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Abstract – The recent experimental realization of synthetic Rashba spin-orbit coupling (SOC)
paves a new avenue for exploring topological phases in ultracold atoms. The unequivocal char-
acterization of such topological physics requires a simple scheme for measuring the Berry phase
originating from the SOC. Here we propose a scheme to realize momentum space Aharonov-Bohm
interferometry in a Rashba spin-orbit–coupled Bose-Einstein condensate through a sudden change
of the in-plane Zeeman field. We find that the π Berry phase for the Dirac point of the Rashba
SOC is directly revealed by a robust dark interference fringe in the momentum space. An ex-
ternal perpendicular Zeeman field opens a band gap at the Dirac point, which reduces the Berry
phase along the Rashba ring, leading to lower brightness of the interference fringe. We develop
a variational model with semiclassical equations of motion of essential dynamical quantities for
describing the interference process, yielding real and momentum space trajectories and geometric
phases agreeing with the real-time simulation of the Gross-Pitaevskii equation. Our study may
pave the way for the experimental detection of Berry phases in ultracold atomic systems and
further exploration of momentum space interference dynamics.

Copyright c© EPLA, 2018

Topological orders of matter have recently gained great
attention in solid-state and cold-atom physics [1–14] be-
cause of their characterization of quantum phases through
a scenario different from conventional Ginzburg-Landau
orders [15,16] and potential applications in fault-tolerant
quantum computation [17–19]. A large variety of topologi-
cal phases, including quantum Hall states [20–22], topolog-
ical insulators [23,24], and anomalous Hall states [25–27],
can be characterized by a geometric phase [28], or Berry
phase, of the underlying band structure of the system.
In this context, direct measurements of Berry phases are
essential for exploring new physics of topological states
of matter.

The Berry phase describes the adiabatic phase shift of
the system wave function along a closed loop in parame-
ter space. One well-known example of Berry phases is the
Aharonov-Bohm phase [29] in real space that describes the
phase obtained for a charge particle encircling a magnetic
flux, which can be measured through a real-space inter-
ferometry. As an analogy, the Berry phase of an energy

(a)E-mail: chuanwei.zhang@utdallas.edu (corresponding author)

band may be measured using a momentum space inter-
ferometry. Although it is challenging to realize electronic
interferometry in solid-state systems, an Aharonov-Bohm
interferometer in reciprocal (lattice-momentum) space has
recently been realized with ultracold atoms in optical lat-
tices, where the Berry phase of a two-dimensional (2D)
hexagonal lattice [1,30] was measured.

Ultracold atomic gases exhibit great flexibility and
controllability in engineering single-particle energy band
dispersion for both continuous space and discrete lat-
tice [31–43]. In particular, a distinct type of single-
particle band governed by 2D Rashba spin-orbit coupling
(SOC) [44–49] has been experimentally realized in both ul-
tracold Fermi [50,51] and Bose [52] gases. The band struc-
ture with such 2D Rashba SOC exhibits a Dirac point,
which has been detected directly using spin-resolved radio-
frequency spectroscopy [50,51]. However, the topological
property of the Dirac point, i.e., the π Berry phase, has
not been directly measured in experiments.

In this paper, we propose a scheme that conducts mo-
mentum space Aharonov-Bohm interferometry in Rashba
spin-orbit–coupled Bose-Einstein condensates (BECs),
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Fig. 1: (Color online) (a) Illustration of the momentum-space
Aharonov-Bohm interferometry. A BEC (orange spot) with
Rashba spin-orbit coupling is initially at the ground state A.
After a sudden change of detuning δx, the deformation of en-
ergy spectrum E−(px, py) lifts point A, and then the BEC wave
function packet splits into two, separately moving along paths
C and C′ and encountering each other at point B. The whole
path encircles nonzero Berry flux localized around the tip of
the shadow region (the Dirac point if δz = 0), resulting in
a Berry phase directly indicated by the interference pattern.
(b) Berry phase vs. detuning δz, which can be determined by
experimentally measured interference pattern through the pro-
cedure in (a). The inset shows the schematic Berry curvature,
mostly encircled by the ring path, in the px-py plane.

which measures the Berry phase along a loop enclosing
the Dirac point. As shown in fig. 1(a), our interferometer
exploits the intrinsic ring structure in the Rashba energy
band as the interferometer loop and the controllable de-
tuning δxσx of ultracold atoms as a trigger for driving
the BEC. A sudden change of δx sets up the initial BEC
state at the highest energy point of the ring (point A). As
the BEC naturally pursues the lowest energy (point B),
it splits into two, following different halves of the ring
(C and C′) and exhibiting the interference. Since the whole
ring path encloses the region with dense Berry flux, the
interference pattern would reflect the Berry phase as a
function of δz , as in fig. 1(b). At δz = 0, the π Berry
phase indicates the presence of a Dirac point.

We adopt two complementary methods, Gross-
Pitaevskii equation (GPE) simulation and variational
analysis, for studying the BEC dynamics and interfer-
ence. Our simulation shows real-time evolution of the
interference pattern for 87Rb BECs in typical cold-atom
experiments, while the variational analysis provides an
informative model capturing the key physical features of
the interference, including the trajectories in momentum
and real spaces as well as the geometric phase acquired
during the evolution. We also point out proper conditions
for external trapping potential and interatomic interaction
under which the interferometry procedure succeeds and
discuss why improper trapping frequency or too strong
interaction sabotages the desired dynamics for the inter-
ference. Our results ought to provide timely guidance for
ongoing experimental study on Rashba spin-orbit coupled
quantum gases.

Model and Hamiltonian. – We consider a Bose
gas with atomic mass m and two hyperfine spin states
(ψ↑ ψ↓)T subject to synthetic Rashba coupling in the x-y
plane and a tunable Zeeman field. After integrating out

the irrelevant z degree of freedom, we write down the ef-
fective Hamiltonian,

H =
1

2m
(p̂2x + p̂2y) + V + HR + HZ + HI, (1)

with

V =
m

2
(ω2

xx̂2 + ω2
y ŷ2), (2)

HR = λR(p̂yσx + ap̂xσy), (3)
HZ = δxσx + δzσz/2, (4)

HI =

(
g↑↑|ψ↑|2 + g↑↓|ψ↓|2 0

0 g↑↓|ψ↑|2 + g↓↓|ψ↓|2
)

. (5)

Here V is an external trapping potential, HR describes
the Rashba coupling of strength λR and anisotropy fac-
tor a, HZ represents the Zeeman field δz (δx) in the
longitudinal (transverse) direction (we set as zero the y
component without loss of generality), and HI results
from the spin-dependent mean-field interaction. We use
g↑↑ = g↓↓ = 0.9554g↑↓ ≡ g in the following simulation for
87Rb atoms. (Note that this represents a regime of dom-
inant density-density interaction and negligible spin-spin
interaction. One can thus assume that such a condition
remains if the system is studied in a dressed spin basis.)
The recoil energy ER = �

2k2
R

2m = 2π�×1.8 kHz is chosen as
the energy unit.

Given a sufficiently weak trapping potential, the Hamil-
tonian has two single-particle energy bands in the px-py

momentum space, with the lower one being E− =
p2

2m − |�d(p)|, where p = (px, py) and �d = (λRpy +
δx, aλRpx, δz/2). For a = 1 and δx = 0, the set of minima
of E− forms a horizontal ring |p| =

√
4λ4

R − δ2z/(2λR) in
the px-py-plane. If δx �= 0, the ring structure remains but
is inclined such that it has only one maximum and one
minimum at two intercepts with the py-axis, respectively
(as points A and B in fig. 1(a)). Our interferometry is
performed along this Rashba ring path as we will show
below.

The Berry phase γ in the region enclosed by this ring
loop can be computed as

γ =
∮

Lc

AB · dp =
∫

S

F d2p, (6)

where AB = −i〈ζ(p)|∇p|ζ(p)〉 is Berry connection for
eigenstate ζ(p), F = ∇ × AB is Berry curvature, and
Lc and S denote the loop and the enclosed region, respec-
tively. For our Hamiltonian, the Berry curvature is related
to the unit vector d̂ = �d/|�d| as

F =
1
2
εij d̂ ·

(
∂id̂ × ∂j d̂

)
, (7)

where εij is the antisymmetric permutation (Levi-Civita)
symbol, and the Berry phase is equal to half of the solid
angle swept by d̂ in the loop integral. The Berry phase
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depends on both δz and δx but is insensitive to the latter.
For δz = 0, the Berry curvature is a delta function centered
at the Dirac point, which gives a Berry phase γ = π. When
δz increases, the d̂ vector sweeps a less solid angle, and the
Berry phase monotonically decreases as shown in fig. 1(b).
Therefore, one can continuously change the Berry phase
by tuning δz, in analogy to changing the magnetic flux in
a conventional Aharonov-Bohm interferometer.

Interferometry and simulation. – In this section,
we discuss how to employ our model as an Aharonov-
Bohm interferometer for detecting the Berry phase and
present the GPE simulation results. In cold-atom sys-
tems, the Rashba spin-orbit coupling is generated by a set
of Raman lasers that couple different spin and momentum
states, and the Zeeman energy shift is determined by the
relative detunings of the lasers [50–52]. All parameters
are highly tunable in the current experimental setup. We
consider a trapped BEC initially prepared at the ground
state of fixed λR, a, δz, and δx = δ0 < 0, which is a
momentum space Gaussian wave packet (due to the trap)
centered at the minimum of the inclined ring, i.e., (0, −p0).
Then the detuning δx is suddenly changed to δx = δ1 > 0
(with other parameters unchanged). The ring structure
is hence inversely inclined such that the current location
of the condensate becomes the energy maximum (with a
slight deviation ∼O(δxδ2z), which is negligible in our case),
illustrated as point A in fig. 1(a). As a result, the BEC
wave packet splits into two parts, which follow separate
paths (C and C′, respectively) and move toward the new
energy minimum at the opposite end of the ring (point B).
When two wave packets meet and superpose at point B,
the dynamic phase cancels out due to the symmetry be-
tween two paths, while the geometric phase (Berry phase),
as a function of λR, a, δz, and δx = δ1, can be revealed by
the density contrast of the interference pattern.

We remark that a proper external trap is essential for
driving the motion of the condensate in the momentum
space. If there is no trap, any p state is a stationary
state, and the BEC does not move since dp̂/dt = i[H, p̂] =
i[V, p̂] = 0 (given negligible interaction). However, if the
trapping potential is too strong (comparable to the Rashba
coupling strength), it may also spoil the desired ground
state as well as the interference dynamics [53,54]. In addi-
tion, if the interaction is too strong, the initial BEC wave
packet spontaneously selects one path rather than split-
ting into two parts. This is because the superposition of
two momentum wave packets leads to a real-space density
wave that costs too much interaction energy. Further-
more, the Zeeman field δz cannot be too large. Otherwise
the energy-band tip will be flattened, and consequently,
the condensate will not follow the shallow Rashba ring
groove.

Given the above constraints, our GPE simulation shows
that typical experimental parameters are indeed suited
for realizing the interference as shown in fig. 2. In
panels (a1)–(a4), we plot density distributions ρ↓(p)

Fig. 2: (Color online) Time evolution (in units of ms) of
down-spin density distribution in px-py (top) and x-y (bottom)
planes from GPE simulation (the up-spin component exhibits
same dynamics). (a1)–(a4) A ground-state BEC is first pre-
pared at a band minimum A. After a change of δx at t = 0, it
starts to split, travelling along the ring path. An interference
pattern can then be observed after the tails of wave functions
meet at the other side of the ring (point B). (b1)–(b4) Corre-
sponding real-space density distributions. The parameters are
set as λR = 0.75 �kR/m, a = 1, δz = 1kHz, δ0 = −750 Hz,
δ1 = 150 Hz, and ng = 0.05ER.

in momentum space at different time frames, with the
starting point on the ring path labeled by A and the pur-
sued energy minimum by B. Initially, the condensate lo-
cates at A ((a1)), which is lifted from the ground state by
the sudden change of δx. Then the BEC splits into two
parts, which separately follow the ring loop (as C and C′

in fig. 1(a)) toward B ((a2)). After the two condenates
encounter each other at point B, a clear ring-shape inter-
ference pattern forms in the momentum space ((a3), (a4)).
This ring structure indeed reflects BEC’s natural motion
along the ring groove toward the lower energy in the
Rashba band. Due to this petal pattern in momentum
space, the condensate also exhibits exotic circular distri-
butions in real-space ((b1)–(b4)). Our variational analysis
of key dynamical variables below will show that the trajec-
tories of splitting BEC’s center of mass explain the pattern
exhibited by the GPE simulation in both momentum and
real space.

Next, we turn to study the interference pattern at var-
ious Zeeman fields δz. The GPE simulation results are
presented in fig. 3. In panels (a1) and (a2), for δz = 0,
the density at point B is constantly zero during the evo-
lution, forming a robust dark fringe that indicates a π
phase shift between the splitting BECs upon encounter-
ing at point B. Due to the aforementioned dynamic phase
canceling, this π phase shift is contributed purely by the
accumulated geometric phase around the loop, thus con-
firming the presence of a Dirac point. Panels (c1) and
(c2) show a finite density at B for δz = 3 kHz. This indi-
cates that the Berry phase is no longer equal to π as we
expect from the smaller solid angle swept by the d̂ vec-
tor. In figs. 3(b) and (d), we plot the corresponding real-
space density distributions. They also exhibit a roughly
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Fig. 3: (Color online) Momentum-space (top) and real-space
(bottom) density distributions for each spin (as labeled on the
bottom right corner of each panel) from GPE simulation for
δz = 0 at t = 23.44 ms (four left panels) and δz = 3 kHz at
t = 21.71 ms (four right panels). The other parameters are
the same as in fig. 2. (a1) and (a2): at δz = 0, there is a
dark fringe (with zero density) at point B, reflecting a π Berry
phase given by the Dirac point. (c1) and (c2): at δz = 3kHz,
finite density occurs at point B as the Berry phase deviates
significantly from π.

ring-shaped interference pattern and can be understood
by considering the group velocity and phase dynamics of
the wave packets, as we will show later.

In order to quantitatively relate the interference pat-
tern with the geometric phase, we define a (local) relative
brightness as

RI =

∫
s0

dp ρ(p)∫
sn

dp ρ(p)
, (8)

where ρ = ρ↑ + ρ↓ is the total density distribution in the
momentum space, s0 is a proper dark-fringe region around
point B, and sn ⊃ s0 includes the adjacent bright-fringe re-
gions (such that 0 ≤ RI ≤ 1). While RI = 0 for δz = 0, it
becomes nonzero as the interference occurs for any δz > 0.
Note that since the relative brightness may slightly oscil-
lates with time, in our simulation, we record RI right after
the center of masses of the left and right parts of BECs
both move across the px-axis. In fig. 4, we plot RI vs. δz

obtained from the GPE simulation (blue dots), which fit a
monotonically increasing curve (dashed curve). Consider-
ing the monotonically decreasing relation between Berry
phase and δz, as in fig. 1(b), this relative brightness RI

may act as a good experimental measurement for directly
determining the geometric phase of the energy band. As
we will show later, a variational analysis for the inter-
ference dynamics also yields a comparable RI -δ relation
(green dots).

Finally, we study the effects of strong interaction and
anisotropic Rashba coupling in the experiment. As men-
tioned above, a reasonably small interaction strength
is favored for our scheme. If the interaction is too
strong, splitting of the BEC wave function in momentum
space induces real-space density modulation that increases
the interaction energy. Consequently, the condensate

Fig. 4: (Color online) Relative brightness RI vs. δz from the
GPE simulation (blue) and variational analysis (green). Both
show a monotonic increase in RI as δz deviates away from 0.
This monotonic behavior can be mapped to the monotonic
trend of the Berry phase vs. δz in fig. 1(b), such that RI

as a measurable quantity can be used for directly determining
the Berry phase. The insets show the momentum-space den-
sity distributions for corresponding data points with different
brightness. All parameters except δz are the same as those
in fig. 2.

Fig. 5: (Color online) Momentum and real-space density dis-
tributions for large interaction ng = 0.2 (four left panels) and
anisotropic Rashba coupling a = 0.8 (four right panels) from
the GPE simulation. The convention is the same as in fig. 3.
(a1) and (a2): the whole condensate spontaneously chooses
one side of the ring rather than splitting due to the interaction
(plotted at 15.41 ms). (c1) and (c2): a robust dark fringe still
occurs at point B for anisotropic Rashba coupling, indicating
that the π Berry phase is independent of the deformation in
energy band and interference loop (plotted at 32.32 ms). The
parameter changes also affect the real-space density distribu-
tion in the bottom row. Our variational analysis confirms the
same physics.

spontaneously selects one route rather than equally split-
ting. This is shown by the GPE simulation results in
fig. 5(a1) and (a2), in which all parameters are the same
as those in fig. 3(c), (d) except for a large ng = 0.2ER.
We see that the axial symmetry is broken in both momen-
tum and real spaces, and the interference fringes become
more obscure. In experiments, the Rashba coupling can
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be anisotropically tuned, i.e., a �= 1 in eq. (3). As a result,
the ring structure of the energy band becomes elliptical,
so does the interference loop. In the right four panels of
fig. 5, we show the GPE simulation results for a = 0.8,
with the other parameters as in fig. 3(a), (b). We still see
a dark interference fringe with zero density at point B, in-
dicating the robust π Berry phase against the deformation
of the energy band and interference loop, as expected for
the property of the Dirac point.

Variational analysis. – In this section, we reveal
salient physics features of the dynamical interference pro-
cess with a simple structured variational wave function.
Since we have observed in the GPE simulation that the
BEC wave function intends to split into two under weak
interatomic interactions, it is natural to consider a super-
position that can describe the splitting condensate as

Ψvar = φLei ϕ
2 cosα + φRe−i ϕ

2 sin α, (9)

which consists of two Gaussian wave packets φj=R,L in the
region of px > 0 and px < 0, respectively. Each Gaussian
wave packet takes a general form [55,56] as

φj = ζ(pj)
∏
η

[(
2

πR2
η

) 1
4

e
−( 1

R2
η

− i
2 ξη)(rη−Aj,η)2

× eipj,η(rη−Aj,η)
]
, (10)

where η = x, y stands for the spatial coordinates, Aη is the
center-of-mass position (in real space), Rη is the width of
the wave packet, and ξη is introduced as the conjugate
variable for Rη, which is essential for the completeness
of this variational method [56]. The axial symmetry of
the dynamics allows us to assume that two wave pack-
ets have the same Rη and ξη (independent of j = L, R),
which have been confirmed by our GPE simulation for rea-
sonably weak interaction. In a semiclassical picture, the
system Lagrangian L =

∫
d2rΨ†(i ∂

∂t
− H)Ψ yields the

equations of motions (see details in Supplementary Mate-
rial Supplementarymaterial.pdf) as

d
dt

Aj,η =
∂

∂pj,η
Ej,−,

d
dt

pj,η = −ω2
ηAj,η, (11)

d
dt

ξη =
4

R4
η

− ω2
η − ξ2η,

d
dt

Rη = Rηξη, (12)

with α = α0 being time-independent and

dϕ

dt
=

1
2

(
∂EL,−

∂α
cotα − ∂ER,−

∂α
tanα

)

+
∑
j,η

εj

(
pj,η

dAj,η

dt
− 1

2
ω2

ηA2
j,η − Ej,−

− i〈ζ(p)|∂pηζ(p)〉dpη

dt

∣∣∣∣
pη=pj,η

)
, (13)

where Ej,− = E−(pj) and εj=L,R = ±1.

Fig. 6: (Color online) Center-of-mass trajectories of the two
variational wave packets in eq. (9) in momentum space (left)
and real space (right). In momentum space, the two trajec-
tories accumulate a relative phase (represented by colors in
bar graph) from 0 at point A to π at point B. In real space,
the two trajectories (blue and orange curves, respectively)
form a double-circle structure, with points A and B indicating
the corresponding positions in momentum space. (a1), (a2)
((b1), (b2)) are for δz = 0Hz (3 kHz). The trajectories are
comparable to the GPE simulation results in fig. 3.

We choose the initial condition (at t = 0) of eq. (11)
as Ax = Ay = 0 for both wave packets (same starting
point) and small pL,x = −pR,x for the initial velocity un-
der slight axisymmetric perturbation in momentum space.
Such symmetry is actually preserved by the equations of
motion. The initial condition for eq. (12) is obtained from
the minimization of the system energy functional. The
trajectories generated by those equations are presented in
fig. 6, in good agreement with the GPE results in fig. 3.
Note that we also assume the equal splitting of the con-
densate, or α = π/4, given a sufficiently weak interaction.

We turn to discussing the dynamics of phase ϕ of the
variational wave function. There are three different contri-
butions to the time derivative of ϕ —the first comes from
energy terms Ej,−, the second is related to the dynamic
parameters like center-of-mass position and momentum,
and the last is just the Berry connection AB, determined
together by the spinor wave function and time derivative
of the momentum. Note that with the axial symmetry to
the y (and py) axis, all the terms related to energy and
other dynamical parameters, such as A2

j and pj , vanish,
leaving only the last term on the RHS of eq. (13), which
becomes

d
dt

ϕ = −i
∑
j,η

εj

(
〈ζ(p)|∂pη ζ(p)〉dpη

dt

∣∣∣∣
pη=pj,η

)
. (14)

This is exactly the Berry phase defined on the ring loop
since∮

Lc

AB · dp = −
∫

LcL

AB · dp +
∫

LcR

AB · dp, (15)
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where the ring-shaped loop Lc is divided into two
parts Lcj, as for each part of the splitting condensate.
The integral direction of left-hand side (LcL) is clockwise,
hence carrying a minus sign. The numerical solutions of
ϕ are illustrated in fig. 6(a1) and (b1) as the curve color.
In panel (a1), the two wave packets acquire an opposite
geometric phase as they encircle the loop. When they en-
counter each other at point B, the accumulated phases
are ±π

2 , respectively, making a π phase difference, which
results in a dark fringe. However, with an extra Zeeman
field δz, such phase difference never reaches π at point B
((a2)). The relative brightness RI defined in eq. (8) is also
evaluated by the variation analysis, and the results (green
dots) are compared with those from GPE (blue dots) in
fig. 4. They indeed show the same monotonic trend.

We remark that the variational method well captures
the physical features of the interference dynamics as well
as the geometric phase with much fewer variables than
the GPE simulation. Solving the semiclassical equations
of motion is also computationally efficient compared with
the GPE simulation.

Conclusion. – We have proposed and investigated
a realistic approach for conducting momentum-space
Aharonov-Bohm interferometry in Rashba spin-orbit–
coupled Bose gases and shown that the interference pat-
tern measures the Berry phase of the Rashba energy band.
Our approach utilizes the ring structure of the Rashba
spectrum as the interferometry loop and the ultracold
atoms tunability for triggering the motion of BEC wave
packets along the loop. With the real-time GPE simu-
lation for realistic 87Rb gases, we have found that the
relative brightness of the interference fringes directly in-
dicates the Berry phase as a monotonic function of Zee-
man detuning. In particular, the π Berry phase of a Dirac
point (without the detuning) is exhibited by a robust dark
fringe at the end of interferometry loop. Additionally, we
have modeled the interference dynamics with a variational
wave function of splitting wave packets and derived semi-
classical equations of motion for the most relevant dy-
namical factors. The variational results have confirmed
the trajectories in both momentum and real spaces as
well as the local geometric phase acquired by the conden-
sate along the momentum trajectory. The complementary
variational analysis and GPE simulation well agree with
each other.

Our study would provide guidance for ongoing exper-
imental effort measuring the Berry phase in ultracold
atoms with synthetic Rashba spin-orbit coupling. The
simulated density pattern in momentum and real space
(figs. 2, 3, and 5) can be directly compared with the time-
of-flight and direct-imaging measurements, respectively, in
the experiment of 87Rb gases. Our analysis can be ex-
tended to meet different experimental conditions as long
as two requirements are fulfilled: 1) the BEC wave packets
can be driven to move along a closed path in momentum
space and 2) the accumulated dynamic phases along the

two halves of the path cancel out (so the interference at
the end of the path only reflects the geometric phase). A
perfectly flat Rashba ring is not necessary. For example, if
several local minima are present in the path (such as in the
experimental system in ref. [50]), a sufficiently large detun-
ing may help incline the loop and lift the minima, and a
proper choice of parameters for the symmetric dynamic
phase is also needed. In a wide scope, the interferome-
try approach may find applications on various nontrivial
energy bands as well as high-spin [57–63] systems.
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