified otherwise, the
ratio of specific heats is chosen as 𝛾 = 1.4. The CPU timings reported in this section were obtained on a workstation
using one single core of an Intel i7-2600 CPU with 3.4 GHz clock speed and 12 GB of RAM. In order to allow a better
quantitative comparison with other schemes, we report the average CPU time that was needed to carry out one time step
for one control volume, ie, dividing the total wall clock time needed by the simulation by the number of time steps and
the number of control volumes. The inverse of this number corresponds to the number of zones which the scheme is
able to update within one second of wall clock time on one CPU core. In the 2D simulations, the time step is computed
according to

Δt = CFL 1
max |λcx|

Δx
+

max |λc
𝑦
|

Δ𝑦
+ 2

(
4
3
𝜇

𝜌
+ λ

cv𝜌
+ 𝜂

)(
1

Δx2
+ 1

Δ𝑦2

) , (54)

with the Courant number CFL < 1 and the “convective” eigenvalues λcx and λc𝑦 in x and y direction, respectively. In
the above condition, also the contribution of the parabolic terms has been included, by simply adding all eigenvalues
of the viscous and resistive operator, see, eg, the work by Dumbser,105 for the eigenvalues of the viscous operator of the
compressible Navier-Stokes equations. If not specified otherwise, we set CFL = 0.9 in all test problems presented in
this section. Furthermore, for all test cases, we have explicitly verified that up to machine precision the magnetic field is
divergence-free and mass, momentum, and energy are conserved.

5.1 Numerical convergence study
First of all, we carry out a numerical convergence study for the ideal inviscid MHD equations using a smooth MHD
vortex problem similar to the one proposed for the first time by Balsara.42 The computational domain is given by Ω =
[0; 10] × [0; 10] and periodic boundary conditions are applied in x and y direction. The ratio of specific heats is chosen as
𝛾 = 5

3
. The free parameters given in the aforementioned work42 are chosen as 𝜖 = 1 and 𝜇̃ =

√
4𝜋. The initial condition

at time t = 0 in terms of primitive variables reads
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, (55)

which is also the exact solution of the problem for all later times. The final simulation time is set to tend = 1.0. The L2
error norms for a generic quantity q at time tn are defined as

L2(q, tn) =
√∑

i,𝑗
ΔxΔ𝑦

(
qni,𝑗 − qe(xi, 𝑦𝑗 , tn)

)2
, (56)
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TABLE 2 Numerical convergence results of the semi-implicit finite volume
scheme for the ideal magnetohydrodynamics equations using a smooth
magnetohydrodynamics vortex test problem. The L2 error norms refer to the
variables 𝜌 (density), p (pressure), and Bx (magnetic field component in x
direction) at the final time t = 1.0

Nx = Ny L2(𝝆,1) (𝝆) L2(p,1) (p) L2(Bx,1) (Bx)

100 2.0037E-02 3.3675E-02 1.1598E-02
200 6.1843E-03 1.7 1.0259E-02 1.7 3.4758E-03 1.7
300 2.9557E-03 1.8 4.7485E-03 1.9 1.6229E-03 1.9
400 1.7925E-03 1.7 2.7100E-03 1.9 9.4784E-04 1.9

where qni,𝑗 denotes the discrete solution and qe(xi, yj, t
n) the exact solution. In Table 2, we present numerical convergence

results for the fluid density 𝜌, the pressure p, and the magnetic field component Bx obtained on a sequence of successively
refined meshes. The number of grid cells used in x and y direction is denoted by Nx and Ny, respectively. In all cases, the
time step size was kept constant and set to Δt = 0.01, and a second-order accurate MUSCL-Hancock scheme was used
for the explicit nonlinear convective terms, ie, for the computation of the star quantities Q∗

i,𝑗 . From our results, we can
conclude that the scheme reaches second order of accuracy in space, as expected. Future work will concern an extension
of our scheme to arbitrary order of accuracy in space and time using the family of staggered semi-implicit space-time DG
finite element schemes recently introduced in other works.106-108

5.2 LowMach number magnetic field loop advection
Here, we solve the magnetic field loop advection problem proposed by Gardiner and Stone.44 However, in order to make
it more difficult and in order to show the performance of our new divergence-free semi-implicit finite volume scheme,
we run the test case at low Mach number. The setup of the test problem is described in the following. The computational
domain isΩ = [−1, 1]×[− 1

2
,
1
2
]with four periodic boundary conditions everywhere. The initial density is set to 𝜌 = 1, the

initial velocity field is v = (2, 1, 0), the pressure is p = 105, and the initial magnetic field is prescribed by the magnetic

x

y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

x

y

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

FIGURE 6 Numerical solution at time t = 1.0 obtained for the low Mach number magnetohydrodynamics field loop advection problem
(see Section 5.2) with the divergence-free semi-implicit finite volume method (left) and with a divergence-free explicit second order
Godunov-type scheme (right). Twenty equidistant contour lines of the magnetic field strength in the interval [10−5, 10−3] are shown. For
this test case, the density-based explicit scheme was more than a factor of 50 slower than the new pressure-based semi-implicit method
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vector potential

A =

{
A0(R − r) if r ≤ R,
0 if r > R,

(57)

with A0 = 10−3, R = 0.3 and r2 = x2 + y2. The Mach number of the flow is about M = 0.006. We run the problem
with the second-order version of our new semi-implicit FV scheme and with a divergence-free second-order explicit
MUSCL-type TVD finite volume scheme42,57 until t = 1 in order to complete one entire advection period. In both cases,
the domainΩ is discretized with 500 × 250 control volumes and the CFL number is set to CFL = 0.8. The computational
results for both cases (explicit vs semi-implicit) are depicted in Figure 6 and are comparable with those obtained in the
literature, see, eg, other works,44,50,58 although the explicit scheme appears to be slightly more dissipative, probably due
to the extremely large number of time steps needed to reach the final time. The explicit method needed a total wall clock
time of 78414 seconds, whereas our new semi-implicit FV scheme was able to complete the simulation in only 1356
seconds. This results in a speedup factor of 57 for the new semi-implicit scheme, which is a clear advantage for the new
algorithm presented in this paper over existing schemes. For this simulation, the average computational cost of the SIFV
schemewas 11.5𝜇s per element and time step. Themost expensive part here was the solution of the pressure system in the
semi-implicit algorithm. For comparison, the average cost per element update for the explicit second order Godunov-type
TVD scheme in this test was only 2𝜇s per element and time step. However, since the explicit scheme needs two orders of
magnitude more time steps compared to the semi-implicit scheme, the new SIFV method presented in this paper is still
computationally much more efficient.

5.3 Ideal MHD rotor problem
The well-known MHD rotor problem of Balsara and Spicer57 has become a standard test bed for testing numerical meth-
ods for the ideal MHD equations. In this test a rotating high density fluid (the rotor) is embedded in a low density

FIGURE 7 Numerical solution obtained with the divergence-free semi-implicit finite volume method for the magnetohydrodynamics
rotor problem (see Section 5.3) at time t = 0.25. Contour lines of density (top left), pressure (top right), Mach number (bottom left) and
magnetic pressure (bottom right) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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atmosphere at rest. Initially the pressure p = 1 and the magnetic field vector B = (2.5, 0, 0)T are constant throughout
the entire domain Ω = [− 0.5, + 0.5]2. The rotor produces torsional Alfvén waves which travel into the outer fluid at
rest. The domain is discretized using a uniform Cartesian grid composed of 1000 × 1000 elements. For 0 ≤ r ≤ 0.1,
ie, inside the rotor, the initial density is 𝜌 = 10, whereas it is set to 𝜌 = 1 outside. The velocity field inside the rotor is
set to v = 𝝎 × x with 𝝎 = (0, 0, 10), whereas v = (0, 0, 0) in the outer fluid. The computational results obtained with
the new divergence-free semi-implicit finite volume scheme at time t = 0.25 are shown in Figure 7 for the fluid density,
the pressure, the Mach number as well as the magnetic pressure. The results agree qualitatively well with those obtained
by Balsara and Spicer57 and other results reported elsewhere in the literature, see, eg, other works.46,47,50,58,99 The average
computational cost of the SIFV scheme in this simulation was 3𝜇s per element and time step.

FIGURE 8 Numerical solution obtained with the divergence-free semi-implicit finite volume method for the magnetohydrodynamics
blast wave problem (see Section 5.4) at time t = 0.01. Contour lines of density (top left), pressure (top right), velocity magnitude (bottom left)
and magnetic pressure (bottom right)
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5.4 Ideal MHD blast wave problem
The MHD blast wave problem introduced in Balsara and Spicer57 is a notoriously difficult test case. The initial data for
density, velocity, and magnetic field are constant throughout the domain and are set to 𝜌 = 1, v = (0, 0, 0), and B =
(100, 0, 0). The pressure is initialized with p = 1000 in an inner circular region r < 0.1 and is set to p = 0.1 outside;
hence, the pressure jumps over four orders of magnitude in this test problem. Furthermore, the fluid is highlymagnetized
due to the presence of a very strong magnetic field in the entire domain. The computational domain Ω = [− 0.5, + 0.5]2
is discretized with a uniform Cartesian grid using 1000 × 1000 pressure control volumes. The computational results
obtained with our new divergence-free semi-implicit finite volume scheme at time t = 0.01 are presented in Figure 8 for
the density, the pressure, the velocity magnitude, and the magnetic pressure. The results agree qualitatively with those
obtained in the literature, see other works.50,57,99 Moreover, for this test problem, the average computational cost of the
SIFV scheme was 3𝜇s per element and time step.

5.5 Ideal MHD Orszag-Tang vortex
Here, we consider the verywell-knownOrszag-Tang vortex system for the idealMHDequations, see otherworks109-111 for a
detailed discussion of the underlying flow physics. The computational setup is the one used in the work of Jiang andWu43
and a previous work46 and is briefly summarized below. The computational domain under consideration is Ω = [0, 2𝜋]2
with four periodic boundary conditions. The initial conditions are given by 𝜌 = 𝛾2, v = (−sin(𝑦), sin(x), 0), p = 𝛾 and
B =

√
4𝜋(−sin(𝑦), sin(2x), 0) with 𝛾 = 5∕3. The computational domain is discretized with a uniform Cartesian mesh

composed of 1000 × 1000 elements. The numerical results obtained with the SIFV scheme are shown in Figure 9 at times

FIGURE 9 Numerical solution obtained with the divergence-free semi-implicit finite volume method for the inviscid Orszag-Tang vortex
system (see Section 5.5) at time t = 0.5 (top left), t = 2.0 (top right), t = 3.0 (bottom left) and t = 5.0 (bottom right). 56 equidistant contour
lines of the pressure are shown in the interval [0.5, 6] are shown [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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t = 0.5, t = 2.0, t = 3.0, and t = 5.0 and agree qualitatively well with those presented elsewhere in the literature,
see, eg, other works.46,47,50,58,99 Moreover, for this test case, the average cost per element and time step was 3.0𝜇s for the
SIFV method. For comparison, the explicit second-order accurate divergence-free Godunov-type scheme needed 2.4𝜇s
per element and time step, ie, the average computational cost per element and time step of the semi-implicit scheme is
only about 25% higher than for an analogous explicit method. Considering the fact that the semi-implicit scheme needs to
solve rmax linear systems for the pressure in each time step (with rmax = 2 being the number of chosen Picard iterations),
this means that the overhead due to the implicit discretization of the pressure is only very small for this test problem. In
our view, this is quite a remarkable result.

5.6 VRMHD current sheet and shear layer at lowMach number
The current sheet and the simple shear layer (first problem of Stokes) are two very elementary test problems for the
VRMHD equations, see, eg, Dumbser and Komissarov.105,112 Since our new semi-implicit finite volume scheme is partic-
ularly well suited for low Mach number flows, we use the following initial conditions. In both cases, the density and the
fluid pressure are set to 𝜌 = 1 and p = 105, respectively. For the shear layer, the initial magnetic field is zero, and the
velocity assumes the value vL = (0, + 1, 0) for x ≤ 0 and vR = (0, −1, 0) for x > 0. The exact solution is given by (see
Schlichting and Gersten113)

v(x, t) = −erf

(
1
2

x√
𝜇t

)
. (58)

We emphasize that this setup would be very challenging for an explicit solver due to the large value of the pressure and
the resulting low Mach number. For the current sheet, the velocity is initialized with zero, whereas the magnetic field is
BL = (0, + 1, 0) for x ≤ 0 and BR = (0, −1, 0). The exact solution for By is the same as the one given in (58) for the shear
layer. In both cases, the fluid parameters are 𝜂 = 𝜇 = 0.1, Pr = 1 and cv = 1. All simulations have been carried out until
t = 0.1 on the two-dimensional domainΩ = [−1, + 1] × [ −0.1, + 0.1]with periodic boundary conditions in y direction
and using a uniform Cartesian mesh of 100 × 10 elements. For this test, we have deliberately chosen a 2D domain in
order to check our particular divergence-free implementation of the resistivity term at the aid of a discrete double curl.
In Figure 10, a scatter plot of the computational results obtained with the new divergence-free semi-implicit FV scheme
is compared with the exact solution, where an excellent agreement can be observed for both cases. The scatter plot shows
a clean one-dimensional behaviour, ie, no spurious two-dimensional modes are introduced by the double curl operator.
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FIGURE 10 Exact and numerical solution for the low Mach number shear layer (left) and the current sheet (right) of Section 5.6 at time
t = 0.1 solving the viscous and resistive magnetohydrodynamics equations with 𝜂 = 𝜇 = 10−1. FV, finite volume
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5.7 VRMHD Orszag-Tang vortex
In this section, we solve the Orszag-Tang vortex system again but this time using the VRMHD equations. The fluid
parameters are chosen as follows: 𝛾 = 5

3
, 𝜇 = 𝜂 = 10−2, cv = 1 and a Prandtl number of Pr = 1. The computa-

tional setup of this test case has been taken from the work of Warburton and Karniadakis51 and a previous work114 and
is briefly summarized below. The computational domain is again Ω = [0, 2𝜋]2 with four periodic boundary conditions,
as in the inviscid case. The initial condition is given by 𝜌 = 1, v =

√
4𝜋(− sin(𝑦), sin(x), 0), B = (− sin(𝑦), sin(2x), 0) and

p = 15
4
+ 1

4
cos(4x) + 4

5
cos(2x) cos(𝑦) − cos(x) cos(𝑦) + 1

4
cos(2𝑦). Simulations are carried out on a uniform Cartesian grid

of 500 × 500 elements until a final time of t = 2. The computational results obtained with the SIFV scheme are shown
in Figure 11. They are also compared against a reference solution obtained in114 at the aid of a very high order accurate

FIGURE 11 Reference solution (right) and numerical solution obtained with the new divergence-free semi-implicit finite volume method
(left) for the viscous and resistive Orszag-Tang vortex of Section 5.7 (𝜂 = 𝜇 = 10−2,Pr = 1) at time t = 2. Velocity streamlines (top) and
magnetic field lines (bottom)
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FIGURE 12 Reference solution (right) and numerical solution obtained with the new divergence-free semi-implicit finite volume method
(left) for the viscous and resistive magnetohydrodynamics Kelvin-Helmholtz instability (see Section 5.8). The density contour levels are
shown at the final time t = 4.0 [Colour figure can be viewed at wileyonlinelibrary.com]

PNPM scheme. Overall, we can note a good agreement between the two solutions. The average computational cost for this
simulation was also 3𝜇s per element and time step, ie, the scheme is able to update more than 3.33 · 105 zones per second
on one single CPU core.

5.8 Kelvin-Helmholtz instability
In this test case, we consider the same setup as presented in the previous works114,115 for the simulation of a
Kelvin-Helmholtz instability developing in a viscous and resistive magnetized fluid. The initial condition is given by:
𝜌 = 1, p = 3

5
,

v =
(
−1
2
U0 tanh

(|𝑦| − 0.5
a

)
, 𝛿v sin(2𝜋x) sin(𝜋|𝑦|), 0) ,

B =
⎧⎪⎨⎪⎩

(B0, 0, 0), if 1
2
+ a < |𝑦| < 1,

(B0 sin(𝜒), 0,B0 cos(𝜒)) , if 1
2
− a < |𝑦| < 1

2
+ a,

(0, 0,B0), if 0 < |𝑦| < 1
2
− a,

with 𝜒 = 𝜋

2
𝑦−0.5+a

2a
, a = 1

25
, U0 = 1, 𝛿v = 0.01, and B0 = 0.07. Furthermore 𝛾 = 5

3
, 𝜇 = 𝜂 = 10−3, and we neglect the

heat conduction by setting λ = 0. The computational domain isΩ = [0, 2] × [ −1, 1] using four periodic boundaries in all
directions. For this test, we use 1000× 1000 elements and run the simulation up to t = 4s. Figure 12 shows the comparison
between the numerical solution obtained with the proposed SIFV method and the one obtained in the previous work115
using a high-order explicit DG scheme for the solution of the VRMHD equations. A very good agreement can be observed
also in this case that involves viscous and the resistive effects. The average computational cost for the new SIFV scheme
was about 2.5𝜇s per zone update.

6 CONCLUSIONS

In this paper, we have presented a new divergence-free semi-implicit finite volumemethod for the simulation of the ideal,
viscous, and resistive MHD equations with general EOS.
The split discretization of the nonlinear convective and viscous terms on the main grid combined with our very partic-

ular discretization of the pressure subsystem on a staggered grid allows us to reduce the final problem to the solution of a
mildly nonlinear system for the fluid pressure, which can be efficiently solved by the (nested) Newton-type technique of
Casulli et al.37-40 The linear part of themildly nonlinear system is given by a symmetric and positive semidefiniteM-matrix,

http://wileyonlinelibrary.com
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which is a very remarkable property for a semi-implicit time discretization of theMHD equations. The nonlinearity in our
mildly nonlinear system resides only on the diagonal and is contained in the equation of state that needs to provide the
specific energy e = e(p, 𝜌) as a function of the fluid pressure and the density. The EOS must must be a nonnegative non-
decreasing function of p (for a given density), and its partial derivative w.r.t. p must be a function of bounded variation.
For linear equations of state like the ideal gas EOS, the entire pressure system becomes linear and can therefore be solved
in one single Newton iteration. The unknown kinetic energy at the new time level as well as the specific enthalpies are
updated easily with a simple Picard process, following the suggestion of Casulli and Zanolli.39 Once the pressure is known
at the new time level, the momentum and total energy density can be readily obtained via a conservative update formula.
The magnetic field in our new SIFV scheme is also discretized on the staggered mesh, following the ideas of

Balsara et al58-63 on exactly divergence-free schemes forMHD andmultidimensional Riemann solvers. In our method, the
resistive terms in the induction equation are discretized using a discrete double curl formulation, which assures that the
scheme remains exactly divergence free also in the nonideal (resistive) case.
The time step of our new method is only restricted by the fluid velocity and the speed of the Alfvén waves but not by

the speed of sound. Therefore, our scheme is particularly well suited for lowMach number flows. For example, in the
low Mach number magnetic field loop advection test presented in Section 5.2, our new semi-implicit method was more
than 50 times faster compared with a comparable explicit divergence-free second-order accurate Godunov-type finite
volume scheme. Nevertheless, extensive numerical experiments have shown that our new pressure-based solver performs
very well also for high Mach number flows with shock waves and other flow discontinuities. We have also compared the
computational cost of the new SIFV scheme with the cost of a standard second-order Godunov-type scheme for MHD
using the same code basis and the same computer to get a fair comparison. For example, for the Orszag-Tang vortex
problem shown in Section 5.5 the average cost per element and time step of the explicit scheme was about 2.4𝜇s, whereas
it was about 3.0𝜇s for the semi-implicit method, ie, despite the necessary solution of a linear system for the pressure in
each of the two Picard iterations of the SIFV scheme, the semi-implicit method was only 25%more expensive than a fully
explicit discretization. This means that we have a very low overhead because of the implicit discretization of the pressure
subsystem, which in our opinion is also a remarkable result.
Future work will consist in an extension of the present approach to general unstructured meshes in multiple space

dimensions and to higher order of accuracy at the aid of staggered semi-implicit DG finite element schemes, following
the ideas outlined in other works.106-108,116,117 In the near future we also plan an extension of this new family of efficient
semi-implicit finite volume schemes to the unified Godunov-Peshkov-Romenski model of continuum mechanics99,115,118
and to the Baer-Nunziato model of compressible multiphase flows,119-121 where low Mach number problems are particu-
larly important due to the simultaneous presence of two different phases.
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