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Abstract

noisy time-series gene-expression data.

networks

Background: Single-cell gene expression measurements offer opportunities in deriving mechanistic understanding
of complex diseases, including cancer. However, due to the complex regulatory machinery of the cell, gene regulatory
network (GRN) model inference based on such data still manifests significant uncertainty.

Results: The goal of this paper is to develop optimal classification of single-cell trajectories accounting for potential
model uncertainty. Partially-observed Boolean dynamical systems (POBDS) are used for modeling gene regulatory
networks observed through noisy gene-expression data. We derive the exact optimal Bayesian classifier (OBC) for
binary classification of single-cell trajectories. The application of the OBC becomes impractical for large GRNs, due to
computational and memory requirements. To address this, we introduce a particle-based single-cell classification
method that is highly scalable for large GRNs with much lower complexity than the optimal solution.

Conclusion: The performance of the proposed particle-based method is demonstrated through numerical
experiments using a POBDS model of the well-known T-cell large granular lymphocyte (T-LGL) leukemia network with

Keywords: Optimal Bayesian classification, Single-cell trajectory classification, Particle filter, Probabilistic Boolean

Background
A key issue in genomic signal processing is to classify
normal versus cancerous cells, different stages of tumor
development, or different prospective drug response. Pre-
vious gene-expression technologies, such as microarray
and RNA-Seq, typically measure the average behavior
of tens of thousands of cells [1, 2]. By contrast, the
recent advances in next-generation sequencing technolo-
gies have allowed in-depth investigation of the transcrip-
tome at a single-cell resolution [3, 4].

Gene regulatory networks (GRNs) govern the function-
ing of key cellular processes, such as stress response, DNA
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repair, and other mechanisms involved in complex dis-
eases such as cancer. Often, the relationship among genes
can be described by logical rules updated at discrete time
intervals with each gene have Boolean states: 0 (OFF)
or 1 (ON) [5]. The Partially-Observed Boolean dynam-
ical system (POBDS) model [6-8] is a rich framework
for modeling the behavior of GRNs observed through
contemporary gene-expression technologies, as it allows
indirect and incomplete observation of gene states. Sev-
eral tools for the POBDS model have been developed in
recent years, such as the optimal filter and smoother based
on the Minimum Mean Square Error (MMSE) criterion,
termed as the Boolean Kalman filter (BKF) and Boolean
Kalman smoother (BKS) [6], respectively.
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In [9] and [10], the maximum-likelihood (ML) based
classification of single-cell trajectories has been devel-
oped. The method uses the ML-adaptive filter proposed in
[6] for estimation of the unknown parameters, followed by
the Bayes classifier tuned to the ML parameter estimates.
The drawback of this method is its inability to use prior
knowledge in deriving the classifier. In [11], the intrinsi-
cally Bayesian robust (IBR) classifier for the trajectories
is developed. This IBR classifier is optimal relative to the
prior distribution of unknown parameters.

In this paper, assuming that there are two classes,
healthy (¢ = 0) and cancerous (¢ = 1), we derive the
optimal Bayesian classifier (OBC) [12, 13] for classifica-
tion of single-cell trajectories. The difference between the
OBC and IBR classifiers is that in the OBC the expec-
tation of the class-conditional densities is taken over the
posterior distribution of the unknown parameters [14, 15],
whereas in the IBR classifier the expectation is taken over
the priors.

Despite the optimality of the developed OBC for single-
cell trajectories, its exact computation for large GRNs
becomes intractable, due to the large size of the matri-
ces involved. In this paper, we develop a particle-based
OBC to scale up the classification of single-cell trajecto-
ries. The proposed method contains a bank of Auxiliary
Particle-Filter implementations of the Boolean Kalman
Filter (APF-BKF) proposed in [16], for both training and
test processes.

Our contributions are twofold: 1) Optimal Bayesian
Classification: we derive the optimal Bayesian classi-
fiers (OBC) for both single-cell gene expression tra-
jectories and multiple-cell averaged gene expression
with uncertain regulatory network prior; and 2) Scal-
ability: the parallel particle filters together with the
Monte-Carlo inference have been efficiently used to esti-
mate the likelihood and stationary distributions, mak-
ing the derived OBC scalable to larger gene regulatory
networks.

We apply the APF-BKF-based OBC to classify trajec-
tories of the blood cancer T-cell large granular lympho-
cyte (T-LGL) leukemia. T-LGL leukemia is a chronic
disease characterized by a clonal proliferation of cyto-
toxic T cells [17]. A Boolean network model of T cell
survival signaling in the context of T-LGL leukemia has
been constructed by [18] through performing extensive
literature search. Then the T-LGL network has been
simplified by [17], which constructs the minimum net-
work that preserves the attractor structure of that system.
The reduced network contains 18 genes, which has an
optimal solution with a transition matrix with 22*18 =
68,719,476,736 elements. By contrast, as we will show
in our numerical experiments, the proposed APF-BKF-
based method captures T-cell dynamics with only 1000
particles.
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Methods

Gene regulatory network model

Gene regulatory networks are modeled as partially-
observed Boolean dynamical systems (POBDS). The two
components of the POBDS model are a state space model
that describes the evolution of the dynamics of the GRN,
and an observation model for the measurements. These
two components are described below.

GRN state space model

The state process {X;k=0,1,...}, where Xy € {0,1}",
represents the activation (ON)/inactivation (OFF) state
for the corresponding gene across time. The state at each
discrete time is assumed to be updated through the non-
linear signal model

Xi = f(Xp—1) &y, (1)

for k = 1,2,..., where f : {0,1}" — {0,1}" is a
Boolean function called the network function, “®” indi-
cates component-wise modulo-2 addition, and n; €
{0, 1}" is Boolean transition noise at time k. The modulo-2
addition means that if a bit in the noise ny is 1, the value of
the corresponding gene in the Boolean state Xy is flipped.
In this paper, the noise process ny is assumed to have inde-
pendent components distributed as Bernoulli(p), where
the parameter p > 0 models the noise “intensity” — the
closer p is to 0.5, the more chaotic the system will be,
while a value of p close to zero means that the state trajec-
tories are nearly deterministic, being governed tightly by
the network function and perturbation process. The net-
work possesses a steady-state distribution 7°° describing
its long-run behavior as:

7% = lim [P(Xk =xl'),...,P(xk =x2”)]T, 2)

where {xl, ... ,xzn} denotes the set of the corresponding

network states in the Boolean vector representation.

Observation model
The data available to the experimenter is described by
the observation process {Yi;k = 1,2,...}, where Y, =

(Yi(1),...,Yr(n)) is a vector containing the transcript
abundance measurements at time k, for k = 1,2,.... We
consider a Gaussian linear model

Y. =A+DXp+vi, k=1,2,..., (3)

where vy ~ N(0,021,) is an uncorrelated zero-mean
Gaussian noise vector, A = [A1,...,A,]7 is a vector of
baseline gene expressions corresponding to the “zero”
state for each gene, and D = Diag(dy, . . .,d,) is a diagonal
matrix containing differential expression values for each
gene along the diagonal (these indicate by how much the
“one” state of each gene is overexpressed over the “zero”
state). Such a Gaussian linear model is an appropriate
model for single-cell gene-expression data [19, 20].
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Optimal Bayesian classifier (OBC) for single-cell trajectories
Assume there are two POBDSs corresponding to the
healthy and cancerous (mutated) classes, each having n
genes. The difference between the healthy and mutated
classes could be the over-expression or disruption of a
value of single or multiple genes in the mutated case. Let

Y¢ = [ DY@ C(D‘)] be the set of D, observed
trajectories from class ¢, c = 0,1. Let ® = (01,...,0m)
be the uncertainty set of M network functions contain-
ing the unknown true network functions in (1), indicating

M possible Boolean functions as [fg U 4 } consider-
1 ‘M

ing the regulatory model uncertainty for the class c. The
prior probability of the model 0 for the class c is repre-
sented by 7 (6 | c), where Zf\il w0 | ¢) = 1, forc =
0, 1. This uncertainty could arise due to some unknown
regulations (i.e. interactions) between some genes in the
pathway diagram (more information in “Results and dis-
cussion” section). We wish to derive the optimal Bayesian
classifier (OBC) under uncertainty using all available data
and prior knowledge.

If the feature-label distribution is unknown but belongs
to an uncertainty class ® of feature-label distributions,
then we desire a classifier to minimize the expected error
over the uncertainty class. This expected error is equiv-
alent to the Bayesian minimum mean-square-error esti-
mate [21] given by €(y) = Egye [ €(¥,0)], where €(/,0)
is the error of ¢ on the feature-label distribution parame-
terized by 0 and the expectation is taken over the posterior
distribution of parameters 7 (6 | Y, ¢),c =0, 1.

For a given test trajectory ), the OBC, minimizing the
Bayesian minimum mean-square error estimate, can be
obtained as

0 if p° Egyo .—o[po(Y | ¢ = 0)] >
(1=p°) Egpyr o1 [po(Y [ c=D)].
1 otherwise

Yopc(Y) =

(4)

where pg(.) denotes a probability density function corre-
sponding to parameter 6, p° is the prior probability of class
0 and

Egyveclpo 10l = Y poV10m® Y50, (5
0e®
forc =0,1.
Derivation of (5) requires computing the posterior dis-

tribution

po (Y| o)m (8 | o)
Y peopo (Y| Om© | ¢)
where 7(0 | c¢) denotes the prior probability of the
corresponding network model 6 for class c. For an arbi-
trary trajectory ), we define the log-likelihood function
associated to model 0 and class ¢ by

7| Y ¢) = (6)
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LYY) = logpe(V | ©). )

Now, using the above definition in (4)-(6) leads to the
following exact OBC solution:

0 if p73(V) > (1 — pO)td (V)
1 otherwise ’

Yopc(Y) = { (8)

where

16 (V) = Egjyec [po YV | 0]
=) m@|Y5)pe(Y |0

0 (Yl (0lc)

Po
o py (Clom@ial? (V1) ©)

exp( L0, L () ) w6l
B 00 2 0'co exp(Zﬁ’il Ly ()fc(d)))n(é’lc)

x exp(LZ ().

0e®

The expectation in (9) is taken with respect to the pos-
terior distribution of 6, i.e. 7 (0|Y¢,c), as opposed to IBR
classifier [11] that considers the prior distribution 7 (6|c).
Furthermore, logps(Y¢ | ¢) = ZdD;l log p( C(d) | 9,0)
is used in (9) due to the independency of the training
trajectories.

As shown in Eq. (8), the OBC requires computing the
log-likelihood functions of all training trajectories and test
trajectory for both classes and 6 € ©. Let {xl, . .,xzn}
denote the corresponding network states in the Boolean
vector representation and Y1.7 = (Y1,...,Yr) be a single
trajectory of length T. The log-likelihood function can be
computed as

LY (Yr.1) =logpe (Y11 | ©)

d (10)
=logps (Y1 | )+ _logps (Y | Yr—1,0),
k=2

where based on the POBDS model,

po(Yi | Yi_1,0)
" ) ‘
=Y po (Yi | Xp =x,¢) Py (Xg =x' | Y1, )
=1
LG ‘
= Po (Yk | Xi =X, C)
=1
L 2;1 ‘ ‘
x ) Po(Xy =x' | Xp—1 =%,0)
j=1 ,
xPy(Xp—1 =¥ | Y14-1,0).

(11)

Define the conditional probability of any network state
at time step k for the model 8 and class c as

., T
HZ]Z:[P@(xkle | Y1:krc)""’P9<Xk =x" | i C)] ’

(12)
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Using (11) and (12), the log-likelihood function in (10) can
be written in a compact form as [22]

, (13)

T
L) = Y log | TP YoMpen®s|

k=1

where ||.||; denotes L; norm, indicating the summation
in (10). Mz’c is the transition matrix of the Markov state
process corresponding to model 6 € ®, with entries given

by:
(MZ’C> =Py (Xk=x | Xp_y =¥, 0)
y . . . .
_ pIEEEX (] _ -l @il
ij=1,...,2",

(14)

with p denoting the Bernoulli noise parameter. T,f’c (Yy) is
a diagonal matrix, called the update matrix, with the ith
diagonal element given by

(T8°X0) . = po(XulXe = ' 0)

n n PN U e 2 2
)exp _ 3 () = — 3x49)

202

j=1
(15)

for i = 1,...,2", where §; and A; are gene-expression
parameters associated to the jth gene in class c as defined
in (3). Notice that the initial distribution Hgf) = mge is
the steady-state distribution associated to model 8 and the
class ¢ defined as

W \1T
7% = lim [pg (Xx =x'c),..., Py (Xk:x2 |c>] .

c
’ k— 00

(16)

This vector can be either computed exactly as introduced
in [9] or approximated by creating multiple Monte-Carlo
trajectories with relatively long horizons.

The posterior distribution can also be recursively com-
puted according to the transition and update matrices as
described in [6]:

TP (Y) MO TIO¢

n%<k|k =
H TOC (Y ) MO“TIO ¢

, k=1,2,.... (17

1

The complexity of computing the log-likelihood function
for a single trajectory of length T is of order O(2%" x T)
due to the transition matrix involved in its computation.
The whole process of the proposed OBC is presented in
Algorithm 1.

Scalable classification of single-cell trajectories

In the previous section, the exact solution for the optimal
Bayesian classifier is introduced. However, for large sys-
tems with a large number of state variables, the exact com-
putation of Algorithm 1 becomes impractical. This is due
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to the large transition matrix with 22" elements required
to compute the log-likelihoods, leading to exponential
computational and memory complexity. Thus, the key
here is to scale up the OBC for single-cell trajectories
by reducing both computational and memory complexity
when computing (10).

We adopt the Sequential Monte-Carlo (SMC) tech-
niques [23-27] for estimating nonlinear state-space mod-
els, such as our POBDS here. These techniques approxi-
mate the target distribution using sample points (“parti-
cles”) drawn from a proposal distribution, taking advan-
tage of the fact that sampling from the proposal distri-
bution is easier than from the target. This helps alleviate
the high computation of the exact filter by using a finite
set of Monte-Carlo samples. In this paper, we use the
Auxiliary Particle Filter implementation of the Boolean
Kalman Filter (APF-BKF) proposed in [16] to deal with
large GRNE.

Let Y1.7 be a given trajectory and the goal is to approx-
imate the likelihood function in Eq. (10) (i.e., Lf (Yy1.7) for
class ¢ € {0,1} and 6 € ©). Let there be N total particles
{xk_l,,«}ﬁl, with their associated weights {wk_l,i}fil. The
particle filter allows us to produce an approximation for
the elements in H%; of (12), simply by using the discrete
support of the particles

Py(Xy | Y1:450)
N (18)

o po (Y| Xp; ©) Z Py (Xp | Xpe—1,i €) Wk—1,i-
i=1

Usually only a few particles have significant weights after
a few iterations of the algorithm and most particles have
negligible weights. APF-BKF is a look-ahead method that
predicts the location of particles with a high probability at
time k based on the observations at time step k — 1, with
the purpose of making the subsequent resampling step
more efficient. Without the look-ahead, the basic algo-
rithm blindly propagates all particles, even those in low
probability regimes.
The APF-BKEF algorithm defines:

Py (X S 1 Y1k ©)

19
¢ pg (Y | Xpr €) Py (X | Xp—1,005 €) Wk—1,¢; 5 19)
where ¢ = 1,...,N, is an index of the mixture in (18). If
we draw from the joint density and then discard the index,
then we will have a sample from (18) as required. This pro-
cedure carries out the prediction and update steps of the
optimal filter in (17). We can approximate (19) by

Po(Xp, Sxc 1 Y14 €)

(20)
o po (Yi | iz ©) Po(Xge | Xp—1,605 €) Wr—1,¢, 5
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Algorithm 1 Optimal Bayesian Classification of Single-
Cell Trajectories

Training Process

1: Compute the steady-state distribution Hg]g = n5°,

fe®,c=01[9].
2 ford e {1,...,D.} do
3: forc € {0,1} do
4 for9 € ® do
5: L ( C(d)) < Log-Lik (9,c, C(d),ngo>

6: end for
7: end for
8: end for

Test Process
9: forc € {0,1} do
10: for6 € ® do
11: L%(Y) < Log-Lik (0,¢, Y, TIY)
12: end for
B E0) = Yo exp( L5, L(%”)) il exp(L ()
Toreoe(X0% L8 (V) 7’10

d=1"¢c

14: end for

i 0.0 _ 0 1
onc) ={§ O 2 (1= w00

1 otherwise

—
w

Log-Lik (9, ¢, Y1.7, 70)0)

1 LY =o.

2 fork=1,2,...,do

¥ B =T YO M Iy
& M= B°/11BL

5 L{ =L} +log||B Il

6: end for

Return (Lg)

where pu; is the mode associated with the density of
Py (Xg | Xk—1,i>€), given by [16]:

Mki = Mode[ Xy | X¢—1,;,0,¢] = £5(x—1,1) (21)

fori =1,...,N, where we have used (1) and the fact that
the noise is zero-mode (i.e., the Bernoulli noise intensity p
is smaller than 0.5).

By simulating the index with the probability vx; =
oYk | Mk €) Wi—1,, we can sample from Pg(Xy, ¢x |
Y14 ¢) and then sample from the transition density given
the mixture, Py Xy | Xg—1,;» €).

Actually, we simulate only from particles associated
with large predictive likelihoods. We first sample N times
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from the joint density of Py(Xk, ¢x | Y14 ¢), and then
obtain the new particles {xk,i}fi ; and their associated
weights {Wk,i}f\i 1 by

Xii = Mg © Mii ~ PoXk | Xk—1,6,,€)s

Y, | x5 C
w = LN © gy

Po(Yi |ty 0

(22)

The auxiliary variables {;k,,-}fi | are obtained by sampling
from a discrete distribution:

(Gt ~ Cat (e )Y)

where Cat(ay,...,ay) represents a categorical distribu-
tion with the probability mass function f(¢ = i) =
a,-/ Z;Z\il a;.

It is shown in [16, 28] that the log-likelihood function
in (10) can be approximated by:

(23)

T

LI(Y1r) =po(Y1 | ©) + ) _logps(Yx | Yix-1,0)
k=2

o] i 2m) ()

210 (Yir),
(24)

where if (Y1.7) denotes the approximation of Lf Y1.7).
Note that the computational complexity of this algo-
rithm is of order O(NT) which can be much smaller than
O(2?"T) that is the complexity of computing the exact
log-likelihood function in (10).

The whole process and the schematic diagram of the
proposed classifier are presented in Algorithm 2 and
Fig. 1, respectively. During the training process, 2MDyD;
particle filters need to be run for computing the log-
likelihood functions of trajectories from all network mod-
els in the uncertainty class for two classes. The output
values of the particle filters can be used for efficient
approximation of the posterior distribution in (9). Then,
during the test process, for a given test trajectory, 2M
particle filters need to be performed for log-likelihood
approximation of all network models (¢ € ®) and classes
(c = 0,1). These log-likelihood values and posterior prob-
ability approximated during the training process can be
used to derive the approximate OBC in (8).

The training process of the proposed method has the
computational complexity O(2NMTDyD;), whereas the
exact solution has the complexity O(22"+*1MTDq D;). The
exponential growth of the complexity with the size of
network (i.e., number of genes) for the exact solution pre-
cludes its application to large GRNs. However, the number
of particles, N, by the proposed method can be chosen
relatively small according to the attractor structure of



Hajiramezanali et al. BMC Genomics 2019, 20(Suppl 6):435

Page 6 of 11

Fig. 1 The schematic diagram of the proposed method

the system (i.e., N << 227) [29], allowing the classifi-
cation of large-scale single-cell trajectories (see “Results
and discussion” section). The complexity of the test pro-
cess for the proposed method is O(2NMT), as opposed to
0¥+ MT) for the optimal solution.

Optimal Bayesian classifier for multiple-cell scenarios

In the previous sections, the classification of single-
cell trajectories is discussed. Here, we consider com-
mon scenarios in molecular biology research where gene-
expression data are often based on the average expression
from multiple-cells at different time with different states.
Since the trajectories are assumed to be independent and
drawn based on the dynamics of the true network, its
steady-state distribution 7Y characterizes the probability
of the system being at different states. It can be shown that
the multiple-cell data are independent samples from the
following measurement model [10]:

2}1
Y~ N (x + ) DX’ (), 02> , (25)

i=1

where {x1, ... ,x2”} denotes all the network states in the
Boolean vector representation. However, we assume that
the true network model 6%, is unknown, and is rep-
resented by a finite set of M possible network mod-
els {01,...,0p} with prior probability 7(0 | c¢). Let
Ygl), ey YEN”) be the multiple-cell training measurements
available for class c¢. The optimal Bayesian classifier for a
given test sample Y can be represented by

,,,,,

>(1-p)
XE0|Y§1),.~,Y(1N1>,C=1 [PG Xl]ec= 1)] .
1 otherwise

Yopc(Y)= (26)

The posterior probability of the parameter 6 can be com-
puted as

61D, YN)
po Y YN oy m ] o)
Yocoror X, YN oy m@ | o)
(I, 2o (Y9 1)) n@ 1 0)
Yoeo (T 2o (Y9 1)) 7@ 1o

Computation of (26) requires computing the conditional
probability of training and test samples given all & € ® and
¢ € {0,1}. Let A be an n x 2" matrix containing all Boolean
states of the system (ie, A = [x',..., xzn]). According
to (25), the conditional distribution of an arbitrary sample

Y given class ¢ and network model 6 can be written as

(27)

Y6 ~1-An) o N o™,

(28)
+ (A75%) o N(A + D1,,0%1,).

where “o0” is the Hadamard product. Thus, the Boolean
nature of the state vector suggests that each element of
the multiple-cell measurement is distributed as a mix-
ture of two Gaussian distributions. Replacing (27) and
(28) into (26) leads to the OBC for multiple-cell scenarios.
Comprehensive comparison results between the OBC in
single-cell trajectories and multiple-cells are provided in
the next section.

Results and discussion

We evaluate the proposed single-cell trajectory classifier
and compare its performance with the OBC based on
multiple-cell average expression on the T-LGL leukemia
Boolean network, whose GRN [17] is shown in Fig. 2.
This GRN has 18 genes. The regulating functions are
defined in Table 1 [17, 18]. The main node is “Apoptosis’,
which denotes programmed cell death. According to [17],
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Algorithm 2 Scalable Classification of Single-Cell Trajec-
tories

Training Process

1: Approximate the steady-state distribution, 75°,0 € ®
by Monte-Carlo simulations.

2: forc € {0,1} do
3: ford e {1,...,D.;} do
4 for9 € ® do
5: L) < APE-BKF (6,¢, 9%, 75)
6: end for
7: end for
8: end for
Test Process
9: forc € {0,1} do
10: for6 € ® do
11: L9(Y) < APE-BKF (0,¢, ), 1)
12: end for
o exp(X0%, 18 (%)) 7610 exp L (V)
13 165Q) =D o S exp(zﬁ,’; i (%@)) —

14: end for

i 0.0 _ 0 1
15 ¢OBC(y)={01fP oM = A -p) O

1 otherwise

APE-BKF (6, ¢, Y1.7, 7oj0) [16]

1 LY = 0,x0,; ~ 7oj0, wo,; = 1/N, fori=1,...,N.
2 fork=1,2,...,do

3 ki = £(xp—1,),i=1,...,N.

& Vi = po(Xp | i ) W18 =1,...,N.
5: (e, ~ Cat ().

6: Xki = Mg, @gipi=1,... ,N.

Po Y Ix,,€)
7 Wy = ki
ki = po Vil itz 0

s LV =1%+log [(]%[ SN vk,,») (]%, SN wk,i>].

N ,
9: Wk,i = Wk,i/ Zj:l Wk,j’ 1= 1, . ,N.

i=1,...,N.

10: end for
Return (Zg)

in the mutated case, the node Apoptosis is stuck at OFF
state and cannot be activated. As a result, we derive the
healthy Boolean network from Table 1 and for the mutated
Boolean network we put the value of Apoptosis in Table 1
to zero. This means that in the cancerous scenario, the
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value of Apoptosis does not obey the regulating functions
and is always zero.

As we may not know the true network function, we con-
sider four candidate network functions for each of the
healthy and mutated networks as the uncertainty class of
possible GRN models. In addition to the true network,
we remove the operation — of Apoptosis for the genes
sFas and GPCR, which are intermediate nodes. Therefore,
this network is very close to the true network. For the
third network, we remove — of Apoptosis from two other
nodes IAP and P2. In the fourth network of this uncer-
tainty class, we change the operation AND to OR for the
gene BID. In this study, we use the observation models
described in Egs. (3) and (25) for the single-cell trajectory
and multiple-cell averaging, respectively.

Figure 3a and b show the classification errors for the
simulated data based on the T-LGL leukemia Boolean
network versus the number of time points T for two val-
ues of state perturbation probability p = 0.05 and 0.1,
respectively. For the sake of simplicity, we assume the
gene-expression parameters in Egs. (3) and (25) to be the
same for all genes, that are A =[4,...,A]” and D =
Diag(s,...,8), and set A = 10, and § = 30. Two differ-
ent values are considered for the observation noise level:
20 (low noise), and o = 25 (high noise). While
o corresponds to both within subject and between sub-
ject variations in the single-cell, it shows between subject
variation in the multiple-cell because multiple-cells would
allow to average out the within subject variance. We set
the number of training trajectories D = D=0 4 D=1 =
4. In both figures, the error curves are monotonically
decreasing in terms of the trajectory length T for the
single-cell classifier. There is a special case in which the
error gets fixed after some 7. This may be explained by
the effect from the steady-state distributions depending
on the lengths of attractor cycles of the networks under
study. When the perturbation noise p and the observa-
tion noise o are small, the sufficient T to achieve the least
possible error is L 4+ 1, where L is the minimum attrac-
tor length in the two networks. More precisely, the BNps
tend to the deterministic BNs when the perturbation noise
is small, meaning that the observations occur only in the
attractor states and circulate inside the attractor cycles. In
such a case, L + 1 is the maximum length of a trajectory
that can help distinguish the two networks. But there is a
nonnegligible probability of jumping states in the consid-
erable perturbation scenarios, so that longer trajectories
can be helpful. In all figures for every value of T and p, the
error increases with increasing observation noise. While
the proposed classifier works in both low- and high-noise
scenarios, the classifier based on the multiple-cell expres-
sion data only works well in the low-noise scenarios and
is very sensitive to o. In low observation noise scenar-
ios and when p = 0.05, multiple-cell classifier can easily

o =
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Fig. 2 T-LGL leukemia gene regulatory network

classify, while the trajectory-based with two time-points
will have a little bit higher error due to the common short
segments of the trajectories between two classes. When
there are at least four time-points, which is the attractor
cycle size in the uncertainty class of the networks, the per-
formance of the classifiers based on single-cell trajectories
is better compared to the ones using multiple-cell even in
the low-noise scenarios. Increasing the number of time-
points help better decipher the difference in single-cell
trajectories between two classes (healthy vs. cancerous)
with improved classification accuracy. Compared to the
multiple-cell classifier based on averaged gene expression
over cells at different states, the trajectory based classi-
fier can clearly improve the classification performance.
Even using four time points, the classification accuracy
can be improved up to 8%. Using longer trajectories, the
improvement can be up to 18% as indicated in Fig. 3.

In addition to the effect of trajectory length, we would
like to investigate how the number of training trajectories
affect the performance of the proposed method, especially
with a low number of training samples. Figure 4 shows
the effect of the number of training trajectories D on the

Table 1 Definitions of Boolean functions for the T-LGL leukemia
Boolean network with 18 nodes [17, 18]

Node Regulating function

CTLA4 TCR A = Apoptosis

TCR — (CTLA4 v Apoptosis)
CREB IFNG A — Apoptosis

IFNG — (SMAD V P2 v Apoptosis)

P2 (IFNG v P2) A = Apoptosis

GPCR STP A = Apoptosis

SMAD GPCR A = Apoptosis

Fas = (sFas v Apoptosis)

sFas STP A = Apoptosis

Ceramide Fas A = (STP or Apoptosis)

DISC (Ceramide Vv (Fas A = FLIP)) A — Apoptosis
Caspase ((BID A = 1AP) v DISC) A = Apoptosis
FLIP — (DISC v Apoptosis)

BID = (MCL1 v Apoptosis)

IAP — (BID v Apoptosis)

MCL1 — (DISC v Apoptosis)

S1P — (Ceramide Vv Apoptosis)

Apoptosis Caspase Vv Apoptosis
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Fig. 3 Classification errors using the trajectory and multiple-cell

classifiers in the T-LGL leukemia Boolean network. a The parameter is
p = 0.05, b The parameterisp = 0.1

classification performance. In the particle filter point of
view, increasing D by 1 means increasing the available
data as T. Therefore, we set T = 2, that is smallest T,
to better see the trend of classification error. Both the
average error and its standard deviation decrease with
more training trajectories and the classification error con-
verges to a fixed value when D becomes large enough. The
value of D required for a converged error rate depends
on the parameters T, p, and M. In real-world scenarios
that may have significant uncertainty and the perturbation
probability is high, we need more training data to improve
the performance.

Figure 5 illustrates how the model uncertainty may
affect the classification performance. In our setup, the
uncertainty is manifested as the size of the network uncer-
tainty class — the number of uncertain networks for
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0.2
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Number of training trajectories (D)

Fig. 4 Classification error of the single-cell classifier versus training
sample size for the T-LGL leukemia Boolean network

each class. In both perturbation probabilities, the error
increases with increasing M. To demonstrate how the pro-
posed method can reduce the computational cost of the
Boolean network classification, we check the change of
the average classification error with respect to the number
of particles. Figure 6 shows that increasing the number of
particles monotonically decreases the classification error
and the average error converges with only 1000 particles.
This can be compared with the traditional method [9],
which needs computation based on the 218 x 218 transition

D= 4)\—106—300—20

Il Single- cell trajectories M = 4
[ JSingle-cell trajectories M = 8

0.2

Average classification error
o

0.05 0.1
Perturbation probability (p)

Fig. 5 Classification errors using the single trajectory classifier in the
T-LGL leukemia Boolean network versus the number of uncertain
networks
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probability matrix. Such a dimension is too large for the
direct application of the OBC.

To more comprehensively evaluate the proposed
method, we have compared it with two other classification
methods, i.e. IRB [11] and Plug-In [10]. The performance
comparisons under four different scenarios are provided
in Table 2. The OBC stands out as the best performing
method in different scenarios. Using OBC improves the
accuracy by 8.5% and 1.5% with T = 3 for p = 0.1 and
o = 25 compared to Plug-In and IRB, respectively.

The proposed method does not have any restriction on
the noise distribution assumptions due to the generaliz-
ability of particle filters. To show this, we also test our
method with different noise distributions. While the noise
of GRNs is usually Gaussian, sometimes due to up regu-
lation, noise can be Poisson or Negative Binomial (NB).
We have simulated Gaussian and NB noise distributions
with the same mean and variance while for Poisson noise,
the variance is equal to its mean (Details can be found
in Additional file 1, the additional experimental results).
Additional file 1: Figure S1 shows that our method per-
forms consistently well for all observation noises. The
Poisson results are superior to the other models as its
variance is smaller.

We also compare the performance of APF with the plain
Sequential Importance Resampling (SIR) in high process
noise. As Additional file 1: Figure S2 shows, the perfor-
mance is similar especially when there is enough time
points. When the number of time points is low, the SIR-
based particle filter performs worse. The superior per-
formance of APF in real-world GRNs is due to the fact
that the size of attractors is usually small and the pre-
dicted mode values by APF can be a good approximation
for the next prediction. Moreover, the initial distribution
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Table 2 Trajectory based classification results for high-noise
scenario (o = 25)

(p = 005) (p=0.1)
Method T=3 r=7 T=3 Tr=7
Plug-In 01777 0.0922 0.2524 0.1774
IBR 0.1384 0.0723 0.1800 0.0750
OBC 01173 0.0674 0.1643 0.0646

The achieved best accuracy is highlighted in boldface

is assumed to be from the stationary distribution. This
makes APF a more desirable approximation solutions due
to the lower diversity in the particles.

Conclusions

In this paper, we have developed the optimal Bayesian
classifier for binary classification of single-cell trajecto-
ries under regulatory model uncertainty. The partially-
observed Boolean dynamical system is used for modeling
the dynamical behavior of gene regulatory networks. Due
to the intractability of the OBC for large GRNs, we have
proposed a particle filtering technique for approximat-
ing the OBC. This particle-based solution reduces the
computational and memory complexity of the optimal
solution significantly. The performance of the proposed
particle-based method is demonstrated through numeri-
cal experiments using a POBDS model of the well-known
T-cell large granular lymphocyte (T-LGL) leukemia net-
work based on noisy time-series gene-expression data.

Additional file

Additional file 1: This additional file contains the additional experiment
results. (PDF 229 kb)
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Fig. 6 Classification errors using the trajectory based classifier in the
T-LGL leukemia Boolean network versus the number of particles
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