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Abstract— This paper focuses on the mathematical modeling
and control of an unmanned aerial system (UAS) with a
payload suspended using a cable. The motion of the payload
induces disturbances on the aerial platform and needs to be
mitigated for stable operation. A passivity based controller
is used to control the position of the UAS. Assuming only
the orientation angles of the payload with respect to a UAS
are measured, a disturbance attenuating nonlinear attitude
and position controller is designed. The implementation of the
controller requires the knowledge of higher time derivatives of
the payload oscillations. These states (primarily the angular
velocity) are estimated using a continuous-discrete Kalman
Filter. The efficacy of the combined estimator and controller is
demonstrated using a high fidelity numerical simulation.

I. INTRODUCTION

The problem involving unmanned aerial vehicles for trans-
porting cable suspended payloads has been studied exten-
sively in recent years. The recent advancements in the sensor
technology and the increase in the computation power has
led to the availability of the inexpensive aerial robots capable
of performing aggressive maneuvers and dynamic trajectory
generation and tracking. This has opened up the possibility of
deploying aerial vehicles to supply aid in disaster situations
like floods and earthquakes. The cable suspended payload is
an alternative solution to the problem of transporting payload
using robotic grippers attached to the aerial vehicles [1]. The
primary advantages of using cable suspended payload is the
reduced inertia, when compared to the use of robotic grippers
while still being able to lift and transport the payload [2] thus
providing better response to the change in attitude.
The problem of stabilizing the swinging payload attached
to an underactuated system has been solved using feedback
linearization [3], Interconnection and Damping Assignment
Passivity Based Control [4], [S] and nested saturation [6].
This problem is similar to the problem of stabilizing the pay-
load attached to an overhead crane or an inverted pendulum
with horizontal and vertical motion [7]. In the present work,
a passivity based control framework motiviated by [8] and
[4] is employed for a Quadcopter like UAS. The governing
equations of motion of the combined system (Quadcopter
+ payload) are derived first. Assuming the motion of the
quadcopter and the payload in the longitudinal plane, the
governing equations for the coupled motion with the longitu-
dinal plane restriction are developed. To control the position
and the attitude, a desired control thrust for position tracking
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is derived first which leads to the synthesis of a desired
pitch attitude. A nonlinear back-stepping like control law
is designed to track the desired pitch angle to complete the
control design. Since the controller design depends upon the
knowledge of the payload swing angle and its derivatives,
a state estimation filter is utilized to synthesize the angular
velocity and angular acceleration of the payload assuming
that the payload swing angle is measured.

The paper is organized as follows. Section II develops a
mathematical model for a quadcopter with a cable suspended
payload. Section III presents the passivity based control
design of the system to control the position of the quadcopter
and an error tracking based controller to control the attitude
dynamics of the quadcopter. Finally, section IV demonstrates
the effectiveness of the control law in the numerical simu-
lation. A continuous-discrete Kalman Filter is implemented
to estimate the angular velocity and angular acceleration of
the swinging payload, which are used by the controller.

II. DYNAMIC MODEL

Fig. 1: Description of coordinate frames associated with the
quadcopter

The following assumptions are made for the dynamic
analysis of the quadrotor with a payload attached to it by
a cable.

o The cable is massless and has no slack.

o Aerodynamic effects acting on the payload and the

quadcopter are neglected.

« Suspension point is same as the center of mass of the

quadcopter.

« Suspension is frictionless.



The figure 1 describes the kinematic relations of the quad-
copter with a cable attached payload. Consider an inertial co-
ordinate frame {I} fixed to the ground and a body fixed frame
attached to the center of mass of the quadcopter {B}. The
generalized coordinates q and the generalized velocities q are

. T
given by, q = [xQ Yo 20 O ¢ ¢ 6 l//] and
a=[% Yo 20 6 & ¢ 6 y ]T respectively. Let
Xg € IR3, where Xo = [x0; Yo, zQ]T € R3 denotes the
position of the quadcopter in the inertial frame; [¢, 6, ]’
denote the Euler angles (roll, pitch, and yaw); [6;, ¢]"
denotes the swing angle of the cable. [ is the length of the
cable.

The kinematic relation between the center of mass of the
payload X; = [x;, i, zl]T and the center of mass of the
quadcopter in the inertial frame is obtained as,

Xi=[x vo z0 ] +Ry(o)R.(6)[0 0 —1]",

(1
where R, (6;) and R, (¢;) are the rotation matrices defined
as,

cos(¢) O sin(¢r)
R@)=| o 1 0
—sin(¢) 0 cos(¢r)
1 0 0
R.(6)=| 0 cos(6) —sin(6)
0 sin(6;) cos(6)

Using equation (1), the coordinates of the center of mass
of the payload can be expressed in terms of the quadcopter
position and the swing angle of the cable as,

x; = xg—Ilcos(6;)sin(¢y),
yi = yo+Isin(6)),
71 = zo—Ilcos(6;)cos(¢y) )

Using equation (2), the velocity kinematics for the payload
is given as

X, =11(6,0)[ % Yo 20 6 &1 @3
where J; is,

—Isin ((Pl) sin (61)
Icos(6)

1 00 Lcos (6;) cos (¢;)
Ji=|0 1 0 0 “
0 0 1 Icos(¢;)sin(6))

Icos (6;)sin(¢y)

The body angular velocity of the quadcopter, @ =
[y, @y, @;]" is related to the rate of change of Euler angles
as,

Wy 1 0 —sin(0) )
@, | =| 0 cos(¢) cos(B)sin(¢) 6. O
@, 0 —sin(¢) cos(0)cos(9) i

and we denote,

1 0 sin(0)
Jo=1 0 cos(¢) cos(B)sin(¢) |. (6)
0 —sin(¢) cos(6)cos(9)

This relation will be used further in the derivation of the
equations of motion of the quadcopter with cable suspended
load using Lagrange-Euler formulation [9].

A. Euler-Lagrange Equations
The total kinetic energy of the quadcopter with a cable

suspended load can be partitioned as sum of the quadcopter
kinetic energy (Tp),

R TN T S SR S
Tp = EmQ)cQ2 + EmQyQZ + EmQZQZ + EmTJQa)

and the cable suspended payload kinetic energy (1),

I = %ml)fz2 + %ml)}lz + %mlizz + %Iz (912 + ¢12>
where J is the inertia matrix of the quadcopter and ; is the
moment of inertia of the payload.

Using the Jacobians derived in equations (4) and (6), the total
kinetic energy T (q,q) can be written in terms of generalized
coordinates as, T (gq,9) = %qTJ(q)TMJ(q) g, with

Mgy 030 0343 I3,z 03x2 0343

033 M; 033 Iy Ji 033
M= &J=

033 03x2 Jp 033 0352 J2

03 Ip  0Ooyx3 0253 Ipxo 023

where My = diag(mg, mg, mg) (mg is the mass of the
quadcopter) M; = diag (m;,m;,m;) (m; is the mass of the
payload) and I; = diag (1}, 1;).

The total potential energy function V (q) of the system is the
sum of the potential energy of the quadcopter and the payload
and is given as, V (q) = mggzg +mg (zg — [ cos (6;) cos (¢;))
where g is the acceleration due to gravity.

Using the expressions for the kinetic and potential energy,
the Lagrangian is formulated as, ¥ =T (¢,q4) —V (q)
Using the Fuler-Lagrange formulation, the mathematical
model for the quadcopter with cable suspended load is
obtained in the form of

M(q)§+C(q,9)4+G(q) = fou (7

where, f,,=[ Kk F, . 0 0 7 7 = }T denotes
the control input to the quadcopter in the inertial frame. It
is easily seen that,

F; 0
F, | =R(¢,0,y)| O ®)
F, uj

where, R (¢, 0, y) is the rotation matrix translating the thrust
and the moment inputs from the quadcopter body frame {B}
to the inertial frame {I}. In terms of the individual thrust
forces produced by the quadcopter (fi, f>, f3 and fy), the
control inputs are determined as

ur = fHithH+fH+ S,

T = L(fa—1a),

T, = L(fs-1fi),

T, = (—01+0>—03+04),

where, Q1, O2, O3, Q4 are the moments generated by each
of the rotors and L is the arm length of the quadcopter.
Given the combined dynamics of the quadcopter and the
payload in equation 7, assuming the quadcopter in a hover
configuration, control functions f; are sought such that



6, ¢, 0;, ¢ — 0, as t — oo for initial condition disturbances
6,(0), ¢;(0), 6,(0), ¢/(0). Additionally, Axg, Azg — 0 as
t — 0 where Axg, Azp are perturbations of the quadcopter
position from the initial hover configuration.

III. SOLUTION METHODOLOGY (CONTROLLER DESIGN)

Consider the two dimensional motion (longitudinal plane
restriction) of the quadcopter with cable suspended payload
in x; — z7 inertial plane. The simplified model for the 2D
case can be obtained by applying constraints on the dynamic
model obtained in equation 7. The system dynamics for
the quadcopter with cable suspended load in 2D plane is
described as,

(mo+m) (ig+8)+mil (cos (6) 7 —sin(6)¢1) = F; ()

(mg+my) %o +myl (sin(q)l) @7 +cos (¢y) q)l) = (10)
myl% ¢, +mylsin (¢;) £ — myl cos (¢;) &+ myglsin (¢;) = (11)
iy =5 (12)
where, - in(6)
= upsin(0),
F, = ullcos(G), (13)

are the control inputs. In this paper, we adopt a similar con-
trol strategy as in [8] i.e. design a passivity based controller
to stabilize the system by controlling the overall energy of the
system. The system is decoupled into an inner control loop to
stabilize the attitude dynamics of the quadcopter and an outer
loop to stabilize the translational dynamics of the quadcopter
along with the pendulum dynamics [6]. The outer loop is
further decoupled to stabilize the altitude of the quadcopter
(zp), longitudinal position of the quadcopter (xp) and the
swing of the pendulum. From equations (9) and (10)

fo =) ol [cos(¢) 67 +sin(9)¢r]  (14)
g = SO _ ol [sin(9r) 7 —cos(9) ] (15)
Using equations (11), (14), and (15),
. —si -6
5 (0 —O)u 6
MQI
Substituting equation (16) in equations (14) and 15),
S cos(6)+zm—lQ(cos(G)fcos(Oqu),)) u "
~ mylcos () ¢7
mQ+ml
_ mylsin (¢7) 7
mg +my (18)
. mo i
g+ {sm(e)—k%(sm(e) sin (0 2¢1))} u

For hover conditions and small pitch angles ofthe quad-
copter, the attitude dynamics can be approximated using
cos(0) ~ 1 and sin(0) ~ 6 and treating 6 as the control
input 6, results into following dynamics for %y and Zp

Lol g 20,) — 6, sin (2
o 1 (1 cos(20)  Bsin (20)

 mylcos (1) ¢}
mg +my

o=
(19)

_mylsin(¢y) 97 N 64
mg +my mg +ny

(9d — Gd COoS (2¢1> —sin (2¢l)):|

1 (20)

mg +ny

L’"Q
Near hovering condition, u; ~ (mg+m;)g and longitudinal

dynamics can only be controlled by 6,. This results into the
following for %p,

. 2
l
o =01 [+ £ (1 - cos(2) | - 008
2mg m;+mg @1)
. mg sin (Z(P])
2mQ
Thus, choosing 8, and u; as,
ot o | e
6, = (22)
g+ £ (1 - cos (201)|
Icos(;)¢2
(mg +my) (g+ % —i—uZ)
u = (23)
[1 + o (1~ cos (201) — Busin (2¢1))}
and with
u; = —ky(z0—2a) —kj(2o—2a) +Za
uy = —k,(xg—za) —ky(Xo —Xa) +Xa

the closed loop position tracking dynamics of the quadcopter
are reduced to,

o = —kZ(ZQ_Zd)—kZ(ZQ_Zd)+Zd
Zo = —kylxg—za) —kgq(ko—1a) +Xa

which ensures decay of the xp — 0 and zg — 0. The rate
of decay and other transient characteristics of the tracking
errors are controlled by tuning the positive gains k3, k3, k,,
and k.
Remarks
e The nonlinear control laws in equations (22) and (23)
hinge upon the approximation u; = (mg +my) g. This is
remedied later.
e The control laws require the knowledge of the swing

angles and the angular velocities.

In what follows, the attitude control design procedure can
either use 6, as synthesized above or in any other manner
such as the one discussed hereon.

From equations (14) and (15) the quadcopter dynamics can
be expressed in the following form,

(mo+my) g = uycos(0) — (mg+my) (g+Af1 (9,0,01)) (24)

(mg+my) (Afa (41,61, 01))
cos (¢1) §7 + sin (¢;) ¢, and f, =

(mo+my) ko =uysin(0) — (25)

where, A = mmﬁ e f1=
sin (¢r) ¢ —COS(¢1)¢1
At the hover condition, the desired pitch angle is derived as,

A2 (01,61.61)
g+A11(91.61.61)

6, = tan~! and the desired total thrust is

obtained as,

= \/(lfz (d);,di;,@))er (g+Afi (¢1,¢1,¢31))2




The pitch controller can be designed using the pitch tracking
error eg which is defined as, eg = 0 — 6,, and ég = 6 — 6.
We seek a very tightly controlled pitch loop, so the pitch
errors are prescribed to converge to zero exponentially with
a decay rate of Ag. The pitch error dynamics takes the form,
ég = —Ageg. Thus @,y = —Ageq + 6, is the desired pitch rate
that ensures eg — 0, as t — oo. The pitch rate error (ey) is
then obtained as, e = @, — @,4 The pitch rate errors are also
prescribed to converge to zero exponentially with a decay
rate of Ay. Thus, the desired pitch rate error dynamics takes
the form, ¢y = —Apew. Thus, @, — @y = —Apee and, the
control law for the pitch dynamics is determined as,

Ty = Iyy (7)L€w + (!:)yd)

It is noted that the above procedure is a nested backstepping
process [10].

Clearly, for the backstepping process to be followed, the
controller requires several higher derivatives of the payload
swing angle. The measurement of all swing angle and all
its higher order derivatives is a challenging task. To address
this, we observe the following:

Specifically at the hover state, the dynamics of the swinging
payload can be assumed to be equivalent to the dynamics of a
simple gendulum linearized about some angle ¢; is given by,
b ~ —7 % Thus, if the swing angle is measured, using this
approximation, the angular velocity as well as the accelera-
tion of the swinging payload can be estimated. Also, under
these assumptions all higher order derivatives are succes-
sively obtained, making the backstepping control approach
feasible. Note, assuming that the angle measurements for the
cable are available, the angular velocity of the swinging cable
can be estimated using a Continuous-Discrete Kalman Filter
(CDKF) driven by the cable angle measurements. In our
specific implementation, the propagation is continuous while
the measurement updates happen at discrete instants (every
0.01 s). The CDKF utilizes the simplified one degree-of-

freedom dynamics, ¢; = —7¢1 +wy (1), where wy (1) is a zero

mean white noise process with covariance 0.25 rad?/s*. The
measurement equation is ¢; = ¢ + vy (t). The measurement
error vy (t) is also assumed to be a zero-mean white noise
process with variance 0.01 rad®>. Additionally, wy (1), and
vy (t) are assumed to be uncorrelated. The derivation of the
CDKEF is straightforward and can be found in [11].

IV. SIMULATION RESULTS
The following model and controller parameters were used

to simulate the quadcopter with a cable suspended payload.

Parameter | Value
mg (kg) 1
[ (m) 0.75
g(m/s?*) | 9.81

A. Case 1: Quadcopter in Hover Mode and the Payload is

Perturbed
The quadcopter is in a hovering state at the start of

the simulation. The payload cable angle at the start of the
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Fig. 2: Longitudinal position of the quadcopter
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Fig. 3: Altitude of the quadcopter
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Fig. 4: Payload Cable angle history

simulation is 30°. It can be seen from the figures 2, 3,
and 4 that as the simulation begins, there are disturbances
introduced in the system due to the oscillation of the payload.
The controller tries to reject these disturbances and gradually
tries to bring the quadcopter to its initial starting position.
The amplitude of the oscillations of the payload is observed
to decay. From figure 5 it can be observed that the attitude
controller tries to maintain the quadcopter position along x;
direction by changing the pitch angle of the quadcopter. The
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Fig. 5: Pitch angle of the quadcopter
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Fig. 6: Comparison between the Actual and the Estimated
Angular Velocity of the Payload Cable Using Kalman Filter

pitch angle has an oscillatory behavior as well and it decays
to zero as the quadcopter goes back to the initial hover pose
and the payload oscillations decay. It can be seen from figure
6 that the estimator is able to track the angular velocity
states of the payload cable and the controller provides a
reasonable performance as compared to the case when the
angular velocity of the payload cable was available as a
measurement. The tuning of the parameters for the estimator
as well as the controller is preliminary and requires careful
consideration.

B. Case 2: Quadcopter Moving with a Constant Speed along
x; axis and and is suddenly Commanded to go in the Hover
Mode

The quadcopter is in hover mode and the payload is in
a stable configuration at the start of the simulation. The
quadcopter is commanded to follow a straight line trajectory
along x; axis with a constant speed of 10.8 kmph (3 m/s) and
constant altitude. At 50 s, the quadcopter is commanded to go
back to the hover mode. From figure 9, it can be seen that the
payload is perturbed due to sudden changes in the quadcopter
states at the start of the simulation and the controller is able
to stabilize the payload when the quadcopter is in motion.
The payload is perturbed again when the quadcopter goes
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Fig. 7: Longitudinal position of the quadcopter
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Fig. 8: Altitude of the quadcopter
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Fig. 9: Payload Cable angle history

back to the hover mode and the combined estimator and
controller is able to stabilize the system. From figure 7 and
8, it can be observed that the controller is able to maintain the
quadcopter altitude as well as the trajectory along x; axis and
desired position when commanded to go back to the hover
mode. The quadcopter position and velocity along x; axis is
maintained by changing the pitch angle. From figure 10, it is
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Fig. 10: Pitch angle of the quadcopter
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Fig. 11: Comparison between the Actual and the Estimated
Angular Velocity of the Payload Cable Using Kalman Filter

observed that the pitch angle has an oscillatory behavior as
the quadcopter is commanded to follow a constant speed
straight line trajectory and the oscillations decay as the
quadcopter attains the desired speed. When the quadcopter is
commanded to go back to the hover mode at 50 s, the con-
troller tries to maintain the position of the quadcopter along
the x; by changing the pitch angle. A decaying oscillatory
behavior in the pitch angle of the quadcopter is observed
again as the quadcopter goes back to the hover pose. It can
be seen from figure 11 that the estimator overestimates the
angular velocity states of the payload cable and the controller
provides a reasonable performance as compared to the case
when the angular velocity of the payload cable was available
as a measurement.

V. SUMMARY, CONCLUSIONS, AND FUTURE WORK

Mathematical modeling was done for a quadcopter with a
cable suspended payload using Euler-Lagrange formulation.
A passivity based control law was used to control the
position of the quadrotor thus attenuating the oscillations
of the payload. A Continuous-Discrete Kalman Filter was
implemented in the simulations to estimate angular velocity
of the oscillating payload. These estimates were used by the
passivity based controller. A pitch controller was designed

to control the pitch of the quadcopter, thus providing the
necessary force to control the position of the quadcopter
along x; direction. The future work includes extending this
framework to 3D and comparing with other techniques such
as the extended state observer for disturbance estimation.
Experiments will be planned to test the performance of the
control law on a physical quadcopter platform.
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