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Abstract

Background: Single-cell gene expression measurements offer opportunities in deriving mechanistic understanding

of complex diseases, including cancer. However, due to the complex regulatory machinery of the cell, gene regulatory

network (GRN) model inference based on such data still manifests significant uncertainty.

Results: The goal of this paper is to develop optimal classification of single-cell trajectories accounting for potential

model uncertainty. Partially-observed Boolean dynamical systems (POBDS) are used for modeling gene regulatory

networks observed through noisy gene-expression data. We derive the exact optimal Bayesian classifier (OBC) for

binary classification of single-cell trajectories. The application of the OBC becomes impractical for large GRNs, due to

computational and memory requirements. To address this, we introduce a particle-based single-cell classification

method that is highly scalable for large GRNs with much lower complexity than the optimal solution.

Conclusion: The performance of the proposed particle-based method is demonstrated through numerical

experiments using a POBDS model of the well-known T-cell large granular lymphocyte (T-LGL) leukemia network with

noisy time-series gene-expression data.

Keywords: Optimal Bayesian classification, Single-cell trajectory classification, Particle filter, Probabilistic Boolean

networks

Background
A key issue in genomic signal processing is to classify

normal versus cancerous cells, different stages of tumor

development, or different prospective drug response. Pre-

vious gene-expression technologies, such as microarray

and RNA-Seq, typically measure the average behavior

of tens of thousands of cells [1, 2]. By contrast, the

recent advances in next-generation sequencing technolo-

gies have allowed in-depth investigation of the transcrip-

tome at a single-cell resolution [3, 4].

Gene regulatory networks (GRNs) govern the function-

ing of key cellular processes, such as stress response, DNA
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repair, and other mechanisms involved in complex dis-

eases such as cancer. Often, the relationship among genes

can be described by logical rules updated at discrete time

intervals with each gene have Boolean states: 0 (OFF)

or 1 (ON) [5]. The Partially-Observed Boolean dynam-

ical system (POBDS) model [6–8] is a rich framework

for modeling the behavior of GRNs observed through

contemporary gene-expression technologies, as it allows

indirect and incomplete observation of gene states. Sev-

eral tools for the POBDS model have been developed in

recent years, such as the optimal filter and smoother based

on the Minimum Mean Square Error (MMSE) criterion,

termed as the Boolean Kalman filter (BKF) and Boolean

Kalman smoother (BKS) [6], respectively.
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In [9] and [10], the maximum-likelihood (ML) based

classification of single-cell trajectories has been devel-

oped. Themethod uses theML-adaptive filter proposed in

[6] for estimation of the unknown parameters, followed by

the Bayes classifier tuned to the ML parameter estimates.

The drawback of this method is its inability to use prior

knowledge in deriving the classifier. In [11], the intrinsi-

cally Bayesian robust (IBR) classifier for the trajectories

is developed. This IBR classifier is optimal relative to the

prior distribution of unknown parameters.

In this paper, assuming that there are two classes,

healthy (c = 0) and cancerous (c = 1), we derive the

optimal Bayesian classifier (OBC) [12, 13] for classifica-

tion of single-cell trajectories. The difference between the

OBC and IBR classifiers is that in the OBC the expec-

tation of the class-conditional densities is taken over the

posterior distribution of the unknown parameters [14, 15],

whereas in the IBR classifier the expectation is taken over

the priors.

Despite the optimality of the developed OBC for single-

cell trajectories, its exact computation for large GRNs

becomes intractable, due to the large size of the matri-

ces involved. In this paper, we develop a particle-based

OBC to scale up the classification of single-cell trajecto-

ries. The proposed method contains a bank of Auxiliary

Particle-Filter implementations of the Boolean Kalman

Filter (APF-BKF) proposed in [16], for both training and

test processes.

Our contributions are twofold: 1) Optimal Bayesian

Classification: we derive the optimal Bayesian classi-

fiers (OBC) for both single-cell gene expression tra-

jectories and multiple-cell averaged gene expression

with uncertain regulatory network prior; and 2) Scal-

ability: the parallel particle filters together with the

Monte-Carlo inference have been efficiently used to esti-

mate the likelihood and stationary distributions, mak-

ing the derived OBC scalable to larger gene regulatory

networks.

We apply the APF-BKF-based OBC to classify trajec-

tories of the blood cancer T-cell large granular lympho-

cyte (T-LGL) leukemia. T-LGL leukemia is a chronic

disease characterized by a clonal proliferation of cyto-

toxic T cells [17]. A Boolean network model of T cell

survival signaling in the context of T-LGL leukemia has

been constructed by [18] through performing extensive

literature search. Then the T-LGL network has been

simplified by [17], which constructs the minimum net-

work that preserves the attractor structure of that system.

The reduced network contains 18 genes, which has an

optimal solution with a transition matrix with 22×18 =
68, 719, 476, 736 elements. By contrast, as we will show

in our numerical experiments, the proposed APF-BKF-

based method captures T-cell dynamics with only 1000

particles.

Methods

Gene regulatory network model

Gene regulatory networks are modeled as partially-

observed Boolean dynamical systems (POBDS). The two

components of the POBDS model are a state space model

that describes the evolution of the dynamics of the GRN,

and an observation model for the measurements. These

two components are described below.

GRN state spacemodel

The state process {Xk ; k = 0, 1, . . .}, where Xk ∈ {0, 1}n,
represents the activation (ON)/inactivation (OFF) state

for the corresponding gene across time. The state at each

discrete time is assumed to be updated through the non-

linear signal model

Xk = f
(

Xk−1

)

⊕ nk , (1)

for k = 1, 2, . . ., where f : {0, 1}n → {0, 1}n is a

Boolean function called the network function, “⊕” indi-

cates component-wise modulo-2 addition, and nk ∈
{0, 1}n is Boolean transition noise at time k. The modulo-2

addition means that if a bit in the noise nk is 1, the value of

the corresponding gene in the Boolean state Xk is flipped.

In this paper, the noise process nk is assumed to have inde-

pendent components distributed as Bernoulli(p), where

the parameter p > 0 models the noise “intensity” — the

closer p is to 0.5, the more chaotic the system will be,

while a value of p close to zero means that the state trajec-

tories are nearly deterministic, being governed tightly by

the network function and perturbation process. The net-

work possesses a steady-state distribution π∞ describing

its long-run behavior as:

π∞ = lim
k→∞

[

P
(

Xk = xi
)

, . . . ,P
(

Xk = x2
n
)]T

, (2)

where
{

x1, . . . , x2
n}

denotes the set of the corresponding

network states in the Boolean vector representation.

Observationmodel

The data available to the experimenter is described by

the observation process {Yk ; k = 1, 2, . . .}, where Yk =
(Yk(1), . . . ,Yk(n)) is a vector containing the transcript

abundance measurements at time k, for k = 1, 2, . . .. We

consider a Gaussian linear model

Yk = λ + DXk + vk , k = 1, 2, . . . , (3)

where vk ∼ N (0, σ 2In) is an uncorrelated zero-mean

Gaussian noise vector, λ = [ λ1, . . . , λn]
T is a vector of

baseline gene expressions corresponding to the “zero”

state for each gene, and D = Diag(δ1, . . . , δn) is a diagonal

matrix containing differential expression values for each

gene along the diagonal (these indicate by how much the

“one” state of each gene is overexpressed over the “zero”

state). Such a Gaussian linear model is an appropriate

model for single-cell gene-expression data [19, 20].
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Optimal Bayesian classifier (OBC) for single-cell trajectories

Assume there are two POBDSs corresponding to the

healthy and cancerous (mutated) classes, each having n

genes. The difference between the healthy and mutated

classes could be the over-expression or disruption of a

value of single or multiple genes in the mutated case. Let

Y
c =

{

Y
(1)
c ,Y

(2)
c , . . . ,Y

(Dc)
c

}

be the set of Dc observed

trajectories from class c, c = 0, 1. Let � = (θ1, . . . , θM)

be the uncertainty set of M network functions contain-

ing the unknown true network functions in (1), indicating

M possible Boolean functions as
{

fcθ1 , . . . , f
c
θM

}

consider-

ing the regulatory model uncertainty for the class c. The

prior probability of the model θ for the class c is repre-

sented by π(θ | c), where
∑M

i=1 π(θi | c) = 1, for c =
0, 1. This uncertainty could arise due to some unknown

regulations (i.e. interactions) between some genes in the

pathway diagram (more information in “Results and dis-

cussion” section). We wish to derive the optimal Bayesian

classifier (OBC) under uncertainty using all available data

and prior knowledge.

If the feature-label distribution is unknown but belongs

to an uncertainty class � of feature-label distributions,

then we desire a classifier to minimize the expected error

over the uncertainty class. This expected error is equiv-

alent to the Bayesian minimum mean-square-error esti-

mate [21] given by ǫ̂(ψ) = Eθ |Yc ,c[ ǫ(ψ , θ)], where ǫ(ψ , θ)

is the error of ψ on the feature-label distribution parame-

terized by θ and the expectation is taken over the posterior

distribution of parameters π(θ | Yc, c), c = 0, 1.

For a given test trajectory Y , the OBC, minimizing the

Bayesian minimum mean-square error estimate, can be

obtained as

ψOBC(Y)=

⎧

⎨

⎩

0 if p0 Eθ |Y0,c=0[ pθ (Y | c = 0)]≥
(

1 − p0
)

Eθ |Y1,c=1

[

pθ (Y | c = 1)
]

.

1 otherwise

(4)

where pθ (.) denotes a probability density function corre-

sponding to parameter θ , p0 is the prior probability of class

0 and

Eθ |Yc,c[ pθ (Y | c)] =
∑

θ∈�

pθ (Y | c) π(θ | Yc, c) , (5)

for c = 0, 1.

Derivation of (5) requires computing the posterior dis-

tribution

π(θ | Yc, c) = pθ (Y
c | c)π(θ | c)

∑

θ ′∈� pθ ′(Yc | c)π(θ ′ | c) , (6)

where π(θ | c) denotes the prior probability of the

corresponding network model θ for class c. For an arbi-

trary trajectory Ỹ , we define the log-likelihood function

associated to model θ and class c by

Lθ
c (Ỹ) := log pθ (Ỹ | c) . (7)

Now, using the above definition in (4)-(6) leads to the

following exact OBC solution:

ψOBC(Y) =
{

0 if p0τ 0�(Y) ≥ (1 − p0)τ 1�(Y)

1 otherwise
, (8)

where

τ c� (Y) = Eθ |Yc,c

[

pθ (Y | c)
]

=
∑

θ∈�

π (θ | Yc, c) pθ (Y | c)

=
∑

θ∈�

pθ (Yc|c)π(θ |c)
∑

θ ′∈� pθ ′ (Yc|c)π(θ ′|c)pθ (Y | c)

=
∑

θ∈�

exp
(

∑Dc
d=1 L

θ
c

(

Y
(d)
c

))

π(θ |c)
∑

θ ′∈� exp
(

∑Dc
d=1 L

θ ′
c

(

Y
(d)
c

))

π(θ ′|c)
× exp(Lθ

c (Y)).

(9)

The expectation in (9) is taken with respect to the pos-

terior distribution of θ , i.e. π(θ |Yc, c), as opposed to IBR

classifier [11] that considers the prior distribution π(θ |c).
Furthermore, log pθ (Y

c | c) =
∑Dc

d=1 log p
(

Y
(d)
c | θ , c

)

is used in (9) due to the independency of the training

trajectories.

As shown in Eq. (8), the OBC requires computing the

log-likelihood functions of all training trajectories and test

trajectory for both classes and θ ∈ �. Let
{

x1, . . . , x2
n}

denote the corresponding network states in the Boolean

vector representation and Y1:T = (Y1, . . . ,YT ) be a single

trajectory of length T. The log-likelihood function can be

computed as

Lθ
c (Y1:T ) = log pθ (Y1:T | c)

= log pθ (Y1 | c)+
T
∑

k=2

log pθ (Yk | Y1:k−1, c),
(10)

where based on the POBDS model,

pθ (Yk | Yk−1, c)

=
2n
∑

i=1
pθ

(

Yk | Xk = xi, c
)

Pθ

(

Xk = xi | Y1:k−1, c
)

=
2n
∑

i=1
pθ

(

Yk | Xk = xi, c
)

×
2n
∑

j=1
Pθ (Xk = xi | Xk−1 = xj, c)

×Pθ (Xk−1 = xj | Y1:k−1, c).

(11)

Define the conditional probability of any network state

at time step k for the model θ and class c as

�
θ ,c
k|k =

[

Pθ

(

Xk =x1 | Y1:k , c
)

, . . . ,Pθ

(

Xk = x2
n | Y1:k , c

)]T
.

(12)
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Using (11) and (12), the log-likelihood function in (10) can

be written in a compact form as [22]

Lθ
c (Y1:T ) =

T
∑

k=1

log
∥

∥

∥
Tθ ,c
k (Yk)M

θ ,c
k �θ ,c

∥

∥

∥

1
, (13)

where ||.||1 denotes L1 norm, indicating the summation

in (10). Mθ ,c
k is the transition matrix of the Markov state

process corresponding to model θ ∈ �, with entries given

by:
(

Mθ ,c
k

)

ij
= Pθ

(

Xk = xi | Xk−1 = xj, c
)

= p||fcθ (xj)⊕xi||1(1 − p)n−||fcθ (xj) ⊕ xi||1 ,
i, j = 1, . . . , 2n,

(14)

with p denoting the Bernoulli noise parameter. Tθ ,c
k

(Yk) is

a diagonal matrix, called the update matrix, with the ith

diagonal element given by

(

Tθ ,c
k (Yk)

)

ii
= pθ (Yk|Xk = xi, c)

=
(

1√
2πσ 2

)n

exp

⎛

⎝−
n
∑

j=1

(

Yk(j) − λj − δjx
i(j)
)2

2σ 2

⎞

⎠ ,

(15)

for i = 1, . . . , 2n, where δj and λj are gene-expression

parameters associated to the jth gene in class c as defined

in (3). Notice that the initial distribution �
θ ,c
0|0 = π∞

θ ,c is

the steady-state distribution associated tomodel θ and the

class c defined as

π∞
θ ,c = lim

k→∞

[

Pθ

(

Xk = x1|c
)

, . . . ,Pθ

(

Xk = x2
n |c
)]T

.

(16)

This vector can be either computed exactly as introduced

in [9] or approximated by creating multiple Monte-Carlo

trajectories with relatively long horizons.

The posterior distribution can also be recursively com-

puted according to the transition and update matrices as

described in [6]:

�θ ,ck|k =
Tθ ,c
k (Yk)M

θ ,c
k �θ ,c

∥

∥

∥
Tθ ,c
k (Yk)M

θ ,c
k �θ ,c

∥

∥

∥

1

, k = 1, 2, . . . . (17)

The complexity of computing the log-likelihood function

for a single trajectory of length T is of order O(22n × T)

due to the transition matrix involved in its computation.

The whole process of the proposed OBC is presented in

Algorithm 1.

Scalable classification of single-cell trajectories

In the previous section, the exact solution for the optimal

Bayesian classifier is introduced. However, for large sys-

tems with a large number of state variables, the exact com-

putation of Algorithm 1 becomes impractical. This is due

to the large transition matrix with 22n elements required

to compute the log-likelihoods, leading to exponential

computational and memory complexity. Thus, the key

here is to scale up the OBC for single-cell trajectories

by reducing both computational and memory complexity

when computing (10).

We adopt the Sequential Monte-Carlo (SMC) tech-

niques [23–27] for estimating nonlinear state-space mod-

els, such as our POBDS here. These techniques approxi-

mate the target distribution using sample points (“parti-

cles”) drawn from a proposal distribution, taking advan-

tage of the fact that sampling from the proposal distri-

bution is easier than from the target. This helps alleviate

the high computation of the exact filter by using a finite

set of Monte-Carlo samples. In this paper, we use the

Auxiliary Particle Filter implementation of the Boolean

Kalman Filter (APF-BKF) proposed in [16] to deal with

large GRNs.

Let Y1:T be a given trajectory and the goal is to approx-

imate the likelihood function in Eq. (10) (i.e., Lθ
c (Y1:T ) for

class c ∈ {0, 1} and θ ∈ �). Let there be N total particles

{xk−1,i}Ni=1, with their associated weights {wk−1,i}Ni=1. The

particle filter allows us to produce an approximation for

the elements in �
θ ,c
k|k of (12), simply by using the discrete

support of the particles

Pθ (Xk |Y1:k , c)

∝ pθ (Yk |Xk , c)

N
∑

i=1

Pθ (Xk |xk−1,i, c)wk−1,i.
(18)

Usually only a few particles have significant weights after

a few iterations of the algorithm and most particles have

negligible weights. APF-BKF is a look-ahead method that

predicts the location of particles with a high probability at

time k based on the observations at time step k − 1, with

the purpose of making the subsequent resampling step

more efficient. Without the look-ahead, the basic algo-

rithm blindly propagates all particles, even those in low

probability regimes.

The APF-BKF algorithm defines:

Pθ (Xk , ζk |Y1:k , c)

∝ pθ (Yk |Xk , c)Pθ (Xk |xk−1,ζk , c)wk−1,ζk ,
(19)

where ζk = 1, . . . ,N , is an index of the mixture in (18). If

we draw from the joint density and then discard the index,

then we will have a sample from (18) as required. This pro-

cedure carries out the prediction and update steps of the

optimal filter in (17). We can approximate (19) by

Pθ (Xk , ζk |Y1:k , c)

∝ pθ (Yk |μk,ζk , c)Pθ (Xk |xk−1,ζk , c)wk−1,ζk ,
(20)
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Algorithm 1 Optimal Bayesian Classification of Single-

Cell Trajectories

Training Process

1: Compute the steady-state distribution �
θ ,c
0|0 = π∞

θ ,

θ ∈ �, c = 0, 1 [9].

2: for d ∈ {1, . . . ,Dc} do
3: for c ∈ {0, 1} do
4: for θ ∈ � do

5: Lθ
c

(

Y
(d)
c

)

← Log-Lik
(

θ , c,Y
(d)
c ,π∞

θ

)

6: end for

7: end for

8: end for

Test Process

9: for c ∈ {0, 1} do
10: for θ ∈ � do

11: Lθ
c (Y) ← Log-Lik

(

θ , c,Y ,�∞
θ

)

12: end for

13: τ c�(Y) =
∑

θ∈�

exp
(

∑Dc
d=1 L

θ
c

(

Y
(d)
c

))

π(θ |c) exp
(

Lθ
c (Y)

)

∑

θ ′∈� exp
(

∑Dc
d=1 L

θ ′
c

(

Y
(d)
c

))

π(θ ′|c)

14: end for

15: ψOBC(Y) =
{

0 if p0 τ 0�(Y) ≥ (1 − p0) τ 1�(Y)

1 otherwise
.

Log-Lik (θ , c,Y1:T ,π0|0)

1: Lθ
c = 0.

2: for k = 1, 2, . . . , do

3: β
θ ,c
k =Tθ ,c

k (Yk)M
θ ,c
k �

θ ,c
k−1|k−1.

4: �k|k = β
θ ,c
k /||βθ ,c

k ||1.

5: Lθ
c = Lθ

c + log||βθ ,c
k ||1.

6: end for

Return (Lθ
c )

where μk,i is the mode associated with the density of

Pθ (Xk | xk−1,i, c), given by [16]:

μk,i = Mode[Xk | xk−1,i, θ , c] = fcθ (xk−1,i) , (21)

for i = 1, . . . ,N , where we have used (1) and the fact that

the noise is zero-mode (i.e., the Bernoulli noise intensity p

is smaller than 0.5).

By simulating the index with the probability vk,i =
pθ (Yk | μk,i, c)wk−1,i, we can sample from Pθ (Xk , ζk |
Y1:k , c) and then sample from the transition density given

the mixture, Pθ (Xk | xk−1,i, c).

Actually, we simulate only from particles associated

with large predictive likelihoods. We first sample N times

from the joint density of Pθ (Xk , ζk | Y1:k , c), and then

obtain the new particles {xk,i}Ni=1 and their associated

weights {wk,i}Ni=1 by

xk,i = μk,ζk,i ⊕ nk,i ∼ Pθ (Xk | xk−1,ζk,i , c),

wk,i = pθ (Yk | xk,i, c)
pθ (Yk | μk,ζk,i , c)

, i = 1, . . . ,N .
(22)

The auxiliary variables {ζk,i}Ni=1 are obtained by sampling

from a discrete distribution:

{ζk,i}Ni=1 ∼ Cat
(

{vk,i}Ni=1

)

, (23)

where Cat(a1, . . . , aN ) represents a categorical distribu-

tion with the probability mass function f (ζ = i) =
ai/
∑N

j=1 aj.

It is shown in [16, 28] that the log-likelihood function

in (10) can be approximated by:

Lθ
c (Y1:T ) = pθ (Y1 | c) +

T
∑

k=2

log pθ (Yk | Y1:k−1, c)

≈
T
∑

k=1

log

[(

1

N

N
∑

i=1

vk,i

) (

1

N

N
∑

i=1

wk,i

)]

� L̂θ
c (Y1:T ),

(24)

where L̂θ
c (Y1:T ) denotes the approximation of Lθ

c (Y1:T ).

Note that the computational complexity of this algo-

rithm is of order O(NT) which can be much smaller than

O(22nT) that is the complexity of computing the exact

log-likelihood function in (10).

The whole process and the schematic diagram of the

proposed classifier are presented in Algorithm 2 and

Fig. 1, respectively. During the training process, 2MD0D1

particle filters need to be run for computing the log-

likelihood functions of trajectories from all network mod-

els in the uncertainty class for two classes. The output

values of the particle filters can be used for efficient

approximation of the posterior distribution in (9). Then,

during the test process, for a given test trajectory, 2M

particle filters need to be performed for log-likelihood

approximation of all network models (θ ∈ �) and classes

(c = 0, 1). These log-likelihood values and posterior prob-

ability approximated during the training process can be

used to derive the approximate OBC in (8).

The training process of the proposed method has the

computational complexity O(2NMTD0D1), whereas the

exact solution has the complexityO(22n+1MTD0 D1). The

exponential growth of the complexity with the size of

network (i.e., number of genes) for the exact solution pre-

cludes its application to large GRNs. However, the number

of particles, N, by the proposed method can be chosen

relatively small according to the attractor structure of
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Fig. 1 The schematic diagram of the proposed method

the system (i.e., N << 22n) [29], allowing the classifi-

cation of large-scale single-cell trajectories (see “Results

and discussion” section). The complexity of the test pro-

cess for the proposed method is O(2NMT), as opposed to

O(22n+1MT) for the optimal solution.

Optimal Bayesian classifier for multiple-cell scenarios

In the previous sections, the classification of single-

cell trajectories is discussed. Here, we consider com-

mon scenarios in molecular biology research where gene-

expression data are often based on the average expression

from multiple-cells at different time with different states.

Since the trajectories are assumed to be independent and

drawn based on the dynamics of the true network, its

steady-state distribution π∞
θ∗ characterizes the probability

of the system being at different states. It can be shown that

the multiple-cell data are independent samples from the

following measurement model [10]:

Y ∼ N

(

λ +
2n
∑

i=1

Dxiπ∞
θ∗,c(i), σ

2

)

, (25)

where {x1, . . . , x2n} denotes all the network states in the

Boolean vector representation. However, we assume that

the true network model θ∗, is unknown, and is rep-

resented by a finite set of M possible network mod-

els {θ1, . . . , θM} with prior probability π(θ | c). Let

Y
(1)
c , . . . ,Y

(Nc)
c be the multiple-cell training measurements

available for class c. The optimal Bayesian classifier for a

given test sample Y can be represented by

ψOBC(Y)=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

0 if p0E
θ |Y(1)

0 ,...,Y
(N0)

0 ,c=0
[ pθ (Y | c = 0)]

≥ (1 − p0)

×E
θ |Y(1)

1 ,...,Y
(N1)

1 ,c=1

[

pθ (Y |c = 1)
]

.

1 otherwise

(26)

The posterior probability of the parameter θ can be com-

puted as

P
(

θ | Y(1)
c , . . . ,Y(Nc)

c

)

= pθ (Y
(1)
c , . . . ,Y

(Nc)
c | c) π(θ | c)

∑

θ ′∈� pθ ′(Y
(1)
c , . . . ,Y

(Nc)
c | c) π(θ ′ | c)

=

(

∏Nc

d=1 pθ

(

Y
(d)
c | c

))

π(θ | c)
∑

θ ′∈�

(

∏Nc

d=1 pθ ′
(

Y
(d)
c | c

))

π(θ ′ | c)
.

(27)

Computation of (26) requires computing the conditional

probability of training and test samples given all θ ∈ � and

c ∈ {0, 1}. LetA be an n×2n matrix containing all Boolean

states of the system (i.e., A =
[

x1, . . . , x2
n]

). According

to (25), the conditional distribution of an arbitrary sample

Ỹ given class c and network model θ can be written as

Ỹ | c, θ ∼ (1 − Aπ∞
θ ,c) ◦ N (λ, σ 2In)

+ (Aπ∞
θ ,c) ◦ N (λ + D1n, σ

2In).
(28)

where “◦” is the Hadamard product. Thus, the Boolean

nature of the state vector suggests that each element of

the multiple-cell measurement is distributed as a mix-

ture of two Gaussian distributions. Replacing (27) and

(28) into (26) leads to the OBC for multiple-cell scenarios.

Comprehensive comparison results between the OBC in

single-cell trajectories and multiple-cells are provided in

the next section.

Results and discussion
We evaluate the proposed single-cell trajectory classifier

and compare its performance with the OBC based on

multiple-cell average expression on the T-LGL leukemia

Boolean network, whose GRN [17] is shown in Fig. 2.

This GRN has 18 genes. The regulating functions are

defined in Table 1 [17, 18]. The main node is “Apoptosis”,

which denotes programmed cell death. According to [17],
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Algorithm 2 Scalable Classification of Single-Cell Trajec-

tories
Training Process

1: Approximate the steady-state distribution, π∞
θ , θ ∈ �

by Monte-Carlo simulations.

2: for c ∈ {0, 1} do
3: for d ∈ {1, . . . ,Dc} do
4: for θ ∈ � do

5: L̂θ
c (Y

(d)
c ) ← APF-BKF

(

θ , c,Y
(d)
c ,π∞

θ

)

6: end for

7: end for

8: end for

Test Process

9: for c ∈ {0, 1} do
10: for θ ∈ � do

11: L̂θ
c (Y) ← APF-BKF (θ , c,Y ,π∞

θ )

12: end for

13: τ c�(Y) =
∑

θ∈�

exp
(

∑Dc
d=1 L̂

θ
c

(

Y
(d)
c

))

π(θ |c) exp(L̂θ
c (Y))

∑

θ ′∈� exp
(

∑Dc
d=1 L̂

θ ′
c

(

Y
(d)
c

))

π(θ ′|c)

14: end for

15: ψOBC(Y) =
{

0 if p0 τ 0�(Y) ≥ (1 − p0) τ 1�(Y)

1 otherwise
.

APF-BKF (θ , c,Y1:T ,π0|0) [16]

1: L̂θ
c = 0, x0,i ∼ π0|0,w0,i = 1/N , for i = 1, . . . ,N .

2: for k = 1, 2, . . . , do

3: μk,i = fcθ (xk−1,i), i = 1, . . . ,N .

4: vk,i = pθ (Yk | μk,i, c)wk−1,i, i = 1, . . . ,N .

5: {ζk,i}Ni=1 ∼ Cat
(

{vk,i}Ni=1

)

.

6: xk,i = μk,ζk,i ⊕ nk,i, i = 1, . . . ,N .

7: wk,i = pθ (Yk |xk,i,c)
pθ (Yk |μk,ζk,i

,c) , i = 1, . . . ,N .

8: L̂θ
c = L̂θ

c + log
[(

1
N

∑N
i=1 vk,i

) (

1
N

∑N
i=1 wk,i

)]

.

9: wk,i = wk,i/
∑N

j=1 wk,j, i = 1, . . . ,N .

10: end for

Return (L̂θ
c )

in the mutated case, the node Apoptosis is stuck at OFF

state and cannot be activated. As a result, we derive the

healthy Boolean network fromTable 1 and for themutated

Boolean network we put the value of Apoptosis in Table 1

to zero. This means that in the cancerous scenario, the

value of Apoptosis does not obey the regulating functions

and is always zero.

As we may not know the true network function, we con-

sider four candidate network functions for each of the

healthy and mutated networks as the uncertainty class of

possible GRN models. In addition to the true network,

we remove the operation ¬ of Apoptosis for the genes

sFas and GPCR, which are intermediate nodes. Therefore,

this network is very close to the true network. For the

third network, we remove ¬ of Apoptosis from two other

nodes IAP and P2. In the fourth network of this uncer-

tainty class, we change the operation AND to OR for the

gene BID. In this study, we use the observation models

described in Eqs. (3) and (25) for the single-cell trajectory

and multiple-cell averaging, respectively.

Figure 3a and b show the classification errors for the

simulated data based on the T-LGL leukemia Boolean

network versus the number of time points T for two val-

ues of state perturbation probability p = 0.05 and 0.1,

respectively. For the sake of simplicity, we assume the

gene-expression parameters in Eqs. (3) and (25) to be the

same for all genes, that are λ =[ λ, . . . , λ]T and D =
Diag(δ, . . . , δ), and set λ = 10, and δ = 30. Two differ-

ent values are considered for the observation noise level:

σ = 20 (low noise), and σ = 25 (high noise). While

σ corresponds to both within subject and between sub-

ject variations in the single-cell, it shows between subject

variation in the multiple-cell because multiple-cells would

allow to average out the within subject variance. We set

the number of training trajectories D = Dc=0 + Dc=1 =
4. In both figures, the error curves are monotonically

decreasing in terms of the trajectory length T for the

single-cell classifier. There is a special case in which the

error gets fixed after some T. This may be explained by

the effect from the steady-state distributions depending

on the lengths of attractor cycles of the networks under

study. When the perturbation noise p and the observa-

tion noise σ are small, the sufficient T to achieve the least

possible error is L + 1, where L is the minimum attrac-

tor length in the two networks. More precisely, the BNps

tend to the deterministic BNs when the perturbation noise

is small, meaning that the observations occur only in the

attractor states and circulate inside the attractor cycles. In

such a case, L + 1 is the maximum length of a trajectory

that can help distinguish the two networks. But there is a

nonnegligible probability of jumping states in the consid-

erable perturbation scenarios, so that longer trajectories

can be helpful. In all figures for every value of T and p, the

error increases with increasing observation noise. While

the proposed classifier works in both low- and high-noise

scenarios, the classifier based on the multiple-cell expres-

sion data only works well in the low-noise scenarios and

is very sensitive to σ . In low observation noise scenar-

ios and when p = 0.05, multiple-cell classifier can easily
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Fig. 2 T-LGL leukemia gene regulatory network

classify, while the trajectory-based with two time-points

will have a little bit higher error due to the common short

segments of the trajectories between two classes. When

there are at least four time-points, which is the attractor

cycle size in the uncertainty class of the networks, the per-

formance of the classifiers based on single-cell trajectories

is better compared to the ones using multiple-cell even in

the low-noise scenarios. Increasing the number of time-

points help better decipher the difference in single-cell

trajectories between two classes (healthy vs. cancerous)

with improved classification accuracy. Compared to the

multiple-cell classifier based on averaged gene expression

over cells at different states, the trajectory based classi-

fier can clearly improve the classification performance.

Even using four time points, the classification accuracy

can be improved up to 8%. Using longer trajectories, the

improvement can be up to 18% as indicated in Fig. 3.

In addition to the effect of trajectory length, we would

like to investigate how the number of training trajectories

affect the performance of the proposedmethod, especially

with a low number of training samples. Figure 4 shows

the effect of the number of training trajectories D on the

Table 1 Definitions of Boolean functions for the T-LGL leukemia

Boolean network with 18 nodes [17, 18]

Node Regulating function

CTLA4 TCR ∧ ¬ Apoptosis

TCR ¬ (CTLA4 ∨ Apoptosis)

CREB IFNG ∧ ¬ Apoptosis

IFNG ¬ (SMAD ∨ P2 ∨ Apoptosis)

P2 (IFNG ∨ P2) ∧ ¬ Apoptosis

GPCR S1P ∧ ¬ Apoptosis

SMAD GPCR ∧ ¬ Apoptosis

Fas ¬ (sFas ∨ Apoptosis)

sFas S1P ∧ ¬ Apoptosis

Ceramide Fas ∧ ¬ (S1P or Apoptosis)

DISC (Ceramide ∨ (Fas ∧ ¬ FLIP)) ∧ ¬ Apoptosis

Caspase ((BID ∧ ¬ IAP) ∨ DISC) ∧ ¬ Apoptosis

FLIP ¬ (DISC ∨ Apoptosis)

BID ¬ (MCL1 ∨ Apoptosis)

IAP ¬ (BID ∨ Apoptosis)

MCL1 ¬ (DISC ∨ Apoptosis)

S1P ¬ (Ceramide ∨ Apoptosis)

Apoptosis Caspase ∨ Apoptosis
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Single-cell trajectories  = 25

Single-cell trajectories  = 20

Multiple-cell trajectories  = 25

Multiple-cell trajectories  = 20

2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25
Single-cell trajectories  = 25

Single-cell trajectories  = 20

Multiple-cell trajectories  = 25

Multiple-cell trajectories  = 20

Fig. 3 Classification errors using the trajectory and multiple-cell

classifiers in the T-LGL leukemia Boolean network. a The parameter is

p = 0.05, b The parameter is p = 0.1

classification performance. In the particle filter point of

view, increasing D by 1 means increasing the available

data as T. Therefore, we set T = 2, that is smallest T,

to better see the trend of classification error. Both the

average error and its standard deviation decrease with

more training trajectories and the classification error con-

verges to a fixed value whenD becomes large enough. The

value of D required for a converged error rate depends

on the parameters T, p, and M. In real-world scenarios

that may have significant uncertainty and the perturbation

probability is high, we need more training data to improve

the performance.

Figure 5 illustrates how the model uncertainty may

affect the classification performance. In our setup, the

uncertainty is manifested as the size of the network uncer-

tainty class – the number of uncertain networks for

2 4 6 8 10
0.1

0.12

0.14

0.16

0.18

0.2

0.22

Fig. 4 Classification error of the single-cell classifier versus training

sample size for the T-LGL leukemia Boolean network

each class. In both perturbation probabilities, the error

increases with increasingM. To demonstrate how the pro-

posed method can reduce the computational cost of the

Boolean network classification, we check the change of

the average classification error with respect to the number

of particles. Figure 6 shows that increasing the number of

particles monotonically decreases the classification error

and the average error converges with only 1000 particles.

This can be compared with the traditional method [9],

which needs computation based on the 218×218 transition

0.05 0.1
0

0.1

0.2

Fig. 5 Classification errors using the single trajectory classifier in the

T-LGL leukemia Boolean network versus the number of uncertain

networks
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probability matrix. Such a dimension is too large for the

direct application of the OBC.

To more comprehensively evaluate the proposed

method, we have compared it with two other classification

methods, i.e. IRB [11] and Plug-In [10]. The performance

comparisons under four different scenarios are provided

in Table 2. The OBC stands out as the best performing

method in different scenarios. Using OBC improves the

accuracy by 8.5% and 1.5% with T = 3 for p = 0.1 and

σ = 25 compared to Plug-In and IRB, respectively.

The proposed method does not have any restriction on

the noise distribution assumptions due to the generaliz-

ability of particle filters. To show this, we also test our

method with different noise distributions.While the noise

of GRNs is usually Gaussian, sometimes due to up regu-

lation, noise can be Poisson or Negative Binomial (NB).

We have simulated Gaussian and NB noise distributions

with the same mean and variance while for Poisson noise,

the variance is equal to its mean (Details can be found

in Additional file 1, the additional experimental results).

Additional file 1: Figure S1 shows that our method per-

forms consistently well for all observation noises. The

Poisson results are superior to the other models as its

variance is smaller.

We also compare the performance of APF with the plain

Sequential Importance Resampling (SIR) in high process

noise. As Additional file 1: Figure S2 shows, the perfor-

mance is similar especially when there is enough time

points. When the number of time points is low, the SIR-

based particle filter performs worse. The superior per-

formance of APF in real-world GRNs is due to the fact

that the size of attractors is usually small and the pre-

dicted mode values by APF can be a good approximation

for the next prediction. Moreover, the initial distribution

10
0

50
0

1K 5K
0.06

0.08

0.1

0.12

0.14

0.16

0.18
T = 4

T = 6

Fig. 6 Classification errors using the trajectory based classifier in the

T-LGL leukemia Boolean network versus the number of particles

Table 2 Trajectory based classification results for high-noise

scenario (σ = 25)

(p = 0.05) (p = 0.1)

Method T = 3 T = 7 T = 3 T = 7

Plug-In 0.1777 0.0922 0.2524 0.1774

IBR 0.1384 0.0723 0.1800 0.0750

OBC 0.1173 0.0674 0.1643 0.0646

The achieved best accuracy is highlighted in boldface

is assumed to be from the stationary distribution. This

makes APF a more desirable approximation solutions due

to the lower diversity in the particles.

Conclusions
In this paper, we have developed the optimal Bayesian

classifier for binary classification of single-cell trajecto-

ries under regulatory model uncertainty. The partially-

observed Boolean dynamical system is used for modeling

the dynamical behavior of gene regulatory networks. Due

to the intractability of the OBC for large GRNs, we have

proposed a particle filtering technique for approximat-

ing the OBC. This particle-based solution reduces the

computational and memory complexity of the optimal

solution significantly. The performance of the proposed

particle-based method is demonstrated through numeri-

cal experiments using a POBDS model of the well-known

T-cell large granular lymphocyte (T-LGL) leukemia net-

work based on noisy time-series gene-expression data.

Additional file

Additional file 1: This additional file contains the additional experiment

results. (PDF 229 kb)
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