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HIGHER DIMENSIONAL BUBBLE PROFILES IN A SHARP
INTERFACE LIMIT OF THE FITZHUGH-NAGUMO SYSTEM*

CHAO-NIEN CHENT, YUNG-SZE CHOI}, YEYAO HU$, AND XIAOFENG RENY

Abstract. The FitzHugh—Nagumo system gives rise to a nonlocal geometric variational problem
defined on subsets of a domain. The energy of a subset contains three terms: its perimeter, its
volume, and a long-range self-interaction term represented by the integral of the solution to a screened
Poisson’s equation. A bubble profile is a ball-shaped stationary set when the domain is the entire
space. If the space dimension is three or higher, depending on the parameters of the problem, there
can be zero, one, or two bubble profiles. This is in contrast to an earlier result for the two-dimensional
space, from which one may have three bubble profiles. The stability of each bubble is determined from
the eigenvalues of the linearized operator. Using a stable bubble profile, one constructs a stationary
assembly of perturbed balls on a general bounded domain, when the parameters are properly chosen.
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1. Introduction. In physical and biological systems, pattern formation results
from orderly outcomes of self-organization principles. Examples include morphological
phases in block copolymers, animal coats, and skin pigmentation in cell development.
Common in these pattern-forming systems is that a deviation from homogeneity has
a strong positive feedback on its further increase. In addition pattern formation
provides a longer ranging confinement of the locally self-enhancing process.

The FitzHugh—Nagumo model was originally proposed for excitable systems such
as neuron fields [17, 24] and is now of great interest to the scientific community as a
breeding ground for patterns, like stripes and spots, and localized structures such as
standing waves [5, 7, 8, 9, 10, 11, 27] and traveling waves [4, 6, 13]. It has been ex-
tensively studied as a paradigmatic activator-inhibitor system for patterns generated
from homogeneous media destabilized by a spatial modulation. These patterns are
robust in the sense that they are stable and exist for a wide range of parameters; see
Turing [31].

When the parameters in the steady state FitzHugh—Nagumo equations are changed
in a coordinate fashion within a specific range, in the limiting case we are led to study-
ing a geometric variational problem on a domain D C R¥; see [12] and references
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therein. For a measurable subset € of D, the associated energy functional is
ag
(1.1) JIp(Q) =Pp(Q) — || + ) / Np(Q)dz,
Q

where o and o are given positive constants.

In (1.1) © is a measurable subset of D, || is its Lebesgue measure, and Pp(12)
is the perimeter of Q in D. In the case that € is of class C1, Pp(£2) is the area of the
part of the boundary of Q that is inside D, namely, the area of Q2 N D. One calls
092 N D the interface of  because it separates Q from D\. For a general subset
of D,

(1.2) Pp(2) = sup {/Qdivg(x) dr: g€ CH(D,RN), |g(x)] <1Vze D} .

In (1.2), |g(z)| is the geometric norm of the vector g(x). Jp(N?) is finite provided the
admissible set of Jp is

(1.3) A={QcC D: Qis Lebesgue measurable, || < 0o, xo € BV(D)},

where xq is the characteristic function associated with the set (2.

The integral term in (1.1) is most novel and is where the nonlocality of the problem
comes. In this term Ap is an operator that assigns each €2 the solution of the following
screened Poisson equation (also known as the Helmholtz equation):

(1.4) — ANDp(Q) + Np(Q2) = xq in D; 9, Np(©2) =0 on dD.

Here 0, is the outward normal deriviative. If D is bounded, then with some smooth-
ness condition on D (say, C*% according to [18, section 6.7]), Np is well defined. If
D =RY, then

Kﬂil xr —
(1.5) Nign (Q) () = /Q (Qﬂ;m x (| — )

where Ky _, is the (& — 1)th order modified Bessel function of the second kind. A
stationary set of (1.1) is a solution of the following equation:

~——dy,
|z —y[z "

(1.6) (N=1DH(@OQ2ND) —a+oNp(2) =00on 02N D.

Here #H(0€2) denotes the mean curvature of 92N D (the arithmetic mean of the prin-
cipal curvatures), in the convention that a convex {2 has nonnegative mean curvature.
In addition, if the interface, which is 92 N D, of a stationary set {2 meets the domain
boundary 9D, then the two surfaces intersect perpendicularly.

To motivate our study, we now explore the connection between (1.1) and the
FitzHugh—Nagumo system. Write the FitzHugh—Nagumo system in the following
form:

(1.7) u = EAu —u <u — ;) (u—1)+ ex — eov,
(1.8) Yoy =Av—v+u

with the zero Neumann boundary condition for both u and v in case of a bounded
domain. The assumptions in this paper are that o > 0 and o > 0 are fixed, and
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€ > 0 is small. They identify a parameter range leading to a limiting problem with
sharp interface solutions. We recall that u is the activator and v is the inhibitor.
Physically o measures the driving force toward a nontrivial state while o represents
the stabilizing inhibition mechanism. Their competition leads to interesting dynamics
and the emergence of nontrivial patterns.

We investigate the stationary version of the system, where both u; and v; vanish.
Solve (1.8) for v in terms of u so that v = Npu, where Npu is the solution of (1.4)
with yq replaced by u. Upon substitution (1.7) becomes

(1.9) eQAquu(u;) (u—1)—ea+ecNpu=0 inD; du=0 ondD.

With a variational structure, the solutions of (1.9) are the critical points of the func-
tional

2 20— 1)2
(1.10) Ip.o(u) = / <€|Vu|2 n wu-1)°* cau + w“NDu) da.
5\ 2 4 2

When D is bounded, this functional has a I'-limit. More precisely, as € — 0, e_lID’E
I'-converges to the functional

(1.11) JIp(2) =7mPp(Q) — a|Q| + g /QND(Q) dx.

The functional in (1.11) is the same as the one in (1.1) except for an immaterial
constant 7, which is given by

(1.12) T:/O Mduzg.

One can factor out 7 in (1.11) by redefining o and o. Hence Jp in (1.11) is equiv-
alent to (1.1). Because of the I'-convergence Jp is considered a singular limit of
the FitzHugh—Nagumo system. Several properties follow once the I'-convergence of
6_111376 to Jp is established. A global minimizer of Zp . converges to a global min-
imizer of Jp when € — 0, at least along a subsequence. If Jp has a strict local
minimizer, then nearby there is a local miminizer of Zp . if € is sufficiently small
[15, 23, 21, 28, 3].

In an earlier paper [12] we studied bubble profiles in R2. By a bubble we refer
to a ball-shaped stationary set of Jp when D is the entire space R". In this paper
we investigate the case N > 3. While it was proved in [12] that when N = 2, one
may have zero, one, two, or even three bubble profiles, depending on the values of «
and o, here we show that when N is three or higher, there can be no more than two
bubble profiles for any given pair of o and o.

As will be seen in section 3, this difference arises because of the monotonicity
property of the function

(1.13) b— b (L,_l(b)K,,_l(b) - Iy(b)K,,(b)>, b > 0.
Using the notion of completely monotone functions and Bernstein’s theorem, we prove

that for all real value v greater than or equal to 1, (1.13) is monotonically increasing
if and only if v > % Here I, 1, K, _1, I, and K, are the modified Bessel functions,
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and v > % corresponds to N = 2v > 3. This result is of its own significance and we
state it in Theorem 3.4. It is an optimal result because v is allowed to be real.

The monotonicity property of (1.13) when N > 3 plays a key role in this paper.
On the contrary when v = 1, i.e., N = 2, the quantity (1.13) is not monotone.
An entirely different strategy was used in [12]. Moreover, the analysis in the higher
dimensional case requires the use of spherical harmonics, Legendre polynomials, and
Gegenbauer ultraspherical polynomials, which is more technically demanding than
the N = 2 case.

In Theorem 3.6 we identify the ranges of («, o) that yield zero, one, or two bubble
profiles. We find the eigenvalues of the linearized operators at the bubble profiles
and, in Theorem 4.3, determine the stability of each bubble profile. Using bubble
profiles and their stability properties we prove an existence theorem, Theorem 5.1:
on a general bounded domain D, when « and o are properly chosen, there exists a
stationary set of Jp that is an assembly of perturbed balls.

In the investigation of bubble solutions, van Heijster and Sandstede [32] dealt
with the same type of activator-inhibitor models except that an additional equation
for the second inhibitor is added in their model; in other words, by setting their
coupling coefficient 8 to zero and taking out the third equation, their model is not
different from ours. They treated the case of R? and called the solutions planar radial
spots instead of bubbles. Theorem 1.1 of [32], up to normalization when considering
(1.7)—(1.8), asserts that when a simple root of

2
(1.14) 3% + a2rli(r)Ko(r)—1) =0
exists, say, r = Ry, then R is the radius of the limiting bubble. For the stability, it
is stated in the same Theorem 1.1 that the limiting profile is stable if A(¢) < 0 for

(=0,2,3,..., where

(1.15) A0 = 3\/§aR1(Il(R1)K1(R1) —Ii(R1)Ky(Ry)) + %(1 —0?).
1

Also, for (1.7)—(1.8), the results of [12] prevail over all the ratios for o/, while the
case treated in [32] focuses on o/a = 2. It is interesting to note that if o /o = 2, stable
bubbles can never exist in the higher dimensions no matter what « is, while they can
for some o in R2. This validates the importance of the dimension of domains in such
activator-inhibitor models. For the model with three species, the same methodology
leads to equations parallel to (1.14)—(1.15). A complete understanding of the two-
species case is a crucial first step. Our work in [12] and here completely answered the
sovability question of (1.14) and the stability question of (1.15) in all dimensions.

Bubble profiles in the original FitzHugh-Nagumo system (1.7)—(1.8) were studied
by Ohta, Mimura, and Kobayashi [25]. They considered a different parameter range:
instead of eav and eo they put e independent constants in these two places of (1.7).
They also assumed that the nonlinearity is given by a piecewise linear function. Using
matched asymptotics they derived an equation for the motion of an interface, found
radially symmetric steady states in two and three dimensions, and determined their
stability. Their formula [25, (6.1c)] is similar to our Lemma 4.1 with N = 3.

Throughout this paper, we assume that NV > 3. In Lemma 3.3 and Theorem 3.4,
N is a real number, not necessarily an integer.

2. Preliminary lemmas. In this paper [, and K,, v > 0, are the vth order
modified Bessel functions of the first and second kind, respectively. These functions
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are positive on the positive real axis. In this work, we mainly focus on the cases when
v is an integer or a half integer, but the properties we introduce here hold for all
v > 0.

LEMMA 2.1.
1. Let z > 0 be fivred and v > 0. Then

(2.1) I,(2)K,(z) is decreasing in v.

2. Let v > 0 and define g, : [0,00) — [0,00) to be g,(z) = zL,41(2)K,(2).
Then g, is a strictly increasing function with g,,(z) = z(I, K, — I,+1 Ky41).
Moreover ¢,(0) =0, lim, o g,(2) = 1/2 and

1 (1_21/+1+ 2v-1)2v+1)2v +3) +0(1>>

2.9 (2) = = 1
(22)  9u(2) =5 22 1623 g

as z — Q.

Proof. Part 1 is proved in [2, Theorem 2|. For part 2 employing [1, (9.6.26)],
namely,

v+1

(2.3) I, =1I- Loii, K) = Ky + ZKU,

we obtain ¢/, (z) = 2(I, K, — I,+1 K,+1) > 0. Thus g, is strictly increasing and its
behavior as z — 0 and z — oo can be evaluated using formulas (9.6.7), (9.6.9), (9.7.1),
and (9.7.2) in [1]. We compute a higher order asymptotic expansion for I,,11(2) K, (z)
for large z. Let u = 412 and fi = 4(v + 1)2. From the cited formulas,

21 (2) Ky (2)
_ % <1 _ u8;1 L 228;2 9 _ (- 1)(;(829)) A=25) 5 (14)>
( 1 —228;2— 9 , (k- 1)(;(85)) p—25) ( 14))
% (1 B 21/242r 1 (v- 1)(21/6—,;1)(2V+3) Lo (;4))
as z — 0o. The O(1/z?) terms on the right-hand side happen to cancel. 0

We give another lemma on the product of modified Bessel function I, and K,,.

LEMMA 2.2. Letv > 1 and p, = I, K, and h, = 23(p,_1(2) — p,(2)). Then

1 20v —1
pg/fl = 2IUKV71 - ; + %pufl
_ 1 o4 2v—5 2v—3
2237 2, Prl 9. v
1 2
p]/j - - - ZIVKV—I - lpl/
z z
_ 1, n 2v+1 2v+3
o937 9, vt 2. v
Proof. Use [1, (9.6.26)]. 0

Moreover, we have the following recurrence relation.
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LEMMA 2.3. Letv > 1 and p, = I, K,. Then

27/10;(2) = 2(Pu41 — Pv—1)-

Proof. The lemma immediately follows from the well-known recurrence relations
[1, (9.6.26)]; see [26] for details. d

The polynomial P~ (N = 2,3,4,... and n = 0,1,2,...) is called the Legendre
polynomial of dimension NV and degree n. For any fixed integer N > 2, the polynomials
PN n=0,1,..., are orthogonal with respect to the weight function (1—¢2) *32 . Also
PN is an even function if n is even and an odd function if n is odd; it is normalized
so that PN(1) = 1. If N = 2 the resulting polynomials P? are the Chebyshev
polynomials; if N = 3 the polynomials P2 are the classical Legendre polynomials,

usually denoted by P,. We list the first few PN’s below:

1
(2.4) PYW =1, PN =t P = 5 (N 1),
1
PN(t) = t((N+2)t* -3).
For more on the Legendre polynomials, see [20, section 3.3].
Recall that the volume of the unit ball in RY is wy = F(%fl); the area of the
2

unit sphere S¥ ! is Nwy.
LEMMA 2.4. Let PN (t) be the Legendre polynomials given above. The following
identity holds for all z > 0:

N-3

(ZZ)_; / v K (VIR P (- ) T ar
1

= mfmgq (Z)ngq(z)-

Proof. By setting a = b = z in the last formula listed on [22, p. 90], we obtain

(2.5) z”/ (2 — 2cost) /%K, (2v/2 — 2cost) C¥(cost) sin® tdt
0

_ 2nl(n +2v)

2T () K@)

where C¥ is the nth degree (Gegenbauer) ultraspherical polynomial. Choose v =
& — 1. It is known [16, (4.39), p. 99] that C¥ is a constant multiple of P

(2.6) CZ:(“JFQHVI)PN:WPN

" T@v)T(n+1) "
Putting this into (2.5) and using the duplication formula [1, (6.1.18)], we obtain

v

(QZW / (2 —2cost)""/?K,(2v/2 — 2cost) PN (cost) sin® t dt
™ 0
L(v+3)
= V+f It (2) Kpto(2).
2V T2

This gives the lemma after employing the substitution 7 = cost in the integral. 0
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3. Bubble profiles in RY. When D = RY we simply write 7 instead of Jpx
and similarly A to denote Ny~ .

LeEMMA 3.1. Let B(0,7) € RY be a ball centered at the origin with radius r. Then
N(B(0,7)) is a radially symmetric function on RN and

(3.1) N(B(0,7))(r) = rly(r)Ky_,(r).

Moreover,

(3.2) N(B(0,7)(z) dz = wyr™ — NwNI% (’I“)K% (r)r™.
B(0,r)

Proof. Let v=N(B(0,r)) and ¢t = |z|. Then

N-1, {<4 ifo<t<m,

" =
v t v 0 if r <t

To match v and v at the point r, we have

1+Cit 2y _(t) f0<t<r,
U(t) = N 2 .
Cot™ =2 Ky _4(t) if r < t,

with

N
2

(3.3) Cr=—r%Ky(r), Co=r

Further calculations yield (3.1). To derive (3.2), note

N(B(O,r))dz = /

v(z)dx = / (Av + 1)dx
B(0,r) B(0,r)

B(0,r)

= [B(0,7)] +/ @dS(x) = wnrY + ' (r) NoyrN L.
8B(0,r) on

By (3.3), v/(t) = —r® Iy (r)t 5+ K x (1), and (3.2) follows. 0
Let j(r,0,a) denote J(B(0,r)). From (1.1) and Lemma 3.1,

(3.4) j(r,o,a) = Nonr™ 1 — awnr + % [UJNTN — NwnIy (T)K% (T)TN] .

A ball B(0,b) is a bubble profile if %b:b =0, i.e., b solves the equation

N -1
(3.5) ——— —a+ably (Ky_,(b) = 0.

This follows either from (1.6) and (3.1) or from a differentiation of (3.4) helped by
two more derivatives formulas:

(3.6) (t"1,(t)) =t"1,_1(t), (t"K,(t)) = —t"K,_1(t)
[1, (9.6.28)]. Write o as a function of b, s,(b), after we fix the parameter « in (3.5),

ab— N +1

(3.7) 7= 50 = Gt Ky )
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One calculates the derivative of s, (b) and then employs (3.7) to eliminate « so that

N—1-ob® [I%,l(b)K%,l(b) ~Iy(B)Ky (b)}

(3.8) sa(b) = Iy (b) Ky (b)

Now observe s/, (b) = 0 on the curve Cy in the (o, b)-quadrant, where Cy is defined
by
(3.9)
Co = {(a, b) eRY xRT: N —1— ob® {Ig_l(b)K%_l(b) - Ig(b)K%(b)] - o} .

This curve can be viewed as the graph of the function
N -1
0 (Iy (K y 1 (6) = Iy (K y (b))

(3.10) o=Cyh(b) = , be(0,00).

This curve divides the (o, b)-quadrant into two parts:
(3.11)

R; = {(a, b) eRT xRt : N — 1 — gb? [1%_1(1))1(%_1(17) ) (b)K%(b)] > o};

w2

(3.12)
Ra= {(a, b) eRT xRt : N — 1 — gb? [I%_l(b)K%_l(b) - I%(b)K%(b)} < 0} .

The part of curve s, (b) that lies in R; is increasing while the part of curve s, (b) that
lies in R is decreasing. We have the following properties for the shape of s, (b).

LEMMA 3.2. For each a > 0, let s4(b) be the curve given above.
1. Each curve s, starts at the point (0, 2=1) with s,,(8=1) > 0 and ends with
a vertical asymptote o = 2a.
2. When s, intersects Cy, its slope is vertical, i.e., si,(b) =0 if (o,b) € Cp.

Proof. Since o = 0 when b = Y=L on the curve s,, (3.8) implies

[e3%

(e

, (N -1 al
o\ Ta )T o (R, ()
7T\ o« 71
Moreover, by Lemma 2.1, part 2, one deduces that
li = 2a.
i, sall) =20
The second part of the lemma follows from the definition of Cy. 0

The shape of Cy is described in the following lemma. This is a crucial result. The
definition of Cj is meaningful even if N is a noninteger, real number, greater than or
equal to 2.

LEMMA 3.3. Let N > 2 be a real number, not necessarily an integer. The function
Co has the following properties:
1. limy_,o+ Co(b) = 0o and limy_,o, Cy(b) = 4.
2. Cy(b) <0 for all b > 0 holds if and only if N > 3.

Proof. Let v = & > 1 and define h,, : (0,00) — (0,00) to be

(3.13) ho(6) = 0 (11 () K, 1(6) = L (0K (1) ).

The monotonicity of Cy is equivalent to the monotonicity of h,,.
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Using the asymptotic expansions of I,,(b) and K, (b) for large b [1, (9.7.1)—(9.7.5)],
we have that as b — oo,

1 142 -1 3 (4% —1)(4v2 —9) 1
Lo = 55 (13 G s 0 ()

and a similar formula for I,,_1(b)K,_1(b). Thus

(3.14) o (b) = 2u4— 1 3(2v — 3)(231;()—2 (2v+1) Lo <b14> .

In particular

. 2v—1
(3.15) bliglo hu(b) = YRR
For small b and v > 1, by [1, (9.6.7)—(9.6.9)],
1
I,_1(b)K,_1(b) ~ 2w —1) I, (L) K, (b) ~ 5
They imply that
(3.16) lim h,(b) =0.

b—0+

The same holds true if v = 1 by a similar argument. Part 1 of the lemma follows from
(3.15) and (3.16).
By Lemmas 2.1 and 2.2, we find

(3.17) k. (b) = b2((21/4—1)[1,_1(b)Ky_l(b)+(2u—3)L,(b)Ky(b)—2+4bly(b)K,,_1(b)).
Consider the case v > 2. We set
(3.18) po(b) = L(b) K, (b).
Define
H,(b) = (20 + )py_1(b) + (20 — 3)p,(b) — 2 + 4bI, (b)K,_1 (b),
so that
(3.19) !, (b) = b*H,,(b).

We know from (3.14) that H,(b) > 0 for large b. If we can show that H, (b) < 0 for
all b > 0, then H,(b) > 0 and h/,(b) > 0 for all b > 0.
To this end, we use Lemmas 2.1 and 2.3 to derive

Hy(0) = (v + ) Py gy M0 2 Pt) gy, )
b
= 1) < —vQ2v+1)p,—2 +32v+1)(v — 1)p,—1

(3.20) —3v2v—-3)p, + (v —1)(2v — 3)pl,+1>.
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By [2, statement (iv), p. 528], the function ¢ — p z(b) , ¢ > 0, is completely monotone
with respect to ¢ for all b > 0. A theorem of Bernstein asserts that completely
monotone functions are precisely the Laplace transforms of positive measures [33].
Therefore

(3.21) pu (D) :/ e_”ztdub(t)
[0,00)
for some positive measure py, on [0, 00). This measure depends on b. Then by (3.20),
2 —1
%H{,(b)

=—v2v+1Dp,—2+32v+1)(v—1)p,—1 —3v(2v —3)p, + (v — 1)(2v — 3)pu41

= —v(2v+ 1)/ e~ gy (4) + 3(2v + 1) (v — 1)/ e~ g, ()
[0,00) [0,00)

_ 3u(2v—3) / e duy(t) + (v — 1)(20 — 3) / =D g ()
[0,00) [0,00)

— / Ft)e ™ tduy(t),
[0100)
where

ft) = —v(2v+1)e W=D 3(2041) (v—1)e® "D —30(20—3) +(v—1) (2v—3)e~ @11,
Clearly f(0) = 0. Compute

F(E) = —4(v — 1)(20 + 1)re®™ = 4 3(s — 1)(20 + 1)(20 — 1)e~ Dt
— (v —1)(2v + 1)(2v — 3)e~ v

= (v —1)(2v + 1)Vt (3(2y 1) — dre® It (2 — 3)674”).

By Young’s inequality

AP B9
AB S - + ]
p q
with
p= 3(21:1_ 1)7 q= 3(221/ _31)7 A = e%t, B = 6_%t7
v v —
we deduce

320 — 1) < dve® =3t 4 (2 — 3)e M,

which shows that f/(¢) < 0 for ¢ > 0. Consequently f(¢t) < 0 for ¢t > 0 and H,,(b) <0
for all b > 0. This allows us to conclude that H,(b) > 0 and h.(d) > 0 for all b > 0.
Note that in the use of Young’s inequality, p > 1,q > 1 because v > %

Now consider the case v € (1, 2). By (3.14), we see that h, (b) is decreasing when
b is large. But by (3.17), for small b,

B (b) = b° <22<Zf 1) + 2’/2; 5 oy o(b)>

=b? (21/(1/3_ 0 + o(b)) >0.
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Then h, (b) is increasing when b is small. Hence h,,, and Cj, cannot be monotone if
ve(L3).
Finally for the borderline case v = %, since

/2b sinh b

12b sinhb  coshb
T 1

by [1, (10.2.13) and (10.2.17)], we deduce

(322)  ha(b) ="V (1% (B)K 5 (b) — Is (B)K s (b)) - % B2 pe b %e*%.
Hence

(3.23) Wy (b) = 26272 > 0.

This completes the proof of the second part of the lemma. ]

The monotonicity of h, should be a significant result in its own right, independent
of the rest of this paper. We record it below for future reference.

THEOREM 3.4. Letv > 1 be a real number. Then b®(I,_1(b)K,_1(b)—1I,(b)K, (b))
is increasing with respect to b € (0,00) if and only if v > %

In [12] it was shown that when v = 1, there exists b € (0,00) such that
b3(Io(b) Ko(b) — I1(b) K1 (b)) is increasing on (0,b) and decreasing on (b, 00).
Knowing the shape of Cy, one investigates how the curves s, change as « varies.

LEMMA 3.5. Let N > 3 and Cy be as defined in (3.9). There exist real ana-
lytic functions o, : (2,00) = (4,00) and by : (2,00) — (0,00) so that the following
statements hold:

1. If a € (0,2], then Cy always lies to the right of the curve s,(b) in the o-b
quadrant.

2. If « € (2,00), then Cy intersect transversally with s.(b) only once at
(04(0), bu(0)).

Proof. If 0 < ay < o, then the curve of s,, lies to the left of s,, in the o-b
quadrant. Each s, starts at the point (0, %), so when b is small, the curve is in the
region R;. As b increases, the curve may touch Cy. When that happens at a point,
say, (01,b1), since C{(b1) < 0 by Lemma 3.3, part 2, and s/,(b1) = 0 by Lemma 3.2,
part 2, the curve s, enters Ry.

However, if s, enters Ry, it cannot exit Ry. This is because if it exits Ry at a
point, say, (o2,ba), then s (b2) < C{(bs), which is inconsistent with s/,(b3) = 0 and
C{(b2) < 0. In other words, each s, can intersect Cy at most once.

Since limp_ 00 86 (b) = 2a and limp_, oo Cp(b) = 4, for large b the curve s, is in R;
if @« < 2 and s, is in Ry if @ > 2. Hence when « < 2, the entire curve s, stays in R;;
when a > 2, the curve s, enters Ry at one point and stays in Ry afterward.



HIGHER DIMENSIONAL BUBBLE PROFILES 5083

Fi1G. 1. N = 3. The curve Co (in green) and the curves so for various a. As « increases, the
Sa curves shift to the right. Another curve Co (in blue) is included here for the stability issue.

Regarding the borderline case o = 2, since s2(b) = limg_y2_ $4(b) for every b > 0,
and for each o < 2 and b > 0, s4(b) < Co(b), one deduces that sa(b) < Co(b) for
all b > 0. The curve sy cannot touch Cy because, otherwise, sy would enter R4 and
s2(b) > Cp(b) for some b. Therefore, like the o < 2 case, s2(b) < Cy(b) for all b > 0
and the entire curve sy stays in R;.

For each v > 2 denote the intersection point of s, and Cy by (04 (@), bs(a)). Tt is
the unique solution of the following system for (o, b):

(3.24) o= 8a(b), sa(b) = Cy(b).

Observe that g(b, &) = s,(b)—Cy(b) is analytic. At the intersection point, %(b*(a)) =
—Cf(bi()) > 0. The implicit function theorem then requires b, to be an analytic
function of a. Similarly o, is analytic. |

Figure 1 shows the curve Cy and some s,’s in the case N = 3. The shapes of the
sq’s differ depending on whether « is in (0,2] or (2,00). The number of the bubble
profiles can be read from this picture. The following theorem summarizes what we
have discovered.

THEOREM 3.6. Let N > 3. The numbers of bubble profiles are given as follows:
1. If « € (0,2], then
(a) if o € (0,2c), there is one bubble,
(b) if o € [2a,00), there is no bubble.
2. If a € (2,00), then
(a) if o € (0,2q], there is one bubble,
b) if o € (2a, 0.(cx)), there are two bubbles,
(¢c) if o = o.(a), there is one bubble,
d) if o € (04(a),0), there is no bubble.
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22

215

21

g 2.05

1.95

3.8 3.9 4 4.1 4.2 4.3 4.4

o

Fic. 2. N = 3. Red denotes 1 radially unstable bubble; green is for 2 bubbles, 1 radially stable
and the other radially unstable; black is for mo bubble. The point surrounded by three colors is
(o,) = (4,2). The red region is separated from the others by the line o = 2a. The green region is
separated from the black region by the curve o = oy ().

Proof. The number of bubbles for given « and ¢ equals the number of intersection
points between the curve s, and the verticle o-line in the o-b quadrant.

When a < 2, the curve s, intersects any vertical o-line with ¢ < 2« precisely
once; hence there is one bubble. If a o-line has ¢ > 2a, it does not intersect s, hence
no bubble.

When o > 2, the curve s, intersect a o-line once if o < 2av. If the o € (2¢, 0. (),
then s, intersects the o-line twice, hence two bubbles. If the o is exactly o, (), then
Sq intersects the o-line once, hence one bubble. If the o € (04, 0), then the o-line
does not intersect s, hence no bubble. 0

Figure 2 is obtained by numercially computing o, («) for N = 3. It illustrates the
main cases of the theorem in the o-a quadrant. There is one bubble if (o, @) in the
red region, two bubbles in the green region, and no bubble in the black region.

4. Spectra of the bubbles. We now set up a framework to facilitate a discus-
sion of the stability of the bubbles found in Theorem 3.6, i.e., we calculate the spec-
trum of the linearized operator at a bubble. Denote the inner product on L2(SV~1)
by

@)= [ oOwOD. 6.0er ).

Here 0 = (64,...,0x) is a point on S¥~1 and df refers to the surface area measure of
SN-L

Consider a bubble profile B(0,b), i.e., b is a solution of (3.5). Let Q = Py be a
perturbed ball given by

1

(4.1) Py = {r@ re [0,b(1 + N¢>(9))ﬂ, 0c SN—l} .
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The energy J(Pp) of the perturbed ball Py is now treated as a functional of ¢,
ie., J(Py) = J(¢), and one can write it more explicitly as

_ Ven 102
7@ =" [ N Ja vk - TG g
s (1+Ng)™%
14+ N¢
—ab™ do
“ /SIH N
1 Ky (lz—y
(4.2) +5/ / 2 1l . Dd:cdy.
2Jp, Jp, 2m)2 |z —y|z 7!
In the present setting, one can easily define a deformation of P, by deforming ¢
to
(4.3) ¢+ e, ¢ € Dom(7) and ¢ sufficiently smooth.

This gives rise to a deformation of P to Py . The first variation now is

dJ (9 + e)

(4.4) -

— / (N — 1)H(6) — a + oN ()b db.
=0 SN—-1
Now the mean curvature H and the nonlocal operator A/ are both regarded as acting
on ¢. Introduce a nonlinear operator S : Dom(S) — L2(SV~1),
(4.5) S(¢) = bN((N —DH(d) —a+ JN((j))).

The Euler-Lagrange equation (1.6) now becomes the equation S(¢) = 0.
With the operator § one can write the first variation (4.4) more concisely as

d
(16) WL _ (s(0),0)
e=0
One can also find the second variation of J:
d? /
(47) TIOLD) (5 oy )
e=0

n (4.7), 8 is the Fréchet derivative of S, so that S’(¢) is a linear operator from
H2(SN=1) to L2(SN-1).,

Note that the spherical profile B(0,b) corresponds to ¢ = 0. Hence ¢ = 0 is a
critical point of 7, so §(0) = 0. Furthermore, when ¢ = 0, ¢ gives a perturbation in
the normal direction. Thus according to [14, (1.147), p. 41], one can show that

/ 1 Ky (|60 —bwl)
S(0)y =b" "N (—Agn-1) — (N = 1)¢p) + ob* /SIH ThL: |29 1_ s

1 (Ky (p0—y)\" b0
(4.8)  +obN*! / - ks " Ly -0 (0),
By (2m)> \ (b0 —y[> 66—y

where ()’ denotes the derivative with respect to |b8 — y|.

LEMMA 4.1. Let HY, n = 0,1,2,..., be the space of spherical harmonics of di-
mension N and degree n. Each of the HYY is an eigenspace of S'(0) with the corre-

sponding eigenvalue

n

(4.9) Ap = bV "L (n+ N —1)(n—1)+ob™+2 (1 iy A,y ()~ Iy ()Ky (b)).
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Proof. According to [20, Theorem 3.2.11],

(410) Agn-11) = 771(11 + N — 2)1[),
where ¢ € HY. Then,
(4.11) —Agvap —(N—=1v=(n—-1)(n+ N — 1).

It remains to study the integral operator
1 Ky (00— b
om)T b — bw|® 1

(4.12) Y — bQN/ (
SN—l

and the multiplication operator

1 Ky (b0 =9\ 60—y
4.13 pN+1 2 dy -0 6).
(4.13) v (/B(o,b) (2m)% < b0 — y| %1 ) b6 — y| Y ) v )

For the integral operator (4.12) take ¥ € HY to deduce
(4.14)
[ Koy (b0 — b))
sv-1 (2m)T DO — bw|z 1

w)dw

= (]\7(—21;0;)\7]\[_1 (/1 (bm)l_N/QKg_l(bM)Pflv(t)(l _ t2) N23dt) qp(e)
=0 Ny 1 (K2 (0)0(0)

Here in the second to last step we have used the Funk-Hecke theorem [20, Theo-
rem 3.4.1] or [16, Theorem 4.24], while in the last line, we have used Lemma 2.4. By
(4.14) we conclude that the integral operator (4.12) acts on H2 like

(4.15) D(0) = bV (DK, x (0)9(6), b € HY.

For the multiplication operator (4.13), we use the divergence theorem to compute
!
bN+1/ 1 Ky (|60 =yD)\ 0y 0
N N y
B(Ob) (2m)2 b6 —y|=z ! L]

1 Ky _ (|00 —y
:—bN+1/ - V,L/~ o3 1(| _ |)9 dy
B(op) (2m)z b0 — y| =t

| Ky (b0 — bl)

= —bQN/ - — 0w dw
oB(,1) (2m)= b0 — bw|Z !
N-—-1 _ 1 _N N-3
- _b2N((2;°fVN1 / (bWV2=20) "2 Kx_ (bV2—20)PN(t) (1—13) = dt
)2 -1 2
= 0"y (b) Ky (b).

Here we have used the fact that 6 - w, as a function of w, is a spherical harmonic of
degree 1 according to [20, Lemma 3.2.3] and then applied [20, Theorem 3.4.1] and
Lemma 2.4. Hence the multiplication operator (4.13) is simply

(4.16) ) — —bN+21%(b)K% (b)ap.
Then (4.9) follows from (4.11), (4.15), and (4.16). d
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Note that when n = 1, A; = 0. This is due to the translation invariance of the
problem. A bubble profile B(0, b) is stable if all the remaining eigenvalues are positive.
For n=0,2,3,4,..., let us define the curves
(4.17)

Co = {(a, b):(n+ N —1)(n—1)+ob3 (In+%,1(b)f<n+%,1(b) ~Iy(HKy (b)) = o}

in the (0,b) quadrant. Any (o, b) point on the curve C,, corresponds to a bubble whose
eigenvalue \,, vanishes. Note that when n = 0, one has the same curve Cy previously
defined in (3.9). One may regard C, as the graph of the function

(4.18)

o= C(b) = (n+N-1)(1-n)

b (L1 (0K 1 (6) = Ty (B)K 5 (0))

,b>0,n=0234,....

Each C,, divides the (o, b) quadrant into two regions:

(4.19)
Ros = {(n +N—-1)(n—1)+0b’ (In%,l(b)KﬁLl(b) —Ix(b)Ky (b)) > 0} :
(4.20)
R = { (n+ N = 1)(n = 1) + 08 (L o1 (0) Ky wjo-1(6) = Ly () Ky (b)) < 0}
Note that

Ro,s = Ras  Rou = Ri.

Note also that R s lies to the right of the curve Cy, while R,, s is to the left of C,, for
n=23....

If (0,b) is in R, s, then the bubble B(0, b) is stable with respect to the nth mode;
if (0,b) is in Ry, 4, then the bubble is unstable with respect to this mode. In the case
n =0, if (0,b) € Ry s we say that the bubble is radially stable. A bubble is termed to
be stable if it is stable with respect to all modes (n = 0,2, 3,4,...). Hence, if B(0,b)
is stable, then (o,b) must be in the intersection

(4.21) N Ros
n=0,2,3,...

The following lemma gives a simple description of this set.

LEMMA 4.2. For every b > 0,
1. Cpy1(b) > Cp(b) whenn =2,3,...,
2. Cg(b) > Co(b)

Proof. For part 1, since
b*(Crr1(b) — C (b))
_ 2n+N—-1py —(n+N)np, n_y+(n+N-1)(n—1)p, .~
(p% _pn-‘r%—l)(p% _pn-l—%)

)

it suffices to show the numerator on the right-hand side is positive. It is known [2,
Theorem 1(4)] that the function ¢t — p_/;(b) is log-convex for ¢ > 0. Since a log-convex
function is convex, for any 0 < p <1

P fazmrar®) < (1= 1)py, (0) + ppy, (b) -
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N (n+N—1)(n—1)
2

=t and o= O
similar. 0

Part 1 follows if 1y = . The proof of part 2 is

Lemma 4.2 implies that

(4.22) [l Runs=RaNRys.
n=0,2,3,...

Given o and b, we define

N -1
b

(4.23) T:(0,b) = (0,0) = <o, +obly (b)K{j—l(b)) .

When a given (o, a) gives rise to two bubbles, only the one with the larger radius is
stable with respect to radial perturbation. Consequently when T is restricted to the re-
gion R4, then the restriction, denoted as T’z ,, is one-to-one. Denote the inverse of Tz,
by Tﬁdl, which maps from T'(Rq) back to Rq. Note that T'(Np=02,3,...Rn,s) C T(Ra)
since Nyp=0,2,3,...Rn,s C Rq. With the help of T" one can precisely identify regions for
(0, ) that give rise to radially stable bubbles and stable bubbles, respectively. The
following theorem then follows from Lemmas 4.1 and 4.2 immediately.

THEOREM 4.3. Let N > 3. If (0,a) € T(Rq), then with (o,b) = Tﬁ;(a,
B(0,b) is a radially stable bubble. If (o,a) € T(Rq N Ras), then with (o,b)
Tii(a, a), B(0,b) is a stable bubble.

The above theorem allows us to construct Figure 2, which will be convenient when
we look for stable bubbles for a given (o, «). In this picture any bubble from the red
region is radially unstable. The larger of the two bubbles from the green region is
radially stable but the other one is radially unstable. The radially stable one from the
green region may or may not be stable. Figure 1 has already included the curve Cs,
in blue. The region ﬂn:O,2,3,... Rn,s = RaN Rz, is bounded between the green curve
and the blue curve. If (¢,b) is in this region and « is given accordingly by (4.23),
then the bubble B(0,b), corresponding to these o and «, is stable.

)

5. Existence of bubble assemblies. In this section D is bounded and suffi-
ciently smooth so a Green’s function of (1.4) exists and is written as

(5.1) Gz, y) =

% |J) - y‘l_N/QK%—l(‘x - y|) + R(xay)a

where R is a smooth function of (x,y) € D x D. Define, for £ = (¢',..., &%) where
€L, €2, ..., ¢X are distinct points in D,

K K K
F&)=> R +> > G(hd).
k=1 k=11=1,l#k

Since G(x,y) — oo if | —y| — 0 and R(z,z) — oo if z — 9D, F attains a minimum.

THEOREM 5.1. Let D be a bounded and sufficiently smooth domain in RN (N >
3),K €N, and 6 > 0. There exists by depending on D, K, and 0 such that if
1. (o,0) € T(Ra),
2. b < by,
3 (N=2)(N-1)N+5 N(N+1)(N+2)—5
: 253

<o < 253 s
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where (o,b) = Tﬁ;(a, a), then Jp, with a and o being its parameters, admits a
stationary set that is an assembly of K perturbed balls. Moreover,
1. the radii of all the perturbed balls are all approximately equal to b;
2. if the centers of the perturbed balls are €},€2,... €KX, then as b — 0,
(€1,€2,...,¢K) converges to a minimum of F, possibly along a subsequence;
3. this stationary assembly is stable in some sense.

Remark 1. The last statement about stability in the above theorem is vague;
further discussion about what we mean is contained in the last paragraph of this
section. We feel that the constructed assembly should be a local minimizer; however,
we do not have a proof.

The proof of this theorem proceeds along the same line as the proof of [12, The-
orem 5.1], so we only present a sketch here. The reader may consult [12] for missing
details. Similar strategies were used in [29, 30] for a diblock copolymer problem. The
diblock copolymer problem has a volume constraint and consequently there is always
one and only one bubble for every parameter value.

We start with a construction of assemblies of exact balls whose radii are close
to b. An important remark is in order. Condition 3 is derived from the bounds
Co(b) < o < Cy(b) for small b. When b is chosen from Tﬁi (0,a) and o satisfies
condition 3 of the theorem, the ball B(0,b) is necessarily a stable bubble profile,
studied in section 4. Henceforth, we construct a ball assembly from a stable bubble.

Let & = (€4,€2,...,€K), where ¢1, €2,... €K are distinct points in D, and make
an approximate solution that is an assembly of small balls centered at the £*’s. The
radii of the balls are b3*, where the 5*’s are not yet determined. Collectively write
B = (B, B2 ...,B85), where each 5* is close to 1 so b3* is close to b. Let Py be the
union of balls PF centered at ¢* of radii b3*:

(5.2) Py=Uf P}, where Py ={zeRN: |z—¢&"| <bp"}.
One estimates the energy of Py and finds
(5.3)
K
To(Po) =" (NwN(bﬁk)N*I - awN(ka)N)

ES
Il

+
="
| Q

(son (68" (1= NIy (08°) K (08%) + i (b8°) 2V R(EH, €¥))

=
Il
—

K ow (bBF)N (bBH)N
3 )( )

1=1,l#k

G(é-k’él) + O(O’b2N+2).

n
M=

>
Il
=

Next we proceed to perturbe Py. Let ¢*, k =1,2,..., K, be functions defined on
SN=1. Let

(5.4) Ph = {g’“ 410 re [0,k + Nqﬁk(e))ﬂ, 0 e SN—l}
be a perturbed ball. Then let
(5.5) Py = Uf:lpgk

be an assembly of these perturbed balls. Here one writes ¢ = (¢!, ¢?,...,¢") and
P4 to emphasize that this assembly depends on ¢. In fact, Py also depends on
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B=(BY,B%...,85)and € = (£1,£2,...,£5), but these dependencies will be explored
later.
If we deform ¢ to

(5.6) ¢+ e,
then P is deformed to Pj4.y. The first variation is
(5.7)

dJp(¢ +e)

e=0

Here we have treated Jp as a functional of ¢ and written Jp(¢ + ev) for
JIp (P¢+€,¢,). We also introduce a nonlinear operator Sp whose kth component is

(5.8) Sk(¢) = (b8")" ((N Yy, (ap’n) —a+ UJ\/D(P¢)) ,

which is viewed as a function of 6. This operator is identified as the first variation of
J since

dJIp (¢ + e1p)

(5.9) =

K
_ k k
= ; /S _ Sh(o)wtds.

An assembly P, of perturbed balls is a stationary set precisely when

(5.10) Sp(¢) =0.

To solve this equation, consider the second variation of Jp. Let ¢ +e1¢ + v be
a two-parameter deformation of ¢. Then

O*Tp (¢ + €1 + e2v)

A1
(5 ) 861862

= (Sp(@)¥,v).

5126220

Here Sp(¢) is the Fréchet derivative of Sp at ¢ and

(5.12) ¥ — Sp(d)Y

is a self-adjoint linear operator from H?(SN 1 RX) c L2(SVN~1 RE) to L2(SN 1, RK).
Equation (5.10) is solved in two steps. First one solves the equation up to the
locations and radii of balls. More precisely introduce some subspaces

L3 (SN RM) = {(b e L? (SY"LRF)

(5.13) / () do = / o (O)h(h)do =0 Vh € HY, Vk},
SN-1 SN-1
(5.14) H? (SN RX) = H? (SY L RF)n L (SVHLRY).

Recall that H{" is the space of spherical harmonics of degree 1. Denote the orthogonal
projection from L?(SV~1 R¥) to LZ(SV~!,R¥) by II. Geometrically one can inter-
pret an element in LZ(SV !, R¥) (or HZ(SV !, R¥)) as an assembly whose perturbed
balls have well-defined centers &€ and well-defined radii b8*. More specifically, the
condition fozw " (0)dd = 0 implies that b3* can be interpreted as the radius of the
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perturbed ball P;fk; the condition fOQW #*(0)h(0)dd = 0 for all h € HY defines &* as
the center of P(f,c.

In the first step of solving (5.10) we find ¢ € HZ(SN 1, R¥), so that IISp(¢) = 0.
This is done by a fixed point argument. One rewrites the equation as

(5.15) — (I85(0)) 1 (IISp (0) + TTR(¢)) = ¢,
where R(¢) is the higher order part in the expansion of S(¢), namely,
(5.16) Sp(¢) = Sp(0) +Sp(0)¢ + R(¢).

One shows that the operator ILS}, (0) is positive definite on HZ(SY 1, R¥) c L2(SN 1,

RX). Here one needs the upper bound o < w of condition 3. This is of

no surprise as we consider the space LZ(SY !, R¥) and A, > 0 in (4.9) for n > 2.
Once the fixed point is found, we denote it by ¢. (-, 3,£). As the above procedures

are done with respect to the general 8 and &, it solves

(5.17) IS (d4(:,8,€)) = 0.

In the second step, we choose appropriate 8 and &, denoted [, and &, so that
&« (-, By, &) solves the equation S(¢. (-, Bx,&x)) = 0. To this end, we use a variational
argument. Let

One proves that if (S,, &) is a minimum of J, then ¢, (-, By, &) is the desired solution.
It turns out that J(3,&) can be approximated by the energy of Py, the assembly of
exact balls of radii b3* and centers £*. Then

K

J(B,§) = Z (NWN (bﬁk)N_l — awy (bﬁk)N>

We need to be a bit more precise about the domain of 5 and £. Let
(5.20) E={e=(.¢....5): " eD itk £},

which is the domain of the function F' given in (5). Then, for n > 0, define
(5.21)

E,={=(¢4,€,...,5) : ¢ e D, dist (¢¥,0D) > n, dist (€¥,¢) > 2n for k # 1},

By choosing 7 sufficiently small we ensure that the minimum of F' on = is achieved
inside =,,. Next let

(5.22) B, ={B=(8".8%....85): pre(l-r14+1)}.

The number 7 will be specified and made small later. Now we take £ = (£1,&2,...,¢%)
€E, and 8= (8%, 8%,...,8%) € B,.
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Let (B.,&x) be a minimum of J on B, x Z,. We need to show that if b is small,
then (B, &) is in B, x E,,, the interior of B, x E,, so that (8., &,) is a critical point
of J. Then the equation S(¢. (-, B«,&x)) = 0 follows. Let b — 0 and (5., &,) converge,
possibly along a subsequence, to (3,&) € By X E,,.

We need good estimates for I,(z) and K, (z) for small z. For I, we have

ey @)
(5:23) L(z) = (5) kzzo KT(v+k+1)
(see [1, (9.6.10)] or [19, (8.445)]), from which we derive
Z\" 1 22
(5.24) I(z) = (5) (r(y+ 5+ oy O (24)> .

For K,, when v is a positive integer

oo i k
(5.25) + 175 (2) kz_o{l/}(k+1)+1/}(V+k+1)}M((;+)k)!

(see [1, (9.6.11)] or [19, (8.446)]; ¢ here is the psi function); when v is a nonnegative
integer plus %, with v =n + %,

T e n+k)!

(see [1, (10.2.15)] or [19, (8.468)]). One derives that if v > 3/2 is an integer or an
integer plus % and v # 2,

(5.27) k()= (3) " (”2”) _ %f +0 (%)) .

If v = 2, then the O(z*) term above in (5.27) is replaced by O(z*logz). Following
(5.24) and (5.27), one finds
(5.28) L(2)K,(2) = o2 +0 (%)
' v U w4 - 1Dr(v+1)
if v # 2. And if v = 2, the O(z*) term becomes O(z*log z).
Now we first claim that 8, = (1,1,...,1), which is in B;. One needs the estimate
(5.29)

N1 abiop (g)N (r(glm +0(1)> (2)1N (”152‘1) +o(1)> o

for a. Here (5.29) follows from (3.5) and [1, (9.6.7) and (9.6.9)].
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Assume that ob® — «. Because of condition 3 in Theorem 5.1,

(N —2)(N —1)N +36 N(N+1)(N+2)—6}

(5.30) 5 : 5

To find a uniform limit of — 3+ J(53,€) as b — 0, we appeal to (5.19) and derive the
following limits:

1 NwN

(5.31) PN (Nwn (b8")N 1) — (BN,
N N -
(5.82) S (- (b84)) = o ( Y 1+ ™ —12)N> @y
by (5.29),
(5.33)

1 ow (b@’k)N w N+2
obN+2 ( - 2 (“NI% (b5%) Ky (b’gk))> - m (5)

by (5.28), and

K K 2 B\ v
+Z Z oWy (bﬂ ) (bﬁ ) e (fk,ﬁl) +0 (0b2N+2)) .
Then (5.19) implies that

(B,¢) Noy gaN=1 (N1 1 N
(5.35) 0bN+2_>kX_:1< (%) N( Y +(N—z)N> (5%)

WN e\ V+2
_|_
v )
uniformly on B, x E,, as b — 0. Consequently
(5.36)
bN+2(J 5*75* - ( ) 771)75*))
K
Nwy [\ N-1 (N—l 1 ) N
- —= (p* —w + k
,;1(7() St &)
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_ . - : : (N=2)(N—1)N
has t = 1 as a strict local minimum, since f”(1) > 0 precisely when v > *=———.

Here we have used the lower bound w < o of condition 3. Fix 7 in (5.22)
to be small enough so that in the interval (1 — 27,1+ 27), w = 1 is the only critical
point of the function f. If 8, were not (1,1,...,1), then the right side of (5.36) is
positive since each ¥ is in [l — 7,1 + 7]. Consequently when b is sufficiently small
J(By, &) > J((1,1,...,1),&), a contradiction to the choice of (s, &x).

Next we show that &, is a minimum of F' on =. Let &, be a minimum of . Then

&m € E,. By Lemma 5.19 and the just proved fact that 8, — (1,1,...,1),

(5.38)
e (760, 6) = (B, 6)
K02 (Bk)2N K K 2 (gk\N(gL\N
:kZ_lN(;)R( fjgf)JrkE_:ll_%kWG(ff’fi)
SR o) fﬁ 5~ SO ) o)
k=1 =11=1,l#k
- WTN(F(EO) _F(fm))'

If £ were not a minimum of F', then the last line of (5.38) would be positive, a
contradiction to the choice of (84, &,). Now that & is a minimum of F', & is necessarily
in E,,. Therefore {, € E, when b is sufficiently small.

We have shown that (8, &.) is a critical point of .J. It follows that Py (. 3, ¢.) is
a stationary assembly of Jp. The first additional assertion of the theorem that all
the perturbed discs in Py, (. g, ¢,) have approximately the same radius comes from the
fact that 8. — (1,1,...,1); the second assertion follows from the facts that £, — &
and &, is a minimum of F.

Our assertion that Py (. 3, ¢,) is stable comes from its local minimization property.
Recall that Py (. g, ¢,) is found in two steps. First for each (3,&) € B, x E,, a fixed
point Py (. 3¢ is constructed in a class of assemblies with well-defined centers and
radii. The fixed point is actually locally minimizing Jp within this class of assemblies
by the positivity of the operator IIS},(0). In the second step Jp is minimized among
the Py (. 5.¢)’s, where (3,€) ranges in B; XxZ,, and Py, (. g, ¢.) emerges as a minimum.
As a minimum of locally minimizing assemblies within classes of well-defined centers
and radii, Py, (.3, ¢,) is locally energy minimizing with respect to deformations both
within and without the class of assemblies with well-defined centers and radii; hence,
in this sense we claim that Py (. 5, ¢ ) is stable.

*
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