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ABSTRACT: A graded quiver with superpotential is a quiver whose arrows are assigned
degrees ¢ € {0,1,--- ,m}, for some integer m > 0, with relations generated by a superpo-
tential of degree m — 1. Ordinary quivers (m = 1) often describe the open string sector of
D-brane systems; in particular, they capture the physics of D3-branes at local Calabi-Yau
(CY) 3-fold singularities in type IIB string theory, in the guise of 4d A/ = 1 supersymmetric
quiver gauge theories. It was pointed out recently that graded quivers with m = 2 and
m = 3 similarly describe systems of D-branes at CY 4-fold and 5-fold singularities, as 2d
N =(0,2) and 0d N = 1 gauge theories, respectively. In this work, we further explore the
correspondence between m-graded quivers with superpotential, Q(,,), and CY (m + 2)-fold
singularities, X,,+2. For any m, the open string sector of the topological B-model on X, 42
can be described in terms of a graded quiver. We illustrate this correspondence explicitly
with a few infinite families of toric singularities indexed by m € N, for which we derive
“toric” graded quivers associated to the geometry, using several complementary perspec-
tives. Many interesting aspects of supersymmetric quiver gauge theories can be formally
extended to any m; for instance, for one family of singularities, dubbed C(Y19(P™)), that
generalizes the conifold singularity to m > 1, we point out the existence of a formal “duality
cascade” for the corresponding graded quivers.
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1 Introduction

The mathematical concept of a quiver — that is, a directed graph consisting of nodes and
arrows between nodes — has proven very fruitful in string theory and in supersymmetric
field theory, starting with the seminal work of Douglas and Moore [1]. Broadly speaking,
“ordinary” quivers are often used to describe the structure of half-BPS states in theo-
ries with 8 real supersymmetries. In particular, they can conveniently describe half-BPS
systems of D-branes in type II string theory; schematically, the quiver nodes represent
a set of mutually supersymmetric D-brane, and the arrows between nodes represent the
supersymmetry-protected open string modes.

A rich class of quivers arises from considering D3-branes probing Calabi-Yau (CY) 3-
fold singularities in type IIB [2-14]. More generally, we may consider Dp-branes transverse
to CY (m + 2)-fold singularities, with p = 5 — 2m. That is, we consider a IIB background:

RO™2" % X, 19, (1.1)



with X,,42 a local CY,,42 singularity, and with D(5 — 2m)-branes along the transverse
space, which sit at the singularity — from the point of view of X,,12, those branes are
point-like probes. For m = 1, the low-energy theory on the four-dimensional D3-brane
worldvolume is described by a 4d N' = 1 supersymmetric gauge theory. More generally,
if we consider m = 0,1, 2, 3, we obtain gauge theories in dimension d = 6,4,2,0 with the
following amounts of supersymmetry:

m 0 1 2 3
Xing2 CYs CY3 CYy CYs (1.2)
SUSY | 6N = (0,1) 4dN =1 24N =(0,2) 0dN =1

The low-energy field theories have 23~ real supercharges.

1.1 Graded quiver gauge theories

While a set of N transverse D-branes at a smooth point of X,,4+2 would give rise to a
U(N) gauge theory on its worldvolume, the D-branes at the singularity “fractionate” into
marginally-bound constituents, the so-called fractional branes. Each type of fractional
brane supports its own gauge group. For our purpose, a quiver gauge theory is a gauge
theory with a gauge group:

U(N7) x U(Ng) X -+- x U(Ny,) . (1.3)

We assign a gauge group U(N;) to each node i of an abstract quiver; the (6 — 2m)-
dimensional gauge fields A, ; sit in vector multiplets V; of the appropriate supersymmetry
algebra. Open strings stretched between fractional branes give rise to matter fields in
the quiver gauge theory, in adjoint or bifundamental representations of the unitary gauge
groups in (1.3). For m = 0, the matter fields sit in hypermultiplets of 6d N' = (0,1)
supersymmetry, and the corresponding quiver arrows are unoriented; in this case, Xs is an
ADE singularity, and the corresponding quivers are affine ADE quivers [1]. For m =1, we
have a 3-fold X3 and matter fields are in chiral multiplets of 4d A/ = 1 supersymmetry,
corresponding to oriented arrows of an “ordinary” quiver. For m = 2 and m = 3, the
matter fields can sit in either chiral or fermi multiplets of 2d N' = (0,2) and 0d N =1
supersymmetry, respectively. For m = 2, the chiral multiplets give rise to oriented arrows,
while the fermi multiplets give rise to unoriented arrows. For m = 3, both the chiral and
fermi multiplets correspond to oriented arrows.

The 2d and 0d gauge theories are conveniently described within the larger framework
of graded quivers (with superpotential). A graded quiver is a quiver together with a grading
of the arrows by a “quiver degree:”

ce{0,1,--- ,;m} . (1.4)
The grading simply keeps track of the different types of matter fields. We denote the
various arrows, or “fields,” by:

2
QE;:) :Z.—>-j7 C:0,1’~--’7’Lc_17 ncz\‘nl;_Jj (15)



m
2
arrows are oriented. For every arrow of the form (1.5), we posit a “conjugate” arrow of

When m is even, the arrows of maximal degree, n. — 1 = are unoriented. All other

degree m — ¢ and opposite orientation, denoted by:

30 = (@) (1.6)
This is interpreted as the CPT conjugate fields in the supersymmetric gauge theory.

Importantly, the graded quivers can have a superpotential, which encodes interactions
amongst matter fields in the gauge theory. We will come back to that crucial point later on.
This perspective on supersymmetric quiver gauge theories was recently developed in [15].
Related works include [16-18].

Gauge theory quivers have been most studied in the case of X,,4+2 a toric local CY
(see e.g. [2-8, 10-14, 19-25]). Various powerful tools become available in this case. We will
review them in section 1.3.

As far as the D-brane setup (1.1) goes, we are limited to m < 3 by the critical dimen-
sion, d = 10, of type II string theory. From the perspective of graded quivers, however,
there is no reason to stop at m = 3. While there is no supersymmetric field theory inter-
pretation of general graded quivers,' they still have a natural interpretation as describing
fractional branes at a CY,42 singularity, as we now explain.

1.2 From B-branes on X,, 2 to graded quivers Q)

By themselves, graded quivers with m < 3 do not encode the full low-energy quantum field
theory on the transverse D-branes. Instead, they encode some half-BPS “holomorphic”
information [26] which is protected by supersymmetry. In type IIB string theory, that
information is preserved by the topological B-twist.

Let us, then, focus on the B-model of the local Calabi-Yau X,,+2. Conveniently,
this maps the problem of analyzing D-branes at a CY singularity to a purely algebraic
problem, since the B-model is independent of the K&hler moduli of X,, 2. The D-branes
of the B-model, denoted by &, are called B-branes. They are described as objects in the
bounded derived category of coherent sheaves (the B-brane category, for short) of the
variety X,+2 [27-30]:

EeD'Xpnyo) . (1.7)

For most purposes here, we can think of £ as a coherent sheaves with compact support. At
this level of description, there is no restriction on m: the B-model is well-defined on any
Calabi-Yau variety.

A point-like brane at a smooth point p € X,,12 is described by the skyscraper sheaf
Op. When we bring O, to the singularity, it is expected to fractionate into marginally
stable constituents:

Op =& @&, . (1.8)

!Formally, a graded quiver with m > 3 would correspond to a “field theory” in d = 6 — 2m < 0, with n.
distinct types of matter fields, and with some “superpotential” interactions amongst them.



The B-branes &; are the fractional branes. They correspond to the nodes of a quiver. In
the main text, we will discuss their identification in a few explicit examples, in the case of
toric singularities that admit crepant resolutions.

The open strings between B-branes are described as morphism in the B-brane category.
Algebraically, they are the Ext groups elements:

d)gi) S Eth(m+2 (83,51) . (1.9)

We review some of the necessary algebraic geometry in appendix A. Here, we just note
that Ext groups are indexed by a degree:

de {01, ,m+2}. (1.10)

The degree corresponds to the BRST charge in the B-model. On a Calabi-Yau (m+2)-fold,
we have the isomorphism:

Extk ,(€,&) 2 Ext@2-4(E, &),  d=0,--- ,m+2, (1.11)

Xm+2

known as Serre duality. The elements of Ext? 22 Hom are identified with “vector multiplets”
at the quiver nodes. By assumption, we must have:

Exty ,(£,&) = Extgiz (&:,&;) = C6;j (1.12)
for a consistent set of fractional branes. The other Ext? group elements (1.9), with degree
d # 0,m + 2, are identified with the “matter field” arrows in a graded quiver:

o e el (1.13)

Note that the quiver and Ext degrees are related by ¢ =d — 1.
In this way, in principle, one can associate a graded quiver Q) to any local CY
singularity, of any complex dimension:

Xm+2 — Q(m) . (1.14)

The most non-trivial part of the correspondence is the identification of the “interactions”
in either description. On the graded quiver side, there exists a quiver “superpotential” of
degree m — 1. On the B-brane side, this corresponds to the A, algebra satisfied by open
string disk correlators.

Based on the known results for m = 0,1 [31, 32], one would expect that there exists an
equivalence of derived categories between D?(X,,;2) and some suitable derived category
of representations of Q(,,,). This is indeed the case, as shown by Lam in [33].

In this paper, our goal is to flesh out the basic correspondence (1.14) explicitly, at a
“physical” level of rigor, in a few families of geometries {X,,12}men. Given a singular CY
variety X, 12, the procedure to obtain a graded quiver with superpotential Q,,) from the
B-branes on X, 12 is as follows:

(i) Find a consistent set of fractional branes, {&;}. This gives the nodes of the quiver.



(ii) Compute all the Ext groups (1.9) between fractional branes. Using the correspon-

dence (1.13), draw the quiver arrows, with their quiver degrees.?

(iii) Compute the quiver superpotential from the A, products between Ext group ele-
ments. (We will explain this last point in later sections.)

While the above procedure is very general and can be applied, in principle, to any singular
Calabi-Yau variety, explicit computations in the B-brane category tend to be technically
challenging. Moreover, the first step is problematic, since we do not have, in general, an
efficient method to find a “consistent set” of fractional brane in the B-brane category.
In fact, such sets are by no means uniquely determined by the variety X,, 2. Different
choices of fractional branes can lead to different quivers, which corresponds to “field theory
dualities” (in particular, “Seiberg dualities”) when m < 3. In general, we expect that
any such distinct quivers for a given singularity are related by quiver mutations — see
appendix B for a review of graded quiver mutations [15].

1.3 Toric geometry to the rescue

Fortunately, when X,, 12 is a toric local Calabi-Yau, there exist alternative methods for
associating a quiver to the singularity. We now review them briefly and point the interested
reader to the references for detailed expositions. (For alternative approaches, see also
e.g. [34-36].)

A first approach, which is actually not restricted to toric geometries, consists of real-
izing X492 as a partial resolution of another geometry for which the quiver theory is easy
to determine. A standard choice for such parent theory is an appropriate C™*2/(Zy, x
-++ X Zn,,,,) orbifold. As we will elaborate in section 2.2, partial resolution translates into
higgsing of the quiver. Applications of this strategy to m = 1 and m = 2 can be found in [2—-
4, 20]. While this method allows for a systematic derivation of the quiver theories for the
desired geometries, it does not fully exploit all the structure associated to toric geometries.

The connection between toric CY,,12’s and the corresponding quivers on D(5 — 2m)-
branes, for m = 0,1,2,3, was significantly simplified with the introduction of a class of
brane configurations that are related to the original D-branes at singularities by T-duality
along m+ 1 directions. For m = 1, 2 and 3, these brane constructions are brane tilings [11,
13], brane brick models [21, 22, 37] and brane hyperbrick models [24], respectively.® These
configurations consist of stacks of D(6 — m)-branes suspended within the voids of an NS5-
brane that wraps a holomorphic hypersurface.* This surface is m-complex dimensional and
is defined as the vanishing locus of the Newton polynomial associated to the toric diagram,

P($1,-" ,."L‘m+1) :0, (1.15)

withz; € C*,7=1,--- ,m—+1. Most of the non-trivial structure of these configurations lives
on an (m + 1)-torus, defined by the coamoeba projection of the x; coordinates. For many

*We only draw half of the arrows, as in (1.5). The other half of the arrows is given implicitly by the
“conjugation” map (1.6).

3The corresponding constructions for m = 0 are the well-known elliptic models [38].

4For m = 3, the suspended branes are actually Euclidean D4-branes.



purposes, it is often sufficient to consider the “skeletons” of these brane configurations. For
brane tilings, these are bipartite graphs on T?; for brane brick models, they are tessellations
of T3; and so on. In all these cases, there is a simple dictionary relating the brane setups
to the corresponding quiver gauge theories.

These constructions can be formally extended to m > 3 [39].We collectively refer to
them as generalized dimers. Via graph dualization, they are in one-to-one correspondence
with periodic quivers on T™*! which, likewise, fully encode both the quivers and the
superpotentials of the “field theories.”

As we will explain in section 2.2, given one of these brane setups, finding the cor-
responding X,,12 is reduced to a combinatorial problem, which is a huge simplification
with respect to alternative approaches. Conversely, there are various efficient procedures
for constructing generalized dimers — equivalently, quiver theories with superpotentials
— starting from the corresponding toric X,,4+2. One way to do this is by using mirror
symmetry. This method was developed for m = 1 in [40] and for m = 2 in [37, 41], where
its extension to higher m was also outlined.

In this paper, we focus on toric varieties. For each infinite family of examples, we
present a convenient toric method to derive graded quivers with superpotential for X, 2,
and discuss some of their interesting properties. We then proceed to check those results
with an explicit B-brane computation, following the three steps above. The B-model
computation provides a strong check of those recently devised toric methods.

This paper is organized as follows. In section 2, we review the relevant aspects of
graded quivers and of the B-brane category, and we spell out the relation between the
two approaches. In section 3, we illustrate our methods in the simplest example, that
of flat space C™*2. In section 4, we consider an orbifold singularity, C""2/Z,, 2. In
section 5, we consider a family of singularities, dubbed Y1%(P™), which reduces to the
conifold singularity for m = 1. In section 6, we consider a third family of singularities,
dubbed F (()m), which reduces to an orbifold of the conifold for m = 1. Appendix A contains
a pedagogical summary of the algebraic geometry techniques that we will need for our
B-model computations. Appendix B reviews order m + 1 mutations of m-graded quivers.

2 Graded quivers and B-branes

In this section, we first review the concept of a graded quiver with superpotential, as
developed in [15], building on mathematical ideas in [42-44]. We then discuss the relation
between so-called “toric” quivers and toric singularities (while referring to [39] for further
discussion).® Finally, we discuss the derivation of the graded quiver from the B-model on
the CY singularity.

5Throughout the paper, we will use the term toric quiver as a synonym of what is usually referred to as
a toric phase. Toric phases are those that can be fully captured by periodic quivers on T™*!.



2.1 Graded quiver algebra

A graded quiver Q) = (Qo, Q1) consist of a set of nodes indexed by some integers 4, and
of arrows ® between nodes:

Qo ={i} ={1,---,n}, Q1 ={2}. (2.1)
Each arrow is assigned a quiver degree:
ce{0,---,m}, (2.2)
for some integer m € N. We denote an arrow from ¢ to j, of degree ¢, by:

©@ .. .
;7 i =g (2.3)

The product of arrows is given by concatenation:
q)ijq)jkq)kl s (24)

Here the arrow degrees are left implicit. A closed path is a product of arrows that comes
back to itself, in the obvious way. The degree of a path is the sum of the degrees of its
component arrows. We call the degree-zero arrows the “chiral fields,” since they correspond
to chiral multiplets in supersymmetric quiver gauge theories (when m < 3). A path of chiral
fields has degree zero.

The path algebra is the algebra of paths generated by arrows, with the above product
and the obvious formal sum. The freely-generated path algebra is denoted by CQ. We will
soon introduce relations amongst paths.

CPT invariance. We restrict ourselves to a particular kind of graded quiver, such that

every arrow ® of degree d has an “opposite” or “conjugate,” ®,, = @, of degree m — d and

opposite orientation, as anticipated in (1.6). We can then pair all the arrows according to:
ij 0 g Ji ij

(cp(C) 6(’-”’0)), 3 = (99 . (2.5)

This is a choice of polarization of the path algebra. A very convenient choice of polarization,
which we use when drawing quivers explicitly, is to choose ®(©) for the arrows of degrees

ne = V”QHJ , (2.6)

and 6(7“_6) for their conjugate. In that case, one draws quivers with arrows of degrees 0

c=0,---,n.— 1, with:

to n. — 1 only. The number (2.6) is the number of “arrow types” in the graded quiver, also
called the “arrow colors” [44].
We may call the arrows of degree ¢ € {0,--- ,m} the “matter fields.” The requirement

that every arrow has a conjugate corresponds to CPT invariance in quiver gauge theories.”

5Conjugate arrows will always be implicit in the quiver diagrams that we will present. They are not
independent objects, but can be derived from the corresponding unconjugated ones.



Note that, when m is even, the arrows of degree n. — 1 = 7 are “self-conjugate,” and the

choice of polarization into arrows ® and ®, namely:

(cp(%) e ) , (2.7)

¥ 7t

is arbitrary. For m = 0 and m = 2, this corresponds to the fact that the 6d hypermultiplets
and the 2d fermi multiplets, respectively, are self-conjugate.

Gauge fields. Let us also introduce arrows from a node to itself:
e 1—1, €11, (28)

for each node, of degree —1 and m + 1, respectively.” We may call e; and €; the “gauge
fields” — they are identified with vector multiplets in quiver gauge theories.

Superpotential relations. We introduce relations on the path algebra through a
“graded quiver superpotential:”

W =Ww(®), deg(W)=m—1. (2.9)

This imposes relations on the path algebra, of the form dgW = 0. The superpotential
is a linear function of closed paths of matter fields, of degree m — 1. It is clear from the
grading that, for any fixed m, there can only be a finite number of arrows of degree ¢ > 0
in each closed path. On the other hand, the number of chiral multiplets ®(© is unbounded,

a priori. For instance, at low m we have:

m=1: W=w(@),
m=2: W=2oWs0) +3VE@0) (2.10)
m=3: W =oWeWH@®) + @ F(30)

schematically. The functions W (@), J(®©), E(®©) and H(®©), F(®(©) are holomor-
phic functions of the chiral fields. They correspond to the 4d ' = 1, 2d N = (0, 2), and
0d N = 1 superpotentials, respectively. This obviously generalizes to any m:

w=ao)...owr, (@), e+t =m-1, (2.11)

schematically,® though there is no supersymmetric field theory interpretation for m>3.

Kontsevitch bracket condition. There is an important condition we should impose
on W, which can be written as:

(W,W}=0, < =0, (2.12)

"The arrow e; is denoted by I; in [15], and its “opposite” ; is introduced here for future convenience.
8In general, we can have distinct paths of degree-zero chiral fields connecting each field of higher degree
in the closed loop.



where the sum is over all the fields @, for a given polarization (2.5). Here, {f, g} denotes
the Kontsevitch bracket on the path algebra. It is defined as:

_ Of 09 N+ @l+(gl+ )0+ F1+1 OF O

Let us note that the condition (2.12) holds for any choice of polarization. The Kontsevitch
bracket is a natural generalization of the Poisson bracket on a graded path algebra that
admits a polarization.

Differential and superpotential. Given the superpotential above, one can define a
differential, d, of degree —1, acting on paths. We have the Leibniz rule:

d(fg) = (df)g+ (-1l rdg, (2.14)

with |f| denoting the degree of the path f. The differential is given explicitly on the quiver
fields by:

de=-e®e,

oW
d@:£+(—1)‘¢'¢®6—6®@7 2.15)
 aw o B 2.15
dd=-—+(-1)*’Pge—cx®

8<I>+(7) Qe—ex P,
de=) (-)*(22e-20®) +(-1)"ewe—cre.

(]

This is obviously of degree —1 since W has degree m — 1 and |®| = m — |®|. One can check
that this is a differential:
d?> =0, (2.16)

provided that (2.12) is satisfied.

Representations of the quiver algebra and anomaly-free constraint. Given a
quiver algebra, we may want to study its representations. Recall that a quiver repre-
sentation consists of a vector space V; =2 CVi assigned to each node i, and of explicit
homomorphisms <I>Z(.?) : Vi — V; (that is, fixed N; x IN; matrices such that all the quiver
relations are satisfied).

In physics, the positive integers N; are the ranks of the unitary gauge group (1.3) in a
quiver gauge theory. The choice of homomorphism ®(© is a choice of “vacuum expectation
values (VEVs)” for the chiral multiplets. Not every choice of rank is physically acceptable.
There are certain constraints on the allowed choices of ranks, the generalized anomaly
cancellation conditions [15], which we will review in section 2.5 below.

It is always a good idea to distinguish between the algebra and its representations. In
this work, most of our discussion will be focused on the general “abstract” quiver, not on a
particular representation. In the B-model, a particular quiver representation corresponds
to a particular bound state of D-branes, and the anomaly cancellation condition is a tadpole
cancellation condition for the RR flux (at least in the physical setup with m < 3).



2.2 Toric graded quivers and toric singularities

A central theme of this paper is the connection between m-graded quivers and CY 42
singularities. This connection goes in both directions and can be addressed from multiple
viewpoints.

The CY 42 variety arises from the quiver as its classical moduli space. Generalizing the
m < 3 cases, for which the quivers have a gauge theory interpretation, we define the classical
moduli space as the center of the Jacobian algebra with respect to fields of degree m — 1,
i.e. of next to maximal degree. The mathematical results in [45] imply that it is sufficient
to consider the algebra obtained by quotienting only by the corresponding relations:

oW .

Note that, in the special case m = 2, the field ®) here denotes both ®1) and 5(1); they
are the fermi and anti-fermi multiplets, in the 2d N = (0,2) gauge theory.

Since the superpotential has degree m—1, the terms which are relevant for the relations
in (2.17) are gauge invariants of the generic form ®(™~1 P(¢(0), with P(®( a holomorphic
function of chiral fields. Borrowing the nomenclature used in the m = 2 and 3 cases, we
refer to these terms as J-terms.” Therefore, the relations (2.17) consist entirely of chiral
fields. For m < 3, chiral fields are the only superfields with scalar components, hence
their relevance for the moduli space. Focusing on the center of the algebra corresponds to
considering closed loops — in the gauge theory language, this is the restriction to gauge
invariant fields.

Toric CY singularities. In this paper, we focus on toric Calabi-Yau singularities, and
their toric partial resolutions. A toric CY singularity X,,,+2 can be described in terms of its
toric diagram T', a convex polytope in Z™*!. Let us denote the points of the toric diagram
by:

{v1,---,vg} €T CczZ™ . (2.18)
This includes internal points — points inside the polytope. Including all the internal points
allows us to discuss toric resolutions straightforwardly. Recall that, given the toric diagram,

the toric fan is the set of vectors w; = (v;,1) € Z™*2. The Kihler quotient description of
the singularity (also known as GLSM [46]) is given by:

Xinto = (Cd//U(l)d*m*2 , 2 ~ ¢i2a Qi . , (QY) = ker(wy, -+ ,wq), (2.19)

with (w1, ,wq) seen as (m + 2) x d matrix — here, () € C% i = 1,--- ,d, are the
“GLSM fields,” and a =1, -+ ,d — m — 2 runs over the “GLSM gauge group.”

9Strictly speaking, J-term usually refers to the holomorphic function P(®(®). We will use the name for
the entire '@(m*l)P(QJ(O)) term in the superpotential. For m = 1, this corresponds to standard superpotential
terms.
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Toric superpotential condition. To any given toric CY,,+2 singularity, we can as-
sociate a graded quiver ()(,,) that satisfies an additional toric condition, generalizing the
well-known m = 1 and m = 2 cases [8, 20]. More precisely, there always exists at least one
such “toric quiver,” and other quivers are expected to be related to it by mutations. The
toric condition is a condition on the superpotential: every field ®(™~1 of degree m — 1
should appear in exactly two J-terms, with opposite signs. Namely,

W =&V p@0) - D@ 4 ..., (2.20)

(m=1) " Tn other words, the “vacuum

where the dots indicate terms that do not contain &
equations” (2.17) take a simple form (path;)=(pathg). This form of the superpotential
underlies the relationship between these theories and toric geometries.

Concepts such as periodic quivers on T"*! (and their dual brane tilings, brane brick
models, and higher dimensional generalizations), perfect matchings, etc., can be generalized
to arbitrary m. These issues will be studied in detail in a forthcoming paper [39]. Here,
let us just quote one of the results, which we will exploit for computing moduli spaces.

Given a toric graded quiver ()(,,) with superpotential W, we can define perfect match-
ings for arbitrary m, as follows. A perfect matching p is a collection of arrows in Q)

satisfying two conditions:

e p contains precisely one arrow from each term in W.

)

e For every arrow ®(© in Q(m), either ®(©) or its conjugate $(m_c is in p.
This generalizes the definition of perfect matchings for brane tilings [11] and of brick
matchings for brane brick models [21].

We can regard perfect matchings as variables in terms of which the fields in the quiver
can be expressed. In particular, the map between perfect matching variables and chiral

fields is given by:
1it ol e p,,

2.21
0if &\ ¢ p,, (221)

<I>Z(-0) = pri“ with P, = {
o

where 7 runs over the chiral fields and p runs over perfect matchings. The F;, can be re-
garded as entries in the so-called P-matrix. This change of variables is extremely powerful,
since it trivializes the relations (2.17). There is then a one-to-one correspondence between
perfect matchings and “GLSM fields” in a (possibly redundant!®) toric description (2.19)
of the CY,,12. Perfect matchings are therefore mapped to points in the toric diagram. The
Z™+1 coordinates for each perfect matching are easily determined from the intersections
between the chiral fields it contains and the fundamental cycles of the (m + 1)-torus on
which the corresponding periodic quiver lives.

In this way, the determination of the moduli space is significantly simplified, reducing to
the combinatorial problem of determining perfect matchings. Moreover, efficient methods
for finding perfect matchings, analogous to the Kasteleyn matrices for brane tilings, exist
for all m [39].

107f the GLSM description is redundant, there are several perfect matchings for the same point in the
toric diagram.
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Partial resolution and higgsing. Partial resolution of a toric CY,,+2 corresponds to
removal of points in the toric diagram, and can be used to connect different geometries.
At the level of the quiver theory, this process maps to “higgsing” by non-zero “VEVs” for
certain chiral fields, where we have extended the physical nomenclature used for low m in
the obvious way.

The map between chiral and GLSM fields, encoded by the P-matrix, provides a sys-
tematic procedure for identifying the chiral fields that acquire non-zero VEVs in order to
achieve a desired partial resolution. In general, given a partial resolution, the choice of
VEVs that realize it might not be unique. This procedure is a straightforward generaliza-
tion of the one for CYs and CYy4 cases. We refer the reader to [2-4, 20] and references
therein for in depth discussions of these cases. Later in the paper, we will investigate the
connection between infinite families of geometries and the associated quiver theories via
partial resolution.

2.3 B-branes, Ext groups and A, algebra

Let us now consider the B-model on a local CY 19 singularity X,,12. The B-branes are
objects in the derived category of coherent sheaves on X,, 2, asin (1.7). In all the examples
that we consider, there will exist a crepant resolution of the singularity:

T Xm+2 — Xm+2, (222)

with f(erg a smooth local Calabi-Yau. Then, all the B-branes of interest will be coherent
sheaves with compact support on complex submanifolds of )~(m+2. Intuitively, we simply
have D-branes wrapping all possible closed complex cycles.

Since the B-model is independent of Kéahler deformations, the B-brane category on
)~(m+2 must be equivalent to the B-brane category on the singularity X,,12, but the former
is generally much simpler to describe. In all our examples, the smooth resolution is the
total space of a vector bundle E:

Xmto = Tot (F — Bmta—r) , r =rank(E), (2.23)

over Bp,12_,, a compact Kéahler surface of complex dimension m + 2 — r; in the simplest
case, we have the canonical line bundle over B,,+1. Then, the B-branes on )~(m+2 can be
described more simply in terms of sheaves on By, 1o .

The “fractional branes,” denoted by:

{&ikitt s (2.24)

are distinguished B-branes which “generate” the derived category Db(f(mw), in some
physical sense.!! In the setup (2.23), a good set of fractional brane can be obtained from

"Here we are being voluntarily vague. A better definition of fractional branes can be given if we are
provided with a stability structure on D?(X,,42), which does depend on the Kihler moduli (in physics,
that is the central charge of the D-branes). The fractional branes are obtained by marginal decay of the
point-like brane O, at the singularity.
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any strongly exceptional collection of sheaves on By, 12—, [16, 47-51]. The open string states
between two B-branes £ and F are identified with the generators of the Ext groups [27-30]:

Extg LEF), d=0 mt2. (2.25)

The interactions amongst these open string modes are encoded in a A, algebra. Let us
define the graded vector space:

A= o0 P Exty  (£,&), (2.26)

m—+2

of all the Ext groups elements amongst the fractional branes. One can define the multi-
products my on the Ext algebra A:

my @ A% 5 A, (2.27)
of degree 2 — k. They satisfy the A relations [52]:

> (=) (1% @m, ©1%9) =0, Yk >0, (2.28)
ptqt+r=k

Note that, in particular, m; is a differential — that is, (m1)? = 0, and ms is an associative
product. The Ext algebra A is a minimal A algebra, meaning that m; = 0 identically.
There also exists a natural trace map:

v:A—C, (2.29)

of degree —m — 2. This is used, in particular, to map to top Ext elements of degree m + 2
to elements of Ext® = Hom.

The multi-products my on the Ext algebra can be computed in the following man-
ner [16, 53]. Given any A, algebra A, let us denote by H® (g) to be the cohomology of m.
If A has no multiplications beyond mso, it turns out that one can define an A, structure

on H*(A) in such a way that there exists an A, map [53, 54]:
f:H*(A) — A, (2.30)

with f; equal to a particular representation H '(,Z[) — ZL in which cohomology classes map
to (noncanonical) representatives in A, and such that m; = 0 in the Aqg algebra on H*® (ﬁ)
One can then use the consistency conditions satisfied by elements of an A, map to solve
algebraically for the higher products on H*® (Z)

In the B-brane description, the algebra A is the algebra of complexes of coherent
sheaves, with chain maps between complexes. In that construction, m; is identified with
the BRST charge of the B-model. The “physical” open string states then live in the
cohomology H*(A), which gives us the derived category D?(X) — see [55] for a thorough

review. The minimal A, algebra:

A= H*(A) (2.31)

is precisely the Ext algebra. In the examples discussed in this paper, each B-brane will
correspond to a single coherent sheaf, which can be represented in the derived category by
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a locally-free resolution. The Ext elements can then be represented by chain maps between
resolutions, modulo chain homotopies. The mo products in A are given by chain map
composition. The higher products can be computed by the procedure that we just outlined.

In appendix A, we explain more thoroughly how to perform these computations ex-
plicitly.

2.4 From Ext groups to quiver fields

The relation between the quiver algebra and the Ext algebra was explained by Aspinwall
and Katz in [53], in the physical context of D3-branes at CY 3-folds (m = 1). The general
case is discussed by Lam [33], in a purely mathematical context.

Here, we follow the physical argument of [53]. In that language, the quiver fields ® are
sources for the open string vertex operators in the B-model. Given the open string mode
¢ € A of degree |¢|, there is a one-form descendent ¢() of degree || — 1. Then, to every

¢ € A, one can associate a “spacetime field” ® of degree |®| = 1 — |¢|, which acts as a
source for ¢ in the B-model:
S— S+ @), (2.32)
¢
Due to our choice of notation for the graded quivers @ ,,), following [15], we find it conve-
nient to define the “quiver field” ® of degree |®| = —|®|, so that:
B = 6| — 1. (2.33)

The explains the relation between quiver fields and Ext elements given in (1.13) in the
introduction.!?

Algebraically, the graded quiver algebra, V, and the Ext algebra, A, are related as
follows [53]. Let V denote the path algebra modulo the quiver relations, and let V denote
the same vector space but with the degrees ¢ exchanged with —c¢. (That is, ® € V and
® € V. Let also 17[1] denote the vector space V with all degrees decreased by one, and let s :

V= 17[1] denote the corresponding map of degree —1. Then, A is simply the dual of 17[1]:
A= (V[1)". (2.34)

Then, it turns out that the A, relations (2.28) on A are equivalent to the existence of
the differential d, (2.15), on V' [33, 53].

Mapping nodes and arrows. As anticipated in the introduction, we can assign a graded
quiver Q,Sm) to a CY singularity. More precisely, we work with a particular crepant res-
olution X,,,4+2. We should also insist on the fact that the quiver is really associated to
a particular set of fractional branes. A different choice of fractional branes can lead to a
different quiver.

12 As we just explained, a more natural definition of the quiver degree would be minus the degree that
we use in this paper. This is the conventions used, for instance, in [33]. (Also in [16].) In our present
conventions, the quiver degree is equal to minus the BRST degree of the B-model.
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Let us now spell out the B-brane-to-quiver correspondence. First of all, of course, the
quiver nodes are in one-to-one correspondence with the fractional branes:

node ¢ — & (2.35)

In the case of a singularity that admits a crepant resolution as in (2.23), the number of
fractional branes (and thus, the number of nodes in the quiver) is equal to x(B,+2—r), the
Euler character of the Kahler base B,, 12—, — physically, this is because we should have a
basis of wrapped branes that generates the full even-homology lattice.

Secondly, all the quiver arrows ® of degree |®| = ¢ correspond to Ext-group elements
x of degree |¢| = c+ 1:

gb()EEtd LEE) 29, with c=d-1€{0,1,---,m}. (2.36)

1)
Of course, Serre duality (1.11) corresponds to the pairing (2.5) of quiver arrows. Note
that we identify the arrow ®;; with the Ext element d)ij.l‘g The quiver algebra elements
of quiver degrees —1 and m + 1 correspond to e and e, respectively. The fact that each
element is a loop attached to a single node is a property that we assume of any “allowed
fractional branes,” namely:

Ext?(&;, &) = Ext™ (&5, &) = 6;;C . (2.37)
These groups are identified with the “vector multiplets” in supersymmetric quiver gauge

theories.

The quiver superpotential. The graded quiver superpotential takes the general form:

w= 3 0ol gl (2.38)

1172 © 1213 1511 )
closed paths p

The sum is over all closed paths,

S
p=ael o) with Y e=m-1, (2.39)
which consists of s concatenated arrows of any degrees ¢; € {0,---,m}, subject to the

above constraint — that is, here ® denotes both the fields ® and their “conjugates” ®.!4
The superpotential couplings are given by open string disk correlators:

+1 +1) s+1)
O[p = <¢lfig )gblgfg QSE:“ > (240)
More explicitly, they are given in terms of the multi-products on A, according to:
+1 +1 (cs+1)
ap - 'Y(mQ (¢£32 ) bl mS—l((z)Eg??) ) ) ” ) ¢Zjll ))) (241)

Note that oy, has degree 0, by construction.

3Note that ¢Z(-;-i) correspond to a morphism from &; to £;. While the product of arrows is by concatenation,
the product of two Ext elements correspond to the composition of maps. In our conventions, we then have
the convenient relations:

BB, — ma(Pij, Gik) = dij o bk -

M Notice that while the sum in (2.38) is formally over all closed paths of degree m — 1, not all of them
are necessarily in the superpotential since the corresponding coefficients a,, may vanish.
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2.5 Anomaly-free conditions on the quiver ranks

To conclude this section, let us state the anomaly-free condition, alluded to above, in full
generality [15]. Consider a graded quiver Q(m) (not necessarily toric), with an assignment
of ranks NN; € N to the nodes i € Q. Let us denote by N (P ( ) the number of arrows from
i to j of degree c. Then, the generalized anomaly-free condltlons for m odd are:

Nne—1
ZN (- (N((P(C)) /\/(cbgf’))):o, Vi, it me22Z+1.  (242)

c=0

Here, for each fixed 4, the sum over j is over all nodes in the quiver (including 7), and n.
was defined in (2.6). For m even, instead, we have the conditions:

ne—1

ZNZ D (V@) +N@)) =28y, Vi, if me2z. (2.43)

For m =0, 1, 2, 3, these conditions coincide with the cancellation of non-abelian anomalies
for the corresponding d = 6,4, 2,0 gauge theories with gauge group [[; U(IV;).

Using the correspondence between quiver arrows and Ext group generators, the
anomaly-free conditions have a simple expression in the B-brane language. Namely, for
a configuration of N; fractional branes of each type &;, we should impose [16]:

m+2

ZN Z 1)%dim Ext§ LEnE) =0, Vi (2.44)

This is interpreted as a “generalized tadpole cancellation condition” for a given set of
fractional branes.

In the special case of toric quivers, we always have the “regular branes” with rank
assignment N; = N, Vi. In that case, a factor of N factorizes out of the anomaly-free
condition, and (2.44) becomes a statement about the set of fractional branes. All the
examples that we will consider below satisfy those conditions with N; = N.

3 Flat space: the C™12 graded quiver

The simplest local Calabi-Yau (m + 2)-fold is flat space, C"™*2. Its toric diagram is the
minimal simplex in Z™*!, namely:

00:(07"'70)7

3.1
v1 = (1,0,0,...,0), vy =1(0,1,0,...,0), ..., vms1=(0,0,...,0,1). (31)

The toric diagrams for m < 3 are shown in figure 1. As a warm up exercise, we consider
the graded quiver associated to C™*2. We first derive it using the algebraic dimensional
reduction procedure introduced in [15]. We then verify this result by a direct B-brane
computation.
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(CQ (C3 (C4

Figure 1. Toric diagrams for C™*2 with m = 0,1, 2.

3.1 Algebraic dimensional reduction

Let us quickly review algebraic dimension reduction. This corresponds to replacing the
underlying CY singularity X,,+2 by a product space of the form:

Xm+2 — Xm+3 = Xm+2 x C . (32)
The effect on the corresponding graded quiver,
Q) — Qumy1)s (3.3)

is a generalization of the T? dimensional reduction of supersymmetric gauge theories. The
quiver diagram transforms as follows:

m m+1
node; —  node; + adjoint chiral \Ilg]) (3.4)
o) v 4 gty

where 0 < ¢ < L%J This table also applies when ¢ = j, namely when the theory we start
with contains adjoint fields. It is interesting to consider more carefully what (3.4) implies
for the undirected fields of degree % that can be present in theories with even m:

even m m+1

m m ~(mq m ~
I TR 7 AR T A (LA

e (3.5)
7t

Thus, for each conjugate pair of arrows of degree 3 in (), we get two pairs of arrows of
degree 3 in Q(p41). (For instance, for m = 0, one 6d hypermultiplet gives rise to one 4d
hypermultiplet, which is equivalent to two chiral multiplet arrows of opposite orientations.)

Let W,,) denote the original superpotential of Q(,,), and let W,,, 1) be the one for
the dimensionally reduced quiver Q(,,41). There are two types of contributions to Wy, 1:

1) Dimensional reduction of terms in W,,. Schematically, for any term in W, we
have a series of terms in Wy, of the form:

m m+1

( glathglea) gle) gl glet) —gle) | (3.6)

c1) g (c2) (cx) i1z 1213 g1 i1ig  iois i1

C;ip gy - Pisy () (e2) (et
+ + U Pk

1192 ~ 9213 T T ikl
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126

210

m = 8.

Figure 2. Quivers for C™*2. The quivers for m = 0,1,2,3 correspond to maximally supersym-
metric Yang-Mills theory in d = 6,4,2,0. The multiplicities of fields, i.e. the dimensions of the
representations for the SU(m + 2) global symmetry, are indicated on the arrows. For m even,
the multiplicity of the outmost (unoriented) line is half the dimension of the corresponding rep-
resentation. Black, red, green, blue and purple arrows represent fields of degree 0, 1, 2, 3 and 4,
respectively.

2) New terms involving adjoints. In addition, W,,;1 contains a new class of terms.
(c)
4]
potential terms in the dimensionally reduced one:

For every arrow ®;.” in the original quiver, we introduce the following pair of super-

0) () g(m—c=1) _ g (m—c=1)(c) 3 (0)
(2 e % -V \2ra Srae (3.7)

These rules fully determine the “dimensionally reduced” quiver with superpotential,
Qm+1)-
3.2 The graded quivers

Using dimensional reduction, we can construct the field content and superpotential for
C™*+? starting from C?, which has a single node with a single unoriented arrow from the
node to itself and no superpotential.
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Quiver. For every m, the quiver is given as follows:

e It consists of a single node.

e In addition, there are adjoint fields ®(¢t1) of degree 0 < ¢ < L%J Here we have
introduced a superindex notation in which ®(*) indicates an arrow with degree ¢
and transforming in the k£ index totally antisymmetric representation of the global
SU(m + 2) symmetry. This notation might seem excessive for these simple theories,
but it will turn useful for some of the computations and more general geometries to be
discussed later. Each field ®(©¢*1) thus transforms in the antisymmetric (c+ 1)-index
representation of SU(m + 2).

e For even m, the multiplicity of the unoriented degree- fields is half the dimension
of the corresponding representation. We can regard the full representation as built

out of both ®(2) and ®(2), which have the same degree.
Figure 2 shows these quivers up to m = 9.

Superpotential. Following dimensional reduction, all W terms are cubic. The superpo-
tential terms are given by cubic terms of degree m — 1 combined into SU(m + 2) invariants.
In order to write the superpotential for general m, we introduce a convention in which the
products of fields include the contraction SU(m + 2) indices and are explicitly given by

(AR glenbn)yonirames = _ 1 canami glenk) - glonka) (3.8)

- H k‘-'e 1;011“'0%1 Nk —kp+1"""Ck
g Ve

where k = ) k; is the total number of SU(m + 2) indices before contractions. Any such
term with ) k; = m + 2 is manifestly SU(m + 2) invariant. The superpotential can then
be compactly written as

W = Z HU—1:7) g (k—Lik) §(m+1—j—km+2—j—k) (3.9)
itj+k=m+2

Since we sum over terms such that ¢ + 7 + &k = m + 2, the degrees of the fields in the
superpotential terms are given by partitions (including 0) of (m — 1) into three integers.

3.3 B-model computation

We can also understand the C™*2 quiver in terms of B-branes, as in [16]. There is a single
“fractional brane” in flat space, the skyscraper sheaf over a point p, O,. Without loss of
generality, we take p to be the origin of C"*2. The Koszul resolution at point p is:

0 Qm+2 4f> Qﬂ’L+1 L . 4f> QO 474» Op —_ O, (310)

where € is the cotangent bundle of flat space, and r is the restriction map at the origin.
Lastly, f: QF — QF1 is the vector field:

f= Zz“ai’ (3.11)
L iz

acting by interior derivative, with z, the holomorphic coordinates of flat space.
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3.3.1 Quiver fields

The quiver fields can be computed as the chain maps between two copies of this resolution.
The generators ¢ of the Extl(Op, O,) group, corresponding to chirals, are elements of
CO(Hom'(0,,0,)). There are m + 2 of them, transforming in the fundamental represen-
tation of SU(m + 2). ¢* is explicitly given by the chain map

Qm+2—>Qm+1—>--~4>Ql4>QO

0 0 0
Oz Oz, Oz

Qm+2 ., Qm+1 Qm . _ QO

The vector field % again acts by interior derivative.
The generator of the other Ext groups are given by the antisymmetric composition of
these basic elements. There are (m+2) generators of Extk(Op, Op), given explicitly by:

(b,ul“'/% _ %Qﬁ‘ul o ¢/J,2 0---0 qb:U«k . (312)

If we allow 0 < k < m + 2, this contains both the generators ¢ and their Serre dual ¢. To
mimic the notation that is natural for the more complicated example of later sections, we
will write ¢Ht#k for k < mT*Q and @M1 Mk for k > mT”, including the arbitrary choice of

some pairing:
M1, 54 m+2

(o7 g (3.13)
(ma2

when m is even. In that case, the number of arrows ¢ (*37) is half the dimensions of the

m+2 -index representation, since the full representation is spanned by these arrows and their

Serre dual arrows. The Serre dual of ¢p*1## is the generator ¢Hk+1#m+2 which satisfies:
gbm"'/ﬁk o (Z_)Mk+1--~um+2 _ (Z_)u1-~um+2 . (3.14)

3.3.2 Superpotential
The superpotential can be computed straightforwardly. Since we defined higher Ext gen-
erators as compositions of Ext! generators, composing them gives:

Mg (QHLHa | gHa+1 k) = gh1 bk

m2(¢ﬂl“‘ﬂj’$ﬂj+l"‘ﬂk) = M

m2((5#1"'.“j’qgl‘j+1”'ﬂk) — a).“l’”.“k )
The definition (3.12) is valid both for the Cech cohomology classes as well as for their
explicit representatives, therefore all fs are trivially zero. Hence all higher products vanish.

Thus, all the superpotential terms present are the cubic terms we postulated before.
We can compute the coefficients straightforwardly using (3.14). They are

V(g (ma (¢, QI TIR) GIERITHI)) = € s

in agreement with (3.9).
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C2/Z, C3/2Zy CY/Z4

Figure 3. Toric diagrams for C™*2/Z,,, with m =0, 1, 2.

4 The C™*2 /7,2 orbifolds

As a first family of non-trivial CY singularities, let us consider the orbifolds C"™*2/Z,, 1,
with the cyclic group acting on flat space as:

271

2~ emilz; i=1,---,m+2, (z;) e C™H2 (4.1)

This singularity can be resolved to a local P™*!. We thus have:

Xpnio = C™2 /Ty, Xtz = Tot(O(—m — 2) — P+ (4.2)
Let us first derive the quiver by toric methods. We will then discuss B-branes on the
resolution X,,,4+2.

4.1 The toric geometries
The (m + 1)-dimensional toric diagrams for these geometries contain the following m + 3
points:
v1 = (1,0,0,...,0),
V2 = (071303'-'70)7
vo = (0,...,0), _ Umao = (—1,—1,...,—1) . (4.3)
Um+1 = (0,0,...,0,1),

The toric diagrams for the first few values of m are shown in figure 3.

4.2 The graded quivers

The quivers and superpotentials can be determined by standard orbifolding [1] of the C+2
quivers discussed above.

Quiver. Figure 4 shows these quivers up to m = 9. For each type of field, we have
indicated the corresponding SU(m + 2) representation. For even m, the multiplicities of
degree 3 fields are actually half the dimension of these representations. In summary:

15The first members of this family have already appeared in the literature. The m = 0 and 1 cases are
well known. For early references on m = 2, 3,4, see [15, 19, 20, 24].
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e The quiver contains m + 2 nodes, that we will indexed by ¢ =0,--- ,m + 1.

e The quiver consists of bifundamental fields Eiiti)l of degree 0 < ¢ < L%J, where we

have used the superindex notation introduced for C™*2. The bifundamental indices

(c)

are correlated with the degree. As in the unorbifolded case, (IJZ it

, transforms in

the antisymmetric (¢ 4 1)-index representation of SU(m + 2).

e For even m, now the multiplicity of the unoriented degree 7 fields is only equal to
the full dimension of the corresponding representation.

Superpotential. Using the convention for contracting SU(m + 2) indices introduced
n (3.8), the superpotential is given by

_ (1-19) g (k=1k)  Z(m+1—j—kim+2—j—k)
W= E : P, ] (I)i+j,i+j+kq)i+j+k,i . (4.4)
i+j+k<m+2

Below, we will perform various non-trivial checks of the proposed quiver theories.
Similar tests will be presented for all the infinite families of theories considered in this
paper. We will then independently derive these quiver theories using the B-model.

4.2.1 Generalized anomaly cancellation

Let us verify that the quivers introduced above satisfy the generalized anomaly cancellation
condition discussed in section 2.5. Let us assume that the ranks of all nodes are equal to
N. Then, for a C™*2/Z,, . orbifold, the contribution to the anomaly at any node due to
the arrows in the quiver is equal to:

- c m+ 2 _ _1\ym
aarrows—Ng(—l) (C+1>_N(1~|—( nmy, (4.5)

which is precisely the condition for cancellation of anomalies. It is straightforward to show
that the only solution to the anomaly cancellation conditions corresponds to equal ranks, as
we have assumed. The theories considered in coming sections will exhibit a richer behavior
in that respect.

4.2.2 Kontsevich bracket

Let us now compute the Kontsevich bracket {W, W} for the superpotential in (4.4) and

check that it vanishes. To do so, we need to take into account the rule for cyclic permu-
tations of arrows. Consider a cycle A(C k)B(dl) where A(-cfk) and B(d Y are monomials of
arrows. Note that the difference between the number of SU(m +2) indices and the degree

of a monomial is equal to the number of arrows in it. The commutation relation is:
Alek) gl — (_q)yed+klgldil) glcik) (4.6)

The superpotential has degree m — 1 and m + 2 indices, so any term in it can be written as
(m—1—¢;m41—c) x (¢;e+1) (m 1—¢;m+1—c) (c c+1)

Ai,j P , with A

We then have:

a quadratic monomial and P, an arrow.

(m—1—c¢m+1—c) x (c;e+1) mtl—cqx(cetl) ,(m—1—cm+1— c)
ij @ =(=1) A (4.7)
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Figure 4. Quivers for the C™*2/Z,, ;5 orbifolds. Black, red, green, blue and purple correspond
to degree 0, 1, 2, 3 and 4, respectively.
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The derivatives we need for the Kontsevich bracket are

ow i+k 5 (m+1—j—ksm+2—j—k) = (k—1;k)
W:Z(_l)]+ (Difj,ifkj e
j k<i

2,0+]
' (k—Lk)  z(m+1—j—k;m+2—j—k)
S SR G VAl ST IR o (4.8)
k<m+42—i—j
and -
_ (G—1:5) ~ (k—13k)
a&,(m-f-l—j;m-&-?—j) o Z(I)i,i—s-k (I)z‘+k;,i+j : (4.9)

i+3,i k<j
Using these results, we compute:

ow OW
wwy=2 Y § ' v (w10)
(m~+1—7;m+2—7) G—14)
4,4|7>14j<m+2 a(I)H_j,i J J 8(I)i,]i+j]

To simplify the resulting expression we use that fact that all terms in {W, W} have degree
B(m—2—c;m+1—c)¢)(c;c+1) i
i?j 1

m — 2 and m + 2 global symmetry indices. For a monomial i n
{W, W} we then have:
Bi(zlf2fc;m+17c)q)§7ci;c+1) _ (_1)m+1q)§7ci;c+1)Bg;@foc;m+lfc) . (411)

Using this rule, it is straightforward to verify that {W, W} = 0.

4.3 Moduli space

We can verify that the moduli space of the quiver indeed corresponds to C™*2/Z,, o, using
perfect matchings. Below we present the main results, namely the field content of the
perfect matchings and how they are mapped to points in the toric diagram. Such detailed
information not only confirms that the moduli space corresponds to the desired geometry,
but can also be used, for example, to identify the graded quiver counterpart of partial
resolutions. We will study examples of partial resolutions in section 5.4 and section 6.5.

Let us consider how perfect matchings give rise to the toric diagram in (4.3). It is
convenient to divide the perfect matchings according to how they transform under the
global SU(m + 2) symmetry. We consider this approach, which is primarily based on the
global symmetry, to be illuminating. It is of course also straightforward to determine the
perfect matchings by direct application of their definition and to find their positions in
the toric diagram from the intersections between their chiral fields and the boundaries of
a unit cell in the corresponding periodic quiver.

Internal point. The internal point of the toric diagram, vy = (0,...,0), is the only
one that is invariant under SU(m + 2). This implies that all perfect matchings that are
invariant under SU(m + 2) correspond to this point. We label these perfect matchings by
siy t=1,...,m+ 2. They are given by:

Perfect matching | Chirals Additional fields
= (0;1 = (m+1—k+jsm+2—k+j :
A e sy |
. 0;1 k—j—1;k—j . . . ’
si (1<i<m+1) @E_l?i ‘I>§.7kj 2 (j <iand j<k)
= (mA1—k+jsm+2—k+j c o
@l(:;b+ +7;m—+ +7) (k > j > Z)
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We have indicated the chiral field content separately, since it is what matters for the
moduli space. From the expression of the superpotential (4.4), so is evidently a perfect
matching. All the s; can be determined by the following simple rule. Given an unbarred
field q)gfckfj ~Lik=d ), it is in the perfect matching iff j < 4; otherwise, its conjugate is in the
perfect matching. It is straightforward to verify that this results in a collection of fields
which covers each term in the superpotential exactly once.

Corners. The SU(m+2) symmetry permutes the corners v, 1 = 1,...,m+2, of the toric
diagram. Thus, the perfect matching associated to any corner breaks the SU(m + 2) down
to SU(m+ 1) x U(1). In order to find the perfect matching corresponding to a corner it is
sufficient to consider how a given representation of SU(m+2) decomposes under SU(m+1).

Since this breaking corresponds to picking a particular SU(m + 2) fundamental index g,
(k—1k) (k—13k3p)
i,i+k 1,i+k

Sk of SU(m~+1). They are in the (k—1)— and k-index antisymmetric representations

this behavior is very simple: ® decomposes into two representation, ® and

of SU(m + 1), respectively. Explicitly:

(k—15k;p) _ (plck)
B w19
— LR35 [eX
((I)i,iJrk / Jvivy = ((I)i+k,k)l/1"'l/k vj # I

= (m+1—kym+2—k . . . . .
@ffg p m+2—k) decomposes into two representations and, in keeping with
(k—=Lik;p) .
itk 18

P(mA1-km+2—kyl) Under this breaking, the terms in the superpotential decompose as

Similarly,

our convention of making all quantum numbers explicit, the conjugate of ®

HU—LTm) g k—Liksl) g (m+1—j—kim+2—j—kiy)

iitj it it irkPitith,
(1—13) g (k=1k)  Z (m+1—j—km+2—j—Fk) (G=1353) & (k—13k;0) & (mA1—j—kim+2—j—k;y)
i iy ik Pig ki =+ 0. / Qi itk Pig i /
(G=L354) & (k=Likspt) & (mA1—j—kim~+2—j—k;u)

+ Qs %(I)i+j7i+/ikq)i+j+k,i

(4.14)
Hence we see that, for every u, we get a perfect matching p,, containing the following fields:

Perfect matching | Chirals | Additional fields

(0;1;) (k—1;k;1)
DPu q)i,i—&-lu q’z‘,zurk g (4.15)
50:Lu) | F(m+l-km+2—k;u)
‘I’m+1,0 (I)z'+k,i

In summary, the perfect matchings give rise to the toric diagrams in (4.3), confirming
that the moduli spaces of these quiver theories are indeed the desired C™*2/Z,, 5 orbifolds.

4.4 B-model computation

Let us now consider the B-model on the Cm+2/Zm+2 orbifold. This orbifold admits a
crepant resolution as the total space of the canonical line bundle over P™:

Xtz = Tot(O(—m — 2) — P | (4.16)
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The following set of sheaves form a strongly exceptional collection on P™*1:
[ m 4+ Dm + 1], Q" (m)[m], -+, AV, O} . (4.17)

Denoting by i the embedding i : P! — Xerg, the m + 2 fractional branes on (4.16) can
be written as:'6

(& =i.07(j l]0<j<m+1}. (4.18)

With these B-branes at hand, we are ready to determine the quiver. The map between Ext
groups and quiver fields was discussed in section 2.4. The Ext group elements correspond
to the chain maps between the Koszul resolutions of a pair of these sheaves. A sheaf of the
form i, F, with F a sheaf on P™*! has a Koszul resolution:

m—+2
L F - i F - 0, (4.19)

€

0 F(n+1)

where v, is the O(—m — 2) fiber coordinate in the chart U,. We refer to appendix A for
an explanation of our notations, and for additional background material that will be used
extensively below.

4.4.1 Quiver fields

The simplest arrows are the generators of Extl(&ﬂ,&). There generators, denoted by
qﬁz i+1, are elements of CO(Hom'(&;41,&;)) and are explicitly given by the maps:

QT n4i42) — Qi+ 1)

ot —pt
Qn+1+74) Q(4)
Here, ¢# are the global sections of Q*(—1), which are computed in appendix A — see

equation (A.31). Thus, we reproduce the chiral fields (of vanishing quiver degree) of the
quiver:
éfiJrl S Extl(giJrl, 52) —— (I)Egi)l , (4.20)
in the fundamental of SU(m + 2).
The generators of Ext” (Eivk, &) take a similar form, using the global sections given
n (A.32). The generators lie in the Cech cohomology C°(Hom* (£ 1,&;)) and can be
defined to be the antisymmetric composition of k£ generators of Eth((S’i+1, &):

g2 e _ (11 o) (k—1k)
itk ¢@ ji+1© z+1 20 0Pk 1 ik — Dk (4.21)

As expected, these arrows transform in the k-index antisymmetric representation of SU(m—+
2). The B-model computation thus reproduces exactly the arrows of the C™*2/Z,, 5 toric
quiver presented in section 4.2.

16T correctly compute the morphisms below, it is important to take into account the derived-category
shifts [j] in the definitions of the fractional branes on X,,;2. Recall that the complex £°[j] denotes the
complex £° shifted to the left by j units.
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We now compute the Serre duals of these arrows, which correspond to the conjugate
fields in the quiver. These computations are useful for determining the superpotential,
since some of the terms might involve conjugate fields. In the present case, the Serre duals
can also be computed easily starting from the generators of Ext!(&y,&pnr1). They are
qumﬂ,o € O™+ (Hom ™ (&y, Eny1)) and given by the maps:

O(m+ 2) (@)

(pll

Q" (2m +3) — Q" (m 4 1)

where the sections ¢# are given in (A.36). The Serre duals of the other arrows (4.21) can

be found by composition of these maps with ¢’ Explicitly, they are given by:

1,0+1"

TH1Hm42—k <m+1 —i— ) 1 Pmt1—i—k THm42—i—k HUm43—i—k"" " Hm+2— k]
Dithi = mr2—h)l Dit ki © Pri10 0,i (4.22)

4.4.2 Superpotential

Since we have defined higher Ext groups by composition of maps used to define Ext!
groups, the product my (itself given by composition) can be determined straightforwardly.
We find:

M1y k10 Rkl 1 k1
m2(¢i,i+j]7¢k,kt:l ) = divjik i k-t A (4.23)

Note that this relation holds not only between cohomology classes, but also between the
explicit representatives we have defined. Hence,

N AN S (4.24)
Similarly, using our definition of Serre duals, we can compute that

THL Bmt2—5 Bmt 1= Bmet24l—5\ ¢ TH1THm42—1—j
(¢i+j,i ]7¢k2+l ! ) = zk¢i+jz‘+l ’

m2(¢f;—]ﬂ], &Zﬁ}é“ummﬂ—l) = 8i it A k: CHntl4k—i (4'25)
These are the only non-zero mgy products. In addition, all the fs’s vanish, which means
that there are no higher products. The last piece of information we need, in order to write

down the superpotential, is the canonical pairing . Taking into account the SU(m + 2)
global symmetry, it is given by

(M@ T G ) = €prpin (4.26)
Combining all this, the general prescription (2.38)—(2.41) gives the quiver superpotential:

€pr -
— H1-Hm+2 M1 M1k F Hj4k417 m+2
W= Z '[k!(m + 92— j _ k:) (I)1+J+k z+kq)z+k 7 (I)z Ji+ji+k 5

(4.27)
itj+k<m+2

which is in perfect agreement with (4.4).
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5 The Y1O(P™) family

Our second family of singularities is a particular generalization of the conifold singularity
X3 = Cy. As we will see, the corresponding graded quivers share some rather interesting
properties with the celebrated Klebanov-Witten quiver that describes D3-branes at Cy [56].

5.1 The toric geometries

There exist very interesting infinite families of CY 42 singularities given by the real cone
over certain (2m + 3)-real dimensional Sasaki-Einstein manifolds, with explicitly known
metrics, known as Y4, with the integers p > 0, 0 < ¢ < p and p, ¢ mutually prime [57]:

Xpt2 = C(YP9(By,)) . (5.1)

The compact manifold Y?¢ can be understood as a certain lens space bundle over a Kahler
manifold B, of complex dimension m. Importantly, C(Y?4(B,,)) is toric if B,, is a compact
toric variety.

Here, we will focus on the simplest such example, (p, q) = (1,0) and B,;, = P, namely:

Xono = C(YHO(P™)) . (5.2)
The toric diagram of this singularity is given by:

U1:(17070>"'70)7

v = (0,1,0,...,0),
w=1(0,...,0, ( ) vmgs = (1,1, ,1,1) . (5.3)

Um—+1 :(0,0,...,O,l),

These geometries possess an SU(m + 1) isometry, which acts on the toric diagram by
permuting the points vy,...,vy,41. We then have an SU(m + 1) global symmetry in the
corresponding graded quivers.

Note that the points vg,...,vy,e1 in (5.3) give rise to the toric diagram for C™*2,
which is then augmented by a single additional point v, 2. It is hence possible to connect
the quivers in this family to the “flat-space” quivers for C"™*2. In section 5.4 below, we
will study this connection in detail.

The singularity (5.2) has a single Kéhler parameter, corresponding to a small resolution
by a P

Xtz = Tot(O(—m) & O(—1) — P™) . (5.4)

We will use this resolution (5.4) to study B-branes in section 5.6.

5.2 The graded quivers

Unlike C™*2 and the C"™*2/Z,,, 1.2 orbifolds discussed in section 3 and section 4, determining
the Y19(P™) quivers requires a more sophisticated approach than dimensional reduction
and orbifolding. Instead, it is possible to derive these quivers combining a generalization of
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3d printing partial
resolution

CYYOPY) = ¢y H, C(YHO(P?)

Figure 5. Generation of the toric diagram for C(Y1?(IP?)). Starting from the conifold, two points
of the toric diagram are lifted by 3d printing. Finally, another point is removed by partial resolution.

3d printing [25] to CY,,42’s with arbitrary m [58], followed by partial resolution — that is,
higgsing in the quiver. Our focus is on the quiver theories in this family and their physics.
See [25] for a detailed presentation of 3d printing.

First of all, from the normalized volume of the toric diagram, we know that the
YL1O(P™) quiver has m + 1 nodes.!'” In addition, the quivers have an SU(m + 1) global
Symmetry.

The entire family admits an interesting recursive construction. C(Y19(P™*+1)) can be
obtained by starting from C(Y1?(P™)) and performing 3d printing to produce images of
two of the points in the toric diagram, as follows:

0,...,0) — (0,...,0,0)+(0,...,0,1) 5.5)
= (1,...,1,00+(1,...,1,1)

where the vectors in the first column are (m + 1)-dimensional, while the ones in the second
column are (m + 2)-dimensional. Next, removing the point (1,...,1,0) via partial resolu-
tion, produces the toric diagram for C(Y 10(P+1)). The field theory counterparts of these
operations generates the Y1.9(P™+1) quivers starting from Y19(P™). The initial step is
Y19(P™), which has m + 1 nodes. The 3d printing lift of two points in the toric diagram
generates a quiver with 2m+2 nodes. The final partial resolution corresponds to a higgsing
with non-zero VEVs for m bifundamental chiral fields, which reduces the number of quiver
nodes to m+2 and produces the Y 0(P"*+1) quiver. Figure 5 illustrates this process at the
level of the geometry for the Y1O(P!) — Y19(P2) transition. In this case, the intermediate
step corresponds to the so-called Hy theory, which was studied in [25, 59].

We can use the previous method to generate the first members of this family, up to
m = 4. This information, combined with the SU(m + 1) global symmetry and a few other
consistency conditions (that we discuss below) is sufficient to identify the Y'1.9(P™) quivers
for arbitrary m. In the following, we first present the result of the procedure we just
outlined, and we then explicitly verify that these quiver theories have the correct geometry
as their moduli space.

YTt is also easily understood from the B-model on (5.4), since x(P™) = m + 1.
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Quiver. Let uslabel the m+1 nodes with an index ¢ = 0, ..., m. The quiver contains the
following arrows, which transform in representations of the global SU(m + 1) symmetry:

Xm,o: m—— 0,
0)
Xi1a i+1(0;)>i, 0<i<m-—1,
(k—1;k) (—1)_+ Tk, 0<i< 11<k< '
itk 7 ) 7 <i<m-11<k<m-—1i,
p(kFTkt1) () Tk L <i<mo10<k<m—3 (5.6)
AN : Z*—W i ) <1< m ;0<k<m—u, .

The subscripts, which should be taken mod(m + 1), indicate the nodes connected by the
arrows, which are bifundamental or adjoint depending on whether the two indices are
different or the same. X, and X;;1; are chirals (i.e., of quiver degree 0). They are
also singlets under the SU(m + 1) global symmetry. For the rest of the arrows, we use
a notation with two superindices similar to the one of section 3.2 and section 4.2. The
first integer is the degree of the field. All of these arrows transform in the j-index totally
antisymmetric representation of SU(m+1). The second integer in the superscript is this j.
In (5.6), the numbers over the arrows indicate the dimension of the corresponding SU(m+1)
representations, and the numbers below are the degrees. Finally, in (5.6) we have allowed
degrees to go over n, — 1 = L%J, since this permits a more compact presentation of the
field content. It is straightforward to restrict to fields with degree ¢ < n.—1 by conjugating
arrows whenever necessary.

We introduce the following notation for conjugate fields, which makes all their quantum

numbers explicit:

~ k—1;k m+1—km+1—k
(Xm70) = Xom (Az(,i—i—k )> - Az(-i-k'z ) )
R (5.7)
~ k+1;k+1 m—1—k;m—k
(Xit1,0) = Xii+1, (F,(,ik " )) = Fz(-l-kz .

The bifundamental indices are simply flipped. The degree ¢ transforms as ¢ — m —
c. Finally the number j of SU(m + 1) fundamental indices in the totally antisymmetric
representation goes to m + 1 — j. Note that the representations with j and m + 1 — j have
the same dimension and are conjugate to each other, as expected.

Figure 6 shows the quivers for 1 < m < 6. In this figure we adopted the convention
in which the degrees of the fields, ¢, are restricted to the range ¢ < L%J, as explained in
section 2. For those fields in (5.6) with ¢ > L%J, we consider their conjugates. Nodes 0
and m are identical, up to conjugation of all the fields in the quiver. The rest of the nodes,
1 to m — 1, are all equivalent.

Let us consider the behavior of these quivers under mutations, which are reviewed in
appendix B. Interestingly, node 0 is the only toric node of the quiver for m > 1. By this,
we mean that it is the only node with two incoming chiral arrows, which results in a toric
phase when mutated. Similarly, node 1 is an inverse toric node, i.e. we obtain a toric
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Figure 6. Quivers for Y10(P™) with 1 < m < 6. Black, red, green and blue arrows represent
fields of degree 0, 1, 2 and 3, respectively.

phase when acting on it with the inverse mutation. We plan to carry out a more detailed
investigation of the mutations of these quivers in future work.

For m =1 we have the conifold quiver. In this case, the naive SU(2) global symmetry
is enhanced to SU(2) x SU(2), with the two chiral fields that go from node 1 to node 0
combining to form a doublet of the new SU(2). The m = 2 quiver (with its superpotential)
first appeared in the mathematical literature in [33]; see also [18].

Superpotential. Let us now consider the superpotential of this family of graded quivers.
To determine it, we will again be guided by the global SU(m + 1) symmetry. As in (3.8),
we define a product of arrows in which the SU(m + 1) indices are contracted:

(Agcukl) . Agcn;kn))akJrl"'o‘erl — 1 €1 Qmp1 A(Cl;kl) . A(Cn;kn) (5.8)

- H kz' Lioi-ag, N0 — kg +1"" Ok )
7
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where k = ) . k; and the a,,’s are fundamental SU(m + 1) indices. With this convention,
any such term with a total of m+1 indices is an SU(m~+1) invariant. All the superpotential
terms we will write have this property.

The superpotential consists of cubic terms W3 and quartic terms Wy. The cubic terms

are:
m 1—1
k—1;m—k) 5 (kik+1
:Zzsl i, k)X i 1F§m11 1 TIZ )Az(—l—k:,)i
=2 k=0
e (k—1k) o )
. k—1;k m—k;m+1—k
+Z s(t, k) X1 A2 ;7 1+k1—‘i71+kz,i
i=2 k=1
m—1i—1 m—1—1 (k1K) = ( VK k1)
.. 1; m—j—1lm—j)(j—k+1,j—k+1
+ 33(Zajak)Az ki F“ i Fz —j,i—k
i=1 k=1 j=k
m—11—1 m—i—1 ( - - )
. k—1;k) ~(j+1;5+1) m(m—j—k—1;m—j—k
+ 84(Z .77k)Az k,i Pz R Fi—l—j,i—k
i=1 k=1 ;=0
Sisle (k=15k) ) (—1:7) £ ( k: 5
1; J=13) § (m+1—j—km+1—j—
+Z s5(1, J, k)A; - i A”ﬂ AZ+J,1 o , (5.9)
=1 k=1 j=1
while the quartic terms are:
m
—k,m—k+1 k—1;k
236 Xk,k—ﬂ\;(:_qlmm )XmOA(()k )
=1
m—1m—1—k W N ( )
. J+1,_7+1 m—k—j—1im—k—j k 1;k
+ )Y s R TN Xmohe (5.10)
k=1 j=0
where s7,- -, s7 are signs, which we will fix momentarily by requiring that the Kontsevich

bracket {WW, W} vanishes. Note that, for m = 1, the only non-trivial term in W is the first

line of Wy, giving us W = X 10A§)1 )X 10A(0 D which reproduces the well-known quadratic

superpotential of the conifold quiver.

5.2.1 Generalized anomaly cancellation

Let us start by assuming that the ranks of all the nodes are equal to N and check that,
in this case, the quivers we propose satisfy the generalized anomaly-free conditions. We
normalize all the anomalies by N. For node 0 the contribution of the arrows to the anomaly
is given by:

m+1
aQ,arrows = (— m2 + Z < >

=(-1)"2+ [1 + (=1)™ ]
=1+ (-1)™ (5.11)
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Due to the aforementioned symmetry between nodes 0 and 1, the anomaly for node 1
follows a very similar computation. For nodes 2 to m the contributions to the anomaly of
fields of different degrees are as follows:

Xit1i, Xic1i @ 14+ (=)™

ARED e L (R () = (<1 (1) (T)
AET;il—k;m-&-l—k) . le—li(_l)k—&-l (m}:—l) —1_ (_1)m—i (mwiz) (5.12)

S(m—k—1;m—k —i— —i
FETM LRI B HEDR () =~ (i)

—(=1)™ = (=" (7)

(k+1;k+1) . i—1 1—k (m+1
Fi—k,i : 2:0(—1)m+ (TIZ-H)

Summing these contributions, at node ¢ we have
Qi arrows — 1+ (_1)m . (513)
We conclude that the anomaly cancellation condition is satisfied for all nodes in the quiver.

Anomaly-free fractional branes. Interestingly, there are more general solutions to the
rank assignments that satisfy the anomaly cancellation conditions. A thorough study of
this issue is beyond the scope of this paper, and it will be investigated elsewhere. Here,
we just quote the result and consider some of its implications. The space of anomaly-free
rank assignments for Y'1:0(P™) is 2-dimensional and can be parametrized as follows:

(Nos-..,Np) = N(1,...,1) + M(0,1,2,...,m) , (5.14)

with N and M integers. Borrowing the nomenclature from m < 3, we will say that the
(1,...,1) vector corresponds to regular branes, while more general ranks correspond to the
inclusion of (anomaly-free) fractional branes.'® Interestingly, all members of the Y'1.0(P™)
admit a single type of anomaly-free fractional brane. This behavior generalizes the well-
known example of Y1.9(P1), i.e. the conifold. It is also reminiscent of what happens for the
infinite family of Y?? theories in 4d [10], all of which have a single type of anomaly-free
fractional brane.

5.2.2 Kontsevich bracket

With the convention introduced in the previous section, we can write any SU(m+1) invari-
(m—1—c;m+1—k) 1, (c;k) . (m—1—c;m+1—k)

i S, with A;

and \Ilgczk) an individual SU(m + 1) multiplet of arrows. We then have

ant term in the superpotential as A a monomial

0 ( E?—lfc;m+1fk)\ll§7c£k)):14

(m—1—c¢;m+1—k)
i . (5.15)
Jii

7:7‘7‘

8This is a standard nomenclature. While it is closely related to our other use of the term fractional
brane, which is a bound state of wrapped branes associated to a single node in the quiver, we are confident
that the distinction between the two meanings will be clear from the context.
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As in (4.6), for a cycle AEZ’“)B(d;l)

. ik d;l .
i with (C]? ) and B](- ; ) monomial of arrows, the commuta-

7:7
tion relation is
(ck) p(dil) _ d+kl p(d;l) 4(cd)
AV B = (m1) B AT (5.16)

Since every term in the superpotential has degree m —1 and a total of m+1 SU(m+1)
indices, for the superpotential term we wrote above this commutation relation simplifies to

AU = (—mlerplat) 4, (5.17)

The various derivatives we need are given by

19144 km— .
_ = 50’i56(k5)Xk7k_1Am k,m k+1Xm70 + 5i+k,m56(z + 1)Xm,OAE)i%21Xi+1,k

(k—1;k) k—1,m
N i
m—1—k
. i 141) f m—k—j—lim—k—j
+o0s > se(G KDY TAR R kX
=0
i
- )i
+ bitkm > s7li —],])Xm,oA(()],j ])ng' o)
=1
. . ~(m—k; 1-k
+s1(i + k,i — 1)Xi+k,z-+k71F§Tk_1’f+ )
. —(m—kym+1—k
+ (—=1)"s2(i — 1, k)Fng’iiTJr )Xi—l,i
itk—1 . .
s i Lme ) Gk L=k
+ (=™ Z 53(7’+k7j’k)rgfk,i]+k—n; ])ngk—j,ij :
=k
m—i—1
L ikt 1j— k1) (m—j—1;m—j
+ (=" sa(i+J,j — k’k)rz(ik,iﬂ‘] )FETj,z‘J )
=k
sy k k
. . i k—1;j—k) 7 (m+1—jmt1—j
+ (=" s5(i+k,j _kvk)Az(ik,i—i—j] )AETj,i Jm=d)
j=k+1
" ( ) A G—h=13j—k)
. . A (m+1—jgim+1—j) y (—k—1;—
+ Z 55(6 ky J = R)A il Ak ,
j=k+1
oW = ( ) A (k k )
. . . .. Jj—1;5—1 —j—L1Lk—j—-1
AR ss(i+ 7ok = 5 DA Ak )
i+k,i Jj=1
191%% ) Eskt1 ) kik+1
ey ooy pre s S (=1)"s1(i+k+1, k)Av(L,i+k+)1Xi+k+1’i+k + s2(i, k — 1)Xi7i—1Az(—1,i+;c
2] B
k-1 . .
: (1,5 +1) § (h—j—13k—j
+ 3 ssli+ ko b,k — DI AR TR
=0
- ( Ik k )
S o G=13f) (k=g Lk—j 41
+ 254(Z +2,0— ka])Ai77L+j Fz’+j,i+k )
j=1
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N (J—k—1;j—k)n(m—j—1;m—j)
ar(k—H k1) E Css(i4 40,0 — RN T
Jj=1

i,i+k
m—1—1
m m 1;m— k—1;j—k
Z sa(is k, j — )Fz(+k%7+k: —j ])Ag—k i )
J=0
+ (=17 (k, )AL TR X AT (5.18)

Since every term in the expansion of {W, W} has degree (m — 2), the commutation rule for
terms in this expansion is

A0l = (—ymrateg (o) 4, o (5.19)
To determine sq,---,s7 we first note that many of them can be made trivial by field

redefinitions. We can fix sg(k) = 1 by redefining X 1 — £Xj ;1 and fix s7(j, k) =
1 by redefining I'; j4,, — £ ;4. Lastly si(i,k) can be chosen to be 1 by redefining
Ay — £A; i1k After eliminating these we find that Kontsevich bracket is satisfied for
the following choice of signs:

so(iy k) = (=1)FH,
s3(i,j k) = (=1)"*1, (5.20)
sa(i, j, k) = (=1)™,
ss(i, j, k) = (—=1)7F"

5.3 Moduli space

Now, we verify that the proposed graded quivers give rise to the desired moduli spaces
using perfect matchings. We will leave a detailed exposition to [39] and just present the
main results here. First we consider the two points which are invariant under the SU(m+1)
global symmetry. The field content of the corresponding perfect matchings must involve
complete representations of SU(m + 1). They are given by:

Point | Chirals | Additional fields

1 (m+1—k;m+1—k)
Ai-l—k,i

=(m—k—1;m—k

iy ) (5.21)

1 (m+1—k;m+1—k)
Xiv1, Az‘+k,z‘
(k+13k+1)
Fz‘,i—i—k

O Xm0

Um+2

Next, let us consider the perfect matchings for v,, 4 = 1,...,m + 1. As explained
in section 5.1, these points are permuted by the SU(m + 1) symmetry. Picking one of
them breaks SU(m + 1) — SU(m) x U(1). Under this breaking, a k-index antisymmetric
representation W(©¥) of SU(m + 1) decomposes into two representations of SU(m), which
we will denote W(©ki1) and WGk Both of them are also antisymmetric and carry k — 1
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C(YHOPY) = G C(YO(P?)

c? c

Figure 7. C(Y19(P™)) — C™*2 partial resolution for m = 1, 2.

and k SU(m) indices, respectively. Explicitly:

i = i,
L R .

Note that the conjugate of W(Gk#) jg §lm—cmtl=ky) and vice versa. The perfect matchings
for vy, p=1...m+ 1, are given by:

Point Chirals Additional fields
Vo =1+ 1] A (AR ikt (5.23)
plm—k—lim—ku) —p(k+1k+1u)
itk,i v L itk

5.4 Partial resolution C(Y10(P™)) — C™+2

Let us now consider yet another check of the proposed quiver theories. Removing the point
Um+2 1n the toric diagram corresponds to the partial resolution:

c(yopm)) — cmt? . (5.24)

Figure 7 illustrates this resolution for m = 1,2. This implies that the graded quivers
associated to these geometries should be connected by higgsing, as we now explain.

Let us determine that chiral fields that acquire a non-zero VEV in the corresponding
higgsing. Denoting P,,+2 the chiral field content of the perfect matching associated to the
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removed point v,,2, from (5.21) we have:
Pryo={Xit15,1 <i<m} . (5.25)

From (5.21) and (5.23), we see that these chiral fields only appear in this perfect matching.
This implies that given VEVs to all the chiral fields in (5.25) produces the desired partial
resolution.

We now consider how this higgsing gives rise to the quivers for C"™*2, which were
introduced in section 3.2. First, the VEVs for the m bifundamental chiral fields in (5.25)
higgs the m + 1 nodes in the quiver for C(Y1°(P™)) down to a single node, as expected.

Since the isometries of C(Y19(P™)) and C™*2 are SU(m + 1) and SU(m + 2), re-
spectively, the global symmetry of the quiver theory must be enhanced from SU(m + 1)
to SU(m + 2) by the higgsing. We note that all the chiral fields in (5.25) are singlets
of SU(m + 1), which implies that the global symmetry would, at the very least, remain
unbroken.

It is instructive to consider how the remaining fields form SU(m + 2) representations.
It is straightforward, albeit tedious, to verify that the massless matter fields that survive
the higgsing are all the arrows that were initially charged under node 0, except for Xq .

They are
Xm,() : 1 # 0
AR e ()
m+1—k,0 * — 0 1<k<m (5.26)

(k)
We thus have a multiplet of degree k in the k-index totally antisymmetric representation
of SU(m + 1) for every k = 0,...,m. The multiplet of degree k and the conjugate of the
multiplet of degree m — k combine to form a degree k field in the (k + 1)-index totally
antisymmetric representation of SU(m + 2) for k = 0,... %.19 This is precisely the field
content for C™*2, as discussed in section 3.2.

5.5 A simple duality cascade

A beautiful property of the Y'1:%(P™) theories is that they have a single toric phase and
that they enjoy a remarkably simple duality cascade, generalizing the well-known cascade
for the conifold [60]. There is a single toric node, i.e. a node with two incoming chiral
fields, which is node 0. Similarly, node m is a toric node under inverse duality. A duality
on node 0 results in the same theory, up to a cyclic permutation of the node labels. We
will now explain how this comes about.

Let us first consider the “flavors”, namely the arrows charged under node 0. Upon
mutating node 0, they transform as follows

Xm70 — XO,m

XI,O — XUJ (5.27)
7 (k3k) i (k—1:k)
Aerlfk:,O Am+1fk,0
19When m is even, the field of degree k = % coincides with the one of degree m — k. We thus obtain

only half a multiplet for £ = 7, or the full multiplet by combining it with its conjugate.
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We will use a tilde to indicate the arrows of the mutated quiver. The fields on the right
hand side of the last two rows reproduce the fields charged under node m of the original
theory if we relabel nodes as ¢ — ¢ — 1 mod (m +1). This is the first indication that effect
of the mutation is a cyclic permutation of nodes.

Next, let us consider the mesons generated by the mutation. There are two sets of
them, coming from compositions with either X, g or X 9. They are given by

(k—1;k) = (k—1;k)
(k;k+1) S(ksk+1) :
Xm,O Ao,k+1 5 Fm,k+1

All the arrows in the first set becomes massive while Iiggi)

also gets a mass. The relevant
mass terms in the mutated superpotential and the terms in the original superpotential that

give rise to them are:

Term in the original superpotential Mass Term
X10AS 5™ X 0 AT A (5.29)
(k—1;k) =~ (k—1;k) T (m—k;m+1—k)7(k—1:k)
XLOAo,k Fk,l ‘1117,712 " Fk,l

After integrating out the massive fields, the ones that remain and are charged under node
1 are Xo1, Xo1 and Agkk_ Lik), They correspond exactly to the set of arrows at toric node
(k—1:k)

0 in the original theory. The mesons lz“m;j_]f for k #£ m — 1 remain massless and are what
is required to turn node m of the mutated quiver into node m — 1 of the original one.

Both the degree and representation under SU(m + 1) global symmetry of the arrows
not charged under nodes 0, 1 or m depend uniformly on the distance between the two
nodes the arrow connects. None of these arrows are affected by mutation and relabeling
1 — 1 — 1 preserves distances.

In summary, dualizing node 0, we obtain the original quiver, up to an ¢ — 7 — 1
cyclic relabeling of the nodes. When the nodes are cyclically ordered as in the examples
in figure 6, the net effect of the mutation is a clockwise rotation of the quiver. While we
have focused on the quiver, it is straightforward to verify that we also obtain the original
superpotential.

After performing m + 1 consecutive dualizations on the toric node at each step, we
return to the initial quiver. This sequence of mutations therefore generalizes the notion of
duality cascade to m-graded quivers.

Figure 8 shows the transformation of the quiver for m = 4. The intermediate step
includes the massive fields, which are represented by dashed arrows. Figure 9 shows a
period in the cascade for m = 4. We have included the ranks of the gauge groups associated
to the nodes, in the presence of fractional branes, to follow their evolution. Interestingly,
as it occurs in the well-known conifold cascade, the number of regular branes increases by
1 with every dualization while the number of fractional branes remains fixed. A full period
hence returns to the original quiver with the regular branes increased by (m + 1)M. For
m = 1, duality cascades admit a renormalization group interpretation. In that context,
our choice of dualities corresponds to flowing towards the UV. The flow towards the IR,
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Figure 8. a) Quiver diagram for Y °(P%). b) Result of the mutation on node 0. Massive fields
are represented by dashed arrows. c¢) After integrating out massive fields, we obtain the original
quiver, up to an i — i — 1 cyclic relabeling of the nodes. This translates into a clockwise rotation
of the quiver.

and the consequent decrease in the number of regular branes, is instead obtained by acting
with inverse duality on the node that is toric under it.

5.6 B-model computation

The B-model calculation of the graded quivers with superpotentials for the Y10 (IP™) family
is similar to the one in section 4.4, with the notation of appendix A. The resolved local
Calabi-Yau for this family is:

X2 = Tot(O(—m) ® O(=1) — P™) . (5.30)

Fractional branes are constructed from the exceptional collection on P, given by (4.17)
(with m + 1 replaced by m), by using the embedding i : P™ — X,,,12. They are:

{& =i X (]| 0<j<m}. (5.31)

To compute the generators of the Ext groups, we need the Koszul resolution for the frac-
tional branes. It is given by:

(_uueu)
m
’Uﬂeﬂ
B —

Here, v, is the coordinate of O(—m) fiber and u, is the coordinate of O(—1) fiber.

m
(v“eu u“eu)
~ @@ 4

0— F(m+1) F(m)® F(1) F —— i F .

5.6.1 Quiver

The Ext group generators for these fractional branes naturally split into three groups and
an additional generator, in obvious correspondence with the field content independently
derived in (5.6).
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N +7M

Figure 9. A period in the duality cascade for Y19(P*), starting with N regular and M fractional
branes. After each dualization, M remains fixed and N — N + M.

First group. The first group has a description very similar to the generators in the case
of C"™*2 /7 1o. They can be written as the antisymmetric composition of certain basic
Ext! generators. These are

Hip2 Pk o (}O(Homk(&%?&)) ’

ijitk
1

pipzpy -y m 2 Y

pitk T g it © Aif1i42 0 O N otk (5.32)

A transform in the k-index antisymmetric representation of SU(m + 1). The basic

generators AL, 41> Which transform in the fundamental representation of the global SU(m +
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1) symmetry, are given by the chain map

QM m+i+2) — QM m+i+1)eQ (i +2) — QTG+ 1)

—pH 0
p* ( 0 ) o

—¢

Q' (m+i+1) Qi (m+14) ©Q (i + 1) Q' (4)

Again, p* are the global sections of Q*(—1) from (A.31). The Serre duals of these generators
are determined along the familiar lines. They are

5\”17#27"'7Nm+1—k e ém(HOmQ_k(gi+k,gi>) ,

i+k,i
7 — 171
NHUL 25 s b1 —k (m ? k)'l' [/‘1#2"'ﬂm7i7k I Mmt1—i—k ,u"m+27i7k”';um+1fk}
Aith,i T mr k) itkm o Ao SRy . (5.33)

With X%:b“’i”“ given by the chain map

Om+1) — O(m)aeO(1) —— O
-
Q"2m+1) — Q"2m) e Q" (m+ 1) — Q"™ (m)

Second group. The second group corresponds to the generators of C'! (Homo(&, Eit1)).
There is a set of generators ;11 ;. They are singlets under SU(m + 1) defined by the chain
maps

Q' (m +i) © Qi+ 1) — Q(3)

()

QL4 1)

Q' m+i+1)
(2)

QM m+i+2) — QM m+i+1) QT (i +2)

where 2 € C'1(Q). This means that locally for each U, NU, there is one form x,, and this
collection satisfies that for any p, v and p

/ / r
Ty +x,, +2,, =0 (5.34)

Using (A.28), it can be verified that an explicit representative of this cohomology class is
=1
Ty = W, dwy; ,
x;j = wi_’ildwiyi — wj_,jldwm . (5.35)
Third group. With this in hand, the third set of Ext generators is

75;¢]§;Mk+1 c C’l(Homk+1(5i+k,Ei)) ’

pipepeer [ 2 g1
Viitk =Tii—10A ik - (5.36)
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Motivated by the computation of A presented above, in order to calculate the Serre duals
of these arrows we start with the generators of Ext?(€1,&,_1). These generators are
Vi1 € C™=1(Hom3 ™ (€1, Em—1)) and are described by the chain map

Q(m +2) Q(m +1) @ Q(2) — Q(1)

() (7)

Q™1 (2m) — Q™1 2m - 1) e Q" (m) — Q" (m — 1)

where 7% is an element of C™~1(Q™ 2 ® O(—2)). Let us consider that 7 is given by the
ansatz

= (om0 — ¢ orodH) | (5.37)

We observe that 7 € C™~1(Q™ 2 @ O(-2)) iff K € C™1(Q™). Such a & corresponds to
a local section of 2 for every collection of m patches satisfying that for N,U,

> (—1)r =0, (5.38)
“w
where x; corresponds to collection with every patch except U,. An explicit representative
is

- R 4
Ky = wo,i \j wo jdwo,j

— b= A o T 0
Ky = Z(—l) w;; Njw;ydw; ;. (5.39)
i

3471 1 allows us to determine the duals for all v/ ;{7 "**'. These are

—H1,12, s b —k “ym—1 1-k

Vithi Fe O™ (Hom M (Euk, &)

— 1025 s hm—k . [lt1M2"'Mm—i—k—1 —Hm—i—kHm+1—i—k Mm+2—i—k"'ltm—k}

Vitkyi = c(i, k))‘zurk,mq ©Vm—1,1 oA : (5.40)
Where:

2m—i—k—1)1(i —1)!
(m —k)!

c(i, k) = (5.41)
is just a conventional combinatorial factor.

A lone generator. In addition to these three groups, there is another generator z,, o.
It consists of the following map in C™(Hom!~™(&,,, &))):

O(m +1) O(m) & O(1) — O(1)

() ()
Q"2m+1) — Q"(2m) @ Q" (m + 1) —— Q"(m)

Proceeding along lines similar to the ones that result in (A.36), we see that an explicit

representative for I is:
In summary, the x, A and ~ generators correspond precisely to the X, A and I' fields
in (5.6). We have thus recovered the quivers for the entire Y'1:?(P™) from the B-model.
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5.6.2 Superpotential

Cubic terms. Since we have defined Ext generators as composition of simpler ones, it is
straightforward to determine most of the msg products. For these pairs of generators, the

f2 vanish. We will mention a few of them here:
Hp2e iy Y Mk+1H2 Pkl ¢ VML el
ma(Nihk A ) = OitkgNijrhil

BUfEY 5. MR
m2(33m,i—17)\j,j+k ) = 5@—Lﬂi,i+k—1 ’

H1Hk+1 yHE+2  Hk4141Y __ ¢, AL H 441
m2(%’,¢+k 7)‘j,j+l )_62+k,fyi,z'+k+l : (5.43)

Evaluation of ma (A ,}_’F}f’“,xjvj_l) is slightly more involved. We begin by pointing out a

commutation relation:
oz’ + 1’ ot = st | (5.44)

where the sheaf 7# is defined to be the element of C°(O(—1)) such that:
(), = e, . (5.45)
At the level of Ext generators, this commutation relation gives rise to the relation:
)‘Ziﬂ O Xit1,i = 57% + Xii-10 )\f,l’l-, , (5.46)

where 7 is defined by the chain map:

Q' (m+i) @ Qi + 1) — Q(4)

()

Q'(i)

Q(m+i+1)
(%)

Qm+i+1) — Qm+i)@Q(i+1)

The first term in (5.46) is exact in Cech cohomology and contributes to fo while the second
term is another generator and hence corresponds to mo.
Composing the above relation with more A’s give us:

1
O X4 i+k—1 = Tiji—1© )\/J’l bk + 75(71’1[';1 o )\Zf+:f]1) . (547)

O\ H 4
i—1,i+k—1 (]{ _ 1)|

i,i+k

The right hand side is again in a form that allows us to read off mo and fo. We obtain:

Ma(N " Tithivk—1) = Vi ary s
1 [w p2- pag]
Fa(NG 8" Tiih—1) = _m”ml © Niitho1 - (5.48)

Using v’s definition composition in (5.36) and composing (5.47) with A*’s on the right

results in:
M1l MR M1y M R4
m2()‘i,¢+k 2 Vitkitk+j ) = ii+k-+j ’
H1cpg | PR HEGGHLY (11 p2e k]
POk Yigkirkrs )= (kg ) od O itk (5-49)

This completes the reproduction of the cubic terms for this family, which were previously
given in (5.9).
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Quartic terms.
These result from the composition of z,, o with A ;. We start with:

[T
Lm0 © X1 = 0000 5

where o* is defined by the chain map:

Q(m + 2)
(%)

Qm"2m+1) — Q"(2m)® Q" (m + 1)

Qm+1) ®Q2) — Q1)

(2)

Q™ (m)

& is an element of C™~H(Q™~!) given by:

0
(0%)y =0,

)
(0°); = Nigjwg; dwo; @ €q
)

i

e S ¢ )
0')g = Wo; Nji W, dwoj ® eg ,

=)

(
( %

g

>

- =0 .
Composing N3 "* with (5.50) and doing a bit of algebra gives:

ma(Zm.0, Aok) =0,

1
Jo(Tm,0, Aok) = _H%% o )‘lluk il

Combining this with the earlier results for f; in (5.48) we can compute that:

Tm,0 © f2()\g71k;“uk,$k,k—1) — fo(Xm0, )\g}k'"”’“) O Tk k-1

- k—1
_ M1 (11 @ w3
= )‘ml,k—lf + Kl 5(7m,1 © 7r1,21 © >‘1,k—1k ) -
Using this, we conclude that:
ma(Tm,0, A, " k1) = AL

Similarly combining (5.50) and (5.49) results in:

M pg o PR By YL ke 1
m3(Xm,07 )‘O,k » Vi ot )= )‘m,lﬁ-j :

This gives us all the quartic terms in the superpotential.

To compute the quartic terms we need another set of non-vanishing fs.

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

At this point we note that

although f3 is nontrivial, using consideration of global symmetry and the degree constraint

mentioned earlier it can be shown that it cannot result in any additional terms in the

superpotential. Hence the quartic terms agree with the ones we wrote for graded quiver.
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Absence of higher order terms. In principle, we should continue the computations
to determine whether the superpotential contains higher order terms. These terms would
correspond to gauge invariants of order m — 1. It is a relatively straightforward exercise to
verify that the SU(m + 1) x U(1)™*! global symmetry, whose existence follows from the
underlying CY geometry and which is already fixed by the previously computed cubic and
quartic terms in the superpotential, rules out any higher order term.

Summarizing the results in this section, we have recovered the superpotential for the
entire Y1O(P™) family, which was given in (5.9) and (5.10).

6 The F{™ family

Our last class of examples is a family of geometries that we denote Fém), which correspond

to the affine cones over the (P!)™*!, a direct product of m + 1 P!’s.

6.1 The toric geometries

The toric diagram for Egm) is the (m + 1)-dimensional polytope consisting of the following
points.
(0,...,0)

(11,0,'...,0) 6.1)

(0,...,0,+1)

m+1 jsometry, which translates into a global symmetry

These geometries have an SU(2)
of the corresponding quiver theories. The Newton polynomials contain 2m 4+ 3 terms, of
which m + 2 can be scaled to 1. The remaining m + 1 coefficients encode the sizes of the
P'’s. The behavior of the mirror geometry as a function of these coefficients was studied
in detail for m = 1,2 in [37].

This family contains and naturally generalizes some interesting geometries. In partic-
ular, its first members are:

F =C?/z,),
F" =y, (6.2)
F() = C@Q"/22),

whose toric diagrams are shown in figure 10.

This is an extremely interesting family of geometries because, contrary to the previous
classes of theories, for m > 0 they give rise to multiple toric phases related by the corre-
sponding order m+1 dualities. The m = 1 [8] and 2 [22, 25, 37] cases have been extensively

studied in the literature. In particular, IF(()l) has 2 toric phases and Féz) has 14 toric phases.

6.2 The graded quivers

A simple way of constructing a toric phase for each of these geometries is by iterative
orbifold reduction [23]. The quiver for Fém) has 2™*! nodes. This is also clear from the
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FO = /2, RV =F Y = Q" 7,

Figure 10. Toric diagrams for Fém) with m = 0,1, 2.

toric diagram, which doubles its normalized volume every time m is increased by 1, as well
as from the fact that x((P!)™*1) = 2mT1. For later use, it is convenient to label the nodes

using (m + 1)-dimensional vectors with 0 or 1 entries, i.e. in binary.

Quiver. The quiver is constructed as follows. Consider two nodes a and g labeled by

vectors @ and 5 Let us define

m+1

dog = D (Bi — ) - (6:3)

i=1
Then:

e There is an arrow from o to 8 iff dog > 0, ie. iff §; > o; for all 1 <¢ < m + 1.

e The degree of the arrow is
c=dog—1. (6.4)

e The multiplicity of the arrow is 2¢t1. More specifically, the arrow represents 2¢+!
fields that transform in the

2070 x 22T QPO (6.5)

representation of the SU(2)"*! global symmetry, where the subindices run over the
different SU(2) factors.

As usual, we can restrict to fields with ¢ < 3 by conjugating the arrows with ¢ > 7.

Superpotential. As for the C"*2/Z,, o family, it is possible to show the construction of
these models via iterative orbifold reduction implies that all the terms in the superpotential
are cubic. The superpotential terms are given by cubic terms of degree m — 1 combined
into SU(2)™*! invariants. Once again, it is possible to show that terms for all possible
integer partitions of m — 1 into three integers are present. In fact we can regard the purely
cubic superpotential as the characteristic property of the specific toric phases of [F (()m) that
we construct.

Let us be more explicit about the superpotential for the Fém) family. From our previous
discussion of the field content, there is an arrow connecting nodes ¢ and j whenever d;; # 0.
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We will consider the arrow X;; which has d;; > 0 as the field while we will write in for
its conjugate.?’ It is also useful to define a partial ordering relation >~ between two nodes
byj%iiffdij > 0.

The superpotential can then be written as

W = Zzzs(i,j, kZ)XUXJkX]m s (66)

i g1 k>j

where we omit SU(2)"™ ! indices and their contractions, and the s(i, j, k) are signs that are

necessary for the vanishing of {W,W}. According to (6.4), X;; has degree d;; — 1, X i, has
degree dj;, —1 and X.; has degree m+1—d;;,. Gauge invariance implies that d;, = dij+djg,
which in turn implies that the degree of any such term is equal to m — 1 and it is hence
present in the superpotential.

Periodic quivers

Arguably the simplest representation of theories in the Fém) family is in terms of periodic

quivers on T+, We can imagine the unit cell has length 2 in every direction and the
vector labels we just discussed give the positions of the nodes. Pairs of chiral fields aligned
with the i*" direction are the SU(2); doublets connecting these nodes. These hypercubic
structure is completed with additional arrows that form degree m — 1 triangles representing
the cubic terms in the superpotential.

6.2.1 Generalized anomaly cancellation

Let us restrict to the case in which all gauge groups have rank N. Let ¢ be a node having
k entries which are zero, in the binary notation. Then, normalizing by NV, the contribution
of the arrows to the anomaly at node 7 is:

k m+1-k
Qarrows = Z < ) l 12l + Z < mls k> (_1)m+1—121

k m+1—k
=3 ()oY - (6.1

=1 =1
= —[(-1)' = 1]+ (=)™ (- -
— 14 (-1"
Thus, the anomaly-free condition is satisfied.

6.2.2 Kontsevich bracket

Now we will show that {W, W} = 0 when the coefficients in the superpotential are chosen
to be s(i,j, k) = (—1)%)+md@k) - First we make a preliminary comment about the way

20Note the convention we use for this argument is not the usual one in which we restrict to degrees ¢ < 5
For example the arrow directed from (1,1,---,1) to (0,0,---,0) is a chiral but in this notation it will be
written as the conjugate of Xg,0,... 0),(1,1,---,1)-

47 —



indices are contracted in the superpotential using the SU(2) invariant tensor e*”. Note
that for any term in the superpotential one of these indices will always be contracted with
a barred field and the other one with an unbarred field. Even though we do not show these
indices in the interest of a clean notation, we will stick to a convention in which the first
index contracts with the unbarred field and the second one with barred field. Tiptoeing
this convention, in the expressions below the first index of the implicit e*” is free for the
derivatives with respect to unbarred fields, while the second index is free for the derivatives
with respect to barred fields.
With this in mind, the derivatives we need are

ow i.j)+md(i
ki Glks=ji
g?f = 3T () mdR) gy mea)ten) 5, X,
ki
+ Z (_1)d(i,k)+md(i,l)(_1)C¢k(0kz+m70u)Xle“_ (6.8)
1[I k-i

Here ¢;; is the degree of X j i.e ¢;; = d(i,j) — 1. Working mod 2 for any k > j > i we have
d(i,j)+d(j, k) +d(i,k) =0 = c¢j+cipptex=1. (6.9)

Using the fact that ¢;;(c;j +1) = 0 mod 2 for any i, j we get
(—1)ewlentenr) — (_pyemlemten) =1 (6.10)

With these relations {W, W} becomes

ow oW % mc; % %,7)+md(i md(z
ZZ 8Xk 8Xk — Z X’LijkaleZ (_1) zk(_]_)d( k) +d(i,5)+md(ik)+md(i,l)

i ki i,G k|l ki

+ (_1)(m+1)cil+cij(Cjk+ckl+m_cli) (_1)d(j,k?)—i—d(i,j)-i—md(i,l)+md(j,l)i| .
(6.11)

Simplifying this expression using the mod 2 relations above, we conclude that {WW, W} = 0.

6.3 Moduli space

Now we explain how the perfect matchings indeed give rise to F[gm) as the moduli space.

First we turn to the central point of the toric diagram (6.1). Since the origin is invariant
under the global SU(2)™*! symmetry, the perfect matchings associated to this point contain
full representations of it. There is one such perfect matching which is immediately evident
from the way we have written the superpotential. It consists of all arrows

{Xijli=j}. (6.12)

Writing it in terms of barred fields, makes it manifest that this is a perfect matching due
to the form of the superpotential (6.6). The chiral fields in this perfect matching are in
)_((1’...’1),(0,_..,0) which has dimension 2™*! and transforms as 21 X - -+ X 2,,,41.
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The central point contains additional perfect matchings. Indeed we know that for
Fél) there are 5 perfect matchings corresponding to the central point [8] while FO(Q) has
19 [25]. It is straightforward to determine these extra perfect matchings and they will be
presented in a forthcoming work [39]. Their explicit field content is rather involved and
not illuminating for our current discussion.

Next let us consider the corners of the toric diagram, for which z, = £1 and all the
other coordinates are zero. SU(2),, transforms these two points into one another so picking
one of them breaks SU(2),, — U(1) x U(1). We need to consider how a representation Xj ;

of SU(2)™*! splits under this reduced symmetry. There are two cases:

e i, = j,. In this case the original multiplet transforms trivially under SU(2), and
remains intact. Its conjugate also remains intact.

e j, —1, = 1. In this case X;; splits into two multiplets: X;L] and XZ_] both of which
transform as

J1—1%1 Jpu—1—%u—1 Ju1—tut1 Jm4+1—%m-41
20 X x 20T X200 X oo X 2000 (6.13)

under the remaining SU(2)™.
We will again choose to make all the quantum numbers explicit so that the conjugate
of X7 is X.

The superpotential also splits into two parts

W =W+ W,_ . (6.14)

W) consists of terms which contain no fields charged under SU(2),,. W,._ consists of terms
with two arrows charged under SU(2),; one unbarred and one barred. Under the reduced
symmetry, such a term splits as

X XjwXei = X5 X0 Xy, — X Xu X, Ju—ip=1,
X@ij,ka,i — Xivaj—'t_ka_,i — XZJX]_JCXIIZ kﬂ — jM =1. (615)
With this, it is straightforward to verify that the following collection Plj of fields is a

perfect matching

o If j, —i, =1, then Pj contains ij and the conjugate of X, ;le )_(;rz These arrows
cover each term in W, _ exactly once and do not cover any term in Wj.

e If j, —iy, = 0, then p, contains X'j’i. These arrows cover each term of W exactly
once and do not cover any term in W, _.

Above we have assumed j > i, which is the condition for the existence of an arrow between
¢ and j.

The perfect matching Pj corresponds to x,, = 1. Its chiral field content, which we will
denote by p;f is

+_ [yt o
Py = {X(aly'“7a,u—107a,u+17'“am+1)7(a17"'7a,u—1717a,u+1»"‘am+1)} U {X(17~~,1),(0,~~‘,0)} . (6.16)
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(1, 0]

(0) (0)

2a+ 21X22-—>——

Figure 11. Quiver diagram for Fél).

Regarding the fields on the right brackets, note that since X (6 e ) (Lo 1) have degree m,
their conjugates X (Ji B are indeed chiral fields, i.e. they have degree 0. We can

rewrite (6.16) as

-,1),(0,---,0)

+ _ + -
p'u - {X(alv'“7al»‘«*107a#+17"'am+1)7(a17"'7aM*1717aM+17"'am+1)} U {X(0770)7(1771)} ’ (617)
Similarly the perfect matching corresponding to z, = —1 is the collection P, of the

following arrows:

o If j, —iy =1, then P, contains X, ; and the conjugate of X;rj ie X]_l
e If j, —i, =0, then P, contains )_(j,i.

The chiral field content p;, of this perfect matching is

p; - {X(Tllv'“7aM—107aM+17'“am+1)7(a17"'7al‘«—1717a#+17"'am+1)} U {X6771)7(0770)} ’ (618)
which can be rewritten as

—_{x- +
Pu = {X(alf"7au7105au+17"'am+1)7(a17"',auflvlyaqul""aerl)} Y {X(Or'wo),(lf",l)} )

6.4 Examples

(6.19)

The periodic quivers for these theories are rather simple, but they become hard to visualize
beyond m = 2 due to their high dimensionality. The exponential growth of the number of
gauge groups makes their ordinary quivers look rather complicated. However, we consider
it is instructive to explicitly present the quivers for m = 1,2, 3. FO(O) is C?/Zs, and its
quiver was given in figure 4.

Figure 11 shows the quiver diagram for Fél). This is the well-known phase 2 of Fy (see
e.g. [8]).

The quiver for FO(Q) is presented in figure 12. This is phase L of QY"!/Zs in the
classification of [25]. The periodic quiver for this phase, which explicitly shows plaquettes
for all the superpotential terms, can be found in the appendix of [25].

Finally, figure 13 shows the quiver for FO(?’).
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(1,0,0] [0,1,1]

(0) (0)

29 —— 27 X 29 X 23 — —p -

(0)

24 X 2b+

Figure 12. Quiver diagram for Fé2).
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[1,0,0,1] e 0,1 ,O]
[ ,0,0,0] [071,1,1]
(0) _(22
(1) E&_)

Figure 13. Quiver diagram for FéS).
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The field content for this theory can be summarized in the following table:

Field SU(2)* representation
X(0,ab.0),(Labe) 21
X(a,O,b,c),(a,l,b,c) 29
X(a,b,O,c),(a,b,l,c) 23
X(a,b,c,O),(a,b,C,l) 24
A(1,1,0,0),(0,0,a,b) 21 X 29
A(1,0,1,0),(0,a,0,) 21 X 23
A 21 X2

(1,a,b,1),(0,a,b,0) 1 4 (620)
Aa,1,1,),(a,0,0,b) 29 X 23
A(a,1,1,),(a,0,0,) 29 X 29
Aap,1,1),(a,0,0,0) 23 X 2
A0,0,0,a),(1.1,1,0) 2) X 25 X 23
A(0,0,a,0),(1,L,a,1) 21 X 29 X2y
A0,0,0,),(1,a,1,1) 21 X 23 X2y
A (,0,0,0),(a,1,1,1) 29 X 23 X 24
X(1,1,1,1),(0,0,0,0) 21 X 29 X 23 X 24
Its superpotential contains the following terms:
W‘] = Z A(l,l,a,b),(O,O,a,b)X(O,O,a,b),(1,0,a,b)X(1,0,a,b),(1,1,a,b)
a,b
+ A0,0,00),(1,1,1,0)X(1,1,1,0),(1,1,1,1) X (1,1,1,1),(0,0,0,0)
+ A0,0,0,1),(1,1,1,1)X(1,1,1,1),(0,0,0,0) % (0,0,0,0)(0,0,0,1) 5 (6.21)

Wy = Z A(l,l,l,a)(O,O,O,a)A(O,O,O,a),(o,l,l,a)X(O,l,l,a),(l,l,l,a)

+ 800,001,100 8(1,1,00),(1,1,1.0)X(1,1,1,1),(0,0.0,0) -

where the global SU(2)# indices and their contractions have been suppressed. The rest of
terms can be obtained from these by permuting the entries in the vector labels of nodes.

Here we have used the J- and H-term notation for superpotential terms in the case of
m =3 [15, 24].

6.5 IF(()m) — IF(()m_l) X C partial resolution

The underlying geometry implies that there exists an interesting connection between con-

secutive members of this family of quiver theories. Removing any corner of the toric

(m) (m—1)

diagram for Fy’ results in the toric diagram for I x C, namely the toric diagram
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SU(2), SU2)s

X, X3
X3
SUQ), SU(2),
X
SU@),
Fo(l) = F F(SZ) _ QI’I’I/ZQ
X, X3
X, X3
L g SU2), SU(2),
X
SUQ),
F % C=C?Zy x C FYVxC=F,xC

Figure 14. IB‘(()m) — Fo(m_l) x C partial resolution for m = 1, 2.

for Fém_l) plus an additional point. This operation corresponds to the following partial

resolution

F™ - F™ Y xC. (6.22)

Figure 14 illustrates this process in the cases of Fél) and F(§2) as starting points. As we
now explain, at the level of the quiver such a partial resolution translates into a higgsing
from Fém) to the dimensional reduction of the Fémfl) theory.

It is convenient to recall the geometric origin of the SU(2)"™*! global symmetry. The
toric diagram for Fém), which is given by (6.1), is (m + 1)-dimensional and contains 2m*!
corners. There is a pair of opposite corners for each direction z,, g =1,...,m + 1, which
in turn corresponds to the SU(2), factor of the global symmetry. In figure 14, we have
indicated the correspondence between pairs of corners and global symmetry factors.

Without loss of generality, let us consider removing p,, ,; (removing any of the other
corners is equivalent by symmetry). Partial resolution maps to a higgsing of the quiver
theory. Based on general considerations, it is natural to expect that deleting this corner

corresponds to giving non-zero VEVs to the 2" chiral fields X (_

a1, am,0)(at,....am,1

) Below
we discuss how this expectation turns out to be correct.

Global symmetry. Since we give VEVs to fields that transform exclusively in the 2,41
representation, we have the following pattern of global symmetry breaking

SU(2)1 x ... x SU(2)m, X SU2)m+1 — SU(2)1 X ... x SU(2), , (6.23)
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namely the SU(2),,+2 factor disappears. This is in precise agreement with the geometric
expectation.

Quiver. The 2" VEVs for bifundamental chirals reduce the number of gauge groups to a
half as follows. The VEV for X

(al7~~~’a’m’0)(a17~~-aa’ma1)
to nodes (ai,...,am,0) and (ay,...,am, 1) to the diagonal subgroup. The corresponding

higgses the gauge symmetry associated

recombined nodes can be naturally identified by the remaining labels, i.e. by the vectors
(a1,...,am). We thus have

(@1, am,0) X (a1,...,am,1) = (a1,...,am) (6.24)

The change in the number of gauge groups is in agreement with the fact that the volume
of the toric diagram is halved by this particular partial resolution.

Let us now study the matter content of the resulting quiver. All fields which are singlets
of SU(2),,,+1 survive in the final theory. These fields, now connecting the recombined nodes,
give exactly the matter content of Fo(m_l).

Next, let us consider the fields that transform as doublets of SU(2),,+1 (and maybe
doublets of additional SU(2), factors). First, the chiral fields X (J; o 0) (@1 1) which
form SU(2),,41 doublets with the chiral fields acquiring VEVs, survive in the final theory.
Originally transforming in bifundamental representations, they turn into adjoints of the
corresponding recombined nodes (aq, ..., a,). We can interpret such adjoint chiral fields
as the ones arising from the dimensional reduction of vector multiplets.

Finally, combining the cubic superpotential (6.6) with the VEVs for the fields

(Z tooetim 0)(@1eesm 1) gives rise to masses for all other X~ fields, where the superindex
refers to just the SU(2),,+1 quantum number, so they can be integrated out. The associ-
ated X fields remain massless and give rise to a copy of the matter content for Fo(mfl),
but with the degrees of fields increased by 1.

Summarizing the previous discussion, the final quiver corresponds to the dimensional
reduction of Fém_l), as expected from the geometry. It is also straightforward to verify

that this process generates the desired superpotential.

Perfect matchings. From section 6.3, we see that the only corner perfect matching that
contains chiral fields acquiring a VEV is p,, ;. This implies that the proposed set of VEVs
precisely remove the corner associated to p,,,;, while all the others remain. It is also
possible to verify that some of the perfect matchings at the origin of the toric diagram are
removed, while others survive. In summary, the proposed higgsing exactly produces the
desired partial resolution.

6.6 B-model computation

The computations for this family follow the same pattern as in previous examples. We start
with the resolution of these singularities as the total space of the canonical line bundle over
(PHym™+1, Tt is given by:

Xt = Tot(O(=2, -2, -+ ,=2) = P} x Py x --- x P} ;) . (6.25)
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For m = 0, this coincides with the resolution O(—2) — P! of C?/Zy, which we discussed
in section 4.4. Since for P!, O(—2) = Q, the exceptional collection on P! reads:

{E1=0(-D[1], & =0} . (6.26)
An exceptional collection on (P1)™*1 has 2™ %1 elements, which are the line bundles:
{&=6, 08,0 - @&, |i.€{0,1}} . (6.27)

Here, the index i is a binary vector of length m+1. The sheaves in the exceptional collection
on X, 12 are then of the form:
./ri = ’L*SZ (6.28)

with the embedding i : (P1)™ ! — X, ..

The next step is to find the Koszul resolution of these sheaves. The Koszul resolution
for m = 0 is the same as Koszul resolution for m = 0 in (4.19). For general m, the Koszul
resolution is given by:2!

W

0 £(2,2,--+,2) - £ - iy - 0, (6.29)

2

5 we found earlier for C?/Zy —

where the map w is an m + 1 fold product of the map v,e
see appendix A.

6.6.1 Quiver fields

Basic case: m = 0. To compute the generator of Ext groups, it is useful to start from
m = 0. We call yj ;, with s = =+, the generators of C%(Hom!(F1, Fo)). They are defined by:

o) —— 0(-1)

Here, 2% correspond to the global sections of O(1) and, as explained earlier, the global sec-
tions of O(p) are determined by homogeneous polynomials of degree p in the homogeneous
coordinate. Labeling the homogeneous coordinates of P! by 2%, we see that each of them
gives rise to a generator y(jfl, which together transform in the fundamental representation
of the SU(2) global symmetry.

The Serre duals g7 , are in C'(Hom®(Fy, F)). They correspond to the chain maps:

0(2) o

O1) — = O(-1)

2'The notation £(p1,-- - ,px) denotes the sheaf £ tensored with O(p1,- - - , ).
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Here the z° are generators of C'(O(—3)). Locally, in the patch where 2+ # 0, they are:

2t =wi%ed (6.30)
77 =—wiled . (6.31)

w4 is the local coordinate of this patch and, as before, ey is the basis of O(—1) in this
patch. Composing yal and g7 results in:
Yioo 96,1 =€y,
Y1000 =—€"y00, (6.32)
with y;; being the generators of Ext?(F;, F;). They are defined by the chain map:
O(—i+2) — O(—i)

20

O(—=i+2) — O(—1)
where 2° is the sole generator of C*(O(—2)), given locally by:
20 =wilel . (6.33)

General m. It is straightforward to determine the quiver for general m, using the in-
formation we gained for the m = 0 case. Given a pair of fractional branes F; and F;, we

consider the following chain maps x? ;

Z)J
O(=j1+2,+, —Jm1 +2) — O(=j1, -+, —Jm+1)
HZL:JT e H;T:1(_1)j”7i“§/iu
O(=ir+2,--+ , —imy1 +2) — O(—in, -+, —im41)

where &/ is a global section of O(j, —i,). Hence, we can divide the (F;, F;) pairs into
two cases:

1. There exists a p such that j, = 0 and 4, = 1. In this case, £Z” must be a global
section of O(—1) over the u!* PL. Since O(—1) has no global sections, Ext(F;, F;)
is empty for all c.

2. ju =i, for all p. In this case, the fff‘ fall into two classes:

(2.a) If j, =iy, then §,sj‘ is a local section of O, so there is only one possibility for it

ie. 1.
(2.b) If j, = 1 and i, = 0, then & is a global section of O(1). In this case, there are
two possibilities for it: z;—L, i.e. the two homogeneous coordinates of }P’}, This

also means that z7 ; transforms in the fundamental representation of the SU(2),,
factor of the global symmetry.
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Combining (2.a) and (2.b), we conclude that x* € C°(Hom"(F;, F;)) with k =
>-,.(Ju —iy). There are 2F+1 of these generators.

This completes our derivation of the quiver, which is in perfect agreement with the
one found in section 6.2 using generalized orbifold reduction.

Finally, let us compute the Serre duals i;i of these arrows. They are given by the
chain maps:

O(—i1+2, -+, —imy1 +2) — O(—iy, -, —imq1)
+1 gt
HZLZI H‘u
O(_j1+27 7_jm+1+2) O(_Jb 7_jm+1)

As is occurs for &, Efj‘ only exist for j, > i, and we will need to deal with the corre-
sponding two cases separately:

(a) If j, = i, then gff € C'(O(-2)), so the only possibility is 22. The 20 is given in (6.33)
and the subscript indicates that the base is ]P’}L.

(b) If j, =1 and 4, = 0, then f_ff € C'(O(-3)) and there are two possibilities, namely
f_lf = fo Again the subscript indicates that the base is IP); with 2% defined in (6.32).

Hence f;‘,i = émH(Homl_k(]:i,]:j)) and they are indeed the Serre duals of irfj

6.6.2 Superpotential

The cubic superpotential terms follow straightforwardly from the composition. Following
our definition of z7 j and 333  and composing them results in:

mg(xf?j,a:;,k) = mf}; . (6.34)

Here the st in the superscript means that the fundamental SU(2) indices of x;; and x;
are concatenated. Since the fy’s are all trivially zero, there are no higher products. We
then reproduce the superpotential (6.6).

7 Conclusions

It was recently shown that m-graded quivers with superpotentials provide a mathematical
framework that elegantly unifies the description of minimally SUSY gauge theories in even
dimension [15]. The cases of m = 0,1,2, 3 correspond to 6d N’ = (0,1), 4d N =1,2d N =
(0,2) and 0d N =1 field theories, respectively. A rich class of such theories can be engi-
neered in terms of Type IIB D(5—2m)-branes probing CY (m+2)-folds. One of the primary
motivations for this paper was to establish the physical significance of m-graded quivers
for m > 3. Naively, it may seem that it is physically impossible to go beyond m = 3, since
it would require the gauge theory to live below 0d and the CY 2 to go beyond the critical

— 57 —



dimension of Type IIB string theory. In this work we have shown that m-graded quivers
describe the open string sector of the topological B-model on CY (m + 2)-folds, for any m.

To illustrate this correspondence, we constructed toric quivers associated to three in-
finite families of toric singularities indexed by m.?? We first derived these families using
a variety of powerful tools that are available in the toric case, which include: algebraic
dimensional reduction (sometimes combined with orbifolding), orbifold reduction, 3d print-
ing and partial resolution. We independently derived all these quiver theories via B-model
computations.

Our results provide the first explicit examples of m-graded quivers with superpotentials
for CY (m + 2)-folds with m > 4. Previously, only a few orbifold examples had been
presented for m = 4 [15] and m = 3 [16, 24, 61, 62]. Quivers for more general geometries
were studied only up to m = 2, both in physics and mathematics.

In this work, we considerably expanded the exploration of quiver theories associated
to CY (m + 2)-folds. Until now, quiver gauge theories were typically studied at fixed m.
For each m (and only for m < 2, so far), one could then consider various infinite families of
geometries and construct their dual quiver gauge theories. In the toric case, this approach
was significantly accelerated by the study of brane tilings (m = 1) and brane brick models
(m = 2). In this work, we have included a new “theory space” direction to the problem,
considering all possible CY dimensions at once. New tools for studying toric quivers, for
any m, will be discussed in [39].

Various interesting aspects of SUSY gauge theories extend to the more general context
of m-graded quivers. For instance, we have shown that some of these theories admit periodic
duality cascades. Generalizing the well-known behavior of the conifold, we presented ex-
plicit examples based on the C(Y1?(P™)) family, in which the number of fractional branes
remains constant while the number of regular branes depends linearly on the step of the
cascade. It would be interesting to investigate the significance of such formal cascades for
arbitrary m. Interestingly, gravity duals with a running number of regular branes exist for
systems of branes at CY 4-folds, namely for m = 2 [63]. It would be interesting to elucidate
whether those solutions have a field theoretic interpretation in terms of cascades of trialities.

It is natural to expect that order m+1 dualities correspond to mutations of exceptional
collections of B-branes. This expectation is supported by the known m = 1 [48, 49, 64]
and m = 2 [16] cases, mirror symmetry [24, 37] and the general discussion in [15]. We plan
to elaborate on this correspondence in the near future.
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A B-model computation of quivers and superpotentials

In this appendix, we provide a brief review of the sheaf computation of quivers and super-
potentials in the B-model. In the main body of the paper, we use the methods outlined
here to derive the quivers and superpotentials for several infinite families of theories. For
more details, the interested reader can consult [29, 53]. For detailed reviews of B-branes,
we refer to [55, 65].

The D-branes compatible with the B-twist of Type II string theory are called B-branes.
Mathematically, these branes, denoted by £, are objects of the derived category Db(Xm+2)
of the (m + 2)-complex-dimensional target space X,,+2. The B-model open string states
with boundary conditions on the two objects £ and F are counted by the Ext groups:

m—+2

P Extk,, ., (€, F) . (A.1)
d=1
Each element of the group (A.1) is interpreted as an open string state “stretched from the
brane £ to the brane F.” The OPE relations between open string vertex operators are
encoded in the A, structure of the derived category. Thus, the A, structure controls the
terms appearing in the “spacetime” superpotential; see [52, 66] and references therein.

A.1 Ext groups

The B-branes we consider are complex submanifolds of some local Calabi-Yau }NCerQ, a
smooth resolution of the CY singularity X,,12. Assume S is a complex submanifold of
Xm+2, and & and & are holomorphic vector bundles over S. If we denote the embedding
of S'in Xm+2 by i, then the objects in D? (Xm+2) corresponding to &1 and & are i,&; and
1xE2, respectively. The B-model spectrum of open strings between two D-branes on S, with
gauge bundles & and &y, is given by:

m+2
@Ext~ . (ix&1,14E2) . (A.2)

The Ext groups above are determined by the following spectral sequence [29]:

EST: HP(S,6) © & @ NNs) = Exty (iu€1,is&s) (A.3)

m+2

where Ny is the normal bundle of S in }~(m+2. In many cases, the spectral sequence (A.3)
trivializes — that is:

EXt%( n+2 (Z*gla 7’*82 @ Hp S gl ® 52 ® /\qNS) (A4)
ptg=d
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In such cases, we can determine the Ext groups by computing cohomology groups. If S
is a direct product of projective spaces, the cohomology groups can be calculated by the
Borel-Weil-Bott theorem [67, 68|, which expresses the Ext groups as representations of the
global symmetry.

A.2 A structure

The derived category Db(f(mw) is an A,-category. By definition, an A.,-category C con-
sists of a collection of objects, Obj(C), a Z-graded vector space of morphisms Home(E, F')
for any E, F' € Obj(C) and, for every k > 1, k-linear maps:

mg : Homc(Ek_l, Ek) K& Homc(Eo, El) — Homc(Eo, Ek) R (A5)
of degree 2 — k, satisfying the A, relations:
Z(_l)k_p_q+pqu—p+l (akh “y Gptgtls mp(ap+qa e aaq+1)7 Qg -+ 7a1) =0 ) (AG)
X

for every k > 0. We will follow the method proposed in [53] to compute the composition
maps my, of DY(Xyi2).

Any obJect in D? (Xm+2) can be represented by a cochain complex £°® of locally-free
sheaves over Xm+2 For any pair of complexes, the Ext groups Extd (5' F*) can
be viewed as the cohomology of the single complex associated with the double complex
(K**,d, ) with:

KPI(E* F*) = CP(U, Hom(E*, F*)), (A7)
where C? (U, -) denotes the Cech cochains of degree p associated with some acyclic covering
U, and Hom? denotes the maps of degree ¢ between complexes, i.e.:

Hom(E*, F*) = @ Hom(E, FIH9) . (A.8)
In the double complex (K** d,¢), d is the differential of Cech cochains and § is defined

as follows. Let 9; and 0}, be differentials of £/ and F * respectively, then for any . ¢, €
Homd(E®, F*) with ¢,; € Hom(E', F*T9), we have:

0qPq,i = atlz—l-i 0 ¢gi — (—=1)%¢ir1,400; . (A.9)

For any £° and F°, we associate to every a € Ext% 2(5.,]:') an element t(a) €
m+

Bptq=dKP9(E®, F*), such that the cohomology class of «(a) is a. Then, there exist maps:
JioiBxtl (E.ED) @ @Bxty (65,60 - @ KPUELE).  (AL0)

of degree 1 — k for any k > 1, such that:

f1 =1, (All)
and
Y D ([T oms@id®) = Y (1) fi 0 fiy0r -0 fi, +dfi, (A12)
r+s+t=k ) fg’;ﬁn .
=
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where w = (r—1)(i1 — 1)+ (r —2)(ig— 1) +-- -+ (i,—1 — 1) and o denotes the composition
of maps in @, ,K"4(e,e). For example, we have:

tmo = 1o+ dfs, (A.13)

and
tms = fg(id &® mg) — fg(mg ® id) + (/, o f2) — (f2 o 1,) + df3 . (A.14)

To compute the A, structure, the first step is to find representatives for a basis of the Ext
groups, which in turn defines ¢. Then, we can employ (A.12) to compute the composition
maps my. Specifically, we can use (A.13) to determine mo and fa, then use (A.14) to
determine mg and f3 and so forth.

In the theories we consider, the B-branes of interest are of the form:

iE (A.15)

with ¢ the embedding of a complex submanifold S in )~(m+2, and £ a holomorphic vector
bundle over S. Suppose that &£ is the Koszul resolution of i.&:

s T T s 5 ) 50— 0 (A.16)

Then, Ext% 2(1'*51, i+E2) is the same as Ext% 2(6’1', £3), so that we can use the method
m+ m+

discussed above to compute the composition maps my.

A.3 Superpotential

Given a graded quiver with nodes corresponding to coherent sheaves i.&;,5 = 1,--- ,n,
where n is the number of nodes, we can read off the superpotential from the composition
maps my. To that end, we fix a basis ¢§f)ﬁ for each Ext%m (15&j,, 15, ).  Following
the(kcoll)lvention described in the main text, we will label the corresponding quiver field by
(@,

J1,Jj2
degree by 1. The label p runs over the generators. For the examples we are considering, it

)u- Note that the Ext generator and the field have conjugate indices and differ in

coincides with the flavor symmetry index. For each j, Ex‘cgJr2 (14&;5,1xE;) is 1-dimensional.

m

If %T’;Qk)ﬂ is the generator corresponding to the Serre dual of ¢§f)ﬁ , then:

ma (@5 T, gl — gl (A.17)

J1,J2 J2,J1
for any j; and p. By choosing a basis, we fix the normalization of the trace map -; :

Exth“QQ(i*Ej, i+&;) — C defined by:

m+
Vi(8f;) =1 (A.18)

For any generator qﬁg»lz € Extl)~( 2(i*é’i, i+&;), we consider all the paths connecting nodes ¢
) m+

and j in the quiver. If there exist fields (I)Sf,li) , @é’;;)l, e ,@5-2’2)71 along some path with k
arrows such that:

—(n=10) (ng) (n1) A19

Yi(ma(ds; mu(@s6 o 0s0)) (A.19)
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is nonzero, then there is a term proportional to:

oM gl Dgn=m=1) (A.20)

1,81 Sk—1,J Jit ’

with the coefficient equal to (A.19) in the superpotential. Similarly, if there exist fields
(I)(”l) (I)(”Q) (b(”k)

s, Pszssns By along some path in the opposite direction such that:

l
is nonzero, then there is a term proportional to

@(nl*l) . (I)(nkfl)q)(lfl)

7,81, Sk—1,0 1,J ?

(A.22)

with the coefficient equal to (A.21) in the superpotential. Every term in the superpotential
can be computed this way, thus the A, structure of the derived category completely
determines the superpotential.

Note that, since + is only non-zero on Ext™*? generators, and since my has degree
2 — k, the “superpotential coupling” (A.21) is non-zero only if:

k
Z+an:m+k. (A.23)
j=1

This is simply the ghost-number selection rule for disk correlators in the B-model. It
directly follows that the only terms that can appear in the superpotential have quiver
degree:

J»S1, Sk—1,0 "1

k
deg(q)(m—l) . q)(nk—l)q)(fj—l)) —l—1+ Z(”J —1)=m-1. (A.24)
j=1

Hence, the degree constraint for the superpotential of an m-graded quiver is automatically
satisfied.

A.4 Sheaves on P": a primer

In order to derive the quivers and superpotentials for the geometries considered in this
paper using the technology we have just discussed, it is useful to review some notions
about sheaves on P". In the rest of this section, we present several elementary results
about Cech cohomology with sections taking values in such sheaves.

Let us start with the presentation of P™ in the homogeneous coordinates. Starting
from C"*!, we obtain P by identifying:

(20,77 s 2n) ~ (20, ", 2n) - (A.25)

From this presentation, we can pass on to standard charts on P". There are n + 1 of these
charts, denoted by U,. U, covers the complex lines for which z, # 0. We will denote the
it" local coordinate on U, by wy;, with 1 <4 < n. The explicit map between the two
presentations is:

7=
D
5 Z
o T
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A.4.1 Sheaves O(p)

The tautological line bundle, denoted by O(—1), is the sheaf on P which assigns to each
point in it the line it represents in C"*'. We denote the basis of this sheaf on the chart
U, by e,. The transition functions between different charts are then represented by the
equation:

e; = waileo . (A.26)

The sheaf O(—p), for p > 0, is the sheaf which locally has as its basis the p" tensor
power e}, of e,. The sheaf O(p), for p > 0, is defined to be the dual sheaf of O(—p). In
particular let e}, be the basis of O(1) in the chart y then the transition functions for it are
determined by:

ef = wo,ieé . (A27)

(e,)P form a basis of O(p) in U),. Finally, O(0), which is often denoted as O, is the trivial
sheaf.
A.4.2 Tangent and cotangent bundles

One-forms dwp; form a basis of the cotangent bundle in the ,uth chart. The transition
matrix can be found using (A.4). We will not reproduce all of them here, but will mention
an identity that will be useful for our calculations, namely:

wodwo; = —wij dwg . (A.28)

QP is the p!* antisymmetric tensor power of 2. The transition functions again follow
straightforwardly, albeit tediously, from (A.4). The situation is simplest for the highest
non-trivial power, i.e. 2", also called the determinant bundle. Its basis is A;dw,,; and the
transition function is the determinant of the transition matrix for :

Aj dwo; = w; [ YAy dw; (A.29)

The tangent bundle Q* is the dual of the cotangent bundle. In the local coordinates of the

chart Uy, its basis is given by the vector fields 5°—. Locally, the action of vector fields on

the differential form is given by contraction or mterlor derivation.

A.4.3 Cech cohomology

Next, we turn to the computation of some sheaf-valued Cech cohomology groups on P™.
We will also organize them into representations of SU(n+ 1), with its action on P™ induced
from C"*!. The most basic of these are CV, which correspond to the global section of the
said sheaves.

O(—p) has no global sections for p > 0. The same is true for Q. However their dual
bundles do have global sections. For O(p) with p > 0, a local section is determined by a
homogeneous polynomial of degree p in the homogeneous coordinates z,,. These obviously
transform in the symmetric (p,0)-index tensor representation of SU(n + 1), which has

dimension ("+]1)+p )

— 63 —



The tangent bundle Q* has (n+1)2—1 global sections. In the homogeneous coordinates,
these are given by:

0
zﬂa—zy ,
with the linear relation ZM zu% = 0. They transform in the adjoint representation of
SU(n +1).
More relevant for us will be the sheaf Q*(—1).22 It has (n + 1) of global sections
transforming in the (0, 1)-index representation of SU(n + 1). Locally in Uy, they can be

(A.30)

written as:

0
0 _ )
P = E@ wo,zawo X eo,

X2

; 0
Y = 871)072' X eo . (A?)l)

The maps between two sheaves F and F' form a sheaf denoted by Hom(FE, F). The sec-
tions (A.31) can also be regarded as the global sections of Hom(£2, O(—1)). More generally,
they can be regarded as global sections of Hom(Q271 (5 4 1), Q%(4)).

We can also easily compute the global sections of Hom(Q2*(5 + k), Qi(5)). These
are given by antisymmetric compositions of A’ defined above and they transform in the
antisymmetric k-index?* representation of SU(n+1). Concretely, a basis of them is given by:

1
(plu’l He — Hga[#’l o SOIUQ O-+--0 SD/‘LIC} . (A.32)
The square brackets represent the antisymmetrization of the indices they enclose.

A.4.4 Serre duality

Serre duality is one of the most important properties of these sheaf-valued cohomology
groups. In the present case, it is the statement that there is an isomorphism between
CY(E) and C"H(E*(—n — 1))*.

Let us see how this plays out in the case of Hom(Q"(n+ j), O(j)), which we computed
in the last section. Its dual sheaf is Hom(O(j), Q2" (n + j)) = Q(n). So, to exhibit Serre
duality we need to find C™(Q™(—-1)).

An element of Q"(—1) is a top form with coefficients in O(—1). It being in the n*
Cech cohomology means that it is holomorphic in NuUy, i.e. intersection of all n+1 charts,
but not holomorphic in any intersection of n charts. Let us consider the ansatz that a
member @ of this cohomology group is given in the coordinates of Uy by:

¢ = Nwpdwo; @ e - (A.33)

Using (A.4) and (A.29), we see that, in the local coordinates of patch U;, we can write @
as:

23 p; .
7= (-1'w,; = Y dwi g NI wiidwi @ e (A.34)

#3For any sheaf F' we define F(p) to be F tensored with O(p).
24More formally (0, k), but throughout the paper all the representations we mention are of this form and
we will just write k to simplify the notation.
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Figure 15. The transformation of flavors upon a mutation on node % can be implemented as a
rotation of the degrees of the arrows.

The holomorphy constraint described above means that:

pi <0 and - Zpi <n-+2. (A.35)

Hence, there are n + 1 choices of ¢:
0 _ —1
P = /\jw(),jdej X eg,

The dimension n + 1 is indeed the one we would have expected from Serre duality. Note
that ¢ transforms in the 1-index representation of SU(n 4 1) which is conjugate to the
representation in which elements of Hom(Q"(n + j), O(5)), i.e. ¢ transform.

B Graded quiver mutations

Graded quivers with superpotentials enjoy order m + 1 mutations, which reproduce the
dualities of the corresponding gauge theories for m < 3 and generalize them for m > 3. In
this appendix, we summarize the effect of a mutation on a node, which we denote by * [15].

1. Flavors. As it is standard, we refer to the arrows connected to the mutated node
as flavors. It is possible to take all flavors as incoming into the mutated note, simply by
trading any arrow that is oriented outward for its conjugate. Once this is done, there is a
natural cyclic order for flavors around the node, in which the degree of incoming arrows
increases clockwise, as shown on the left of figure 15. There can be multiple or no arrows
of a given degree.

Under the mutation, the flavors transform as follows:

2. Rotation of the degrees. Replace every incoming arrow iﬁ>* with the arrow

Z'El* . In terms of the cyclic ordering of flavors previously introduced, this transfor-
mation is elegantly implemented as a clockwise rotation of the degrees of the flavors while
keeping the spectator nodes fixed, as shown in figure 15.
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(©

@ O——@—"—Q = @ ® ©

(m-c)

b O——@—Q = @ ® ©

Figure 16. a) Composition of arrows into a meson. b) The same process interpreted as anticom-
position.

U0 \*/‘(m-c-l) L

Figure 17. New cubic terms coupling mesons to dual flavors.

2. Mesons. The second step in the transformation of the quiver involves the addition

of composite arrows, to which we refer as mesons. For every 2-path ; ﬂ) % & jin Q,

(©)

where ¢ # m, add a new arrow ; — . j- In other words, we generate all possible
mesons involving incoming chiral fields. Sometimes, we might chose to represent the field to
be composed with a chiral field as an arrow that goes into the mutated node. The orienta-
tion of both arrows, both incoming, naively seems incompatible for composition. The gen-
eral rule above is equivalent to saying that, in such cases, we use the conjugate of the incom-
ing chiral field for the composition. This phenomenon, dubbed anticomposition, was first
discussed in the physics literature in the context of quadrality of 0d A/ =1 theories [24].

3. Superpotential. Under mutation, the superpotential transforms according to the
following rules:

3.a) Cubic dual flavors-meson couplings. For every 2-path, i&*&j in

@, with ¢ # m, add the new arrow i&j in @ and the new cubic term

<I>(C)<I>(C+1)<I>§T) = @E;?)(P;T_C_l)q)(q) to W. Figure 17 shows the general form of these

ij *xj "
terms, which are in one-to-one correspondence with the mesons.

The remaining rules concern pre-existing terms in the superpotential. First of all,
terms that do not go through the mutated noted are not modified. The transformation
of terms that contain the mutated node depends on the degrees of the arrows that are
connected to it in the corresponding cycle.
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() (©1)

Figure 18. Mutation of a superpotential term with a 2-path giving rise to a meson.

(d) (d+1)

(Cr) ()

Figure 19. Mutation of a superpotential term with a 2-path that goes through the mutated node
but does not generate a meson.

(cy1) (1)

Figure 20. Mutation of a superpotential term in the presence of an additional chiral field going
intothe mutated node.

(0) (@)

3.b) Replace instances of @, v W with the meson @55) that results from composing

the two arrows.

) (D)
D
— that is, we write each closed path in W in terms of the new arrows.

3.c) Replace instances of <I>Z(i in W, where ¢ # 0 and d is arbitrary with the product

q)(c_l)q)(d"“l)

23 *J

at the mutated node, an addi-
(©) ()
*x kj

©) and @

ik *J

3.d) Additionally, if there is an incoming chiral arrow @Egi

tional term in W is generated by duplicating this cycle, replacing instances of ®
(©) g (d)

with the product of mesons @,/ ®; P which follow from (anti)composing ®

with %)

0% "
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3.e) Finally, we can “integrate out” massive arrows, which corresponds to removing all the
2-cycles that appear in the superpotential while imposing the “equations of motion”
for the corresponding arrows [15].

Note that rules 3.c) and 3.d) become relevant for m > 2.

4. Ranks. Finally, one can study how quiver representations transform under mutations.
Let us assign the ranks IV; to the quiver nodes. Then, the rank N, of the mutated node
transforms as:

N, = Ny — Ny, (B.1)

where Ny indicates the total number of incoming chiral fields. Periodicity of the rank after
(m + 1) consecutive mutations on the same node requires that, for every node:

ifme2Z+1 : 0=Np —Npo1+...— N1+ Ng,
(B.2)
if m e 27 2N, = N,, —Npy_1+...— N1+ Ny .

This coincides with the generalized anomaly cancellation conditions discussed in section 2.5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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