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Bubbles and droplets in a singular limit of the FitzHugh—-Nagumo system
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The FitzHugh—-Nagumo system gives rise to a geometric variational problem, when its parameters
take values in a particular range. A stationary set of the variational problem satisfies an Euler—
Lagrange equation that involves the curvature of the boundary of the set and a nonlocal term
that inhibits unlimited growth and spreading. The nonlocal term is the solution of a non-
homogeneous modified Helmholtz equation with the characteristic function of the stationary set
as the inhomogeneous term. Two types of stationary sets are studied: disc shaped stationary sets
in the plane, termed bubbles, and unions of perturbed small discs, termed droplet assemblies, in
bounded domains. A complete description of the existence and the stability of bubbles is established.
Depending on the parameters, there may be zero, one, two, or even three bubbles. Droplet assemblies
are constructed by a reduction argument. Each droplet in a stationary assembly is close in size and
shape to the corresponding bubble in the plane. The locations of the droplets in the assembly are
determined by the Green’s function of the modified Helmholtz equation.
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1. Introduction

Reaction-diffusion systems serve as models for studying complex patterns in several fields of
sciences [20, 24]. Many patterns emerge from homogeneous media that are destabilized by a spatial
modulation; for instance stripe and spot patterns frequently appear in chemical reactions. These
patterns are robust in the sense that they are stable and exist for a wide range of parameters; see
Turing [41]. The existence of localized structures such as fronts and pulses has been established
[5, 6, 10, 28] . Depending on the system parameters and the initial conditions, such localized
structures may stay at rest or propagate with a dynamically stabilized velocity.
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Typically localized pulses result from a nonlinear balance between dissipation and diffusion.
In the events of small diffusion coefficient coupled with bistable reaction terms, these pulses can
exhibit sharp transitions so that in the limit they form regions with discontinuous jumps. Two types
of stable standing pulses will be investigated in this paper: round discs and assemblies of small,
approximately round discs.

The FitzHugh—Nagumo system is a reaction-diffusion system that exhibits such phenomena
[21, 30]. It is of the activator-inhibitor type and can be written as

Uy = D1Au— f(u) —v, (1.1)
vy = Dy Av + 8u — yv, (1.2)

where all the parameters are positive and f(u) = u(u — B)(u — 1) with 0 < 8 < 1/2. The
diffusion coefficients of the respective species, D1 and D5, are of different scales in studying pattern
formations. The existence of standing and traveling fronts and pulses for (1.1)—(1.2) in suitable
parameter ranges on infinite lines or cylindrical domains was obtained by Chen and Choi [5, 6],
Chen et al. [7], Chen, Kung and Morita [10], and Chen and Tanaka [11]. Stability of standing pulse
solutions was justified by the index theory (Chen and Hu [8, 9]). A standing pulse solution can be
regarded as a dissipative soliton, if it is stable against small perturbations and such pulse solutions
act as basic module for more complex structures.

Some early results on the stationary FitzHugh—Nagumo system can be found in Klaasen and
Troy [26], Klaasen and Mitidieri [25], de Figueiredo and Mitidieri [18], and Reinecke and Sweers
[33, 34]. More recent years have seen studies of steady states of (1.1)—(1.2) where the component u
has one or more peaks on the interior or the boundary of D; see Dancer and Yan [15-17], Wei and
Winter [42], and Ren and Wei [37]. In these recent papers the diffusion coefficients are chosen as
D; = €% and D, = 1, and € must be small.

Some of these papers deal with spike solutions, also called spot solutions. If w is the positive
radially symmetric solution of Aw —w(w — B)(w — 1) = 0 on RY with lim) | 00 w(y) = 0, then
for a spike solution (u, v), the component u has the form u(x) ~ Zf=1 w(xfk) with the &’s
being the locations of the spikes. For instance, it was proved in [42] that a spike solution exists if
the & ’s are carefully placed close to each other with pairwise distance being of the order € log %

For a spike solution, if € — 0, a spike shrinks to its center point &, a set of zero Lebesgue
measure in RY . We are interested in a different type of solutions to the FitzHugh—-Nagumo system
which as € — 0, concentrate on sets of positive measure. Bubbles and droplet assemblies are such
limiting sets studied in this paper. Spike solutions are unstable with respect to a natural energy
functional, (1.13), of the FitzHugh—Nagumo system, essentially because the radially symmetric
w mentioned above is unstable with respect to the PDE that w satisfies. On the contrary, the
limiting structures that we study here can be stable. This allows the possibility of stable solutions
corresponding to small € in the FitzHugh—Nagumo systems.

The aim of this paper is to study a singular limit of the FitzHugh—Nagumo system on R? or on a
bounded domain D in R2. It is a geometric variational problem that contains a nonlocal interaction
term. This term functions as an inhibitor that prevents unlimited growth or spreading. There are two
parameters in the problem: o > 0 and o > 0. The energy functional takes the form

JD(.Q)zPD(SZ)—a|.Q|+%/QND(Q)dx. (1.3)

In (1.3) £2 is a measurable subset of D and |£2| is its Lebesgue measure, so the admissible set of
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JD is

A= {2 C D: £ isLebesgue measurable, |2| < oo}. (1.4)
Denote the perimeter of £2 in D by P p(£2). In the case that £2 is of class C!, P p(£2) is the length
of the part of the boundary of §2 that is inside D; namely the length of d§2 N D. One calls 02 N D
the interface of §2 because it separates £2 from D\ 2. For a general subset §2 of D,

Pp(Q) = sup{/gdivg(x) dx: g e CL(D.R"), |g(x)| < 1Vx e D}. (1.5)

In (1.5), |g(x)| is the geometric norm of the vector g(x).

The integral term in (1.3) is most novel and from there the nonlocality of the problem comes.
In this term N p is an operator that assigns each 2 the solution of the following non-homogeneous
modified Helmholtz equation:

—ANp(2)+ Np(2) = yoin D; 9,Np(£2) =0on dD. (1.6)

Here 9, is the outward normal derivative. In the case D = R2,

1
Nea@) = [ Kollx=yDdy (17

where K| is the zero-order modified Bessel function of the second kind; see [3, page 598, table 9.5].
If D is bounded, then with some smoothness condition on D (say C>% according to [22, section
6.7]) N p is well defined.

A classical stationary set of J p has a C? interface and satisfies the Euler-Lagrange equation

K@2ND)—a+oNp(2)=00nd2N D (1.8)

where K denotes the curvature, by the first variation formula (4.7) or (5.22). For the scenarios
studied in this paper, the boundary of £2 does not touch that of D so that 32 N D = 952.

We now discuss the connection between (1.3) and the FitzHugh—Nagumo system (1.1)—(1.2).
Since in the function f(u) = u(u — B)(u — 1), B € (0,1/2), there exists A > 0 such that
frrLR (f(u) + A) du = 0 where rp, and rg are respectively the smalleset and the largest of the three
zeros of f(u) + A. Introduce # so thatu = Bu — C where B =rg —rp > 0and C = —rp > 0.
Then f(u) + A=E ﬁ(ﬁ — %)(12 — 1) for some suitable constant £ > 0. With # and v as variables,
steady states of (1.1)—(1.2) satisfy

1
DIBAﬁ—Eﬁ(ﬂ—E)(ﬁ—l)—i—A—v = 0; DyAv+8(Bii—C)—yv =0.

Next introduce a new space variable X so that x‘/DLZ = Xx. Taking Laplacians with respect
to x changes D to % and Dy toy. If we set v = SLB(U + ‘STC), then the above equations become

§C
+5- 6B

Y — —$=0; Ab—0+u=0.
E Ey

yDiB  _ /o 1y _ A
ED, Au—u(u—z)(u— 1)+

Dropping the bars over u and v, we arrive at the system

1
—62Au+u<u—§)(u—1)—eoe+eav =0 (1.9)
—Av+v=u (1.10)
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with the zero Neumann boundary condition for both u and v. The new parameters here are related
to the earlier ones by
, _yDiB A+°5 5B

EDZ,EO{: E ,EO’—E—y.

(1.11)

In particular both @ and o must be positive. The same type of scaling on € also appears in other
models; for instance, the article [23] and the references therein.

One solves (1.10) for v in terms of u so that v = N pu, where N pu is the solution of (1.6) with
x 2 replaced by u. Upon substitution (1.9) becomes

1
—€2Au —i—u(u—z)(u—l)—ea—i—eaNDu =0 inD; d,u =0 onaD. (1.12)

The equation (1.12) has a variational structure. It can be viewed as the equation for critical points
of the functional

wu—17

€? eou
I = —|Vul? ——Npu)dx. 1.13
D,e(U) /D ( 3 [Vul|® + 1 eou + 5 Du) X ( )

When D is bounded, this functional has a I"-limit. More precisely, as € — 0, eI D,e I"-converges
to the functional

Ip(R) =rPD(9)—a|9|+%/ Np(£2)dx; (1.14)
2

see [36, Proposition 2.1]. The functional in (1.14) is the same as the one in (1.3) except for an
immaterial constant 7, which is given by

1 2(y —
T:/ =12 V2 (1.15)
A 2 12

One can factor out 7 in (1.14) by redefining « and o. Hence Jp in (1.14) is equivalent to (1.3).
Because of the I"-convergence J p is considered a singular limit of the FitzHugh—Nagumo system.

Several properties follow once the I'-convergence of €1/ D,e to Jp is established. A global
minimizer of /p e converges to a global minimizer of Jp, when ¢ — 0, at least along a
subsequence. If Jp has a strict local minimizer, then nearby there is a local minimizer of I p
if € is sufficiently small [19, 27, 29, 36].

The paper [12] by Chmaj and Ren seems to be the first work on J p, although it was motivated
by a different problem. In one dimension (D = (0, 1)), if 0 < o < o, then the stationary sets
of J(o,1) form an infinite but countable family [12, Theorem 2.6]. Every stationary set is a local
minimizer. Later Dancer, Ren, and Yan studied J p on a unit ball in R”,i.e., D = B;(0) C R”, and
found several radially symmetric stationary sets [14].

In this paper we first study J p of (1.3) on the plane (D = R?) and find disc shaped stationary sets.
Such stationary sets are termed bubbles.

Before discussing bubbles in R2, let us see what happens in R. If (—b, b) is a one dimensional
bubble, then
l—ebcoshx if x e (=b,b)

Nr(=b,b)(x) = e Wlsinhb if x € R\(=b,b)

(1.16)
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The equation (1.8) becomes

—a +oe Psinhb =0 (1.17)
and consequently
1 20
b=—§log<1—?>. (1.18)
Since o and o are positive, (1.18) implies that if and only if
o
O<a< 5 (1.19)

there is a unique one dimensional bubble. One can also show that this bubble is stable.

The situation in R? is far more complex. Depending on the values of o and o, there may be zero,
one, two, or even three bubbles. In Theorem 3.4 we give a complete answer regarding the existence
and multiplicity of bubbles for all possible values of « and o. Next in Section 4, one develops a
framework that allows us to determine the stability of every bubble (see Theorems 4.3 and 4.4).
The key idea is to use proper functions to describe deformations of a disc. These functions live in
a Hilbert space, and the stability of a bubble is formulated as a nonlocal eigenvalue problem on
the Hilbert space. The eigenvalue problem is solved explicitly with the help of the modified Bessel
functions (see Lemma 4.1). For a stable bubble, except for the zero eigevalue due to translation, the
remaining eigenvalues are all positive.

The modified Bessel functions of all orders show up naturally in the study of the existence and
the stability of bubbles. Section 2 is a collection of some useful properties of these Bessel functions.
More technical properties needed in this paper are given in appendices A and B.

Finally we present an application of Theorems 3.4 and 4.3 for J p on a bounded D in R?. In one
dimension (say D = (0, 1)), all stationary sets are known. It was shown in [12] that every stationary
set £2 (not equal to the trivial sets @ or (0, 1)) is associated with a positive integer N such that the
restriction of §2 to (0, 1/N) is either (0, &) or (§,1/N) for some & € (0,1/N). The full set can be
obtained from (0, £) (or (¢, 1/N)) via successive reflection from (0,1/N) to (1/N,2/N), then to
(2/N,3/N), and so on. Indeed, in the (0, £) case,

(sinh & coth & —cosh&)coshx + 1 if x € (0,§)
Non@)(x) =1 L L _ 1 (1.20)
sinh & coth 7 (cosh x — tanh  sinhx) if x € (§, )
and (1.8) becomes
1
—a+ a(sinhscoshgcoth + — sinh? g) — 0. (1.21)

Since the quantity (sinh &€ cosh £ coth % — sinh? E) increases from 0 to 1 when £ varies from 0 to
1/N, (1.21) is solvable if and only if
O<a<o. (1.22)

The same is true if the restriction of £2 to (0,1/N)is (§,1/N).

A complete description of stationary sets in a general bounded two dimensional domain D is
a challenging problem. In Theorem 5.1 we identify a range for the parameters « and o so that J p
admits stationary sets that are assemblies of perturbed discs. Such stationary sets are called droplet
assemblies. The radii and the locations of the discs in stationary droplet assemblies are determined
asymptotically.



170 C.-N. CHEN, Y.-S. CHOI AND X. REN

2. Preliminary lemmas

Throughout this paper /,, and K, n = 0, 1,2, ..., are the n-th order modified Bessel functions of
the first and the second kind, respectively. These functions are positive on the positive real axis. In
this section we collect some of their properties. When D = R?, one recalls (1.7) and simplifies the
notation Np to N.

Lemma 2.1 Let B,(0) C R? be a ball of radius r centered at the origin. Then N (B,) is radially
symmetric with

N(By)(r) = rli(r)Ko(r) 2.1
and

1
A N(B,)dx = 2m2(E — L) K, (r)) . 2.2)

Proof. Letr > 0and v = N(B;). As the solution v = v () is radially symmetric, it satisfies

—t if O<t<r

@) —tv = { ,

0 if r<t

together with the requirement that v and v’ are continuous at r. Thus

B Ko(r)
L= norn-okem 1o

v = )
— 0 .
TIo(NKH(N—I () Ko(r) Ko(t) if r<t

As I§ = I, and K = —K (see [1, formula (9.6.27)]), it follows that Ko (r)I5(r) — Ko(r)Io(r) =
Ko(r)[1(r) + K1(r)Io(r) = 1/r for all r (see [1, formula (9.6.15)]). Hence
1—rKi(r)lo(t) if O<t<r
v(t) =
rli(r)Ko(t) if r<t

if O0<t<r

from which (2.1) follows. Moreover,

r 2 r
N(B,)dx = 271/ v(t)tdt = 27[(r— —rKl(r)/ t1 dz). 2.3)
B, 0 2 0
As (t1}) —tlp =0, for tlydt = rlj(r) = rl;(r) and (2.3) implies (2.2). O

Denote by J, and Y,, the n-th order Bessel functions of the first and the second kind respectively.

Lemma 2.2 Letz e Randn =0,1,2,.... Then

Vali2) = (Kal2) = 1" 2 1a(2).

Proof. The case n = 0 is documented in [1, (9.6.5)]. For other values of n, use (9.6.4), (9.1.3) and
(9.6.3) of [1] in the following calculation:

Kn(2) = % HWY(iz) = %ii”(J,,(iz) +iYy,(iz)) = %ii"(i”ln(z) + ¥y (iz)),

which gives the answer. Here H,El) is the Hankel function of the first kind. U
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Lemma 2.3 Letz e Randn =0,1,2,.... Then
/2 T
/ Ko(2zsint) cos(2nt) dt = Eln (z) Ky(2) .
0
Proof. By [1, formula (11.4.9)] one has that for any complex z
/2 T
/ Yo(2z sint) cos(2nt) dt = EJn (2) Yu(2) .
0

Change z to iz in the above equation and use Lemma 2.2, so the above identity is equivalent to

7/2 2 b4
/ (ilo(Zz sint) — —Ko(2z sint)) cos(2nt)dt = EJn(iz) Y,(z)
0 T
i
= —12(2) (Kn(2) = (-1 5 1a(2)) -

Taking the real parts on both sides, one completes the proof of the Lemma. O
Lemma 2.4 1. Let z > 0 be fixed. Then

Io(z) Ko(2) > 11(2) K1(2) > 12(2) K2(2) > -+ 24
2. Letn = 0,1,2,... and define g, : [0,00) — [0, 00) such that g,(z) = zI,,+1(2) K, (2). Then

gn is a strictly increasing function with g, (z) = z(In Ky — In+1 Kn+1). Moreover g,(0) = 0,
lim; 00 gn(z) = 1/2 and

1 1 3 1
go(2) = 5(1 =% T Tes T 0(2—4)) (2.5)

as z — oQ.

Proof. Part 1 is proved in [4, Theorem 2]. For part 2 employing [1, (9.6.26)], namely I, , =
I, — "jllnH and K;, = —K,+1 + 7 K,, one obtains g,(z) = z(lp Ky — In4+1 Kpy1) > 0.
Thus g, is strictly increasing and its behavior as z — 0 and z — oo can be easily evaluated from

formulas (9.6.7)—(9.6.9), (9.7.1) and (9.7.2) in [1]. From the cited formulas,

z11(2)Ko(2)
1 3 15 105 1 1 9 225 1
= |ll-———— 4+ 0(— l-—+————— + 0| —
2( 8z 12822 1024z3 + <Z4))( 8z + 12822 3072z3 + (z4>>
1 1 3 1
2( 2z 1623 + <Z4))

as z — oo. The O(1/z?) terms on the right hand side happen to cancel. U
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3. Bubbles in a plane

In this section we are interested in disc shaped stationary sets of J p when D = R2. Such stationary
sets are called bubbles in this paper. Write J for Jy2 for simplicity. Because of the translation
invariance of J, only discs B, (0) centered at the origin are considered. Define

j(r.o.a) = J(B.(0)), 3.1

namely, the energy of the disc B,(0) with a radius r, when the parameters of J are o and «. By
(1.3) and (2.2) one has

1
j(ro,) =2nr —anr? + onrz(z —1(r) K, (r)). 3.2)
It is known from [1, (9.6.26)] that I{ = Iy — %Il and K| = —Ko — %Kl. These lead to
9/
ar
Since IoK; + 1Ko = 1/r [1, (9.6.15)], the above can be simplified to

=2m —2mar + 7or — ncrrz(lo(r)Kl(r) — Ko(r) 11 (r)).

9i
a—J =21 —2mwar + 2nor? I (r) Ko(r). 3.3)
,
A disc centered at the origin of radius b is a bubble if and only if g—]r +—p = 0; namely that b is a
solution of
1 —ab 4 ob*1,(b)Ko(b) = 0. (3.4)

With the Bessel functions involved, it is difficult to solve (3.4) for b directly. We take a different
perspective, which will lead to a complete characterization of the solutions of (3.4). For each o > 0,
solve (3.4) for ¢ in terms of b to obtain a function s:

o = sq(b) = ;‘Zbl_l[é), be (éoo) (3.5)
To make notation simpler, we have suppressed the dependence on b in (3.5) and written 1, for I,,(b)
and K, for K, (b). This practice is continued throughout the paper.

The function o0 = s5,(b) defines a curve {(sq(b),b) : b € (é, o0)} in the o-b quadrant. With a
slight abuse of notation, one again calls the curve s, for each «. In fact every pair (o, b) uniquely
determines a positive o by (3.4):

1+o b2 1 1 K()
b .

The curves s, for distinct o are mutually disjoint and every point in the o-b quadrant is passed by
one of such curves.
Next study the monotonicity of the function sy, or whether the curve s, is turning left or right

in the o-b quadrant as b increases. Implicit differentiation of the equation % = 0 shows that

(3.6)

3%j
b2
st/)t(b) = - 32]'
dodb

_ o —U(b]lKo + b2(10K0 — ]1K1))
h b21, Ko

3.7
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because
82j 2
ab—z = 2na + 20 (b11K0+b (IoK()—I]Kl)), (38)
82j
= 27bh*1, K,. 3.9
959h nb“11 Ko (3.9

Note that (3.8) follows from Lemma 2.4. Use (3.5) to simplify (3.7) to

1 —O’b3(10K0 - IlKl)

Salb) = b1, Ko

(3.10)

where 0 = 54 (b). Since the denominator in (3.10) is positive, the sign of the numerator determines
whether the curve s, is going left or right. Thus motivated, define another curve

Co={(0.b) e Ry xRy : 1 —0b*(I9Ko — I1 K1) = 0}. (3.11)
This curve divides the o-b quadrant into two regions

Ri ={(0.b) e Ry xRy : 1 —0b>(IpKo — I K1) > 0} (3.12)
Ry ={(0.b) e Ry xRy : 1 —0b*(IpKo — 11 K1) <0} (3.13)

sothat Ry x Ry = R; U Cy U Ry;. In summary one has the following lemma.
Lemma 3.1 For each o > 0 let s, be the curve given above.

1. The family {sq : o > 0} is a set of non-intersecting curves covering the o-b quadrant.

2. Each curve s starts at the point (O, é) with s&(é) > 0 and ends with a vertical asymptote
limy_, o 5o (b) = 20,

When it is in R;, so goes right as b increases, i.e. s;,(b) > 0 if (s4(b),b) € R;.

When it is in Ry, sq goes left as b increases, i.e. s,,(b) < 0if (s4(b),b) € Ry.

5. When it intersects C g, Sq does so with a vertical slope, i.e. s,,(b) = 0if (s¢(b),b) € C.

Rl

Proof. 1t remains to prove Part 2. Since sa(é) = 0 by (3.5), (3.7) implies
1 3
Y e —
o 11 (3)Ko(3)
From Lemma 2.4, one deduces limp_, o 54 (b) = 2. O

To better understand the curves s,, one studies the shape of the curve Cy first. This curve can
be viewed as the graph of the function

o = Co(b) = b € (0, 00). (3.14)

b3(IoKo — 1 K1)’
Lemma 3.2 The function Cy has the following properties.

1. limp_ o4 Co(b) = 0o and limy_, o, Co(b) = 4.
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2. There exists b > 0 such that C}(b) < 0 if b € (0.b), C}(b) = 0 if b = b, and C{(b) > 0 if
b € (b, 00).

Proof. According to [1, (9.6.7)—(9.6.9)], for small b,
1 b 1
Io(b) ~ 1, Ko(b) ~ log , 1 (b) ~ Kl(b) ~ (3.15)

They imply limp_, ¢4 Co(b) = oo. It is also known, [1, (9.7.5)], that as b — oo,
1 1 27 1
Io(b) Ko (b 1 o|—
0(b) Ko(b) = 2b( T Tt T (bé))’

| 3 45 |
L) Ky (b) = 75 (1 8b2  128b% O(F))'

Thus

b3 (1o(B) Ko(b) — i (0) K1 (b)) = ~ + — + 0( ) (3.16)

0 0 1 1 3 B2 X .
and
1 9
Co(b) = =4|1- 0 3.17

o®) b3(IoKo — 11 K1) ( a2 (b4)) (317)
Hence limp—_,», Co(h) = 4. This proves the first part of the lemma. The proof of the second part is
postponed to appendix A. O

Let 6 = Co(b) so that (6, b) is the leftmost point on the curve C . Then
6 <4 (3.18)
If 54 is the curve from the family {s, : « > 0} that passes the point (&, l;) then according to (3.6)

1+ 6621,(h) Ko (b
g— LT ;(b) o) (3.19)

It will be shown below that & < 2. Knowing the shape of C, one investigates how the curves s
change as « varies.

Lemma 3.3 There exist numbers & and &, 0 < & < & < 2, and real analytic functions oy, :
(@,2) > (6,4), or : (&, 00) — (6,00), by, : (&,2) —> (b 00), and bg : (&, 00) — (0, b) such that
oL, ORr, and by, are increasing and by is decreasing, 6 < o, (@) < og(a) and by, (a) > b > br(a)
for all a € (&,2). The following properties hold for the curves s, .

1. Ifa € (0,@&), then the curve sq stays in the region R; and s,,(b) > 0 forall b € (é, 0).

2. If « = @, then sy touches C tangentially at one point (6,5) where sé (ZA)) = Cé(bA) =
Elsewhere sg stays in R; and s& (h) >0ifb # b.

3. If a € (&,2), then sy intersects C o twice transversally at (og (), br(@)) and (o (@), by (at)).
When b € (é,bR(a)) U (b (), 00), s, (b) > 0 and sy is in R;; when b € (br(@),br(@)),
s5,(b) < 0and sq is in Ry. Furthermore,
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6 T T T T T

FIG. 1. The curve C (in red) and the curves s¢ for various . As ¢ increases (from 1.5 to 1.79 to 2.2 in this figure), the
Sq curves shift to the right. (Only the ebook/online version of this article contains full color images.)

(@) ifa € (&, ), then

sup  sq(b) = blim Sq(b) =20 > or() = s¢ (bR(a)) > or () = sg (bL(a));

be(L,00)
b) ifa = &, then
sup  s5(b) = blim sa(b) =20 = op(@) = sa(br(@)) > 0L (@) = sa(bL(@));

be($,00)
(©) ifa € (,?2), then

sup  Sq(b) = or(a) = sy (bR(Ol)) > blim S¢(b) =20 > op(a) = sy (bL(oz)).
be(L.,00) -

4. Ifa € [2,00), then sy intersects C o once transversally at (og(c), br(c)). When b € (é, br(w)),
s, (b) > 0 and sy isin R;; when b € (br(a), 00)), s, (b) < 0 and sy is in Ry.

Proof. Recall that (6, l;) is the leftmost point on C. Note that

ab—1 - o
b2 Ky b1 Ky

Sa(b) =

and b1 Ky — % as b — oo by Lemma 2.4. If « is sufficiently small, s, (b) < & forall b € (é, ).
Then s, stays in R; and s,,(b) > 0 for every b € (%, 00).
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Since sy () is increasing with respect to «, the curve s, sweeps to the right in the o-b quadrant
as « increases. Let us temporarily set

1
& =supia > 0:syisin R; forallbe(—,oo)}. (3.20)
o
We claim that @ < 2. By Lemma 2.4 for large b,
2b—1 3 1
52(b) = =4t 40 —4). (3.21)
31— 35 — 1657 + 0(39)) 4b (b

Comparing this to (3.17), one sees that the curve s, lies to the right of the vertical line 0 = 4 and
Cy lies to the left of the vertical line when b is sufficiently large. Since sz(%) =0< CO(%), the
curve s must intersect Co. As sq (b) depends continuously on «, if s5(b) > 4 at some large b where
Co(b) < 4, then s4(b) > 4 when « is slightly smaller than 2. Consequently s, must also intersect
Cy if « is slightly smaller than 2. Hence & < 2.
In view of
lim s4(b) =2& <4 = lim Cy(b), (3.22)
b—00 b—o00

s4 must intersect C g, for otherwise one can increase « slightly beyond & and keep s, in R;. Since
s (D) < Co(b) forall b (0%, 00), the two curves can only intersect tangentially. At an intersection
point, s}, is vanished by Lemma 3.1 (5). Then Cg also vanishes there. However Co has only
one critical point b by Lemma 3.2 (2), so s4 and C intersect at only one point: (6, 1;). Moreover &
defined in (3.20) is the same as the one given in (3.19). Parts 1 and 2 are proved.

Since sy (b) is increasing with respect to «, for @ > & the curve s, must intersect C at least
once. Any intersection point in this case must be different from (&, 13). Hence s;, vanishes but C
does not at such an intersection point, so the two curves intersect transversally. For « > &, as b
increases from é set the first intersection point of s, and Cg to be (og(x), br(e)). For b slightly
greater than bg(«), the point (s¢(b).b) is in R4. Then 0 = s,,(br(r)) = C{(br(e)). This forces
br(a) < b by Lemma 3.2 (2).

The curve sy, @ > &, may stay in Ry for all b > bgr(a), or it may intersect Co again.
When the latter happens, denote the second intersection point by (o (@), bz (), which is again
a transversal intersection point and by, () > b. Since Sq(b) is decreasing with respect to b when
b € (br(@), br(w)),

6 <or(a) <og(e), and bp(a)>b > br(e). (3.23)

After s, exits Ry, it cannot intersect C ¢ again. If there were a third intersection point (04, by ), then
by > b, and Cy(bs) > 0 = s,,(b+), which is a contradiction to 54 (b) < Co(b) for b € (br (), by).

Now consider the case o = 2. By (3.21) and the fact that limp_, o0 S¢ () = 20 > 4 for « > 2,
the curve s, stays in Ry when b is sufficiently large. Such a curve s, can only intersect C ¢ once at
(or(@), bg(e)). This proves part 4.

The last case is @ € (&, 2). Since limp_,o0 5o (b) = 200 < 4, the curve s, is in R; when b is
large. As b increases, s, must intersect C o twice, first at (og(ct), bg(e)) and then at (o, (o), by ().
Moreover

s,(b) >0 if b€ (L br(e),
s,(b) <0 if be (bR(a),bL (a)), (3.24)
s,b)y>0 if be (bL(oe),oo).



BUBBLES AND DROPLETS 177

Note that bg () is a local maximum point of s,. To prove the three subcases in part 3, compare
or(@) = sq(br(e)) to limp_ o sa(b) = 2«a. When o € (@,2) sufﬁmently close to &, the
point (or(@),br(x)) is close to (7, b) Since s, (b) > 0 for all b € (b 00), 6 = sa(b) <
limp o0 54 (b) = 2&. Consequently og (o) = sa(bR(ot)) < limp_, o 5o () = 200 when « € (&, 2)
sufficiently close to &. On the other hand, note that s5(b) < 0 for all b € (br(2),00), and
or(2) = s2(br(2)) > limpos2(h) = 4. Then for ¢ € (&,2) sufficiently close to 2,
oRr(a) = sq(br(®)) > limp_, o, 5o (h) = 2. Hence there exists @ € (&, 2) such that

UR(&) = S@(bR(&)) = bligoloso_t(b) = 2a. (3.25)

Since (o0g (&), br(®)) is an intersection point of sz and C, the triplet (og (&), br(@), @) satisfies

1 —ab+0ob*I Ky =0, (3.26)
1 —ob3(IyKo — 1, K1) =0, (3.27)
o = 2«, (3.28)

where (3.28) comes from (3.25). Eliminating o and « in (3.26)-(3.28), one arrives at
1
b*(IoKo — I K1) + b1 Ko = 5 (3.29)

It is shown in appendix B that (3.29) admits a unique solution for b in (0, co). This implies the
uniqueness of @ and proves part 3.

As a point of intersection, (og(a), br()) satisfies 0 = s4(b) and 6 = Cy(b). On eliminating
o one deduces that b is a function of & given implicitly by

Sq(b) — Co(b) =0. (3.30)
The left side of (3.30) is analytic with respect to « and b, and

3(sa(b) = Co(b))
ab

whmbny ~ abr@) = Co(br(@) = ~Co(br(@) # 0 (3.31)

since br(a) < bforalla > @. By the implicit function theorem, b («) is analytic with respect to
a for o € (&, 00). Consequently or(c) = sq(bgr(r)) is also analytic. The same argument works
for by, and oz, as well. O

Numerical calculations show that @ ~ 1.71 and & ~ 1.80, so the three critical values &, & and
2 for o are fairly close to each other.

Recall that a bubble is a disc shaped solution of (1.8) in R?. The next theorem gives the exact
number of bubbles up to translation for each parameter pair (o, «).

Theorem 3.4 Let &, @, o1, and o be as in Lemma 3.3. The following statements hold.
1. If o € (0,&], then

(a) ifo € (0,2q), there is one bubble,
(b) ifo € [2a, 00), there is no bubble.
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2. Ifa € (&, &), then og(a) < 2« and

(a) ifo € (0,0r()), there is one bubble,

(b) if o = o (@), there are two bubbles,

(¢) ifo € (or(@), or()), there are three bubbles,
(d) ifo = or(w), there are two bubbles,

(e) ifo € (or(),2w), there is one bubble,

(f) if o € [2a, 00), there is no bubble.

3. Ifa = &, then og(a) = 2 and

(a) ifo € (0,0L()), there is one bubble,

(b) if o = or (), there are two bubbles,

(¢) ifo € (o (@), 2w), there are three bubbles,
(d) if o = 2, there is one bubble,

(e) ifo € (2a, 00), there is no bubble.

4. Ifa € (@, 2), then or(a) < 20 < or(e) and

(a) ifo € (0,0r()), there is one bubble,

(b) if o = o (@), there are two bubbles,

(¢) ifo € (o (@), 2w), there are three bubbles,
(d) ifo € [2a, or()), there are two bubbles,
(e) ifo = or(), there is one bubble,

) ifo € (or(e), o), there is no bubble.

5. Ifa € [2,00), then 20 < og(a) and

(a) if o € (0,2a], there is one bubble,

(b) ifo € Qa,or(x)), there are two bubbles,
(¢) ifo = or(), there is one bubble,

(d) ifo € (or(a), 00), there is no bubble.

Proof. To determine the number of bubbles for the parameters o and «, consider the curve s, and
the vertical line o in the o-b quadrant. An intersection point of the o-line and s, corresponds to a
bubble of J with o and « being the parameters.

When « € (0,6], Lemma 3.1 (2) and Lemma 3.3 (1), (2) imply that if 0 € (0, 2«), the o-line
intersects s once; if o € [2¢, 00), there is no intersection. This proves Part 1 of the theorem.

When o € (&, &), Lemma 3.3 (3), particularly subcase (a), describes the shape of the curve sy in
the o-b quadrant. It implies that the o- line intersects s, once if o € (0, or,()), twice if 0 = o (@),
three times if 0 € (o (), or(®)), twice if 0 = ogr(a), and once if 0 € (or(x), 2c). There is no
intersection if 0 € [2a, 00).

Other parts of the theorem follow from the other cases of Lemma 3.3 similarly. O

The regions stated in Theorem 3.4 are numerically calculated and presented in Figure 2. The
borderline cases (2(b), 2(d), 3(b), 3(d), 4(b), 4(e), and 5(c)) are not depicted.
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3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 4.1 4.2
o

FIG.2. When (0, @) is in the red region, there is one radially unstable bubble; in the green region there are two bubbles
of which one is radially stable and the other is radially unstable; in the blue region there are three bubbles of which one is
radially stable and two are radially unstables; finally in the black region there is no bubble at all. For the blue region, its
lowest pointed apex has @ = @& while its highest pointed apex has & = 2. The point surrounded by 4 colors has & = @.
From left the blue region is bounded by the curve 0 = o7 (@), @ € (&, 2). From right the union of the blue and green
regions is bounded by 0 = o g (), @ € (&, 00). The union of the red and blue regions is separated from the union of the
green and black regions by 0 = 2«, @ € (0, 00). (Only the ebook/online version of this article contains full color images.)

4. Bubble stability

We now set up a framework to facilitate a discussion of the stability of the bubbles found in
Theorem 3.4. Let L2(S') be the L? space of the unit circle, or the interval [0, 2] with end points
identified, under the Lebesgue measure. It is a Hilbert space with the inner product

2w
(.v) = | (O)y(0) db. (4.1
Denote by H!(S') and H?(S') the standard Sobolev spaces whose norms are given by
2m 2n
60 = [ (@7 +92) a0, ol = [ (@72 + @2+ 9?)ds @)
0 0

respectively. The three spaces are nested: H2(S') ¢ H'(S') c L2(S!).
Consider a bubble B(0), i.e. b is a solution of (3.4). Given a 2m-periodic function ¢, 1 +
2¢(0) > 0forall 6 € S, let §2 = Py be a perturbed disc:

Py =re®: re[0.0/T+26(@)] 0 €'} 4.3)
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As a functional of ¢, the domain of J is

Dom(J) = {¢p € H'(S") : |$llz1 < 1o} (4.4)
with 79 > 0 small enough so that
V142¢9() € (0,2), forall § € S!; 4.5)

in particular J (Pg) is written more explicitly as

2w 2 2w
J(¢p) = / \/ @) +1+2¢ d0—ab2/ #d@—i—%/ / %K0(|x—y|) dxdy .
0 Py J Py Y

(4.6)
For a general 2 C R? and a deformation £2; of £2, there is a first variation formula:
dJ (82
(§2:) = —/ (K(02) —a + o N(£2))N - X ds, 4.7)
de le=0 90

which holds for sufficiently smooth deformation §2,. The vector N is the inward pointing unit normal
on 052 and ds is the arc length element of d£2. The vector X is the infinitesimal element of the
deformation of 952. If 982, is parametrized by R.(6), then

IR, (0)
de

Note that the sign convention of the curvature K (952) in (4.7) must be consistent with the direction
of the normal vector N. In other words, K (0£2)N is the curvature vector of 052. If £2 were convex,
K (0£2) would be non-negative.

In the present setting, one can easily define a deformation of Py by deforming ¢ to

X(0) =

4.8)

=0

¢ +ey, ¢ € Dom(J)andy € H'(S). (4.9)

This gives rise to Pg4 ¢y, which implies

R.(6) = by/1+2(p(8) + ey (9)) . 6 €S, (4.10)

Denote the inward normal vector of Ry by N and the infinitesimal element of the deformation R,
by X. Then, if ¢ € H?(S!),

OR, IR,
39 le—o ™ 92 lomo 40
3¢ by
— b1+ 2¢e?) - (———¢'?) d0
(me i +2pe). (me )
= —b%y db, 4.11)

where complex numbers are used to denote vectors for simpler notation. The first variation of J
now becomes

dJ(p + ev)

2w
= / (K(0Py) —a + 0N (Py))b>yr db . 4.12)
de £=0 0
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Introduce a nonlinear operator S : Dom(S) — L?(S') with the domain
Dom(S) = {¢ € H*(S") : |I¢llu> < nof. (4.13)
where 7 is the same as the one in (4.4). Let
S(¢) = b*(K(3Py) —a + 0N (Py)) . (4.14)

If one computes the curvature of 3Py in terms of ¢, then an explicit formula is obtained:

2
b(1+2¢ + 345 —¢")

1 ‘
S($)(0) = 72 —ab® + ob2/ EKO(V)\/I +2¢(0) ¢ — y|) dy.
(1+2¢+ 1((-3¢) P,
4.15)
The Euler-Lagrange equation (1.8) now becomes the equation S(¢) = 0.
With the operator S one can write the first variation (4.12) more concisely as
dJ (¢ +ey)
LOLN)  — (5619, (4.16)
& e=0

While the right side of (4.16) is obviously meaningful if ¢ € Dom(S) and ¥ € L2(S'), the left
side of (4.16) is still defined if ¢ € Dom(J) and € H'(S'). Henceforth (S(¢), ) is interpreted
this way in the latter case. One also finds the second variation of J:

02J (¢ + &1V + &20)
881382 e1=€2=0

= (S (@)Y, v). 4.17)

In (4.17), S’ is the Fréchet derivative of S. For each ¢ € Dom(S), S’(¢) is a linear operator from
H2(S') to L2(SY).

Note that the bubble Bp(0) corresponds to ¢ = 0. Hence ¢ = 0 is a critical point of J, so
S(0) = 0. A more involved calculation shows

2w 14

b . .
S0y = b(—y" —¥) + 0/0 EKO(}be‘e —be|) Y (0) dw

b3 ; beie —y i
i 0/|y|<b EK‘/’(VM "= me dy -y (). (4.18)

Let H, ={y : v = Acosnf + Bsinnf, A, B € R} and decompose
L*SY) = @2 Hp . (4.19)
Lemma 4.1 Each of the spaces H,, n = 0,1,2, ..., is an eigenspace of S'(0) for the eigenvalue
An = b(n® — 1) + ab*(1,(b) Ky (b) — I (b) K1 (D)). (4.20)

Proof. 1t suffices to study the integral operator

2r b4 . .
0o [ S Kol(be by o) do 420
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and the multiplication operator

. b i0
v / <p 27 (/)(|b919 =) |be‘9 ) dy €%y ©). (4.22)

For the integral operator (4.21) take v to be cosnf, withn = 0,1,2, ..., to deduce

2w 1 0 )
/0 EK0(|be‘ —be‘“’\) cosnw dw
2r 1

:/ —Ko(b}l ¢ @=0)(cosn(w — 0) cos nf — sinn(ew — 0) sinnd) do
0
2w
—cosn@/ —Ko(b|1—e |)cosna)da)—s1nn0/ —Ko(b{l—e ) sinnw do
=cosn9/ —K0(2b sin —) cosnwdw. (4.23)
o T 2
Similarly, take v to be sinnf forn = 1,2, ..., to find
2w T
1 i0 iw : o l . Q
/(; EKg(‘be — be ‘) sinnw dw = s1nn9/(; an(stm 2)cosna)da). (4.24)

By Lemma 2.3 one concludes from (4.23) and (4.24) that on cos n6 and sin 76 the integral operator
(4.21) acts like

cosn® — b*I,(b)K,(b)cosnf, sinn® — b*I,(b)K,(b)sinné. 4.25)
For the multiplication operator (4.22), direct calculation gives
1 1 , bel? — A
_ _K/ belg _ I d . i0
b )iy 27 ol I

19
=/ b K’(b|z|) % 4z e, (v = be?(1 - 2))
|

z—1|<1 27 |z |

arccos(r/2) .
/ / —Ko(b r)(cosa)rdadr, (z =re?)
arccos(r/2) 2

/ K’(br),/l—( ) rdr
=/_1EK(’,(b«/E)\/2+—2udu, (r = v2—2u)

71
=— / — Ky (21) sin %) cosw dw, (integration by parts and ¥ = cos w)
o T

= -1 (b)K1 (D), (4.26)

where the last line follows from Lemma 2.3 with n = 1. Hence the multiplication operator (4.22) is
simply

v — —b*I1(b)K (D). 4.27)
Then (4.20) follows from (4.25) and (4.27). ]
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Because of the translation invariance of the problem, S’(0) always has a nontrivial kernel;
namely when n = 1, A; = 0 and the corresponding eigenspace H; is always contained in the
kernel. The stability of the bubble depends on whether the other A,’s, n = 0,2,3,4,.., are all
positive. To study this issue, define the curves

Cp ={(0.b) :n* =1+ ob*(I,(b)Ka(b) — I; () K1 (b)) = 0} (4.28)

in the 0-b quadrant. Any (o, b)-point on the curve C, corresponds to a bubble whose eigenvalue
A, vanishes. Note that when n = 0, one has the same curve C¢ previously given in (3.11). As in
the C case one may regard C,, as the graph of the function

1—n?
o=GC,b) = , be(0,00). (4.29)
N RO AR ACY ) :

Each C,, divides the o-b quadrant into two regions:
Rys = {(a, by:n*—1+ ab3(1,,(b)Kn(b) —Ii(b)K,(b)) > 0}, (4.30)
Ruu = {(0.b) :n* — 1 4+ 0b>(1,(b)Kn(b) — I (b) K1 (b)) < 0}. 4.31)

Note that

Ros = Ra, Rou =Ri (4.32)

where R; and R; are given in (3.13) and (3.12), respectively. Note that Rq ¢ lies on the right of the
curve Cg, while R, 5 is on the left of C, forn = 2,3, ...

If (0,b) is in R, s, then the bubble By (0) is stable with respect to the n-th mode; if (o, b) is in
Ry u, then the bubble is unstable with respect to this mode. In the case n = 0, (0,0) € Ros = Ry
means that the bubble is stable with respect to radial perturbations, i.e. radially stable; if (o, b) €
Ro,u = R;, then the bubble is radially unstable. A stable bubble is stable with respect to all modes,
and hence (o, b) must be in the intersection

() Rus (4.33)
n=0,2,3,...
The following lemma gives a simple description of this set.
Lemma 4.2 For every b > 0,

1. Ch41(b) > Cp(b) whenn =2,3,...,
2. Cr(b) > Cy(b).

Proof. Denote I,K,, by P, where v € R,. Since

2n + )Py — (n% + 2n) Py + (n® — 1) P,
G- G - CEV L D

it suffices to show the numerator on the right is positive. It is known [4, Theorem 1 (4)] that the
function 1 — P ;(b) is log-convex for ¢ > 0. Since a log-convex function is convex, for any
O<pu<l1

Pm(h) <(1- M)Pvl(b) + }LPVz(b) .
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Part 1 follows if vy = 1,v, =n+ land u = nz—_l
Next observe that by [4, Theorem 2, Eqn. (19)] and the fact that P, is deceasing in #,
1

1 3 1
P < =P —Py, < -P - Py, 4.35
1 20+22 4o—i-42 ( )

from which Part 2 follows. O

Lemma 4.2 implies that the curves C, in the o-b quadrant do not intersect. If n < m, C,, is to
the left of C,,. The set N,—0,2,3,... Ry s is simply the region between C¢ and C», i.e.,

m Rn,s =Ry N R2,s- 4.36)
n=0,2,3,...

The stability of bubbles is summarized in the following theorem.
Theorem 4.3 Let « and o be given positive numbers.

1. The functional J with o and o being its parameters can have at most one radially stable bubble.
Consequently there can be at most one stable bubble.
2. A bubble By(0) is stable if Co(b) < o < Cy(b).

Proof. Part 2 follows from the discussion above and (4.29) that defines C,,. For part 1, note that a
radially stable bubble corresponds to a point (0, b) € Ro s = R4 in the 0-b quadrant. In Ry, (recall
the proof of Theorem 3.4), a s, curve and a verticle o line can intersect at most once, since sy () is
decreasing with respect to b in R . O

We have learned that for given « and o there may be zero, one, two, or even three bubbles. So
the bubble radius b is not uniquely determined by (o, @). On the other hand for given ¢ and b, there
is a unique o by (3.6). Define

1 +0b211K0)
5 .

If T is restricted to the region Ry (also termed Ry ), then the restriction, denoted by Tg,, is
one to one. Denote the inverse of Tg, by T_dl, which maps from T(R;) back to Ry. Note that
T(Nn=0,2,3,...Rn,s) C T(Rg) since Ny—p,2,3,..Rn,s C Ry. With the help of T one can precisely
identify regions for (o, @) that give rise to radially stable bubbles and stable bubbles, respectively.

Theorem 4.4 If (0,«a) € T(Ry), then with (0,b) = TE; (0,a), By(0) is a radially stable bubble.
If (0,a) € T(Np=02,3,.. Ru,s), then with (o,b) = TE; (0, @), Bp(0) is a stable bubble.

T:(0,b) = (0,a) = (o, 4.37)

Figure 3 shows T(Np=0,2,3,.. Ra,s) in purple and T(Rz)\T (Ny=0,2,3....Rn.s) in yellow. Note
that the union of the yellow and the purple regions in Figure 3 equals the union of the green and the
blue regions in Figure 2.

5. Droplet assemblies on a bounded domain

Beginning in this section we study the singular limit Jp on a bounded domain D and show
that when « and o are in a proper range, the functional J p admits stable stationary sets that are
assemblies of perturbed small discs.
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FIG. 3. If (0, @) is in the purple region, there is a stable bubble; if (0, &) is in the yellow region, there is a bubble that is
stable with respect to radial perturbations, but not stable with respect to some other perturbations. The union of the yellow
and the purple regions is the same as the union of the blue and green regions in Figure 2. The yellow region is separated from
the purple region by the image of the curve C, under T'. (Only the ebook/online version of this article contains full color
images.)

Since
Io(b)Ko(b) = <log 117)(1 +0(1)).  In(b)Kn(b) = %(1 +o(l), n=1.23....

when b is small [1, (9.6.7)—(9.6.9)], one deduces that

1 1
Co(b) = = 1+o0(1)), 5.1
0( ) b3(10K()_11K1) b3 logll)( ( )) ( )

3 12

Cy(b) = = —(1 1)). 5.2
20) = sk Ky 0t (5.2)

Consequently for every § > 0 there exists by > 0 such that

146 12—-6
(0.):0<b<by — " << ¢ () Rus. 5.3)
b*log b? n=023,...

The set on the left side of (5.3) will play a critical role in the next theorem. First assume that D is
sufficiently smooth and there is a Green’s function of the equation (1.6), denoted by G = G(x, y),
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so that
No(@) = [ 6 »rat)dy. (54
One can decompose G into two parts:
1
G(x,y) = 5—Ko(lx = ¥]) + R(x, ), (5.5)

where the modified Bessel function Ko (]x — y|) is singular when x = y while the regular part R is
smooth. Second introduce a key quantity in this section, a function F defined in terms of G and R,
for K distinct points £1, £2,..., €K in D:

K K K
FEE,.. =) RE &+ Y GE €. (5.6)
k=1

k=11=1,l#k
Third recall the mapping 7 from (4.37) and its restriction T, to Ry.

Theorem 5.1 Let D be a bounded and sufficiently smooth domain in R?, K € N and § > 0. There
exists by > 0 depending on D, K, and §, such that if

1. (0,a) € T(Ry),

2. b< bo,
1+48 12§
. <0< ,
b3 log% b3

where (0,b) = TE; (0, @), then J p, with a and o being its parameters, admits a stationary set that
is an assembly of K perturbed discs. Moreover,

1. the radii of all the perturbed discs are approximately the same;

2. if the centers of the perturbed discs are £1,E2,... €K then as b — 0, (£1,£2,...,£K)
converges to a minimum of F, possibly along a subsequence;

3. this stationary assembly is stable in some sense.

A few remarks are in order. This strategy of the proof of Theorem 5.1 was first developed
by Ren and Wei in [38, 39] for the Ohta-Kawasaki diblock copolymer problem [31]. It was later
successfully applied to more sophisticated nonlocal geometric variational problems [35, 40]. The
main difference between the diblock copolymer problem studied in [38] and the present problem
lies in the the bubble profile used in the construction. In [38] there always exists a unique bubble
simply because of an area constraint on the permissible sets. That bubble is stable if the nonlocal
interaction term in [38] is not too large. Here we have no area constraint. The very subtle existence
and stability properties of the bubble used in the proof of Theorem 5.1 come from Theorems 3.4
and 4.3.

For the diblock copolymer problem, Choski and Sternberg [13] studied the stability issue by a
second variation formula, and Acerbi, Fusco and Morini [2] showed that positivity of the second
variation implies local minimality for stationary sets.

The smoothness requirement on D is only needed to ensure that the operator N p is well defined.
This is the case if D is of the class C%% [22, Section 6.7]. By (5.3) the range of (o, ) specified
by the three conditions stated in the theorem is not empty. The corresponding (o, b) is in a tail of
Nn=0,2,3,... Rn,s with small b. In this tail, b — 0 is equivalent to ¢ — oo.
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To get a rough idea what « and o look like when b — 0 in this theorem, note

1+0b2L Ky 1+ 22 log L(1 +0(1))

by [1, (9.6.7) and (9.6.8)]. In the two borderline cases of the third assumption of the theorem,

l. ifo ~ =——, theno ~ =;
b310g%’ 2b°

. 12 6 1
2. ifo ~ b—3,thena ~ Elogg.

Hence as b — 0, both « and o approach oo, although o does so much faster than o does.
We start with a construction of assemblies of exact discs whose radii are close to b. First let
E:{gz(gl,sz,...,gK):skeD, gk¢g’ifk¢z}, (5.8)
which is the domain of the function F given in (5.6). Then, for n > 0, define
8, = {g = (£1.€%....£5): £k e D, dist(E%. D) > n. dist(£¥, &) > 2n for k # 1}. (5.9)

Regarding F defined in (5.6), note that G(x, y) — oo if y — x. The techniques in [35] may also
be used to study the behavior of R(x, y) when x and y are close to dD. In particular based on the
property that R(z,z) — oo if z — 9D, one can find a sufficiently small 7 such that

inf_ F(§) > Inf F(6). (5.10)

g€B\a,

This implies that the minimum of F on & is achieved inside 5. The number 7 is fixed throughout
the paper.

Let £ = (£1,£2,...,£K) € 5, the closure of Z, in R?X and make an approximate solution
that is an assembly of small discs centered at the £%°s. The radii of the discs are bB¥ where the g’s
are not yet determined. Collectively write 8 = (8, B2,..., %) € B,, where B; is the closure of
a box B; in RX defined by

B.={p: Bre(l—rl1+0). (5.11)

The number 7 will be specified and made small later, so the radii b,Bk become close to b. For now
we only require that T € (0, 1). Take bg to be sufficiently small so that when b < by,

b, b < g forall 8 € B,. (5.12)

Let Py be the union of discs Pé‘ centered at £X of radii hp¥:

Py = U,f=1Pé‘ where Pé‘ ={xe R?: |x — £k < bﬁk}. (5.13)
Because of (5.12) the assembly Py consists of non-overlapping discs, and Py is contained in D.
Lemma 5.2 Let £ € B, and B € By. Then

K
Ip(Po) = Y (2mbB* —an(bp*)? +
k=1
K 2(ppk)4 K K 2(pB*)\2(pB1)2
+Zon (2/3 ) REEEH+Y on’( /32) (BB G(EF, €Y + 0(obO).

k=1 k=1 I=1,l#k

kN2
%(1 — 211 (B85 K (b8")) )
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Proof. Since, by Lemma 2.1,

/I t/ t2—Ko(|x—y|)dydx_m (1 =21 () K1 (1)),

one obtains (with t = bf ky

K

Jp(Po) = Z <2nbﬁk —an(bpF)? + %/Pk /Pk %Ko(pc i) dydx)

+Z //R(xy)dydx—kz Z //G(xy)dydx

k=1 I=11#k
on(bp*)?
2

Ma

(anﬂk —an(bpr)? + (1-21;(bB") K, (bﬂ")))

x~
Il
-

—i—Z //R(xy)dydx—}-z Z [/G(xy)dydx.

k=1 I=1,l#k

Denote the gradient of R(x, y) (G(x, y) resp.) with respect to x by VR(x, y) (VG(x, y) resp.), and
the gradient with respect to y by VR(x, y) (VG(x, y) resp.). Then

[oReemar= [ (ReE) +TR0E 0= 8 + 067 dy
Py ly—£k|<bpk

= w(bBF)?R(x, %) + O(b*)

R(x,y)dydx
i b

= / (T (bB*)* R(x, E*) + O(b*)) dx
lx—&K | <bpk

= /| oppe FOBVREE + (BB VRE €9 (v~ £ + 0" dx
72 (bB*)* RE, £5) + 0(0°).

Similarly
[ [ 6 dvax = 28208 26" 6 + 00,
Py J P
The lemma then follows from these estimates. O
To introduce a perturbed assembly, let ¢k, k=1,2,..., K, be 27 -periodic functions. Let

Pk = {5 +re®:re [o, bk \/1 +2¢k(9)], g esh (5.14)
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be a perturbed disc, and
Py = Ui, Py (5.15)

be a perturbed assembly. Here one writes ¢ = (¢',¢2,...,¢%) and Py to emphasize that
this assembly depends on ¢. In fact, P, also depends on B = (B',82,...,8K) and £ =
(E1,£2,...,£X), and these dependencies will be exploited later.

Next specify the domain for ¢ so that J p can be viewed as a functional of ¢. The first space is
L?(S', RK), a Hilbert space with the inner product

K 2w
(¢ v) =) / ¢ (O)y*(9) do. (5.16)
k=170

The second space is H ' (S', RX); the third space is H?(S!, RX). They are standard Sobolev spaces,
with range in RX. The norms of the latter two spaces are defined by

2 K 27 K
600 = [ 30 (@2 + @92) a0 Wl = [ 3 (642 + @R + @52) do,
k=1 k=1

(5.17)
respectively. The three spaces are nested: H2(S', RX) ¢ H!(S',RK) c L?(S!,RK).
As a functional of ¢, the domain of J p is
Dom(Jp) = {¢p € H'(S" . R¥) : |pll g1 < m} (5.18)

with n; > 0 small enough so that

V1 +20k(6) € (0,2), forall § € S'. (5.19)
bB* /1 + 29k (8) € (0.7) (5.20)

where 7 is given in (5.10). Hence Py comprises of non-overlapping perturbed discs and Py C D.
As a functional of ¢, J p (Pg) is written more explicitly as

This and (5.12) imply that

K 2m k,\2
(9*)
J = bpk 1 + 29k do
»(®) k§=l:/0 ﬁ\/1+2¢k+ +2¢

K 2 k
—aZ(bﬂk)Z/ 1+2¢ d@+5/ / G(x,y)dxdy. (521)
k=1 0 2 2 Py JPy

Again for a general £2 C D and a deformation 2, of 2, there is a first variation formula:

dJD(Qs)
de

0= —/ (K(32) —a + o Np(2))N- X ds, (5.22)
&= 082

which holds for sufficiently smooth §2, that does not meet the boundary of D. The vector N is the
inward pointing unit normal on d§2 and ds is the arc length element of d§2. The vector X is the
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infinitesimal element of the deformation of d£2. The Euler-Lagrange equation (1.8) also follows
from formula (5.22).
Define a deformation of Py by deforming ¢ to
¢ +ey, ¢ € Dom(Jp)andy € H'(S', RK), (5.23)

which gives rise to Py . Denote the boundary of the k-th component of this assembly by

RE(0) = € + bB*\[1 +2(9%(8) + ey (9)) . 6 €S, (5.24)

Denote the inward normal vector of R& by N and the infinitesimal element of the deformation R¥
by X¥. Then, if ¢ € H3(S', RX),

ORE IR
koxkgy =i—&| .
N XS =155 e Be lemo @
bp* agb(; i k[ i bpkyk
= (—==¢"i—-b 142 kele Y 610 do
(\/1+2¢k p ¢ ) ( /1+2¢k )
= —(bp*)*y* df. (5.25)
The first variation of J p now becomes
dJp(@ +ey) —~ [ k ky2, k
T de le=o Z/O (K(@Pyi) —a + 0 Np(Py))(bB)* v~ d6. (5.26)
k=1

Introduce a nonlinear operator Sp : Dom(Sp) — L?(S', RX) with the domain

Dom(Sp) = {¢ € H*S" R¥) : ||pllg> < m} (5.27)
where 7 is the same as the one in (5.18). Let Sp = (SID, S%), . ..,Sg) and define its k-th
component by

Sh(@) = (bB*)*(K(PJ:) —a + o Np(Py)) (5.28)

where the right side of (5.28) is evaluated at 8P;‘k. More specifically this quantity is evaluated at

EX+bpk \/1 + 2¢% () ¢'? and viewed as a function with 6 being the input variable. If one computes
the curvature of BP;‘,( in terms of ¢¥, then an explicit formula is obtained:

k.2
bBE(1+20% + 2 F — g

k.ry2\3/2
(1+ 29k + £202)

+ o (bB%)? /P G(E* + bB* /14 29K (0) €, y)dy. (5.29)
[

The Euler—Lagrange equation (1.8) now becomes the equation Sp(¢) = 0.

k.,
S @) (6) = ) — a(bp¥)?
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With the operator S p one can write the first variation (5.26) more concisely as

dJp(p +ey)
de
The right side of (5.30) is meaningful if either ¢ € Dom(Sp) and ¥ € L2(S',RX), or ¢ €
Dom(Jp) and ¥ € H'(S!, RK).
Next consider the second variation of J p, which is also the Fréchet derivative of Sp. Let ¢ +
1Y + &2v be a two parameter deformation of ¢. Then

02Jp(¢ + &1y + &2v)
881882 e1=¢62=0

= (So@).v). (5.30)

= (Sp(®)y.v) (5.31)
Here S’ (¢) is the Fréchet derivative of Sp at ¢ and

v — Sp(@®)Y (5.32)

is a self-adjoint linear operator from H2(S',RX) c L2(S',RX) to L?(S',RX). The quadratic
form (S, (¢)y, v) is definedif ¢ € Dom(Sp), ¥ € H*(S',RX),and v € L2(S', RX). Moreover,
one can also use the left side of (5.31) to interpret the quadratic form if ¢ € Dom(Jp), and
v,v e H(S', RX).
Introduce some subspaces
2w

2T
L2(S', RK) = {¢ e L%(S',RX) : *(0) do = #*(0) cos 0 db
0 0

2w

= | ¢“@®)sinoas =0, vk} (533
0

2w 2w
H} (S RX) = {¢ e H'(S',RX) / ¥ (0)do = #*(8) cos 0 db
0 0

2w

= | ¢F@)sinoas =0, vk} (534)
0
2 2
HI)Z(SI,RK) — {¢ e HZ(SI,RK) : /; ¢)k(9) do = A ¢k(9) cos 0 db
2w
_ / pE©O)sin0do =0, vk} (535)
0

and denote the orthogonal projection from L2(S!,RX) to LE(Sl,RK ) by I1. Geometrically one
can interpret an element in L§ (S',RX) (or Hbl (S',RX) or Hbz(Sl,IRK)) as an assembly whose
perturbed discs have well defined centers £5 and well defined radii bB*. More specifically, the
condition fozn ¢*(9) dO = 0 implies that hB¥ can be interpreted as the radius of the perturbed disc
Pq’;k; the condition f027r d*(0) cos 0 db = 02” $* () sin 6 dO = 0 defines £F as the center of Pq’;k.

6. Solving IT1Sp(¢p) =0

It is not realistic to solve Sp(¢) = 0 for arbitrarily given 8 and &. Instead in this section we solve
a weaker equation, I7Sp(¢) = 0,in H2(S', RX).
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Lemma 6.1 There exists Cy > 0 such that |[1Sp(0)] 2 < Cyob.

Proof. Insert Py into the left side of the Euler—Lagrange equation (1.8). Since
1
K@OPf) = —, 6.1
( 0 ) bﬁk ( )
it remains to estimate

N (Po)(E* + bpe?) = /P G(F + bpke®. y) dy

1 . .
=/ —Ko(|sk+bﬂke'9—y|)dy+/ R(EF 1 bBF? y) dy
P 2 Pl

K
+ Y /lG($k+bﬂkeig,y)dy.
1=1,1k * Fo

The first integral of the last line was calculated in (2.1):

1 k k if _ L kio _ 10k k k
[ 3 KollE 408 ) = [ e 3 o198 = vy v = DB 118 Ko 58",
(6.2)

As in the proof of Lemma 5.2, the second and the third integrals become
[ BG4 bgte? ) ay
0 ~ .
= / (RGEE +bpFe 6 + VRE + bpFe. £ - (v —§5) + 000%)) dy
0
= n(bB*)?R(E* + bp*e® %) + O(b*)
= w(bBF)?R(EX. EF) + m(bB*)’VR(EF %) - bpFe® + O(b*) (6.3)
[ G gt yyan
0
= / (GE* +bpFe ) + VG (E* + b5 8 - (v = §) + 00b%) dy
PO
= n(B")?G(E" + bp*e? &) + 0(b*)
= n(0B")?G(E* &) + (") > VG (EF &) - bpFe + 0B, (6.4)
uniformly with respect to 8. By (6.1), (6.2), (6.3), and (6.4), one derives
K(8P0) —a+ O'ND(P())

= a4 obBF IR Ko(BBF) + o (BBEP REF ) + om(bBF PV R(EF, €5 -

bBk
K K
+ Y onB)’GEEH+ Y on(B)BEFIVGEF.E) - + 0(cb*) (65)
I1=1,l#k 1=1,l#k

on BPéc . The lemma follows from (6.5), (5.28), and the definition of the IT operator. ]
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In Lemma 6.1 the upper case Cy is used in an upper bound estimate and the subscript 1 reminds
us that the estimate is for the first variation of J p at 0. In the next lemma we will use a lower case
¢, in a lower bound estimate on the second variation of J p at 0.

Lemma 6.2 There exists co > 0 such that the following two statements hold when o is sufficiently
large.
1. Forall y € HX(S',RK),
TS 0¥ llL2 = bl g2
The linear map I1S",(0) is one-to- one and onto from Hb2 (SY, RX) 10 Lg(S1 ,RE) whose inverse
is bounded by ||(ITS, (0))7!] <
2. Forally € H}(S',RX),

c2b

(TSH Oy ¥) = c2b| Yl

Proof. One computes S7, from (5.29) and finds the k-th component of the linear operator S’ (0) to
be

K 21
SH Oy = bpF(—y " —y k) +0 Y (52 (0B')? [ G(E* +bpre” & +bple )y (w) dw
1=1 0
K
+0 Y ()b / VG + bk’ y)dy -y (0). (©.6)
=1 Po
One separates S’ (0) into a major part L and a minor part M: S7,(0) = L + M. Here

T k
OB ko (bBFe — bty () do

b= bt vk -y 4o [
0

(b k)3 . b kele_ .
wof O Kyope” — )= dy - vk o)
yl<

27
+o | BB RE EF)yF(w) do
0

+o Z / (BbB*)* (BB )*G(E* £y () do. (6.7)

1=1,l#k
My =0 (bﬂk)“(R(S" +bpe? € 1+ bpre?) — REF £y () do
0

‘o [ (BBEYVR(E + bk, y) dy -y 6)

+o Z / (BB ) (bB')* (G(E* + bB e & + bp'e™) — G(E*. €)Y () dw

= ll;ék

+o Z / (bBF2 (BB )VG(EF + bpFe?, y) dy - ey (0). (6.8)

1=1,l#k
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The minor part is estimated easily:
IMYllz2 < Cob®|[Y] L2, Vi € L2S',RX). (6.9)
For the major part L, decompose the space L2(S', RX) into a Hilbert sum:
L2S Ry = Ho o (02, oK HY) (6.10)
where
Ho={y = (" c%....c5): FeRr} (6.11)
HY ={y =(0,0,...,0,9%,0,...,0): ¥ = Acosnf + Bsinn6, A,BeR}.  (6.12)

n

Each H ’,f is a two dimensional eigenspace of L, whose corresponding eigenvalue is
Ay = DK — 1) + 0 (BB (1n(bB*) K (bB*) — 11 (BB K1 (bB")). (6.13)

To prove (6.13), since the last two terms of Lkw in (6.7) vanish on H ﬁ whenever n > 1, it suffices
to study the integral operator

k 2 (bIBk)4 k ,i0 k i k
v —>/ > Ko(|pB e’ —bp e |)y* (w) do (6.14)
0 /g
and the multiplication operator
b,Bk)3 ) bIBkeiO -y )
k_>/ ( Ko(|bBxe® — y|)—————dy - £ y*(0). (6.15)
VE | e an KollbBte® — ) g dy ety )

As in (4.25), taking ¥¥ to be cos nf or sin 76, one finds that the integral operator (6.14) acts like
cosn® — (b)) L,(bB*) K, (bB¥) cosnb, sinnf — (bBF)* 1, (bB*) K. (bB*) sinnb. (6.16)
For the multiplication operator (6.15), arguing like (4.27) yields
y* -~ 1 (0BF) KL (0BF) Y. 6.17)

Then (6.13) follows from (6.16) and (6.17).

The space H g is not an eigenspace, but an invariant subspace under L. However Hy and H If
are not of concern at this point, since only the restriction of L to Hb2 (S, RX) needs to be analyzed.
Note that

LZS"R¥) = @2, @f_, HE, (6.18)
so L maps HZ(S',RX) into L2(S', RX).

To further study (6.13), let ¢ = b,Bk and set

An(t) = t(n® = 1) + ot* (I, () Kn (1) — [ (1) K1 (1)). (6.19)

Then
AR = A, (bB%) (6.20)
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At this point we use the important upper bound condition b3 < 12 — §, part of condition 3, in
Theorem 5.1. Choose 7 in (5.11) small enough so that

8
o’ < 12— > (6.21)
for all B € B;. It is known that
1
lim I,(t)K,,(t) = —, forn =1,2,... (6.22)
t—0 2n
by [1, (9.6.7)-(9.6.9)]. For n = 2, by (6.21), (6.22) and I,(¢)K»(t) — I1(t) K1 (¢) < O,
L A 2 Sy /1 1
liminf == > (22— 1) + (12 - 5)(1 - 5) > 0. (6.23)

For n > 3, since I,(1)K,(t) — I1(1)K1(t) > —11(1)K1(t),and n®> — 1 > 32 -1 = 8 forn =
3,4,5,..., one has

An(1)

>8— (12 - g)ll(t)Kl (t) — 8 — (12 - g)(%) >0, ast — 0. (6.24)

Moreover, since | I, (1)K, (t) — I1(t)K1(¢)| < I1(¢)K;1(¢) and I;(¢) K1 (¢) is bounded on (0, 1) by
(6.22),
An() _ = 1+ o (IO Ka () = iK1 (1))

lim =1 (6.25)
n—oo n-t n—00 n2
uniformly with respect to ¢ € (0, 1). By (6.23), (6.24) and (6.25), there exist c; > 0 and ¢y > 0 such
that
An(t)
2 = 3¢,, forallt € (0,29) andalln =2,3,4,... (6.26)
n
Consequently for sufficiently small b and t
/\k
—; > 2¢,b, foralln =2,3,... (6.27)
n
For any v € Hb2 (S',RK), if one expands it by a trigonometric series
o0
¥ = (Ancosnd + Bysinnb). Ay, By, € R, (6.28)
n=2
then the H? norm of v can be equivalently given by
o0
Wl = w(|Anl*n* + | Ba*n*). (6.29)
n=2
On the series (6.28), L acts like
(ML ALB)
Az A2 A2B? .
Ly = Z nen cosnf + non sinnf | . (6.30)

A Ak ak Ay By
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The L? norm of L is

oo K
1Lyl =) Y 7 ((A5 45> + (A, BY)?). (6.31)

n=2k=1
It follows from (6.27), (6.29), and (6.31) that
ILY N2 = 2¢2b|V || 2 (6.32)
forall € H2(S', RX). Combining (6.32) with (6.9), one obtains
TS O ll2 = 1LYl — 1Myl

> 202b||¥ [l g2 — Cob® Y2
> b |V 2 (6.33)

forall y € Hl>2 (S', RX), if b is sufficiently small.
Similarly, for any ¥ € H(S',RX), if one expands it by a trigonometric series as in (6.28),
then the H! norm of ¥ can be equivalently given by

I, = fj 7(|An?n? + | By 1) 6.34)
n=2
The inner product (L, ) is
(Ly.y) = i XK: w(AE A2 + 2k (B5?), vy e H}(S' RK). (6.35)
n=2k=1
Then by (6.27), (6.34), and (6.35),
(L) = 202b ¥ |31, V¥ € H)(S".R); (6.36)

by (6.9) and (6.36)

(IS Oy, ¥) = (LY, ¥) + (MY, ¥)
= 2e2b|1Y 130 — IMY 219 ]l 22
= 2e2b|1Y |13 — Cab’ || ]|7.
= eblly )3, Yy € H) (ST RX), (6.37)

if b is small.

The standard theory of second order linear differential equations asserts that ITS',(0) is an
unbounded self-adjoint operator on LE(SI,RK ) with the domain HI)Z(SI,RK ) C LE(SI,RK).
If y € LZ(S'",RX) is perpendicular to the range of I1S7(0), i.. (IS (0)y, ¥) = 0 for
all v e flf(SI,RK ), then the self-adjointness of 1757, (0) implies that v € H2(S',RX) and
I1S'5(0)y = 0. This together with (6.33) shows ¥ = 0. Hence, the range of I7S7,(0) is dense
in L2(S', RX). Finally (6.33) implies that the range of IS, (0) is a closed subset of LZ(S', RX).
Therefore 75, (0) is onto. O
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An upper bound for the third variation of J p, i.e. the second Fréchet derivative of S p, is needed
in later work. Following our convention, we use an upper case Cs in the next lemma for this bound.

Lemma 6.3 1. There exists C3 > 0 such that for all ¢ € Dom(Sp), and all ,v € H*(S!, RX),
ISH(D) W V)21 mEy < C3(b + bWl g2t w2y IV 5251 1K)

2. There exists C3 > 0 such that for all ¢ € Dom(Sp), and all ¥ € H?*S',RX) and
v e H(S', RK),

{SD @) (W, v), V)| < C3(b + obY) [V | g2 mr)lVIF 1 @1 gy

The proof, which is skipped, follows from straightforward calculation. Part 1 is similar to [39,
Lemma 3.2] or [38, Lemma 6.1], and Part 2 is similar to [39, Lemma 4.1] or [38, Lemma 7.2]. The
next lemma is the key result of this section.

Lemma 6.4 There exists ¢, € Hbz(Sl,]RK) N Dom(Sp) such that ||¢«||g= = O(ob®) and
ISp(ps) = 0.

Proof. For ¢ € Hbz(Sl,RK) N Dom(Sp), write

M1Sp(¢) = M1Sp(0) + 1S, (0)¢p + ITR(4). (6.38)
where R(¢) is a higher order term defined by (6.38). Define an operator 7' from HZ(S', R¥) n
Dom(Sp) into H2(S', RX) by

T(¢) = —(I1S(0)) " (ITSp(0) + TR($)), (6.39)

and rewrite the equation I7S p (¢p) = 0 as a fixed point problem 7' (¢) = ¢.
Let ¢ € (0, n1), where 1, is given in (5.18) and (5.27), and define a closed ball

W ={¢p e H*S" RX): |g]p <c}.

For¢ e W,

1 Cs(b 4+ ob*
1RGNz < 5 s 150 D)l < 2O g2, (6.40)

7€(0,1) 2

by Lemma 6.3 (1). Then by Lemma 6.1 and Lemma 6.2 (1),

IT@ g2 < | (TS ©) " |(HTSpO)] 2 + | TR@)].2)
4
g Ciob’ N Cs3(1 +ob3)cz'

6.41
Cp 2C2 ( )

Hence T maps W into itself if one first chooses ¢ small and then b small.
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Let ¢, ¢ € W and use Lemma 6.3 (1) to derive
IT@) = T@ > < ITSH©O) " | TR@) — TR
< S ISp@) - 1Sp(@) = IS0 - B,
< czianSD(qs) —1Sp@) — IS @)@ — .2

+—||(17S (@) = 1SH(0)(¢ — )2

S Sogp Jup IS =09 +19)( = 6.9 = Pl

| o -
+— sup TS (x¢) (9. ¢ — B>

€20 1¢(0,1)
Cs3(b + ob*) - C3(b + ob*
< SO iz + FCET 1) 2 Gl
b c
Cs(b + ob* -
< S0 (3¢ 4 20)01p ~ Pl
Czb
2C3(1 + ob?)c ~
= 220y Gl (642)

Hence T is a contraction if ¢ is small, and the contraction mapping principle asserts that 7" has a
fixed point in W. This fixed point is denoted ¢«, as it solves I1Sp (¢) = 0.

To prove the estimate of ¢, revisit the equation ¢ = T (¢), satisfied by ¢, and derive from
(6.39) and (6.40) that

Il < | (HSD(O) TS )12 + 1T R(@:)22)

Cs(b + ob*)
— 6 —
—(cion Igel2)-
Rewrite the above as
C3(1 +ob?) Ciob?
(1= = 19l )92 < = (6.43)
In (6.43)
Cs(1 4+ ob? Cs(1 4+ ob3 1
A g « DT < (644
2¢; 2¢; 2
if ¢ is sufficiently small. The estimate of ¢, follows from (6.43) and (6.44). O

Note that Py, is not yet a stationary assembly of J p. The equation /TS p(¢«) = 0 means that
there exist AX, AX, B¥ € R such that

Sk (pe) = AK + A¥ cos 6 + B sing, k =1,2,.... K. (6.45)

Later we will find particular 8 and £ such that A, A¥, B¥ in (6.45) vanish.
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Some properties of ¢, are shown in the next lemma. The first part gives a measurement of the
non-degeneracy of the assembly ¢, within the class of assemblies with well defined centers and
radii; the second part shows that ¢ is locally energy minimizing in this class.

Lemma 6.5 Let ¢, be the same positive constant as in Lemma 6.2.

1. When o is large,
, Czb
17Sp @0 lie = 51V 2

forally € HZ(S', RX).
2. When o is large,

b
(TS @0 ) = S 1V
forally € H}(S' RX).
Proof. By Lemmas 6.2 (1), 6.3 (1), and 6.4,
TS (¢) V2 = 1T SO0l — sg)pl) IT1Sh(z¢™) (@™, V)l

= b Y|l g2 — C3(b + ob) |l g2 |1V |l 2
= (c2b — CC3(b + 0b*)ob®) Y | g2

b
s

if b is sufficiently small. This proves Part 1.
There exists T € (0, 1) such that

By Lemma 6.3 (2),
(TS (Ths) (@, ¥), ¥)| < C3(b + abM) |l 2 [1¥ 1751 (6.46)
The second part follows from Lemmas 6.2 (2) and 6.4, since
b
(TS (@)Y, V) = c2b|| ¥ |17 — CC3(b + abMab |y |l7, = %IIWIIQ

if b is sufficiently small. O

7. Finding the correct 8 and &

Now we investigate the impacts of 8 = (B!, B2,...,pK) and &€ = (£1,£2, ..., £X). Denote the ¢,
in Lemma 6.4 by ¢« (-, 8, §) to emphasize its dependence on 8 and £. Define

J(B.§) = Jp(#«(.B.§)). (B.§) € B x &y, (7.1)

Lemma 7.1 Any critical point (Bc,§:) € By x By of J corresponds to a stationary assembly
Py (.petc) Of I D, 1. Sp(ps (s Be, &) = 0.
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Proof. Let us denote the parametrization of the boundary of Py, (. g, by R = (R1 JR%2, ... RK )

where
RE(0,B.6) = £ + b (/1 + 20K (0. B.8) €, k =1.2,... K. (7.2)

The unit tangent and normal vectors of R¥ are
IR (9 B.£)

k ok
W (97 ﬂ’s) =iT (97€)’ (73)

T*(0,B.€) =

respectively. Note that N¥ (6, B, §) is inward pointing with respect to Pk

Let one of B, B2, ..., BX, say ¥, vary, and keep the others fixed; all of £1,£2, ..., EK are also
fixed. One treats ¥ as a deformation parameter and R as a deformation. Unlike the deformation
(5.23), this deformation does not preserve radii. By (5.22) and (5.28),

8JD(¢*('J3,E)) ul 1 I ! 1
gk~ —l; B /ap’, Sp(@N' - X' ds. (7.4)
Here N/ is the normal vector defined in (7.3) and X/ is the infinitesimal element of the deformation:
IR (0, B,
x'(0,B.§) = —gﬁkﬂ 5, (1.5)
Note that
ds aRl 6,B.%)
NXP2S =i —— 2 g
do a0 ©.8.6)
( s
19k ’ b1+ 20k + ——2=) 0 ifl =k
— (ﬂ— elei—bﬁl 1 + 2¢i 619) . a¢] 1+2¢§)
\4 1+ 2¢* bﬂlaﬁ’t i6 if k
——1+2¢i e if ] #
| (B agt) 1 02 (BR ) it =k e
—(bﬂl)zg%ﬁf il £k ’
Since ITS p (¢+) = 0, there exist AL (B, &), AL (B,£), BL(B,€) e R, 1 = 1,2,..., K, such that
Sé@wﬁf»=Auﬂ9+4mmee+&w£nma (7.7)

Using the facts that fzﬂ L do = 02” Pl coshdo = 02” $L sin B dh = 0, one obtains
2m 9 2w P I 2w P !
/ ¢Z 9—/ ¢Zc059d9=/ ¢Z sinf df = 0.
o 0B o 0B o P
It follows from (7.4), (7.6), and (7.7) that

3Jp(d«(-. B.6))
3p*

= 214k (p. s)(ﬂk) 1.8)
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At the critical point (8;, &) of J,

aJD (¢* (" 135 E))
“\rFA AT =0 7.
apk )(ﬂ,é)=(ﬂc,éc) 7.9)
Therefore (7.8) implies
Al (Be &) =0 (7.10)

which holds forevery k = 1,2, ..., K.

Next let the first component of ¥, denoted £ {‘ , vary and keep the other components of ¢ and all
components of 8 fixed. Again treat £ {‘ as a deformation parameter and R as a deformation. Unlike
(5.23) this deformation does not preserve centers. Now let X be the infinitesimal element of this
deformation:

IR! (6, B,
X!(0, 8.) = —(ag,f i3 @1
1
Again compute
ds _ 0R'(6.B.§)
N/ -Xl@ = IT ‘XI(QHB’S)
20K
T .
1 00l (1,0)+——ke ifl =k
—bﬂ 9 o1 — ppl /1 + 2¢ie19) . ( e )
J1+ 291 ot 164
& i0 .
«/TT;ie lfl 7é k
ppk 2% K\
) (— % sin@ — bp* /T + 29K cos 6 — (bﬂk)2z%{t) il =k -
/ .
(6B 55 if1#k

and consequently deduce

3.] *% M 27
p(p«(-B.6) 1 /0 (Alg(ﬂ’g)+A]1‘(ﬁ,§)cos9+B{c(ﬂ,E)Sine)

ogf IRCEOE
W
——2% _sinf +b 1+ 2¢k cos0) do.
( 1+ 2¢k p ¢ )

*

dgk

= abpe [ (e
R LA s

dpk

2w
+Alf(,3,§)[() #(ﬁsin@—i—\/1+2¢§cost9>cos(9d0

sinf + /1 + 2¢k cos 9) do

27 1 3¢§
k 90 - X .
+Bl(ﬂ’$)/(; bﬂk( Yy s1n9+\/1~|—2¢*c039)sm9d9.

(7.13)
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Since ||¢« || z2 = O(ob>) according to Lemma 6.4, the last two integrals are estimated as follows:

2 1 % ) \
/0 b,lﬁ msm@—i—ﬁ1+2¢’,§cos@ cos@d@—W-{-o(gb) (7.14)

2 1 a{;ﬁé&
/ — | —=2—sin0 + /1 + 2¢k cos O | sinf df = O(cb*). (7.15)
o bBF\ 1+ 2¢F

At (B¢, &), since

3/ p(¢«(. B.§))

o&f BO=Bete) (7.16)
and Ag(B¢,&:) = 0by (7.10), (7.13) becomes
A’f(ﬂc,éc)(bﬁk + O(ob4)) + BX(Be.£)(0 + O(0b*) = 0. a1

Finally if Eé‘ , the second component of £¥, is taken as the deformation parameter, then in an
analogous way one deduces

AK(B.£)(0 + O(ab*) + BX(B.. gc)(i n o(ob“)) —0. (7.18)

bB*

The equations (7.17) and (7.18) follow form a linear homogeneous system for A’f (Be,&c) and
B{‘(ﬂc, &.). This system is non-singular if b is small. Hence

A¥(Be.&0) = Bf (Be.£) = 0, (7.19)

for every k = 1,2,..., K. Combining (7.19) with (7.10) one deduces that Sp(¢«(:, B¢, &) =
0. O

For J(B, &) there is the following estimate.

Lemma 7.2 It holds uniformly with respect to (B, £) € By x E_ that

K

JB.& =) (anﬁk —an(bpF)? +

k=1

ky2
O (120w K, (bﬂk)))

K 201 0k\4 K K 2018k\2(1R1N2
—I—ZOT[ (2b,3 ) R(Ek,sk)‘i‘z Z on (bﬂ ) (bﬂ) G(Ek,él)+0(0-b6)-

2
k=1 k=11=1,l#k

Proof. Expanding J p (P, ) yields

K 2m
In(Pe) = InP+ Y [ shogkae+ Z / (S O)p)gk b + 0(0°').
k=179

(7.20)
The error term in (7.20) is obtained by Lemmas 6.3 (2) and 6.4.
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On the other hand I7S p (¢«) = 0 implies that

I(Sp(0) + SH(0)¢s« + R(¢s)) = 0.

Take the inner product of the last equation with ¢, and integrate to derive, with the help of Lemma
6.3 (1),

Z / 5% )k o + Z [ (S5 0)p)k db = 0(0°D'®)

Rewrite (7.20) as
2w
Tp(Pe) = Jp(Po) + = Z f S5.0)6k db + 0(a7b'°).

Lemmas 6.1, 6.4, and the fact that ¢, € Hb2 (S', RX) imply that
Jp(Py,) = Jp(Po) + O(c*b'") + O(c>b'9).

Then apply Lemma 5.2 and treat 0h> as O(1) to complete the proof. O

Proof of Theorem 5.1. Let (B, £+) be a minimum of J on B, x &,. We need to show that if b
is small, then (Bx«,&4) is in B; x &y, the interior of B, x E_,, so that (Bx, £«) is a critical point
of J and Lemma 7.1 applies. Let b — 0 and (B, £x) converge, possibly along a subsequence, to
(Bor£) € By x By,

First we claim that 8, = (1,1, ..., 1), which is in B;. One needs the estimate
1 N2t )
HOKi0) =5 + (5) log 5 + 0(?) (7.21)
for 11 (bB) K1(bB¥), and the estimate
1—ab+ab2(b +0(b2))(1ogz + 0(1)) =0 (1.22)
5 .

for . Here (7.21) follows from [1, (9.6.10) and (9.6.11)]; (7.22) follows from (3.4) and [1, (9.6.10)
and (9.6.13)].

Assume that ob3 log % — y. Because of the lower bound condition 1 + § < ob>log %, part of
condition 3, in Theorem 5.1, y must fall in the range [1 + 8, 00], a crucial fact in this proof. Note
that y may be co. To find a uniform limit of J (B,&) as b — 0, we appeal to Lemma 7.2

and derive the following limits:
1 2
- (ubpt) - g, (7.23)
ob*log y

(= kN2 _ l l kN2
Gb410g%( an(bp)?) — n(y + 2)(}3 ) (7.24)
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by (7.22),

1 ((ﬂr(b,Bk)2

k k T nkn4
T 5 (1 =215 K1 (0f ))) ~ 269 (7.25)

by (7.21), and

2 2 ky\2 2
! (Z"” BB e, s")+2 Z o (bh ) BB G g, £)+0(0b%) >0

ob*logy \ ¢ k=11=117#k
(7.26)
Then Lemma 7.2 implies that
Ly (gt~ (s +5) 85 + T84 (7.27)
ob*log % ' = Y y 2 4

uniformly on B; x E_n as b — 0. Itis interesting to note that the above right hand side is independent
of £. Consequently

(J(Bs.§) = J((1. 1. 1). &)

ob4log%
K 27 1 1 T K o 1 | -
SRk (2 ZYV(BRV2 4 D gk 2 S PSR
—)];(VIBO 7[()/_‘_2)(130) +4(ﬂo) ) ];(y 1 T[(y~|—2)l +41 ) (728)
The function
flw) = —W—n(l +l)w2+£w4 (7.29)
y 2 4 :

has w = 1 as a strict local minimum, since y > 1 and so 1/y € [0, 1). Fix 7 in (5.11) to be small
enough so that in the interval (1 — 27, 1 + 27), w = 1 is the only critical point of the function f. If
Bo were not (1, 1, ..., 1), then the right side of (7.28) is positive since each ¥ is in [1 — 7, 1 + 7].
Consequently when b is sufficiently small J(Bx«, &) > J((1,1,...,1), &), a contradiction to the
choice of (B, £x).

Next show that &, is a minimum of F on &. Let &, be a minimum of F. Then &, € &, by
(5.10). By Lemma 7.2 and the just proved fact that 8. — (1,1,...,1),

i (J(Bar§2) = T (Ba. b))

2 2pk\2 2
—Z P pteh 4y, 3 DO G g

k=11= llaék

2 kN2 2
Z P gk ey 3 T ! THEEY Gk ey 4 o)

k=1 k=11=1,l#k

%(F(s )= F(ém)- (7.30)
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If & were not a minimum of F, then the last line of (7.30) would be positive, a contradiction to
the choice of (B, £+). Now that &, is a minimum of F, & is necessarily in =, by (5.10). Therefore
&+« € By when b is sufficiently small.

We have shown that (B, &) is a critical point of J. Lemma 7.1 implies that Py, (g, ¢,) is a
stationary assembly of J p. The first additional assertion of the theorem that all the perturbed discs
in Py, (.8, £.) have approximately the same radius comes from the fact that 8, — (1,1, ..., 1); the
second assertion follows from the facts that £, — & and &, is a minimum of F.

A thorough study of the stability of the stationary assembly found in Theorem 5.1 is beyond
the scope of this paper. To get a sense of stability for the stationary assemby Py, (. g, ¢,), recall
that P, (. g, £, is found in two steps. First for each (8,£) € B; x &y, a fixed point Py, (. g ¢) is
constructed in a class of assemblies with well defined centers ¥ and radii b8¥. The fixed point is
shown to be locally minimizing J p within this class of assemblies by Lemma 6.5 (2). In the second
step Jp is minimized among the Py, (.g¢)’s where (B,£) ranges in B, x &y, and Py, (g, £.)
emerges as a minimum. Therefore Py, (. g, ¢,) iS @ mimimum of minima, on which we base our
assertion that Py, (. g, e, is stable. We feel that the second variation of Jp should be positive
definite based on the properties of Py, (. g, £.) proved in this paper, but we do not have a proof. [

Appendix A. The shape of C

Let i be a nonnegative integer and P; = I; K; be the product of modified Bessel functions. Using
Iy =1, Ky = =Ky, I{ = Iy —1I,, K| = =Ko — 1Ky and I, Ko + IoK; = 1, a direct
computation yields

1
P, =20Ko—— . (A.1)
4
L, 2
Pl ==—201Kg— =Py . (A.2)
zZ z

Define 4 : (0,00) — R such that h(z) = z3(Py(z) — P1(z)). Since h is analytic, at every critical
point ¢, one can write & as h(z) = h({) + (z — {)”g(z) where v = 2 is an integer and g is analytic
at ¢ and g(¢) # 0. If v is even, then ¢ is called a type-1 critical point. Moreover it is a strict
local minimum, termed minimizing type-1 critical point, if g(¢) > 0; it is a strict local maximum,
termed maximizing type-1 critical point, if g(¢) < 0. If v is odd, then /£ is strictly monotone in a
neighborhood of ¢ and ¢ is called a type-2 critical point.

The asymptotic behavior of 7, and K, for small and large b [1, (9.6.10)-(9.6.13) and (9.7.5)]
implies that 2(0) = 0, h(c0) = 1/4, h'(z) > 0if z is small, and 4’(z) < 0 if z is large. Therefore a
global maximum b exists. It can only be a maximizing type-1 critical point. Also, since % is analytic,
there are only finitely many critical points on (0, 00).

In the first step of the proof one shows that b is the only type-1 critical point that /& has. Suppose
on the contrary that there were more than one type-1 critical points. Let the smallest type-1 critical
point be z1. Since A’(z) > 0 for small z, z; must be maximizing. Otherwise, if z; were minimizing,
there would be another maximizing type-1 critical point smaller than z;. Let z, be the second
smallest type-1 critical point. Since / is strictly decreasing on (21, z3), z, must be minimizing. One
claims that

3
2>, (A3)
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By (A.1) and (A.2),

W =z2(3Py— P1 —2 + 4z1, Ky), (A4)
and
" 4 / 2
W — (-)h =2z(—3Py + 2P, + 222(Po — P1)) (A.5)
z
Denote
W = =3Py + 2P; + 2z%(Py — Py). (A.6)

One shows that W(z) < 0 when z € (0,3/2 + §) for some § > 0.
When z € (0, 1],
W =—Py+2(1—z*(—=Py + P1) <0 (A7)

since Py > P; > 0. When z € (1, /3/2],
W = (=3+2z%)Py+2(1 —z%)P, <2(1-2%)P; <O0. (A.8)
When z € (1/3/2,3/2], one writes

2z2 -3

W o=2(z2 - 1)(—2(Z2 5

Py — Pl). (A.9)

Observe that 22(§§j) is increasing on (1, 00), so ;éi:f) < 22(8%2:‘;’) = 3/5. Then (A.9) implies

3P
W <2(z% - 1)(T° - Pl). (A.10)
It is known that both Py and P; are decreasing functions [32, Theorem 3.1]. Hence

3P(2)
5

—Pi(2) < (Z)P()( %)—Pl(%) — —0.0115... <O0. (A11)

Therefore W < 0 on (1/3/2,3/2 + §) for some § > 0. Combining this with (A.7) and (A.8) one
has W < 0on (0,3/2 + §).
Then (A.5) implies

W — (;)h’ <0 (A.12)

on (0,3/2 + §). By the maximum principle, the local minimum z, cannot be in (0,3/2 + §). This
proves (A.3).

Since z, is a minimizing type-1 critical point and A’(z) < 0 when z is large, there must be at
least another type-1 critical point z3 after z; and z3 must be maximizing. Between z, and z3, & is
strictly increasing. Then 4’(z2) = h'(z3) = 0, and A'(z) = 0 on (z2,z3). Let y € (z3,z3) be a
maximum of 4’ on [z3, z3].

Write (A.5) as

4
]’l// — —h/ —4h = 22(—3P0 + 2P1)
z
Differentiating yet one more time yields

4 9
W= 20+ (5 = 4)0 = 9(Po = P1) > 0. (A.13)
z z2
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By the maximum principle, the non-negative local maximum y of 4’ cannot be in (3/2, co) where
Z% —4 < 0. Hence
3
y < 7 (A.14)
With (A.3) and (A.14) one has a contradiction: 3/2 < z; < y < 3/2. Therefore & has only one
type-1 critical point b which is maximizing.

In the second step one shows that / has no type-2 critical point. Indeed, if / has a type-2 critical
point ¢, then A takes the form i(z) = h(¢) + (z — ¢)”g(z), where v = 3 is odd and g (&) # 0. Since
W (&) = h"(¢) = 0, (A.12) indicates no such ¢ can exist in (0,3/2 + §).

Finally suppose there is a type-2 critical point ¢ € (3/2, 00), then (A.13) implies that

B (&) > 0, (A.15)

and hence & has the form i(z) = h(¢) + (z — £)3g(z) with g(¢) > 0. This gives 4'(¢) = 0 and
h'(z) > 0 when z € (, ¢ + ¢€) for some € > 0. Since /’(z) < 0 when z is sufficiently large, A’
has a positive local maximum in ({, c0) C (3/2, 00). This violates the maximum principle applied
to (A.13). . .

In conclusion /4 has a unique critical point b, the global maximum of &; A'(z) > 0if z € (0, b)
and h'(z) < 0if z € (b, 00).

Appendix B. Uniqueness of &
We show that the equation
1
b?>(IoKo — 1 K1) + b1 Ko = 3 (B.1)

admits a unique positive solution.
z
Define Q : (0, 00) — R such that Q(z) = 3 z21,(z) Ko(z). Then

Q(z) —h(z)

z

1
0'(s) = 5 —zhKo = 2*(IoKo — 11 K1) = (B.2)

where / is the same function as defined in Appendix A. It is clear that critical points of Q are roots

of (B.1). Our task amounts to showing Q has exactly one critical point.
First extract some asymptotic information about Q for later use. For small positive z,

0(z) ~ %, h(z) ~—z3logz, Q'(z) ~1/2. (B.3)

When z is large, one has

0() = ; +0(5). h) = ; +0() (B.4)

by (2.5) and 3.16) respectively.
Now solve the equation
0(z) — h(2)

z

0'(z) =
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Q with a general initial condition at (zg, Q(z¢)) to get

0@ (22 - [

Z@ [) =Z(Q(ZO) Lo

Zo t

L)

0 (0]

Let zg — oo and use (B.4) to deduce
0@z)=h(z)+ Z/ @ dt. (B.5)
Consequently
0w =[P ®.6)
and W
0"(z) = - iz) - (B.7)

Recall that 4'(t) > 0 when ¢ € (0,b) and h'(t) < O whent > b. Then Q'(z) < 0if z > b and O’
is strictly increasing on (b, 00). On (0, b), Q' is strictly decreasing. Since Q’(z) ~ % > 0 for small
z by (B.3) and 0'(h) <0, Q' hasa unique zero in (0, b).
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