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HIGHER DIMENSIONAL BUBBLE PROFILES IN A SHARP

INTERFACE LIMIT OF THE FITZHUGH–NAGUMO SYSTEM∗

CHAO-NIEN CHEN† , YUNG-SZE CHOI‡ , YEYAO HU§ , AND XIAOFENG REN¶

Abstract. The FitzHugh–Nagumo system gives rise to a nonlocal geometric variational problem
defined on subsets of a domain. The energy of a subset contains three terms: its perimeter, its
volume, and a long-range self-interaction term represented by the integral of the solution to a screened
Poisson’s equation. A bubble profile is a ball-shaped stationary set when the domain is the entire
space. If the space dimension is three or higher, depending on the parameters of the problem, there
can be zero, one, or two bubble profiles. This is in contrast to an earlier result for the two-dimensional
space, from which one may have three bubble profiles. The stability of each bubble is determined from
the eigenvalues of the linearized operator. Using a stable bubble profile, one constructs a stationary
assembly of perturbed balls on a general bounded domain, when the parameters are properly chosen.
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1. Introduction. In physical and biological systems, pattern formation results
from orderly outcomes of self-organization principles. Examples include morphological
phases in block copolymers, animal coats, and skin pigmentation in cell development.
Common in these pattern-forming systems is that a deviation from homogeneity has
a strong positive feedback on its further increase. In addition pattern formation
provides a longer ranging confinement of the locally self-enhancing process.

The FitzHugh–Nagumo model was originally proposed for excitable systems such
as neuron fields [17, 24] and is now of great interest to the scientific community as a
breeding ground for patterns, like stripes and spots, and localized structures such as
standing waves [5, 7, 8, 9, 10, 11, 27] and traveling waves [4, 6, 13]. It has been ex-
tensively studied as a paradigmatic activator-inhibitor system for patterns generated
from homogeneous media destabilized by a spatial modulation. These patterns are
robust in the sense that they are stable and exist for a wide range of parameters; see
Turing [31].

When the parameters in the steady state FitzHugh–Nagumo equations are changed
in a coordinate fashion within a specific range, in the limiting case we are led to study-
ing a geometric variational problem on a domain D ⊂ R

N ; see [12] and references
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therein. For a measurable subset Ω of D, the associated energy functional is

(1.1) JD(Ω) = PD(Ω)− α|Ω|+ σ

2

∫

Ω

ND(Ω)dx,

where α and σ are given positive constants.
In (1.1) Ω is a measurable subset of D, |Ω| is its Lebesgue measure, and PD(Ω)

is the perimeter of Ω in D. In the case that Ω is of class C1, PD(Ω) is the area of the
part of the boundary of Ω that is inside D, namely, the area of ∂Ω ∩ D. One calls
∂Ω ∩D the interface of Ω because it separates Ω from D\Ω. For a general subset Ω
of D,

(1.2) PD(Ω) = sup

{∫

Ω

div g(x) dx : g ∈ C1
0 (D,R

N ), |g(x)| ≤ 1 ∀x ∈ D

}

.

In (1.2), |g(x)| is the geometric norm of the vector g(x). JD(Ω) is finite provided the
admissible set of JD is

(1.3) A =
{

Ω ⊂ D : Ω is Lebesgue measurable, |Ω| <∞, χΩ ∈ BV (D)
}

,

where χΩ is the characteristic function associated with the set Ω.
The integral term in (1.1) is most novel and is where the nonlocality of the problem

comes. In this term ND is an operator that assigns each Ω the solution of the following
screened Poisson equation (also known as the Helmholtz equation):

(1.4) −∆ND(Ω) +ND(Ω) = χΩ in D; ∂νND(Ω) = 0 on ∂D.

Here ∂ν is the outward normal deriviative. If D is bounded, then with some smooth-
ness condition on D (say, C2,α according to [18, section 6.7]), ND is well defined. If
D = R

N , then

(1.5) NRN (Ω)(x) =

∫

Ω

1

(2π)N/2

KN
2 −1(|x− y|)
|x− y|N2 −1

dy,

where KN
2 −1 is the (N2 − 1)th order modified Bessel function of the second kind. A

stationary set of (1.1) is a solution of the following equation:

(1.6) (N − 1)H(∂Ω ∩D)− α+ σND(Ω) = 0 on ∂Ω ∩D.

Here H(∂Ω) denotes the mean curvature of ∂Ω∩D (the arithmetic mean of the prin-
cipal curvatures), in the convention that a convex Ω has nonnegative mean curvature.
In addition, if the interface, which is ∂Ω∩D, of a stationary set Ω meets the domain
boundary ∂D, then the two surfaces intersect perpendicularly.

To motivate our study, we now explore the connection between (1.1) and the
FitzHugh–Nagumo system. Write the FitzHugh–Nagumo system in the following
form:

ut = ǫ2∆u− u

(

u− 1

2

)

(u− 1) + ǫα− ǫσv,(1.7)

γvt = ∆v − v + u(1.8)

with the zero Neumann boundary condition for both u and v in case of a bounded
domain. The assumptions in this paper are that α > 0 and σ > 0 are fixed, and
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ǫ > 0 is small. They identify a parameter range leading to a limiting problem with
sharp interface solutions. We recall that u is the activator and v is the inhibitor.
Physically α measures the driving force toward a nontrivial state while σ represents
the stabilizing inhibition mechanism. Their competition leads to interesting dynamics
and the emergence of nontrivial patterns.

We investigate the stationary version of the system, where both ut and vt vanish.
Solve (1.8) for v in terms of u so that v = NDu, where NDu is the solution of (1.4)
with χΩ replaced by u. Upon substitution (1.7) becomes

(1.9) − ǫ2∆u+ u

(

u− 1

2

)

(u− 1)− ǫα+ ǫσNDu = 0 in D; ∂νu = 0 on ∂D.

With a variational structure, the solutions of (1.9) are the critical points of the func-
tional

(1.10) ID,ǫ(u) =
∫

D

(

ǫ2

2
|∇u|2 + u2(u− 1)2

4
− ǫαu+

ǫσu

2
NDu

)

dx.

When D is bounded, this functional has a Γ-limit. More precisely, as ǫ→ 0, ǫ−1ID,ǫ
Γ-converges to the functional

(1.11) JD(Ω) = τPD(Ω)− α|Ω|+ σ

2

∫

Ω

ND(Ω) dx.

The functional in (1.11) is the same as the one in (1.1) except for an immaterial
constant τ , which is given by

(1.12) τ =

∫ 1

0

√

u2(u− 1)2

2
du =

√
2

12
.

One can factor out τ in (1.11) by redefining α and σ. Hence JD in (1.11) is equiv-
alent to (1.1). Because of the Γ-convergence JD is considered a singular limit of
the FitzHugh–Nagumo system. Several properties follow once the Γ-convergence of
ǫ−1ID,ǫ to JD is established. A global minimizer of ID,ǫ converges to a global min-
imizer of JD when ǫ → 0, at least along a subsequence. If JD has a strict local
minimizer, then nearby there is a local miminizer of ID,ǫ if ǫ is sufficiently small
[15, 23, 21, 28, 3].

In an earlier paper [12] we studied bubble profiles in R
2. By a bubble we refer

to a ball-shaped stationary set of JD when D is the entire space R
N . In this paper

we investigate the case N ≥ 3. While it was proved in [12] that when N = 2, one
may have zero, one, two, or even three bubble profiles, depending on the values of α
and σ, here we show that when N is three or higher, there can be no more than two
bubble profiles for any given pair of α and σ.

As will be seen in section 3, this difference arises because of the monotonicity
property of the function

(1.13) b→ b3
(

Iν−1(b)Kν−1(b)− Iν(b)Kν(b)
)

, b > 0.

Using the notion of completely monotone functions and Bernstein’s theorem, we prove
that for all real value ν greater than or equal to 1, (1.13) is monotonically increasing
if and only if ν ≥ 3

2 . Here Iν−1, Kν−1, Iν and Kν are the modified Bessel functions,
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and ν ≥ 3
2 corresponds to N = 2ν ≥ 3. This result is of its own significance and we

state it in Theorem 3.4. It is an optimal result because ν is allowed to be real.
The monotonicity property of (1.13) when N ≥ 3 plays a key role in this paper.

On the contrary when ν = 1, i.e., N = 2, the quantity (1.13) is not monotone.
An entirely different strategy was used in [12]. Moreover, the analysis in the higher
dimensional case requires the use of spherical harmonics, Legendre polynomials, and
Gegenbauer ultraspherical polynomials, which is more technically demanding than
the N = 2 case.

In Theorem 3.6 we identify the ranges of (α, σ) that yield zero, one, or two bubble
profiles. We find the eigenvalues of the linearized operators at the bubble profiles
and, in Theorem 4.3, determine the stability of each bubble profile. Using bubble
profiles and their stability properties we prove an existence theorem, Theorem 5.1:
on a general bounded domain D, when α and σ are properly chosen, there exists a
stationary set of JD that is an assembly of perturbed balls.

In the investigation of bubble solutions, van Heijster and Sandstede [32] dealt
with the same type of activator-inhibitor models except that an additional equation
for the second inhibitor is added in their model; in other words, by setting their
coupling coefficient β to zero and taking out the third equation, their model is not
different from ours. They treated the case of R2 and called the solutions planar radial
spots instead of bubbles. Theorem 1.1 of [32], up to normalization when considering
(1.7)–(1.8), asserts that when a simple root of

(1.14)

√
2

3r
+ α(2rI1(r)K0(r)− 1) = 0

exists, say, r = R1, then R1 is the radius of the limiting bubble. For the stability, it
is stated in the same Theorem 1.1 that the limiting profile is stable if λ̂(ℓ) < 0 for
ℓ = 0, 2, 3, . . . , where

(1.15) λ̂(ℓ) = 3
√
2αR1(I1(R1)K1(R1)− Iℓ(R1)Kℓ(R1)) +

1

R2
1

(1− ℓ2) .

Also, for (1.7)–(1.8), the results of [12] prevail over all the ratios for σ/α, while the
case treated in [32] focuses on σ/α = 2. It is interesting to note that if σ/α = 2, stable
bubbles can never exist in the higher dimensions no matter what α is, while they can
for some α in R

2. This validates the importance of the dimension of domains in such
activator-inhibitor models. For the model with three species, the same methodology
leads to equations parallel to (1.14)–(1.15). A complete understanding of the two-
species case is a crucial first step. Our work in [12] and here completely answered the
sovability question of (1.14) and the stability question of (1.15) in all dimensions.

Bubble profiles in the original FitzHugh–Nagumo system (1.7)–(1.8) were studied
by Ohta, Mimura, and Kobayashi [25]. They considered a different parameter range:
instead of ǫα and ǫσ they put ǫ independent constants in these two places of (1.7).
They also assumed that the nonlinearity is given by a piecewise linear function. Using
matched asymptotics they derived an equation for the motion of an interface, found
radially symmetric steady states in two and three dimensions, and determined their
stability. Their formula [25, (6.1c)] is similar to our Lemma 4.1 with N = 3.

Throughout this paper, we assume that N ≥ 3. In Lemma 3.3 and Theorem 3.4,
N is a real number, not necessarily an integer.

2. Preliminary lemmas. In this paper Iν and Kν , ν ≥ 0, are the νth order
modified Bessel functions of the first and second kind, respectively. These functions
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are positive on the positive real axis. In this work, we mainly focus on the cases when
ν is an integer or a half integer, but the properties we introduce here hold for all
ν ≥ 0.

Lemma 2.1.
1. Let z > 0 be fixed and ν ≥ 0. Then

(2.1) Iν(z)Kν(z) is decreasing in ν.

2. Let ν ≥ 0 and define gν : [0,∞) → [0,∞) to be gν(z) ≡ zIν+1(z)Kν(z).
Then gν is a strictly increasing function with g′ν(z) = z(Iν Kν − Iν+1Kν+1).
Moreover gν(0) = 0, limz→∞ gν(z) = 1/2 and

(2.2) gν(z) =
1

2

(

1− 2ν + 1

2z
+

(2ν − 1)(2ν + 1)(2ν + 3)

16z3
+O

(

1

z4

))

as z → ∞.

Proof. Part 1 is proved in [2, Theorem 2]. For part 2 employing [1, (9.6.26)],
namely,

(2.3) I ′ν+1 = Iν −
ν + 1

z
Iν+1, K

′
ν = −Kν+1 +

ν

z
Kν ,

we obtain g′ν(z) = z(Iν Kν − Iν+1Kν+1) > 0. Thus gν is strictly increasing and its
behavior as z → 0 and z → ∞ can be evaluated using formulas (9.6.7), (9.6.9), (9.7.1),
and (9.7.2) in [1]. We compute a higher order asymptotic expansion for Iν+1(z)Kν(z)
for large z. Let µ = 4ν2 and µ̃ = 4(ν + 1)2. From the cited formulas,

zIν+1(z)Kν(z)

=
1

2

(

1− µ̃− 1

8z
+

(µ̃− 1)(µ̃− 9)

2(8z)2
− (µ̃− 1)(µ̃− 9)(µ̃− 25)

3!(8z)3
+O

(

1

z4

))

(

1 +
µ− 1

8z
+

(µ− 1)(µ− 9)

2(8z)2
+

(µ− 1)(µ− 9)(µ− 25)

3!(8z)3
+O

(

1

z4

))

=
1

2

(

1− 2ν + 1

2z
+

(2ν − 1)(2ν + 1)(2ν + 3)

16z3
+O

(

1

z4

))

as z → ∞. The O(1/z2) terms on the right-hand side happen to cancel.

We give another lemma on the product of modified Bessel function Iν and Kν .

Lemma 2.2. Let ν ≥ 1 and pν = IνKν and hν = z3(pν−1(z)− pν(z)). Then

p′ν−1 = 2IνKν−1 −
1

z
+

2(ν − 1)

z
pν−1

=
1

2z3
h′ν +

2ν − 5

2z
pν−1 −

2ν − 3

2z
pν ,

p′ν =
1

z
− 2IνKν−1 −

2ν

z
pν

= − 1

2z3
h′ν +

2ν + 1

2z
pν−1 −

2ν + 3

2z
pν .

Proof. Use [1, (9.6.26)].

Moreover, we have the following recurrence relation.
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Lemma 2.3. Let ν ≥ 1 and pν = IνKν . Then

2ν p′ν(z) = z(pν+1 − pν−1).

Proof. The lemma immediately follows from the well-known recurrence relations
[1, (9.6.26)]; see [26] for details.

The polynomial PNn (N = 2, 3, 4, . . . and n = 0, 1, 2, . . .) is called the Legendre
polynomial of dimensionN and degree n. For any fixed integerN ≥ 2, the polynomials

PNn , n = 0, 1, . . . , are orthogonal with respect to the weight function (1−t2)N−3
2 . Also

PNn is an even function if n is even and an odd function if n is odd; it is normalized
so that PNn (1) = 1. If N = 2 the resulting polynomials P 2

n are the Chebyshev
polynomials; if N = 3 the polynomials P 3

n are the classical Legendre polynomials,
usually denoted by Pn. We list the first few PNn ’s below:

PN0 (t) = 1, PN1 (t) = t, PN2 (t) =
1

N − 1

(

Nt2 − 1
)

,(2.4)

PN3 (t) =
1

N − 1
t
(

(N + 2)t2 − 3
)

.

For more on the Legendre polynomials, see [20, section 3.3].

Recall that the volume of the unit ball in R
N is ωN = πN/2

Γ(N
2 +1)

; the area of the

unit sphere S
N−1 is NωN .

Lemma 2.4. Let PNn (t) be the Legendre polynomials given above. The following

identity holds for all z > 0:

zN−2

(2π)
N
2

∫ 1

−1

(

z
√
2− 2t

)1−N
2 KN

2 −1

(

z
√
2− 2t

)

PNn (t)
(

1− t2
)

N−3
2 dt

=
1

(N − 1)ωN−1
In+N

2 −1(z)Kn+N
2 −1(z).

Proof. By setting a = b = z in the last formula listed on [22, p. 90], we obtain

(2.5) zν
∫ π

0

(2− 2 cos t)−ν/2Kν

(

z
√
2− 2 cos t

)

Cνn(cos t) sin
2ν t dt

=
2πΓ(n+ 2ν)

n! 2νΓ(ν)
In+ν(z)Kn+ν(z) ,

where Cνn is the nth degree (Gegenbauer) ultraspherical polynomial. Choose ν =
N
2 − 1. It is known [16, (4.39), p. 99] that Cνn is a constant multiple of PNn :

(2.6) Cνn =

(

n+ 2ν − 1
n

)

PNn =
Γ(n+ 2ν)

Γ(2ν) Γ(n+ 1)
PNn .

Putting this into (2.5) and using the duplication formula [1, (6.1.18)], we obtain

zν

(2π)ν+1

∫ π

0

(2− 2 cos t)−ν/2Kν(z
√
2− 2 cos t)PNn (cos t) sin2ν t dt

=
Γ(ν + 1

2 )

2πν+
1
2

In+ν(z)Kn+ν(z).

This gives the lemma after employing the substitution τ = cos t in the integral.
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3. Bubble profiles in R
N . When D = R

N we simply write J instead of JRN

and similarly N to denote NRN .

Lemma 3.1. Let B(0, r) ∈ R
N be a ball centered at the origin with radius r. Then

N (B(0, r)) is a radially symmetric function on R
N and

(3.1) N (B(0, r))(r) = rIN
2
(r)KN

2 −1(r).

Moreover,

(3.2)

∫

B(0,r)

N (B(0, r))(x) dx = ωNr
N −NωNIN

2
(r)KN

2
(r)rN .

Proof. Let v = N (B(0, r)) and t = |x|. Then

v′′ +
N − 1

t
v′ − v =

{

−1 if 0 < t < r,
0 if r < t.

To match v and v′ at the point r, we have

v(t) =

{

1 + C1t
−N

2 +1IN
2 −1(t) if 0 < t < r,

C2t
−N

2 +1KN
2 −1(t) if r < t,

with

(3.3) C1 = −rN
2 KN

2
(r), C2 = r

N
2 IN

2
(r).

Further calculations yield (3.1). To derive (3.2), note

∫

B(0,r)

N (B(0, r))dx =

∫

B(0,r)

v(x)dx =

∫

B(0,r)

(∆v + 1)dx

= |B(0, r)|+
∫

∂B(0,r)

∂v

∂n
dS(x) = ωNr

N + v′(r)NωNr
N−1.

By (3.3), v′(t) = −rN
2 IN

2
(r)t−

N
2 +1KN

2
(t), and (3.2) follows.

Let j(r, σ, α) denote J (B(0, r)). From (1.1) and Lemma 3.1,

(3.4) j(r, σ, α) = NωNr
N−1 − αωNr

N +
σ

2

[

ωNr
N −NωNIN

2
(r)KN

2
(r)rN

]

.

A ball B(0, b) is a bubble profile if ∂j∂r |r=b = 0, i.e., b solves the equation

(3.5)
N − 1

b
− α+ σbIN

2
(b)KN

2 −1(b) = 0.

This follows either from (1.6) and (3.1) or from a differentiation of (3.4) helped by
two more derivatives formulas:

(3.6) (tνIν(t))
′ = tνIν−1(t), (t

νKν(t))
′ = −tνKν−1(t)

[1, (9.6.28)]. Write σ as a function of b, sα(b), after we fix the parameter α in (3.5),

(3.7) σ = sα(b) ≡
αb−N + 1

b2IN
2
(b)KN

2 −1(b)
.
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One calculates the derivative of sα(b) and then employs (3.7) to eliminate α so that

(3.8) s′α(b) =
N − 1− σb3

[

IN
2 −1(b)KN

2 −1(b)− IN
2
(b)KN

2
(b)
]

b3IN
2
(b)KN

2 −1(b)
.

Now observe s′α(b) = 0 on the curve C0 in the (σ, b)-quadrant, where C0 is defined
by
(3.9)

C0 =
{

(σ, b) ∈ R
+ × R

+ : N − 1− σb3
[

IN
2 −1(b)KN

2 −1(b)− IN
2
(b)KN

2
(b)
]

= 0
}

.

This curve can be viewed as the graph of the function

(3.10) σ = C0(b) ≡
N − 1

b3
(

IN
2 −1(b)KN

2 −1(b)− IN
2
(b)KN

2
(b)
) , b ∈ (0,∞).

This curve divides the (σ, b)-quadrant into two parts:
(3.11)

Ri =
{

(σ, b) ∈ R
+ × R

+ : N − 1− σb3
[

IN
2 −1(b)KN

2 −1(b)− IN
2
(b)KN

2
(b)
]

> 0
}

;

(3.12)

Rd =
{

(σ, b) ∈ R
+ × R

+ : N − 1− σb3
[

IN
2 −1(b)KN

2 −1(b)− IN
2
(b)KN

2
(b)
]

< 0
}

.

The part of curve sα(b) that lies in Ri is increasing while the part of curve sα(b) that
lies in Rd is decreasing. We have the following properties for the shape of sα(b).

Lemma 3.2. For each α > 0, let sα(b) be the curve given above.

1. Each curve sα starts at the point (0, N−1
α ) with s′α(

N−1
α ) > 0 and ends with

a vertical asymptote σ = 2α.
2. When sα intersects C0, its slope is vertical, i.e., s′α(b) = 0 if (σ, b) ∈ C0.

Proof. Since σ = 0 when b = N−1
α on the curve sα, (3.8) implies

s′α

(

N − 1

α

)

=
α3

(N − 1)2IN
2

(

N−1
α

)

KN
2 −1

(

N−1
α

) > 0.

Moreover, by Lemma 2.1, part 2, one deduces that

lim
b→+∞

sα(b) = 2α.

The second part of the lemma follows from the definition of C0.
The shape of C0 is described in the following lemma. This is a crucial result. The

definition of C0 is meaningful even if N is a noninteger, real number, greater than or
equal to 2.

Lemma 3.3. Let N ≥ 2 be a real number, not necessarily an integer. The function

C0 has the following properties:

1. limb→0+ C0(b) = ∞ and limb→∞ C0(b) = 4.
2. C

′

0(b) < 0 for all b > 0 holds if and only if N ≥ 3.

Proof. Let ν = N
2 ≥ 1 and define hν : (0,∞) → (0,∞) to be

(3.13) hν(b) = b3
(

Iν−1(b)Kν−1(b)− Iν(b)Kν(b)
)

.

The monotonicity of C0 is equivalent to the monotonicity of hν .
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Using the asymptotic expansions of Iν(b) and Kν(b) for large b [1, (9.7.1)–(9.7.5)],
we have that as b→ ∞,

Iν(b)Kν(b) =
1

2b

(

1− 1

2

4ν2 − 1

(2b)2
+

3

8

(4ν2 − 1)(4ν2 − 9)

(2b)4
+O

(

1

b6

))

and a similar formula for Iν−1(b)Kν−1(b). Thus

(3.14) hν(b) =
2ν − 1

4
− 3(2ν − 3)(2ν − 1)(2ν + 1)

32b2
+O

(

1

b4

)

.

In particular

(3.15) lim
b→∞

hν(b) =
2ν − 1

4
.

For small b and ν > 1, by [1, (9.6.7)–(9.6.9)],

Iν−1(b)Kν−1(b) ∼
1

2(ν − 1)
, Iν(b)Kν(b) ∼

1

2ν
.

They imply that

(3.16) lim
b→0+

hν(b) = 0.

The same holds true if ν = 1 by a similar argument. Part 1 of the lemma follows from
(3.15) and (3.16).

By Lemmas 2.1 and 2.2, we find

(3.17) h′ν(b) = b2
(

(2ν+1)Iν−1(b)Kν−1(b)+(2ν−3)Iν(b)Kν(b)−2+4bIν(b)Kν−1(b)
)

.

Consider the case ν > 3
2 . We set

(3.18) pν(b) = Iν(b)Kν(b).

Define

Hν(b) = (2ν + 1)pν−1(b) + (2ν − 3)pν(b)− 2 + 4bIν(b)Kν−1(b),

so that

(3.19) h′ν(b) = b2Hν(b).

We know from (3.14) that Hν(b) > 0 for large b. If we can show that H ′
ν(b) ≤ 0 for

all b > 0, then Hν(b) > 0 and h′ν(b) > 0 for all b > 0.
To this end, we use Lemmas 2.1 and 2.3 to derive

H ′
ν(b) = (2ν + 1)

b(pν − pν−2)

2(ν − 1)
+ (2ν − 3)

b(pν+1 − pν−1)

2ν
+ 4b(pν−1 − pν)

=
b

2ν(ν − 1)

(

− ν(2ν + 1)pν−2 + 3(2ν + 1)(ν − 1)pν−1

− 3ν(2ν − 3)pν + (ν − 1)(2ν − 3)pν+1

)

.(3.20)
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By [2, statement (iv), p. 528], the function q → p√q(b) , q > 0, is completely monotone
with respect to q for all b > 0. A theorem of Bernstein asserts that completely
monotone functions are precisely the Laplace transforms of positive measures [33].
Therefore

(3.21) pν(b) =

∫

[0,∞)

e−ν
2tdµb(t)

for some positive measure µb on [0,∞). This measure depends on b. Then by (3.20),

2ν(ν − 1)

b
H ′
ν(b)

= −ν(2ν + 1)pν−2 + 3(2ν + 1)(ν − 1)pν−1 − 3ν(2ν − 3)pν + (ν − 1)(2ν − 3)pν+1

= −ν(2ν + 1)

∫

[0,∞)

e−(ν−2)2tdµb(t) + 3(2ν + 1)(ν − 1)

∫

[0,∞)

e−(ν−1)2tdµb(t)

− 3ν(2ν − 3)

∫

[0,∞)

e−νt
2

dµb(t) + (ν − 1)(2ν − 3)

∫

[0,∞)

e−(ν+1)2tdµb(t)

=

∫

[0,∞)

f(t)e−ν
2tdµb(t),

where

f(t) = −ν(2ν+1)e(4ν−4)t+3(2ν+1)(ν−1)e(2ν−1)t−3ν(2ν−3)+(ν−1)(2ν−3)e−(2ν+1)t.

Clearly f(0) = 0. Compute

f ′(t) = −4(ν − 1)(2ν + 1)νe(4ν−4)t + 3(ν − 1)(2ν + 1)(2ν − 1)e(2ν−1)t

− (ν − 1)(2ν + 1)(2ν − 3)e−(2ν+1)t

= (ν − 1)(2ν + 1)e(2ν−1)t
(

3(2ν − 1)− 4νe(2ν−3)t − (2ν − 3)e−4νt
)

.

By Young’s inequality

AB ≤ Ap

p
+
Bq

q
,

with

p =
3(2ν − 1)

4ν
, q =

3(2ν − 1)

2ν − 3
, A = e

4ν(2ν−3)
3(2ν−1)

t, B = e−
4ν(2ν−3)
3(2ν−1)

t,

we deduce

3(2ν − 1) < 4νe(2ν−3)t + (2ν − 3)e−4νt,

which shows that f ′(t) < 0 for t > 0. Consequently f(t) < 0 for t > 0 and H ′
ν(b) ≤ 0

for all b > 0. This allows us to conclude that Hν(b) > 0 and h′ν(b) > 0 for all b > 0.
Note that in the use of Young’s inequality, p > 1, q > 1 because ν > 3

2
Now consider the case ν ∈ (1, 32 ). By (3.14), we see that hν(b) is decreasing when

b is large. But by (3.17), for small b,

h′ν(b) = b2
(

2ν + 1

2(ν − 1)
+

2ν − 3

2ν
− 2 + o(b)

)

= b2
(

3

2ν(ν − 1)
+ o(b)

)

> 0 .
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Then hν(b) is increasing when b is small. Hence hν , and C0, cannot be monotone if
ν ∈ (1, 32 ).

Finally for the borderline case ν = 3
2 , since

I 1
2
(b) =

√

2b

π

sinh b

b
,

K 1
2
(b) =

√

π

2b
e−b,

I 3
2
(b) =

√

2b

π

(

− sinh b

b2
+

cosh b

b

)

,

K 3
2
(b) =

√

π

2b
e−b

(

1 +
1

b

)

,

by [1, (10.2.13) and (10.2.17)], we deduce

(3.22) h 3
2
(b) = b3

(

I 1
2
(b)K 1

2
(b)− I 3

2
(b)K 3

2
(b)
)

=
1

2
− b2e−2b − be−2b − 1

2
e−2b.

Hence

(3.23) h′3
2
(b) = 2b2e−2b > 0.

This completes the proof of the second part of the lemma.

The monotonicity of hν should be a significant result in its own right, independent
of the rest of this paper. We record it below for future reference.

Theorem 3.4. Let ν ≥ 1 be a real number. Then b3(Iν−1(b)Kν−1(b)−Iν(b)Kν(b))
is increasing with respect to b ∈ (0,∞) if and only if ν ≥ 3

2 .

In [12] it was shown that when ν = 1, there exists b̂ ∈ (0,∞) such that

b3(I0(b)K0(b)− I1(b)K1(b)) is increasing on (0, b̂) and decreasing on (b̂,∞).
Knowing the shape of C0, one investigates how the curves sα change as α varies.

Lemma 3.5. Let N ≥ 3 and C0 be as defined in (3.9). There exist real ana-

lytic functions σ∗ : (2,∞) → (4,∞) and b∗ : (2,∞) → (0,∞) so that the following

statements hold:

1. If α ∈ (0, 2], then C0 always lies to the right of the curve sα(b) in the σ-b
quadrant.

2. If α ∈ (2,∞), then C0 intersect transversally with sα(b) only once at

(σ∗(α), b∗(α)).

Proof. If 0 < α1 < α2, then the curve of sα1 lies to the left of sα2 in the σ-b
quadrant. Each sα starts at the point (0, N−1

α ), so when b is small, the curve is in the
region Ri. As b increases, the curve may touch C0. When that happens at a point,
say, (σ1, b1), since C

′
0(b1) < 0 by Lemma 3.3, part 2, and s′α(b1) = 0 by Lemma 3.2,

part 2, the curve sα enters Rd.
However, if sα enters Rd, it cannot exit Rd. This is because if it exits Rd at a

point, say, (σ2, b2), then s
′
α(b2) ≤ C ′

0(b2), which is inconsistent with s′α(b2) = 0 and
C ′

0(b2) < 0. In other words, each sα can intersect C0 at most once.
Since limb→∞ sα(b) = 2α and limb→∞ C0(b) = 4, for large b the curve sα is in Ri

if α < 2 and sα is in Rd if α > 2. Hence when α < 2, the entire curve sα stays in Ri;
when α > 2, the curve sα enters Rd at one point and stays in Rd afterward.
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Fig. 1. N = 3. The curve C0 (in green) and the curves sα for various α. As α increases, the
sα curves shift to the right. Another curve C2 (in blue) is included here for the stability issue.

Regarding the borderline case α = 2, since s2(b) = limα→2− sα(b) for every b > 0,
and for each α < 2 and b > 0, sα(b) < C0(b), one deduces that s2(b) ≤ C0(b) for
all b > 0. The curve s2 cannot touch C0 because, otherwise, s2 would enter Rd and
s2(b) > C0(b) for some b. Therefore, like the α < 2 case, s2(b) < C0(b) for all b > 0
and the entire curve s2 stays in Ri.

For each α > 2 denote the intersection point of sα and C0 by (σ∗(α), b∗(α)). It is
the unique solution of the following system for (σ, b):

(3.24) σ = sα(b), sα(b) = C0(b).

Observe that g(b, α) ≡ sα(b)−C0(b) is analytic. At the intersection point, ∂g∂b (b∗(α)) =
−C ′

0(b∗(α)) > 0. The implicit function theorem then requires b∗ to be an analytic
function of α. Similarly σ∗ is analytic.

Figure 1 shows the curve C0 and some sα’s in the case N = 3. The shapes of the
sα’s differ depending on whether α is in (0, 2] or (2,∞). The number of the bubble
profiles can be read from this picture. The following theorem summarizes what we
have discovered.

Theorem 3.6. Let N ≥ 3. The numbers of bubble profiles are given as follows:

1. If α ∈ (0, 2], then
(a) if σ ∈ (0, 2α), there is one bubble,

(b) if σ ∈ [2α,∞), there is no bubble.

2. If α ∈ (2,∞), then
(a) if σ ∈ (0, 2α], there is one bubble,

(b) if σ ∈ (2α, σ∗(α)), there are two bubbles,

(c) if σ = σ∗(α), there is one bubble,

(d) if σ ∈ (σ∗(α),∞), there is no bubble.
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Fig. 2. N = 3. Red denotes 1 radially unstable bubble; green is for 2 bubbles, 1 radially stable
and the other radially unstable; black is for no bubble. The point surrounded by three colors is
(σ, α) = (4, 2). The red region is separated from the others by the line σ = 2α. The green region is
separated from the black region by the curve σ = σ∗(α).

Proof. The number of bubbles for given α and σ equals the number of intersection
points between the curve sα and the verticle σ-line in the σ-b quadrant.

When α ≤ 2, the curve sα intersects any vertical σ-line with σ < 2α precisely
once; hence there is one bubble. If a σ-line has σ ≥ 2α, it does not intersect sα, hence
no bubble.

When α > 2, the curve sα intersect a σ-line once if σ ≤ 2α. If the σ ∈ (2α, σ∗(α)),
then sα intersects the σ-line twice, hence two bubbles. If the σ is exactly σ∗(α), then
sα intersects the σ-line once, hence one bubble. If the σ ∈ (σ∗,∞), then the σ-line
does not intersect sα, hence no bubble.

Figure 2 is obtained by numercially computing σ∗(α) for N = 3. It illustrates the
main cases of the theorem in the σ-α quadrant. There is one bubble if (σ, α) in the
red region, two bubbles in the green region, and no bubble in the black region.

4. Spectra of the bubbles. We now set up a framework to facilitate a discus-
sion of the stability of the bubbles found in Theorem 3.6, i.e., we calculate the spec-
trum of the linearized operator at a bubble. Denote the inner product on L2(SN−1)
by

〈φ, ψ〉 =
∫

SN−1

φ(θ)ψ(θ)dθ, φ, ψ ∈ L2
(

S
N−1

)

.

Here θ = (θ1, . . . , θN ) is a point on S
N−1 and dθ refers to the surface area measure of

S
N−1.

Consider a bubble profile B(0, b), i.e., b is a solution of (3.5). Let Ω = Pφ be a
perturbed ball given by

(4.1) Pφ =
{

rθ : r ∈
[

0, b(1 +Nφ(θ))
1
N

]

, θ ∈ S
N−1

}

.
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The energy J (Pφ) of the perturbed ball Pφ is now treated as a functional of φ,
i.e., J (Pφ) = J (φ), and one can write it more explicitly as

J (φ) = bN−1

∫

SN−1

(1 +Nφ)
N−2
N

√

(1 +Nφ)
2
N +

|∇SN−1φ|2
(1 +Nφ)

2N−2
N

dθ

−αbN
∫

SN−1

1 +Nφ

N
dθ

+
σ

2

∫

Pφ

∫

Pφ

1

(2π)
N
2

KN
2 −1(|x− y|)
|x− y|N2 −1

dxdy.(4.2)

In the present setting, one can easily define a deformation of Pφ by deforming φ
to

(4.3) φ+ ǫψ, φ ∈ Dom(J ) and ψ sufficiently smooth.

This gives rise to a deformation of P to Pφ+ǫψ. The first variation now is

(4.4)
dJ (φ+ ǫψ)

dǫ

∣

∣

∣

∣

ǫ=0

=

∫

SN−1

((N − 1)H(φ)− α+ σN (φ))bNψdθ.

Now the mean curvature H and the nonlocal operator N are both regarded as acting
on φ. Introduce a nonlinear operator S : Dom(S) → L2(SN−1),

(4.5) S(φ) = bN
(

(N − 1)H(φ)− α+ σN (φ)
)

.

The Euler–Lagrange equation (1.6) now becomes the equation S(φ) = 0.
With the operator S one can write the first variation (4.4) more concisely as

(4.6)
dJ (φ+ ǫψ)

dǫ

∣

∣

∣

∣

ǫ=0

= 〈S(φ), ψ〉.

One can also find the second variation of J :

(4.7)
d2J (φ+ ǫψ)

dǫ2

∣

∣

∣

∣

ǫ=0

= 〈S ′

(φ)ψ,ψ〉.

In (4.7), S ′

is the Fréchet derivative of S, so that S ′(φ) is a linear operator from
H2(SN−1) to L2(SN−1).

Note that the spherical profile B(0, b) corresponds to φ = 0. Hence φ = 0 is a
critical point of J , so S(0) = 0. Furthermore, when φ = 0, ψ gives a perturbation in
the normal direction. Thus according to [14, (1.147), p. 41], one can show that

S ′

(0)ψ = bN−1(−∆SN−1ψ − (N − 1)ψ) + σb2N
∫

SN−1

1

(2π)
N
2

KN
2 −1(|bθ − bω|)
|bθ − bω|N2 −1

ψ(ω)dω

+σbN+1

(

∫

B(0,b)

1

(2π)
N
2

(

KN
2 −1(|bθ − y|)
|bθ − y|N2 −1

)′
bθ − y

|bθ − y|dy · θ
)

ψ(θ),(4.8)

where (·)′ denotes the derivative with respect to |bθ − y|.
Lemma 4.1. Let HN

n , n = 0, 1, 2, . . . , be the space of spherical harmonics of di-

mension N and degree n. Each of the HN
n is an eigenspace of S ′(0) with the corre-

sponding eigenvalue

(4.9) λn = bN−1(n+N −1)(n−1)+σbN+2
(

In+N
2 −1(b)Kn+N

2 −1(b)−IN
2
(b)KN

2
(b)
)

.
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Proof. According to [20, Theorem 3.2.11],

(4.10) ∆SN−1ψ = −n(n+N − 2)ψ,

where ψ ∈ HN
n . Then,

(4.11) −∆SN−1ψ − (N − 1)ψ = (n− 1)(n+N − 1)ψ.

It remains to study the integral operator

(4.12) ψ → b2N
∫

SN−1

1

(2π)
N
2

KN
2 −1(|bθ − bω|)
|bθ − bω|N2 −1

ψ(ω)dω

and the multiplication operator

(4.13) ψ → bN+1

(

∫

B(0,b)

1

(2π)
N
2

(

KN
2 −1(|bθ − y|)
|bθ − y|N2 −1

)′
bθ − y

|bθ − y|dy · θ
)

ψ(θ).

For the integral operator (4.12) take ψ ∈ HN
n to deduce

∫

SN−1

1

(2π)
N
2

KN
2 −1(|bθ − bω|)
|bθ − bω|N2 −1

ψ(ω)dω

=
(N − 1)ωN−1

(2π)
N
2

(∫ 1

−1

(b
√
2− 2t)1−N/2KN

2 −1(b
√
2− 2t)PNn (t)(1− t2)

N−3
2 dt

)

ψ(θ)

= b2−NIn+N
2 −1(b)Kn+N

2 −1(b)ψ(θ).

(4.14)

Here in the second to last step we have used the Funk–Hecke theorem [20, Theo-
rem 3.4.1] or [16, Theorem 4.24], while in the last line, we have used Lemma 2.4. By
(4.14) we conclude that the integral operator (4.12) acts on HN

n like

(4.15) ψ(θ) → bN+2In+N
2 −1(b)Kn+N

2 −1(b)ψ(θ), ψ ∈ HN
n .

For the multiplication operator (4.13), we use the divergence theorem to compute

bN+1

∫

B(0,b)

1

(2π)
N
2

(

KN
2 −1(|bθ − y|)
|bθ − y|N2 −1

)′
bθ − y

|bθ − y| dy · θ

= −bN+1

∫

B(0,b)

1

(2π)
N
2

∇y ·
(

KN
2 −1(|bθ − y|)
|bθ − y|N2 −1

θ

)

dy

= −b2N
∫

∂B(0,1)

1

(2π)
N
2

KN
2 −1(|bθ − bω|)
|bθ − bω|N2 −1

θ · ω dω

= −b2N (N − 1)ωN−1

(2π)
N
2

∫ 1

−1

(

b
√
2− 2t

)1−N
2 KN

2 −1(b
√
2− 2t)PN1 (t)

(

1− t2
)

N−3
2 dt

= −bN+2IN
2
(b)KN

2
(b).

Here we have used the fact that θ · ω, as a function of ω, is a spherical harmonic of
degree 1 according to [20, Lemma 3.2.3] and then applied [20, Theorem 3.4.1] and
Lemma 2.4. Hence the multiplication operator (4.13) is simply

(4.16) ψ → −bN+2IN
2
(b)KN

2
(b)ψ.

Then (4.9) follows from (4.11), (4.15), and (4.16).
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Note that when n = 1, λ1 = 0. This is due to the translation invariance of the
problem. A bubble profile B(0, b) is stable if all the remaining eigenvalues are positive.
For n = 0, 2, 3, 4, . . . , let us define the curves
(4.17)

Cn=
{

(σ, b) : (n+N − 1)(n− 1) + σb3
(

In+N
2 −1(b)Kn+N

2 −1(b)− IN
2
(b)KN

2
(b)
)

=0
}

in the (σ, b) quadrant. Any (σ, b) point on the curve Cn corresponds to a bubble whose
eigenvalue λn vanishes. Note that when n = 0, one has the same curve C0 previously
defined in (3.9). One may regard Cn as the graph of the function
(4.18)

σ = Cn(b) ≡
(n+N − 1)(1− n)

b3
(

In+N
2 −1(b)Kn+N

2 −1(b)− IN
2
(b)KN

2
(b)
) , b > 0, n = 0, 2, 3, 4, . . . .

Each Cn divides the (σ, b) quadrant into two regions:

(4.19)

Rn,s =
{

(n+N − 1)(n− 1) + σb3
(

In+N
2 −1(b)Kn+N

2 −1(b)− IN
2
(b)KN

2
(b)
)

> 0
}

,

(4.20)

Rn,u =
{

(n+N − 1)(n− 1) + σb3
(

In+N/2−1(b)Kn+N/2−1(b)− IN
2
(b)KN

2
(b)
)

< 0
}

.

Note that
R0,s = Rd, R0,u = Ri.

Note also that R0,s lies to the right of the curve C0, while Rn,s is to the left of Cn for
n = 2, 3, . . . .

If (σ, b) is in Rn,s, then the bubble B(0, b) is stable with respect to the nth mode;
if (σ, b) is in Rn,u, then the bubble is unstable with respect to this mode. In the case
n = 0, if (σ, b) ∈ R0,s we say that the bubble is radially stable. A bubble is termed to
be stable if it is stable with respect to all modes (n = 0, 2, 3, 4, . . .). Hence, if B(0, b)
is stable, then (σ, b) must be in the intersection

(4.21)
⋂

n=0,2,3,...

Rn,s.

The following lemma gives a simple description of this set.

Lemma 4.2. For every b > 0,
1. Cn+1(b) > Cn(b) when n = 2, 3, . . . ,
2. C2(b) > C0(b).

Proof. For part 1, since

b3(Cn+1(b)− Cn(b))

=
(2n+N − 1)pN

2
− (n+N)npn+N

2 −1 + (n+N − 1)(n− 1)pn+N
2

(pN
2
− pn+N

2 −1)(pN
2
− pn+N

2
)

,

it suffices to show the numerator on the right-hand side is positive. It is known [2,
Theorem 1(4)] that the function t→ p√t(b) is log-convex for t > 0. Since a log-convex
function is convex, for any 0 < µ < 1

p√
(1−µ)ν2

1+µν
2
2

(b) < (1− µ)pν1(b) + µpν2(b) .
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Part 1 follows if ν1 = N
2 , ν2 = n+ N

2 , and µ = (n+N−1)(n−1)
(n+N)n . The proof of part 2 is

similar.

Lemma 4.2 implies that

(4.22)
⋂

n=0,2,3,...

Rn,s = Rd ∩R2,s.

Given σ and b, we define

(4.23) T : (σ, b) → (σ, α) ≡
(

σ,
N − 1

b
+ σbIN

2
(b)KN

2 −1(b)

)

.

When a given (σ, α) gives rise to two bubbles, only the one with the larger radius is
stable with respect to radial perturbation. Consequently when T is restricted to the re-
gionRd, then the restriction, denoted as TRd

, is one-to-one. Denote the inverse of TRd

by T−1
Rd

, which maps from T (Rd) back to Rd. Note that T (∩n=0,2,3,...Rn,s) ⊂ T (Rd)
since ∩n=0,2,3,...Rn,s ⊂ Rd. With the help of T one can precisely identify regions for
(σ, α) that give rise to radially stable bubbles and stable bubbles, respectively. The
following theorem then follows from Lemmas 4.1 and 4.2 immediately.

Theorem 4.3. Let N ≥ 3. If (σ, α) ∈ T (Rd), then with (σ, b) = T−1
Rd

(σ, α),
B(0, b) is a radially stable bubble. If (σ, α) ∈ T (Rd ∩ R2,s), then with (σ, b) =
T−1
Rd

(σ, α), B(0, b) is a stable bubble.

The above theorem allows us to construct Figure 2, which will be convenient when
we look for stable bubbles for a given (σ, α). In this picture any bubble from the red
region is radially unstable. The larger of the two bubbles from the green region is
radially stable but the other one is radially unstable. The radially stable one from the
green region may or may not be stable. Figure 1 has already included the curve C2,
in blue. The region

⋂

n=0,2,3,...Rn,s = Rd ∩R2,s is bounded between the green curve
and the blue curve. If (σ, b) is in this region and α is given accordingly by (4.23),
then the bubble B(0, b), corresponding to these σ and α, is stable.

5. Existence of bubble assemblies. In this section D is bounded and suffi-
ciently smooth so a Green’s function of (1.4) exists and is written as

(5.1) G(x, y) =
1

(2π)
N
2

|x− y|1−N/2KN
2 −1(|x− y|) +R(x, y),

where R is a smooth function of (x, y) ∈ D ×D. Define, for ξ = (ξ1, . . . , ξK) where
ξ1, ξ2, . . . , ξK are distinct points in D,

F (ξ) =
K
∑

k=1

R
(

ξk, ξk
)

+
K
∑

k=1

K
∑

l=1,l 6=k
G
(

ξk, ξl
)

.

Since G(x, y) → ∞ if |x− y| → 0 and R(x, x) → ∞ if x→ ∂D, F attains a minimum.

Theorem 5.1. Let D be a bounded and sufficiently smooth domain in R
N (N ≥

3),K ∈ N, and δ > 0. There exists b0 depending on D, K, and δ such that if

1. (σ, α) ∈ T (Rd),
2. b < b0,

3. (N−2)(N−1)N+δ
2b3 < σ < N(N+1)(N+2)−δ

2b3 ,
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where (σ, b) = T−1
Rd

(σ, α), then JD, with α and σ being its parameters, admits a

stationary set that is an assembly of K perturbed balls. Moreover,

1. the radii of all the perturbed balls are all approximately equal to b;
2. if the centers of the perturbed balls are ξ1∗ , ξ

2
∗ , . . . , ξ

K
∗ , then as b → 0,

(ξ1∗ , ξ
2
∗ , . . . , ξ

K
∗ ) converges to a minimum of F , possibly along a subsequence;

3. this stationary assembly is stable in some sense.

Remark 1. The last statement about stability in the above theorem is vague;
further discussion about what we mean is contained in the last paragraph of this
section. We feel that the constructed assembly should be a local minimizer; however,
we do not have a proof.

The proof of this theorem proceeds along the same line as the proof of [12, The-
orem 5.1], so we only present a sketch here. The reader may consult [12] for missing
details. Similar strategies were used in [29, 30] for a diblock copolymer problem. The
diblock copolymer problem has a volume constraint and consequently there is always
one and only one bubble for every parameter value.

We start with a construction of assemblies of exact balls whose radii are close
to b. An important remark is in order. Condition 3 is derived from the bounds
C0(b) < σ < C2(b) for small b. When b is chosen from T−1

Rd
(σ, α) and σ satisfies

condition 3 of the theorem, the ball B(0, b) is necessarily a stable bubble profile,
studied in section 4. Henceforth, we construct a ball assembly from a stable bubble.

Let ξ = (ξ1, ξ2, . . . , ξK), where ξ1, ξ2, . . . , ξK are distinct points in D, and make
an approximate solution that is an assembly of small balls centered at the ξk’s. The
radii of the balls are bβk, where the βk’s are not yet determined. Collectively write
β = (β1, β2, . . . , βK), where each βk is close to 1 so bβk is close to b. Let P0 be the
union of balls P k0 centered at ξk of radii bβk:

(5.2) P0 = ∪Kk=1P
k
0 , where P k0 =

{

x ∈ R
N :

∣

∣x− ξk
∣

∣ ≤ bβk
}

.

One estimates the energy of P0 and finds

(5.3)

JD(P0) =

K
∑

k=1

(

NωN (bβk)N−1 − αωN (bβk)N
)

+
K
∑

k=1

σ

2

(

ωN (bβk)N
(

1−NIN
2
(bβk)KN

2
(bβk)

)

+ ω2
N (bβk)2NR(ξk, ξk)

)

+
K
∑

k=1

K
∑

l=1,l 6=k

σω2
N (bβk)N (bβl)N

2
G(ξk, ξl) +O(σb2N+2).

Next we proceed to perturbe P0. Let φ
k, k = 1, 2, . . . ,K, be functions defined on

S
N−1. Let

(5.4) P kφk =
{

ξk + rθ : r ∈
[

0, bβk(1 +Nφk(θ))
1
N

]

, θ ∈ S
N−1

}

be a perturbed ball. Then let

(5.5) Pφ = ∪Kk=1P
k
φk

be an assembly of these perturbed balls. Here one writes φ = (φ1, φ2, . . . , φK) and
Pφ to emphasize that this assembly depends on φ. In fact, Pφ also depends on
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β = (β1, β2, . . . , βK) and ξ = (ξ1, ξ2, . . . , ξK), but these dependencies will be explored
later.

If we deform φ to

(5.6) φ+ εψ,

then Pφ is deformed to Pφ+εψ. The first variation is
(5.7)

dJD(φ+ εψ)

dε

∣

∣

∣

∣

ε=0

=

K
∑

k=1

∫ 2π

0

(

(N − 1)H
(

∂P kφk

)

− α+ σND(Pφ)
)

(

bβk
)N

ψk dθ.

Here we have treated JD as a functional of φ and written JD(φ + εψ) for
JD(Pφ+εψ). We also introduce a nonlinear operator SD whose kth component is

(5.8) SkD(φ) =
(

bβk
)N
(

(N − 1)H
(

∂P kφk

)

− α+ σND(Pφ)
)

,

which is viewed as a function of θ. This operator is identified as the first variation of
J since

(5.9)
dJD(φ+ εψ)

dε

∣

∣

∣

∣

ε=0

=
K
∑

k=1

∫

SN−1

SkD(φ)ψk dθ.

An assembly Pφ of perturbed balls is a stationary set precisely when

(5.10) SD(φ) = 0.

To solve this equation, consider the second variation of JD. Let φ+ ε1ψ+ ε2υ be
a two-parameter deformation of φ. Then

(5.11)
∂2JD(φ+ ε1ψ + ε2υ)

∂ε1∂ε2

∣

∣

∣

∣

ε1=ε2=0

= 〈S ′
D(φ)ψ, υ〉.

Here S ′
D(φ) is the Fréchet derivative of SD at φ and

(5.12) ψ → S ′
D(φ)ψ

is a self-adjoint linear operator fromH2(SN−1,RK)⊂L2(SN−1,RK) to L2(SN−1,RK).
Equation (5.10) is solved in two steps. First one solves the equation up to the

locations and radii of balls. More precisely introduce some subspaces

L2
♭

(

S
N−1,RK

)

=

{

φ ∈ L2
(

S
N−1,RK

)

:

∫

SN−1

φk(θ) dθ =

∫

SN−1

φk(θ)h(θ) dθ = 0 ∀h ∈ HN
1 , ∀k

}

,(5.13)

H2
♭

(

S
N−1,RK

)

= H2
(

S
N−1,RK

)

∩ L2
♭

(

S
N−1,RK

)

.(5.14)

Recall that HN
1 is the space of spherical harmonics of degree 1. Denote the orthogonal

projection from L2(SN−1,RK) to L2
♭ (S

N−1,RK) by Π. Geometrically one can inter-
pret an element in L2

♭ (S
N−1,RK) (or H2

♭ (S
N−1,RK)) as an assembly whose perturbed

balls have well-defined centers ξk and well-defined radii bβk. More specifically, the

condition
∫ 2π

0
φk(θ) dθ = 0 implies that bβk can be interpreted as the radius of the
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perturbed ball P kφk ; the condition
∫ 2π

0
φk(θ)h(θ) dθ = 0 for all h ∈ HN

1 defines ξk as

the center of P kφk .

In the first step of solving (5.10) we find φ ∈ H2
♭ (S

N−1,RK), so that ΠSD(φ) = 0.
This is done by a fixed point argument. One rewrites the equation as

(5.15) − (ΠS ′
D(0))

−1(ΠSD(0) + ΠR(φ)) = φ,

where R(φ) is the higher order part in the expansion of S(φ), namely,

(5.16) SD(φ) = SD(0) + S ′
D(0)φ+R(φ).

One shows that the operator ΠS ′
D(0) is positive definite onH

2
♭ (S

N−1,RK) ⊂ L2
♭ (S

N−1,

R
K). Here one needs the upper bound σ < N(N+1)(N+2)−δ

2b3 of condition 3. This is of
no surprise as we consider the space L2

♭ (S
N−1,RK) and λn > 0 in (4.9) for n ≥ 2.

Once the fixed point is found, we denote it by φ∗(·, β, ξ). As the above procedures
are done with respect to the general β and ξ, it solves

(5.17) ΠSD(φ∗(·, β, ξ)) = 0.

In the second step, we choose appropriate β and ξ, denoted β∗ and ξ∗, so that
φ∗(·, β∗, ξ∗) solves the equation S(φ∗(·, β∗, ξ∗)) = 0. To this end, we use a variational
argument. Let

(5.18) J(β, ξ) = JD(φ∗(·, β, ξ)).

One proves that if (β∗, ξ∗) is a minimum of J , then φ∗(·, β∗, ξ∗) is the desired solution.
It turns out that J(β, ξ) can be approximated by the energy of P0, the assembly of
exact balls of radii bβk and centers ξk. Then

J(β, ξ) =
K
∑

k=1

(

NωN
(

bβk
)N−1 − αωN

(

bβk
)N
)

+
K
∑

k=1

σ

2

(

ωN
(

bβk
)N
(

1−NIN
2

(

bβk
)

KN
2

(

bβk
)

)

+ ω2
N (bβk)2NR

(

ξk, ξk
)

)

+

K
∑

k=1

K
∑

l=1,l 6=k

σω2
N (bβk)N

(

bβl
)N

2
G
(

ξk, ξl
)

+O
(

σb2N+2
)

.(5.19)

We need to be a bit more precise about the domain of β and ξ. Let

(5.20) Ξ =
{

ξ =
(

ξ1, ξ2, . . . , ξK
)

: ξk ∈ D, ξk 6= ξl if k 6= l
}

,

which is the domain of the function F given in (5). Then, for η > 0, define
(5.21)
Ξη =

{

ξ=
(

ξ1, ξ2, . . . , ξK
)

: ξk ∈ D, dist
(

ξk, ∂D
)

> η, dist
(

ξk, ξl
)

> 2η for k 6= l
}

.

By choosing η sufficiently small we ensure that the minimum of F on Ξ is achieved
inside Ξη. Next let

(5.22) Bτ =
{

β =
(

β1, β2, . . . , βK
)

: βk ∈ (1− τ, 1 + τ)
}

.

The number τ will be specified and made small later. Now we take ξ = (ξ1, ξ2, . . . , ξK)
∈ Ξη and β = (β1, β2, . . . , βK) ∈ Bτ .
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Let (β∗, ξ∗) be a minimum of J on Bτ × Ξη. We need to show that if b is small,
then (β∗, ξ∗) is in Bτ × Ξη, the interior of Bτ × Ξη, so that (β∗, ξ∗) is a critical point
of J . Then the equation S(φ∗(·, β∗, ξ∗)) = 0 follows. Let b→ 0 and (β∗, ξ∗) converge,
possibly along a subsequence, to (β◦, ξ◦) ∈ Bτ × Ξη.

We need good estimates for Iν(z) and Kν(z) for small z. For Iν we have

(5.23) Iν(z) =
(z

2

)ν ∞
∑

k=0

(

z2

4

)k

k!Γ(ν + k + 1)

(see [1, (9.6.10)] or [19, (8.445)]), from which we derive

(5.24) Iν(z) =
(z

2

)ν
(

1

Γ(ν + 1)
+

z2

4Γ(ν + 2)
+O

(

z4
)

)

.

For Kν , when ν is a positive integer

Kν(z) =
1

2

(z

2

)−ν ν−1
∑

k=0

(ν − k − 1)!

k!

(

−z
2

4

)k

+ (−1)ν+1 log
(z

2

)

Iν(z)

+ (−1)ν
1

2

(z

2

)ν ∞
∑

k=0

{ψ(k + 1) + ψ(ν + k + 1)}
(

z2

4

)k

k!(ν + k)!
(5.25)

(see [1, (9.6.11)] or [19, (8.446)]; ψ here is the psi function); when ν is a nonnegative
integer plus 1

2 , with ν = n+ 1
2 ,

(5.26) Kn+ 1
2
(z) =

√

π

2z
e−z

n
∑

k=0

(n+ k)!

k!(n− k)!(2z)k

(see [1, (10.2.15)] or [19, (8.468)]). One derives that if ν ≥ 3/2 is an integer or an
integer plus 1

2 and ν 6= 2,

(5.27) Kν(z) =
(z

2

)−ν
(

Γ(ν)

2
− Γ(ν − 1)

8
z2 +O

(

z4
)

)

.

If ν = 2, then the O(z4) term above in (5.27) is replaced by O(z4 log z). Following
(5.24) and (5.27), one finds

(5.28) Iν(z)Kν(z) =
1

2ν
− z2

4(ν − 1)ν(ν + 1)
+O

(

z4
)

if ν 6= 2. And if ν = 2, the O(z4) term becomes O(z4 log z).
Now we first claim that β◦ = (1, 1, . . . , 1), which is in Bτ . One needs the estimate

(5.29)

N − 1− αb+ σb2
(

b

2

)
N
2

(

1

Γ(N2 + 1)
+ o(1)

)

(

b

2

)1−N
2

(

Γ(N2 − 1)

2
+ o(1)

)

= 0

for α. Here (5.29) follows from (3.5) and [1, (9.6.7) and (9.6.9)].
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Assume that σb3 → γ. Because of condition 3 in Theorem 5.1,

(5.30) γ ∈
[

(N − 2)(N − 1)N + δ

2
,
N(N + 1)(N + 2)− δ

2

]

.

To find a uniform limit of 1
σbN+2 J(β, ξ) as b → 0, we appeal to (5.19) and derive the

following limits:

1

σbN+2

(

NωN (bβk)N−1
)

→ NωN
γ

(βk)N−1,(5.31)

1

σbN+2

(

−αωN (bβk)N
)

→ −ωN
(

N − 1

γ
+

1

(N − 2)N

)

(

βk
)N

(5.32)

by (5.29),
(5.33)

1

σbN+2

(

σωN
(

bβk
)N

2

(

1−NIN
2

(

bβk
)

KN
2

(

bβk
)

)

)

→ ωN
(N − 2)(N + 2)

(

βk
)N+2

by (5.28), and

1

σbN+2





K
∑

k=1

σω2
N

(

bβk
)2N

2
R
(

ξk, ξk
)

+

K
∑

k=1

K
∑

l=1,l 6=k

σω2
N

(

bβk
)N (

bβl
)N

2
G
(

ξk, ξl
)

+O
(

σb2N+2
)



→ 0.

(5.34)

Then (5.19) implies that

J(β, ξ)

σbN+2
→

K
∑

k=1

(

NωN
γ

(

βk
)N−1 − ωN

(

N − 1

γ
+

1

(N − 2)N

)

(

βk
)N

+
ωN

(N − 2)(N + 2)

(

βk
)N+2

)

(5.35)

uniformly on Bτ × Ξη as b→ 0. Consequently

1

σbN+2

(

J(β∗, ξ∗)− J((1, 1, . . . , 1), ξ∗)
)

→
K
∑

k=1

(

NωN
γ

(

βk◦
)N−1 − ωN

(

N − 1

γ
+

1

(N − 2)N

)

(

βk◦
)N

+
ωN

(N − 2)(N + 2)

(

βk◦
)N+2

)

−
K
∑

k=1

(

NωN
γ

1N−1 − ωN

(

N − 1

γ
+

1

(N − 2)N

)

1N +
ωN

(N − 2)(N + 2)
1N+2

)

.

(5.36)

The function

(5.37) f(t) =
NωN
γ

tN−1 − ωN

(

N − 1

γ
+

1

(N − 2)N

)

tN +
ωN

(N − 2)(N + 2)
tN+2
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has t = 1 as a strict local minimum, since f ′′(1) > 0 precisely when γ > (N−2)(N−1)N
2 .

Here we have used the lower bound (N−2)(N−1)N+δ
2b3 < σ of condition 3. Fix τ in (5.22)

to be small enough so that in the interval (1 − 2τ, 1 + 2τ), w = 1 is the only critical
point of the function f . If β◦ were not (1, 1, . . . , 1), then the right side of (5.36) is
positive since each βk◦ is in [1 − τ, 1 + τ ]. Consequently when b is sufficiently small
J(β∗, ξ∗) > J((1, 1, . . . , 1), ξ∗), a contradiction to the choice of (β∗, ξ∗).

Next we show that ξ◦ is a minimum of F on Ξ. Let ξm be a minimum of F . Then
ξm ∈ Ξη. By Lemma 5.19 and the just proved fact that β∗ → (1, 1, . . . , 1),

1

σb2N
(

J(β∗, ξ∗)− J(β∗, ξm)
)

=

K
∑

k=1

ω2
N (βk∗ )

2N

2
R
(

ξk∗ , ξ
k
∗
)

+

K
∑

k=1

K
∑

l=1,l 6=k

ω2
N (βk∗ )

N (βl∗)
N

2
G
(

ξk∗ , ξ
l
∗
)

−
K
∑

k=1

ω2
N (βk∗ )

2N

2
R
(

ξkm, ξ
k
m

)

−
K
∑

k=1

K
∑

l=1,l 6=k

ω2
N (βk∗ )

N
(

βl∗
)N

2
G
(

ξkm, ξ
l
m

)

+O
(

b2
)

→ ω2
N

2

(

F (ξ◦)− F (ξm)
)

.

(5.38)

If ξ◦ were not a minimum of F , then the last line of (5.38) would be positive, a
contradiction to the choice of (β∗, ξ∗). Now that ξ◦ is a minimum of F , ξ◦ is necessarily
in Ξη. Therefore ξ∗ ∈ Ξη when b is sufficiently small.

We have shown that (β∗, ξ∗) is a critical point of J . It follows that Pφ∗(·,β∗,ξ∗) is
a stationary assembly of JD. The first additional assertion of the theorem that all
the perturbed discs in Pφ∗(·,β∗,ξ∗) have approximately the same radius comes from the
fact that β∗ → (1, 1, . . . , 1); the second assertion follows from the facts that ξ∗ → ξ◦
and ξ◦ is a minimum of F .

Our assertion that Pφ∗(·,β∗,ξ∗) is stable comes from its local minimization property.

Recall that Pφ∗(·,β∗,ξ∗) is found in two steps. First for each (β, ξ) ∈ Bτ × Ξη, a fixed
point Pφ∗(·,β,ξ) is constructed in a class of assemblies with well-defined centers and
radii. The fixed point is actually locally minimizing JD within this class of assemblies
by the positivity of the operator ΠS ′

D(0). In the second step JD is minimized among
the Pφ∗(·,β,ξ)’s, where (β, ξ) ranges in Bτ×Ξη, and Pφ∗(·,β∗,ξ∗) emerges as a minimum.
As a minimum of locally minimizing assemblies within classes of well-defined centers
and radii, Pφ∗(·,β∗,ξ∗) is locally energy minimizing with respect to deformations both
within and without the class of assemblies with well-defined centers and radii; hence,
in this sense we claim that Pφ∗(·,β∗,ξ∗) is stable.
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