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Bubbles and droplets in a singular limit of the FitzHugh–Nagumo system
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The FitzHugh–Nagumo system gives rise to a geometric variational problem, when its parameters

take values in a particular range. A stationary set of the variational problem satisfies an Euler–

Lagrange equation that involves the curvature of the boundary of the set and a nonlocal term

that inhibits unlimited growth and spreading. The nonlocal term is the solution of a non-

homogeneous modified Helmholtz equation with the characteristic function of the stationary set

as the inhomogeneous term. Two types of stationary sets are studied: disc shaped stationary sets

in the plane, termed bubbles, and unions of perturbed small discs, termed droplet assemblies, in

bounded domains. A complete description of the existence and the stability of bubbles is established.

Depending on the parameters, there may be zero, one, two, or even three bubbles. Droplet assemblies

are constructed by a reduction argument. Each droplet in a stationary assembly is close in size and

shape to the corresponding bubble in the plane. The locations of the droplets in the assembly are

determined by the Green’s function of the modified Helmholtz equation.
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1. Introduction

Reaction-diffusion systems serve as models for studying complex patterns in several fields of

sciences [20, 24]. Many patterns emerge from homogeneous media that are destabilized by a spatial

modulation; for instance stripe and spot patterns frequently appear in chemical reactions. These

patterns are robust in the sense that they are stable and exist for a wide range of parameters; see

Turing [41]. The existence of localized structures such as fronts and pulses has been established

[5, 6, 10, 28] . Depending on the system parameters and the initial conditions, such localized

structures may stay at rest or propagate with a dynamically stabilized velocity.

c
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Typically localized pulses result from a nonlinear balance between dissipation and diffusion.

In the events of small diffusion coefficient coupled with bistable reaction terms, these pulses can

exhibit sharp transitions so that in the limit they form regions with discontinuous jumps. Two types

of stable standing pulses will be investigated in this paper: round discs and assemblies of small,

approximately round discs.

The FitzHugh–Nagumo system is a reaction-diffusion system that exhibits such phenomena

[21, 30]. It is of the activator-inhibitor type and can be written as

ut D D1�u � f .u/ � v; (1.1)

�vt D D2�v C ıu � 
v; (1.2)

where all the parameters are positive and f .u/ D u.u � ˇ/.u � 1/ with 0 < ˇ < 1=2. The

diffusion coefficients of the respective species,D1 andD2, are of different scales in studying pattern

formations. The existence of standing and traveling fronts and pulses for (1.1)–(1.2) in suitable

parameter ranges on infinite lines or cylindrical domains was obtained by Chen and Choi [5, 6],

Chen et al. [7], Chen, Kung and Morita [10], and Chen and Tanaka [11]. Stability of standing pulse

solutions was justified by the index theory (Chen and Hu [8, 9]). A standing pulse solution can be

regarded as a dissipative soliton, if it is stable against small perturbations and such pulse solutions

act as basic module for more complex structures.

Some early results on the stationary FitzHugh–Nagumo system can be found in Klaasen and

Troy [26], Klaasen and Mitidieri [25], de Figueiredo and Mitidieri [18], and Reinecke and Sweers

[33, 34]. More recent years have seen studies of steady states of (1.1)–(1.2) where the component u

has one or more peaks on the interior or the boundary of D; see Dancer and Yan [15–17], Wei and

Winter [42], and Ren and Wei [37]. In these recent papers the diffusion coefficients are chosen as

D1 D �2 and D2 D 1, and � must be small.

Some of these papers deal with spike solutions, also called spot solutions. If w is the positive

radially symmetric solution of �w �w.w � ˇ/.w � 1/ D 0 on R
N with limjyj!1w.y/ D 0, then

for a spike solution .u; v/, the component u has the form u.x/ �
PK
kD1w.

x��k

�
/ with the �k’s

being the locations of the spikes. For instance, it was proved in [42] that a spike solution exists if

the �k’s are carefully placed close to each other with pairwise distance being of the order � log 1
�

.

For a spike solution, if � ! 0, a spike shrinks to its center point �k , a set of zero Lebesgue

measure in R
N . We are interested in a different type of solutions to the FitzHugh–Nagumo system

which as � ! 0, concentrate on sets of positive measure. Bubbles and droplet assemblies are such

limiting sets studied in this paper. Spike solutions are unstable with respect to a natural energy

functional, (1.13), of the FitzHugh–Nagumo system, essentially because the radially symmetric

w mentioned above is unstable with respect to the PDE that w satisfies. On the contrary, the

limiting structures that we study here can be stable. This allows the possibility of stable solutions

corresponding to small � in the FitzHugh–Nagumo systems.

The aim of this paper is to study a singular limit of the FitzHugh–Nagumo system on R
2 or on a

bounded domain D in R
2. It is a geometric variational problem that contains a nonlocal interaction

term. This term functions as an inhibitor that prevents unlimited growth or spreading. There are two

parameters in the problem: ˛ > 0 and � > 0. The energy functional takes the form

JD.˝/ D PD.˝/ � ˛j˝j C �

2

Z

˝

ND.˝/ dx: (1.3)

In (1.3) ˝ is a measurable subset of D and j˝j is its Lebesgue measure, so the admissible set of
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JD is

A D
˚
˝ � D W ˝ is Lebesgue measurable; j˝j < 1

	
: (1.4)

Denote the perimeter of ˝ in D by PD.˝/. In the case that ˝ is of class C 1, PD.˝/ is the length

of the part of the boundary of ˝ that is inside D; namely the length of @˝ \D. One calls @˝ \D
the interface of ˝ because it separates ˝ from Dn˝. For a general subset ˝ of D,

PD.˝/ D sup
n Z

˝

divg.x/ dx W g 2 C 10 .D;Rn/; jg.x/j 6 1 8x 2 D
o
: (1.5)

In (1.5), jg.x/j is the geometric norm of the vector g.x/.

The integral term in (1.3) is most novel and from there the nonlocality of the problem comes.

In this term ND is an operator that assigns each ˝ the solution of the following non-homogeneous

modified Helmholtz equation:

��ND.˝/CND.˝/ D �˝ in DI @�ND.˝/ D 0 on @D: (1.6)

Here @� is the outward normal derivative. In the case D D R
2,

NR2.˝/.x/ D
Z

˝

1

2�
K0.jx � yj/ dy (1.7)

whereK0 is the zero-order modified Bessel function of the second kind; see [3, page 598, table 9.5].

If D is bounded, then with some smoothness condition on D (say C 2;˛ according to [22, section

6.7]) ND is well defined.

A classical stationary set of JD has a C 2 interface and satisfies the Euler–Lagrange equation

K.@˝ \D/ � ˛ C �ND.˝/ D 0 on @˝ \D (1.8)

where K denotes the curvature, by the first variation formula (4.7) or (5.22). For the scenarios

studied in this paper, the boundary of ˝ does not touch that of D so that @˝ \D D @˝.

We now discuss the connection between (1.3) and the FitzHugh–Nagumo system (1.1)–(1.2).

Since in the function f .u/ D u.u � ˇ/.u � 1/, ˇ 2 .0; 1=2/, there exists A > 0 such thatR rR
rL
.f .u/C A/ du D 0 where rL and rR are respectively the smalleset and the largest of the three

zeros of f .u/C A. Introduce Nu so that u D B Nu � C where B D rR � rL > 0 and C D �rL > 0.

Then f .u/CA D E Nu
�
Nu� 1

2

�
. Nu� 1/ for some suitable constant E > 0. With Nu and v as variables,

steady states of (1.1)–(1.2) satisfy

D1B� Nu �E Nu
�

Nu � 1

2

�
. Nu � 1/C A � v D 0I D2�v C ı.B Nu � C/ � 
v D 0:

Next introduce a new space variable Nx so that x
q



D2

D Nx. Taking Laplacians with respect

to Nx changes D1 to

D1

D2
and D2 to 
 . If we set Nv D 


ıB
.v C ıC



/, then the above equations become


D1B

ED2
� Nu � Nu

�
Nu � 1

2

�
. Nu � 1/C

AC ıC



E
� ıB

E

Nv D 0I � Nv � Nv C Nu D 0:

Dropping the bars over u and v, we arrive at the system

��2�uC u
�
u � 1

2

�
.u � 1/ � �˛ C ��v D 0 (1.9)

��v C v D u (1.10)
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with the zero Neumann boundary condition for both u and v. The new parameters here are related

to the earlier ones by

�2 D 
D1B

ED2
; �˛ D

AC ıC



E
; �� D ıB

E

: (1.11)

In particular both ˛ and � must be positive. The same type of scaling on � also appears in other

models; for instance, the article [23] and the references therein.

One solves (1.10) for v in terms of u so that v D NDu, whereNDu is the solution of (1.6) with

�˝ replaced by u. Upon substitution (1.9) becomes

��2�uC u
�
u � 1

2

�
.u � 1/ � �˛ C ��NDu D 0 in DI @�u D 0 on @D: (1.12)

The equation (1.12) has a variational structure. It can be viewed as the equation for critical points

of the functional

ID;�.u/ D
Z

D

��2
2

jruj2 C u2.u � 1/2
4

� �˛uC ��u

2
NDu

�
dx: (1.13)

WhenD is bounded, this functional has a � -limit. More precisely, as � ! 0, ��1ID;� � -converges

to the functional

JD.˝/ D �PD.˝/ � ˛j˝j C �

2

Z

˝

ND.˝/ dxI (1.14)

see [36, Proposition 2.1]. The functional in (1.14) is the same as the one in (1.3) except for an

immaterial constant � , which is given by

� D
Z 1

0

r
u2.u � 1/2

2
du D

p
2

12
: (1.15)

One can factor out � in (1.14) by redefining ˛ and � . Hence JD in (1.14) is equivalent to (1.3).

Because of the � -convergence JD is considered a singular limit of the FitzHugh–Nagumo system.

Several properties follow once the � -convergence of ��1ID;� to JD is established. A global

minimizer of ID;� converges to a global minimizer of JD , when � ! 0, at least along a

subsequence. If JD has a strict local minimizer, then nearby there is a local minimizer of ID;�
if � is sufficiently small [19, 27, 29, 36].

The paper [12] by Chmaj and Ren seems to be the first work on JD , although it was motivated

by a different problem. In one dimension (D D .0; 1/), if 0 < ˛ < � , then the stationary sets

of J .0;1/ form an infinite but countable family [12, Theorem 2.6]. Every stationary set is a local

minimizer. Later Dancer, Ren, and Yan studied JD on a unit ball in R
n, i.e.,D D B1.0/ � R

n, and

found several radially symmetric stationary sets [14].

In this paper we first study JD of (1.3) on the plane (D D R
2) and find disc shaped stationary sets.

Such stationary sets are termed bubbles.

Before discussing bubbles in R
2, let us see what happens in R. If .�b; b/ is a one dimensional

bubble, then

NR.�b; b/.x/ D
�
1 � e�b cosh x if x 2 .�b; b/

e�jxj sinh b if x 2 Rn.�b; b/ : (1.16)
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The equation (1.8) becomes

�˛ C �e�b sinh b D 0 (1.17)

and consequently

b D �1
2

log
�
1 � 2˛

�

�
: (1.18)

Since ˛ and � are positive, (1.18) implies that if and only if

0 < ˛ <
�

2
; (1.19)

there is a unique one dimensional bubble. One can also show that this bubble is stable.

The situation in R
2 is far more complex. Depending on the values of ˛ and � , there may be zero,

one, two, or even three bubbles. In Theorem 3.4 we give a complete answer regarding the existence

and multiplicity of bubbles for all possible values of ˛ and � . Next in Section 4, one develops a

framework that allows us to determine the stability of every bubble (see Theorems 4.3 and 4.4).

The key idea is to use proper functions to describe deformations of a disc. These functions live in

a Hilbert space, and the stability of a bubble is formulated as a nonlocal eigenvalue problem on

the Hilbert space. The eigenvalue problem is solved explicitly with the help of the modified Bessel

functions (see Lemma 4.1). For a stable bubble, except for the zero eigevalue due to translation, the

remaining eigenvalues are all positive.

The modified Bessel functions of all orders show up naturally in the study of the existence and

the stability of bubbles. Section 2 is a collection of some useful properties of these Bessel functions.

More technical properties needed in this paper are given in appendices A and B.

Finally we present an application of Theorems 3.4 and 4.3 for JD on a boundedD in R
2. In one

dimension (sayD D .0; 1/), all stationary sets are known. It was shown in [12] that every stationary

set ˝ (not equal to the trivial sets ; or .0; 1/) is associated with a positive integer N such that the

restriction of ˝ to .0; 1=N / is either .0; �/ or .�; 1=N / for some � 2 .0; 1=N /. The full set can be

obtained from .0; �/ (or .�; 1=N /) via successive reflection from .0; 1=N / to .1=N; 2=N /, then to

.2=N; 3=N /, and so on. Indeed, in the .0; �/ case,

N .0;1/.˝/.x/ D
(

.sinh � coth 1
N

� cosh �/ cosh x C 1 if x 2 .0; �/
sinh � coth 1

N
.cosh x � tanh 1

N
sinh x/ if x 2 .�; 1

N
/

(1.20)

and (1.8) becomes

�˛ C �
�

sinh � cosh � coth
1

N
� sinh2 �

�
D 0: (1.21)

Since the quantity
�

sinh � cosh � coth 1
N

� sinh2 �
�

increases from 0 to 1 when � varies from 0 to

1=N , (1.21) is solvable if and only if

0 < ˛ < �: (1.22)

The same is true if the restriction of ˝ to .0; 1=N / is .�; 1=N /.

A complete description of stationary sets in a general bounded two dimensional domain D is

a challenging problem. In Theorem 5.1 we identify a range for the parameters ˛ and � so that JD
admits stationary sets that are assemblies of perturbed discs. Such stationary sets are called droplet

assemblies. The radii and the locations of the discs in stationary droplet assemblies are determined

asymptotically.
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2. Preliminary lemmas

Throughout this paper In and Kn, n D 0; 1; 2; : : : , are the n-th order modified Bessel functions of

the first and the second kind, respectively. These functions are positive on the positive real axis. In

this section we collect some of their properties. When D D R
2, one recalls (1.7) and simplifies the

notation ND to N .

Lemma 2.1 Let Br .0/ � R
2 be a ball of radius r centered at the origin. Then N.Br / is radially

symmetric with

N.Br /.r/ D rI1.r/K0.r/ (2.1)

and Z

Br

N.Br / dx D 2�r2
�1
2

� I1.r/K1.r/
�
: (2.2)

Proof. Let r > 0 and v D N.Br /. As the solution v D v.t/ is radially symmetric, it satisfies

.tv0/0 � tv D
(

�t if 0 < t < r

0 if r < t
;

together with the requirement that v and v0 are continuous at r . Thus

v.t/ D

8
<
:
1 � K0.r/

I0.r/K
0

0
.r/�I 0

0
.r/K0.r/

I0.t/ if 0 < t < r

� I 0

0
.r/

I0.r/K
0

0
.r/�I 0

0
.r/K0.r/

K0.t/ if r < t
:

As I 0
0 D I1 and K 0

0 D �K1 (see [1, formula (9.6.27)]), it follows that K0.r/I
0
0.r/�K 0

0.r/I0.r/ D
K0.r/I1.r/CK1.r/I0.r/ D 1=r for all r (see [1, formula (9.6.15)]). Hence

v.t/ D
(
1 � rK1.r/I0.t/ if 0 < t < r

rI1.r/K0.t/ if r < t

from which (2.1) follows. Moreover,

Z

Br

N.Br / dx D 2�

Z r

0

v.t/ t dt D 2�
�r2
2

� rK1.r/
Z r

0

tI0 dt
�
: (2.3)

As .tI 0
0/

0 � tI0 D 0,
R r
0
tI0 dt D rI 0

0.r/ D rI1.r/ and (2.3) implies (2.2).

Denote by Jn and Yn the n-th order Bessel functions of the first and the second kind respectively.

Lemma 2.2 Let z 2 R and n D 0; 1; 2; : : : . Then

Yn.iz/ D � 2

� in

�
Kn.z/ � .�1/n� i

2
In.z/

�
:

Proof. The case n D 0 is documented in [1, (9.6.5)]. For other values of n, use (9.6.4), (9.1.3) and

(9.6.3) of [1] in the following calculation:

Kn.z/ D � i

2
inH .1/

n .iz/ D � i

2
in
�
Jn.iz/C iYn.iz/

�
D � i

2
in
�
inIn.z/C iYn.iz/

�
;

which gives the answer. Here H
.1/
n is the Hankel function of the first kind.
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Lemma 2.3 Let z 2 R and n D 0; 1; 2; : : : . Then

Z �=2

0

K0.2z sin t / cos.2nt/ dt D �

2
In.z/Kn.z/ :

Proof. By [1, formula (11.4.9)] one has that for any complex z

Z �=2

0

Y0.2z sin t / cos.2nt/ dt D �

2
Jn.z/ Yn.z/ :

Change z to iz in the above equation and use Lemma 2.2, so the above identity is equivalent to

Z �=2

0

�
iI0.2z sin t / � 2

�
K0.2z sin t /

�
cos.2nt/ dt D �

2
Jn.iz/ Yn.iz/

D �In.z/
�
Kn.z/ � .�1/n� i

2
In.z/

�
:

Taking the real parts on both sides, one completes the proof of the Lemma.

Lemma 2.4 1. Let z > 0 be fixed. Then

I0.z/K0.z/ > I1.z/K1.z/ > I2.z/K2.z/ > � � � (2.4)

2. Let n D 0; 1; 2; : : : and define gn W Œ0;1/ ! Œ0;1/ such that gn.z/ � zInC1.z/Kn.z/. Then

gn is a strictly increasing function with g0
n.z/ D z.InKn � InC1KnC1/. Moreover gn.0/ D 0,

limz!1 gn.z/ D 1=2 and

g0.z/ D 1

2

 
1 � 1

2z
� 3

16z3
CO

� 1
z4

�!
(2.5)

as z ! 1.

Proof. Part 1 is proved in [4, Theorem 2]. For part 2 employing [1, (9.6.26)], namely I 0
nC1 D

In � nC1
z
InC1 and K 0

n D �KnC1 C n
z
Kn, one obtains g0

n.z/ D z.InKn � InC1KnC1/ > 0.

Thus gn is strictly increasing and its behavior as z ! 0 and z ! 1 can be easily evaluated from

formulas (9.6.7)–(9.6.9), (9.7.1) and (9.7.2) in [1]. From the cited formulas,

zI1.z/K0.z/

D 1

2

 
1 � 3

8z
� 15

128z2
� 105

1024z3
CO

� 1
z4

�! 
1 � 1

8z
C 9

128z2
� 225

3072z3
CO

� 1
z4

�!

D 1

2

 
1 � 1

2z
� 3

16z3
CO

� 1
z4

�!

as z ! 1. The O.1=z2/ terms on the right hand side happen to cancel.
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3. Bubbles in a plane

In this section we are interested in disc shaped stationary sets of JD whenD D R
2. Such stationary

sets are called bubbles in this paper. Write J for J R2 for simplicity. Because of the translation

invariance of J , only discs Br .0/ centered at the origin are considered. Define

j.r; �; ˛/ D J
�
Br .0/

�
; (3.1)

namely, the energy of the disc Br .0/ with a radius r , when the parameters of J are � and ˛. By

(1.3) and (2.2) one has

j.r; �; ˛/ D 2�r � ˛�r2 C ��r2
�1
2

� I1.r/K1.r/
�
: (3.2)

It is known from [1, (9.6.26)] that I 0
1 D I0 � 1

r
I1 and K 0

1 D �K0 � 1
r
K1. These lead to

@j

@r
D 2� � 2�˛r C ��r � ��r2

�
I0.r/K1.r/ �K0.r/I1.r/

�
:

Since I0K1 C I1K0 D 1=r [1, (9.6.15)], the above can be simplified to

@j

@r
D 2� � 2�˛r C 2��r2 I1.r/K0.r/: (3.3)

A disc centered at the origin of radius b is a bubble if and only if
@j
@r

ˇ̌
rDb D 0; namely that b is a

solution of

1 � ˛b C �b2I1.b/K0.b/ D 0: (3.4)

With the Bessel functions involved, it is difficult to solve (3.4) for b directly. We take a different

perspective, which will lead to a complete characterization of the solutions of (3.4). For each ˛ > 0,

solve (3.4) for � in terms of b to obtain a function s˛:

� D s˛.b/ � ˛b � 1
b2I1K0

; b 2
� 1
˛
;1

�
: (3.5)

To make notation simpler, we have suppressed the dependence on b in (3.5) and written In for In.b/

and Kn for Kn.b/. This practice is continued throughout the paper.

The function � D s˛.b/ defines a curve f.s˛.b/; b/ W b 2 . 1
˛
;1/g in the � -b quadrant. With a

slight abuse of notation, one again calls the curve s˛ for each ˛. In fact every pair .�; b/ uniquely

determines a positive ˛ by (3.4):

˛ D 1C �b2I1K0

b
: (3.6)

The curves s˛ for distinct ˛ are mutually disjoint and every point in the � -b quadrant is passed by

one of such curves.

Next study the monotonicity of the function s˛ , or whether the curve s˛ is turning left or right

in the � -b quadrant as b increases. Implicit differentiation of the equation
@j
@r

D 0 shows that

s0
˛.b/ D �

@2j

@b2

@2j
@�@b

D
˛ � �

�
bI1K0 C b2.I0K0 � I1K1/

�

b2I1K0
(3.7)
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because

@2j

@b2
D �2�˛ C 2��

�
bI1K0 C b2.I0K0 � I1K1/

�
; (3.8)

@2j

@�@b
D 2�b2I1K0: (3.9)

Note that (3.8) follows from Lemma 2.4. Use (3.5) to simplify (3.7) to

s0
˛.b/ D 1 � �b3.I0K0 � I1K1/

b3I1K0
(3.10)

where � D s˛.b/. Since the denominator in (3.10) is positive, the sign of the numerator determines

whether the curve s˛ is going left or right. Thus motivated, define another curve

C 0 D
˚
.�; b/ 2 RC � RC W 1 � �b3.I0K0 � I1K1/ D 0

	
: (3.11)

This curve divides the � -b quadrant into two regions

Ri D
˚
.�; b/ 2 RC � RC W 1 � �b3.I0K0 � I1K1/ > 0

	
(3.12)

Rd D
˚
.�; b/ 2 RC � RC W 1 � �b3.I0K0 � I1K1/ < 0

	
(3.13)

so that RC � RC D Ri [ C 0 [Rd . In summary one has the following lemma.

Lemma 3.1 For each ˛ > 0 let s˛ be the curve given above.

1. The family fs˛ W ˛ > 0g is a set of non-intersecting curves covering the � -b quadrant.

2. Each curve s˛ starts at the point
�
0; 1
˛

�
with s0

˛.
1
˛
/ > 0 and ends with a vertical asymptote

limb!1 s˛.b/ D 2˛.

3. When it is in Ri , s˛ goes right as b increases, i.e. s0
˛.b/ > 0 if .s˛.b/; b/ 2 Ri .

4. When it is in Rd , s˛ goes left as b increases, i.e. s0
˛.b/ < 0 if .s˛.b/; b/ 2 Rd .

5. When it intersects C 0, s˛ does so with a vertical slope, i.e. s0
˛.b/ D 0 if .s˛.b/; b/ 2 C 0.

Proof. It remains to prove Part 2. Since s˛.
1
˛
/ D 0 by (3.5), (3.7) implies

s0
˛

� 1
˛

�
D ˛3

I1.
1
˛
/K0.

1
˛
/
> 0:

From Lemma 2.4, one deduces limb!1 s˛.b/ D 2˛.

To better understand the curves s˛ , one studies the shape of the curve C 0 first. This curve can

be viewed as the graph of the function

� D C0.b/ � 1

b3.I0K0 � I1K1/
; b 2 .0;1/: (3.14)

Lemma 3.2 The function C0 has the following properties.

1. limb!0C C0.b/ D 1 and limb!1 C0.b/ D 4.
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2. There exists Ob > 0 such that C 0
0.b/ < 0 if b 2 .0; Ob/, C 0

0.b/ D 0 if b D Ob, and C 0
0.b/ > 0 if

b 2 . Ob;1/.

Proof. According to [1, (9.6.7)–(9.6.9)], for small b,

I0.b/ � 1; K0.b/ � log
1

b
; I1.b/ � b

2
; K1.b/ � 1

b
: (3.15)

They imply limb!0C C0.b/ D 1. It is also known, [1, (9.7.5)], that as b ! 1,

I0.b/K0.b/ D 1

2b

 
1C 1

8b2
C 27

128b4
CO

� 1
b6

�!
;

I1.b/K1.b/ D 1

2b

 
1 � 3

8b2
� 45

128b4
CO

� 1
b6

�!
:

Thus

b3
�
I0.b/K0.b/ � I1.b/K1.b/

�
D 1

4
C 9

32b2
CO

� 1
b4

�
; (3.16)

and

C0.b/ D 1

b3.I0K0 � I1K1/
D 4

 
1 � 9

8b2
CO

� 1
b4

�!
: (3.17)

Hence limb!1 C0.b/ D 4. This proves the first part of the lemma. The proof of the second part is

postponed to appendix A.

Let O� D C0. Ob/ so that . O�; Ob/ is the leftmost point on the curve C 0. Then

O� < 4: (3.18)

If s Ǫ is the curve from the family fs˛ W ˛ > 0g that passes the point . O�; Ob/, then according to (3.6)

Ǫ D 1C O� Ob2I1. Ob/K0. Ob/
Ob

: (3.19)

It will be shown below that Ǫ < 2. Knowing the shape of C 0, one investigates how the curves s˛
change as ˛ varies.

Lemma 3.3 There exist numbers Ǫ and N̨ , 0 < Ǫ < N̨ < 2, and real analytic functions �L W
. Ǫ ; 2/ ! . O�; 4/, �R W . Ǫ ;1/ ! . O�;1/, bL W . Ǫ ; 2/ ! . Ob;1/, and bR W . Ǫ ;1/ ! .0; Ob/ such that

�L, �R, and bL are increasing and bR is decreasing, O� < �L.˛/ < �R.˛/ and bL.˛/ > Ob > bR.˛/
for all ˛ 2 . Ǫ ; 2/. The following properties hold for the curves s˛ .

1. If ˛ 2 .0; Ǫ /, then the curve s˛ stays in the region Ri and s0
˛.b/ > 0 for all b 2 . 1

˛
;1/.

2. If ˛ D Ǫ , then s Ǫ touches C 0 tangentially at one point . O�; Ob/ where s0
Ǫ .

Ob/ D C 0
0.

Ob/ D 0.

Elsewhere s Ǫ stays in Ri and s0
Ǫ .b/ > 0 if b ¤ Ob.

3. If ˛ 2 . Ǫ ; 2/, then s˛ intersects C 0 twice transversally at .�R.˛/; bR.˛// and .�L.˛/; bL.˛//.

When b 2 . 1
˛
; bR.˛// [ .bL.˛/;1/, s0

˛.b/ > 0 and s˛ is in Ri ; when b 2 .bR.˛/; bL.˛//,

s0
˛.b/ < 0 and s˛ is in Rd . Furthermore,
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FIG. 1. The curve C0 (in red) and the curves s˛ for various ˛. As ˛ increases (from 1:5 to 1:79 to 2:2 in this figure), the

s˛ curves shift to the right. (Only the ebook/online version of this article contains full color images.)

(a) if ˛ 2 . Ǫ ; N̨ /, then

sup
b2. 1

˛ ;1/

s˛.b/ D lim
b!1

s˛.b/ D 2˛ > �R.˛/ D s˛
�
bR.˛/

�
> �L.˛/ D s˛

�
bL.˛/

�
I

(b) if ˛ D N̨ , then

sup
b2. 1

N̨
;1/

s N̨ .b/ D lim
b!1

s N̨ .b/ D 2 N̨ D �R. N̨ / D s N̨
�
bR. N̨ /

�
> �L. N̨ / D s N̨

�
bL. N̨ /

�
I

(c) if ˛ 2 . N̨ ; 2/, then

sup
b2. 1

˛ ;1/

s˛.b/ D �R.˛/ D s˛
�
bR.˛/

�
> lim
b!1

s˛.b/ D 2˛ > �L.˛/ D s˛
�
bL.˛/

�
:

4. If ˛ 2 Œ2;1/, then s˛ intersectsC 0 once transversally at .�R.˛/; bR.˛//. When b 2 . 1
˛
; bR.˛//,

s0
˛.b/ > 0 and s˛ is in Ri ; when b 2 .bR.˛/;1//, s0

˛.b/ < 0 and s˛ is in Rd .

Proof. Recall that . O�; Ob/ is the leftmost point on C 0. Note that

s˛.b/ D ˛b � 1
b2I1K0

<
˛

bI1K0

and bI1K0 ! 1
2

as b ! 1 by Lemma 2.4. If ˛ is sufficiently small, s˛.b/ < O� for all b 2 . 1
˛
;1/.

Then s˛ stays in Ri and s0
˛.b/ > 0 for every b 2 . 1

˛
;1/.
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Since s˛.b/ is increasing with respect to ˛, the curve s˛ sweeps to the right in the � -b quadrant

as ˛ increases. Let us temporarily set

Ǫ D sup

(
˛ > 0 W s˛ is in Ri for all b 2

� 1
˛
;1

�)
: (3.20)

We claim that Ǫ < 2. By Lemma 2.4 for large b,

s2.b/ D 2b � 1
b
2

�
1 � 1

2b
� 3
16b3 CO. 1

b4 /
� D 4C 3

4b3
CO

� 1
b4

�
: (3.21)

Comparing this to (3.17), one sees that the curve s2 lies to the right of the vertical line � D 4 and

C 0 lies to the left of the vertical line when b is sufficiently large. Since s2.
1
2
/ D 0 < C0.

1
2
/, the

curve s2 must intersect C 0. As s˛.b/ depends continuously on ˛, if s2.b/ > 4 at some large b where

C0.b/ < 4, then s˛.b/ > 4 when ˛ is slightly smaller than 2. Consequently s˛ must also intersect

C 0 if ˛ is slightly smaller than 2. Hence Ǫ < 2.

In view of

lim
b!1

s Ǫ .b/ D 2 Ǫ < 4 D lim
b!1

C0.b/; (3.22)

s Ǫ must intersect C 0, for otherwise one can increase ˛ slightly beyond Ǫ and keep s˛ in Ri . Since

s Ǫ .b/ 6 C0.b/ for all b 2 . 1Ǫ ;1/, the two curves can only intersect tangentially. At an intersection

point, s0
Ǫ is vanished by Lemma 3.1 (5). Then C 0

0 also vanishes there. However C0 has only

one critical point Ob by Lemma 3.2 (2), so s Ǫ and C 0 intersect at only one point: . O�; Ob/. Moreover Ǫ
defined in (3.20) is the same as the one given in (3.19). Parts 1 and 2 are proved.

Since s˛.b/ is increasing with respect to ˛, for ˛ > Ǫ the curve s˛ must intersect C 0 at least

once. Any intersection point in this case must be different from . O�; Ob/. Hence s0
˛ vanishes but C 0

0

does not at such an intersection point, so the two curves intersect transversally. For ˛ > Ǫ , as b

increases from 1
˛

, set the first intersection point of s˛ and C 0 to be .�R.˛/; bR.˛//. For b slightly

greater than bR.˛/, the point .s˛.b/; b/ is in Rd . Then 0 D s0
˛.bR.˛// > C 0

0.bR.˛//. This forces

bR.˛/ < Ob by Lemma 3.2 (2).

The curve s˛ , ˛ > Ǫ , may stay in Rd for all b > bR.˛/, or it may intersect C 0 again.

When the latter happens, denote the second intersection point by .�L.˛/; bL.˛//, which is again

a transversal intersection point and bL.˛/ > Ob. Since s˛.b/ is decreasing with respect to b when

b 2 .bR.˛/; bL.˛//,

O� < �L.˛/ < �R.˛/; and bL.˛/ > Ob > bR.˛/: (3.23)

After s˛ exits Rd , it cannot intersect C 0 again. If there were a third intersection point .��; b�/, then

b� > Ob, and C 0
0.b�/ > 0 D s0

˛.b�/, which is a contradiction to s˛.b/ < C0.b/ for b 2 .bL.˛/; b�/.
Now consider the case ˛ > 2. By (3.21) and the fact that limb!1 s˛.b/ D 2˛ > 4 for ˛ > 2,

the curve s˛ stays in Rd when b is sufficiently large. Such a curve s˛ can only intersect C 0 once at

.�R.˛/; bR.˛//. This proves part 4.

The last case is ˛ 2 . Ǫ ; 2/. Since limb!1 s˛.b/ D 2˛ < 4, the curve s˛ is in Ri when b is

large. As b increases, s˛ must intersect C 0 twice, first at .�R.˛/; bR.˛// and then at .�L.˛/; bL.˛//.

Moreover
s0
˛.b/ > 0 if b 2

�
1
˛
; bR.˛/

�
;

s0
˛.b/ < 0 if b 2

�
bR.˛/; bL.˛/

�
;

s0
˛.b/ > 0 if b 2

�
bL.˛/;1

�
:

(3.24)
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Note that bR.˛/ is a local maximum point of s˛ . To prove the three subcases in part 3, compare

�R.˛/ D s˛.bR.˛// to limb!1 s˛.b/ D 2˛. When ˛ 2 . Ǫ ; 2/ sufficiently close to Ǫ , the

point .�R.˛/; bR.˛// is close to . O�; Ob/. Since s0
Ǫ .b/ > 0 for all b 2 . Ob;1/, O� D s Ǫ . Ob/ <

limb!1 s Ǫ .b/ D 2 Ǫ . Consequently �R.˛/ D s˛.bR.˛// < limb!1 s˛.b/ D 2˛ when ˛ 2 . Ǫ ; 2/
sufficiently close to Ǫ . On the other hand, note that s0

2.b/ < 0 for all b 2 .bR.2/;1/, and

�R.2/ D s2.bR.2// > limb!1 s2.b/ D 4. Then for ˛ 2 . Ǫ ; 2/ sufficiently close to 2,

�R.˛/ D s˛.bR.˛// > limb!1 s˛.b/ D 2˛. Hence there exists N̨ 2 . Ǫ ; 2/ such that

�R. N̨ / D s N̨
�
bR. N̨ /

�
D lim
b!1

s N̨ .b/ D 2 N̨ : (3.25)

Since .�R. N̨ /; bR. N̨ // is an intersection point of s N̨ and C 0, the triplet .�R. N̨ /; bR. N̨ /; N̨ / satisfies

1 � ˛b C �b2I1K0 D 0; (3.26)

1 � �b3.I0K0 � I1K1/ D 0; (3.27)

� D 2˛; (3.28)

where (3.28) comes from (3.25). Eliminating � and ˛ in (3.26)-(3.28), one arrives at

b2.I0K0 � I1K1/C bI1K0 D 1

2
: (3.29)

It is shown in appendix B that (3.29) admits a unique solution for b in .0;1/. This implies the

uniqueness of N̨ and proves part 3.

As a point of intersection, .�R.˛/; bR.˛// satisfies � D s˛.b/ and � D C0.b/. On eliminating

� one deduces that bR is a function of ˛ given implicitly by

s˛.b/ � C0.b/ D 0 : (3.30)

The left side of (3.30) is analytic with respect to ˛ and b, and

@
�
s˛.b/ � C0.b/

�

@b

ˇ̌
ˇ
.˛;b/D.˛;bR.˛//

D s0
˛

�
bR.˛/

�
� C 0

0

�
bR.˛/

�
D �C 0

0

�
bR.˛/

�
¤ 0 (3.31)

since bR.˛/ < Ob for all ˛ > Ǫ . By the implicit function theorem, bR.˛/ is analytic with respect to

˛ for ˛ 2 . Ǫ ;1/. Consequently �R.˛/ D s˛.bR.˛// is also analytic. The same argument works

for bL and �L as well.

Numerical calculations show that Ǫ � 1:71 and N̨ � 1:80, so the three critical values Ǫ , N̨ and

2 for ˛ are fairly close to each other.

Recall that a bubble is a disc shaped solution of (1.8) in R
2. The next theorem gives the exact

number of bubbles up to translation for each parameter pair .�; ˛/.

Theorem 3.4 Let Ǫ , N̨ , �L, and �R be as in Lemma 3.3. The following statements hold.

1. If ˛ 2 .0; Ǫ �, then

(a) if � 2 .0; 2˛/, there is one bubble,

(b) if � 2 Œ2˛;1/, there is no bubble.
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2. If ˛ 2 . Ǫ ; N̨ /, then �R.˛/ < 2˛ and

(a) if � 2 .0; �L.˛//, there is one bubble,

(b) if � D �L.˛/, there are two bubbles,

(c) if � 2 .�L.˛/; �R.˛//, there are three bubbles,

(d) if � D �R.˛/, there are two bubbles,

(e) if � 2 .�R.˛/; 2˛/, there is one bubble,

(f) if � 2 Œ2˛;1/, there is no bubble.

3. If ˛ D N̨ , then �R.˛/ D 2˛ and

(a) if � 2 .0; �L.˛//, there is one bubble,

(b) if � D �L.˛/, there are two bubbles,

(c) if � 2 .�L.˛/; 2˛/, there are three bubbles,

(d) if � D 2˛, there is one bubble,

(e) if � 2 .2˛;1/, there is no bubble.

4. If ˛ 2 . N̨ ; 2/, then �L.˛/ < 2˛ < �R.˛/ and

(a) if � 2 .0; �L.˛//, there is one bubble,

(b) if � D �L.˛/, there are two bubbles,

(c) if � 2 .�L.˛/; 2˛/, there are three bubbles,

(d) if � 2 Œ2˛; �R.˛//, there are two bubbles,

(e) if � D �R.˛/, there is one bubble,

(f) if � 2 .�R.˛/;1/, there is no bubble.

5. If ˛ 2 Œ2;1/, then 2˛ < �R.˛/ and

(a) if � 2 .0; 2˛�, there is one bubble,

(b) if � 2 .2˛; �R.˛//, there are two bubbles,

(c) if � D �R.˛/, there is one bubble,

(d) if � 2 .�R.˛/;1/, there is no bubble.

Proof. To determine the number of bubbles for the parameters � and ˛, consider the curve s˛ and

the vertical line � in the � -b quadrant. An intersection point of the � -line and s˛ corresponds to a

bubble of J with � and ˛ being the parameters.

When ˛ 2 .0; O��, Lemma 3.1 (2) and Lemma 3.3 (1), (2) imply that if � 2 .0; 2˛/, the � -line

intersects s˛ once; if � 2 Œ2˛;1/, there is no intersection. This proves Part 1 of the theorem.

When ˛ 2 . Ǫ ; N̨ /, Lemma 3.3 (3), particularly subcase (a), describes the shape of the curve s˛ in

the � -b quadrant. It implies that the � - line intersects s˛ once if � 2 .0; �L.˛//, twice if � D �L.˛/,

three times if � 2 .�L.˛/; �R.˛//, twice if � D �R.˛/, and once if � 2 .�R.˛/; 2˛/. There is no

intersection if � 2 Œ2˛;1/.

Other parts of the theorem follow from the other cases of Lemma 3.3 similarly.

The regions stated in Theorem 3.4 are numerically calculated and presented in Figure 2. The

borderline cases (2(b), 2(d), 3(b), 3(d), 4(b), 4(e), and 5(c)) are not depicted.
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FIG. 2. When .�; ˛/ is in the red region, there is one radially unstable bubble; in the green region there are two bubbles

of which one is radially stable and the other is radially unstable; in the blue region there are three bubbles of which one is

radially stable and two are radially unstables; finally in the black region there is no bubble at all. For the blue region, its

lowest pointed apex has ˛ D Ǫ while its highest pointed apex has ˛ D 2. The point surrounded by 4 colors has ˛ D N̨ .

From left the blue region is bounded by the curve � D �L.˛/, ˛ 2 . Ǫ ; 2/. From right the union of the blue and green

regions is bounded by � D �R.˛/, ˛ 2 . Ǫ ;1/. The union of the red and blue regions is separated from the union of the

green and black regions by � D 2˛, ˛ 2 .0;1/. (Only the ebook/online version of this article contains full color images.)

4. Bubble stability

We now set up a framework to facilitate a discussion of the stability of the bubbles found in

Theorem 3.4. Let L2.S1/ be the L2 space of the unit circle, or the interval Œ0; 2�� with end points

identified, under the Lebesgue measure. It is a Hilbert space with the inner product

h�; i D
Z 2�

0

�.�/ .�/ d�: (4.1)

Denote by H 1.S1/ and H 2.S1/ the standard Sobolev spaces whose norms are given by

k�k2
H1 D

Z 2�

0

�
.�0/2 C �2

�
d�; k�k2

H2 D
Z 2�

0

�
.�00/2 C .�0/2 C �2

�
d� (4.2)

respectively. The three spaces are nested: H 2.S1/ � H 1.S1/ � L2.S1/.

Consider a bubble Bb.0/, i.e. b is a solution of (3.4). Given a 2�-periodic function �, 1 C
2�.�/ > 0 for all � 2 S

1, let ˝ D P� be a perturbed disc:

P� D frei� W r 2
h
0; b

p
1C 2�.�/

i
; � 2 S

1g: (4.3)
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As a functional of �, the domain of J is

Dom.J / D
˚
� 2 H 1.S1/ W k�kH1 < �0

	
(4.4)

with �0 > 0 small enough so that

p
1C 2�.�/ 2 .0; 2/; for all � 2 S

1I (4.5)

in particular J .P�/ is written more explicitly as

J .�/ D
Z 2�

0

b

s
.�0/2

1C 2�
C 1C 2� d��˛b2

Z 2�

0

1C 2�

2
d�C�

2

Z

P�

Z

P�

1

2�
K0.jx�yj/ dxdy :

(4.6)

For a general ˝ � R
2 and a deformation ˝" of ˝, there is a first variation formula:

dJ .˝"/

d"

ˇ̌
ˇ
"D0

D �
Z

@˝

�
K.@˝/ � ˛ C �N.˝/

�
N � X ds; (4.7)

which holds for sufficiently smooth deformation˝". The vector N is the inward pointing unit normal

on @˝ and ds is the arc length element of @˝. The vector X is the infinitesimal element of the

deformation of @˝. If @˝" is parametrized by R".�/, then

X.�/ D @R".�/

@"

ˇ̌
ˇ
"D0

: (4.8)

Note that the sign convention of the curvature K.@˝/ in (4.7) must be consistent with the direction

of the normal vector N. In other words, K.@˝/N is the curvature vector of @˝. If ˝ were convex,

K.@˝/ would be non-negative.

In the present setting, one can easily define a deformation of P� by deforming � to

� C " ; � 2 Dom.J / and  2 H 1.S1/: (4.9)

This gives rise to P�C" , which implies

R".�/ D b

q
1C 2

�
�.�/C " .�/

�
ei� ; � 2 S

1: (4.10)

Denote the inward normal vector of R0 by N and the infinitesimal element of the deformation R"
by X. Then, if � 2 H 2.S1/,

N � X ds D i
@R"

@�

ˇ̌
ˇ
"D0

� @R"

@"

ˇ̌
ˇ
"D0

d�

D
� b @�

@�p
1C 2�

ei� i � b
p
1C 2�ei�

�
�
� b p

1C 2�
ei�
�
d�

D �b2 d�; (4.11)

where complex numbers are used to denote vectors for simpler notation. The first variation of J

now becomes

dJ .� C " /

d"

ˇ̌
ˇ
"D0

D
Z 2�

0

�
K.@P�/ � ˛ C �N.P�/

�
b2 d� : (4.12)
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Introduce a nonlinear operator S W Dom.S/ ! L2.S1/ with the domain

Dom.S/ D
˚
� 2 H 2.S1/ W k�kH2 < �0

	
; (4.13)

where �0 is the same as the one in (4.4). Let

S.�/ D b2
�
K.@P�/ � ˛ C �N.P�/

�
: (4.14)

If one computes the curvature of @P� in terms of �, then an explicit formula is obtained:

S.�/.�/ D
b
�
1C 2� C 3.�0/2

1C2� � �00
�

�
1C 2� C .�0/2

1C2�

�3=2 � ˛b2 C �b2
Z

P�

1

2�
K0
�ˇ̌
b
p
1C 2�.�/ ei� � y

ˇ̌�
dy:

(4.15)

The Euler–Lagrange equation (1.8) now becomes the equation S.�/ D 0.

With the operator S one can write the first variation (4.12) more concisely as

dJ .� C " /

d"

ˇ̌
ˇ
"D0

D hS.�/;  i: (4.16)

While the right side of (4.16) is obviously meaningful if � 2 Dom.S/ and  2 L2.S1/, the left

side of (4.16) is still defined if � 2 Dom.J / and  2 H 1.S1/. Henceforth hS.�/;  i is interpreted

this way in the latter case. One also finds the second variation of J :

@2J .� C "1 C "2�/

@"1@"2

ˇ̌
ˇ
"1D"2D0

D hS 0.�/ ; �i: (4.17)

In (4.17), S 0 is the Fréchet derivative of S . For each � 2 Dom.S/, S 0.�/ is a linear operator from

H 2.S1/ to L2.S1/.

Note that the bubble Bb.0/ corresponds to � D 0. Hence � D 0 is a critical point of J , so

S.0/ D 0. A more involved calculation shows

S 0.0/ D b.� 00 �  /C �

Z 2�

0

b4

2�
K0
�ˇ̌
bei� � bei!

ˇ̌�
 .!/ d!

C �

Z

jyj<b

b3

2�
K 0
0

�ˇ̌
bei� � y

ˇ̌� bei� � y
jbei� � yj dy � ei� .�/ : (4.18)

Let Hn D f W  D A cosn� C B sinn�; A;B 2 Rg and decompose

L2.S1/ D ˚1
nD0Hn : (4.19)

Lemma 4.1 Each of the spaces Hn, n D 0; 1; 2; : : :, is an eigenspace of S 0.0/ for the eigenvalue

�n D b.n2 � 1/C �b4
�
In.b/Kn.b/ � I1.b/K1.b/

�
: (4.20)

Proof. It suffices to study the integral operator

 !
Z 2�

0

b4

2�
K0
�ˇ̌
bei� � bei!

ˇ̌�
 .!/ d! (4.21)
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and the multiplication operator

 !
Z

jyj<b

b3

2�
K 0
0

�ˇ̌
bei� � y

ˇ̌� bei� � y
jbei� � yj dy � ei� .�/: (4.22)

For the integral operator (4.21) take  to be cosn� , with n D 0; 1; 2; : : : , to deduce

Z 2�

0

1

2�
K0
�ˇ̌
bei� � bei!

ˇ̌�
cosn! d!

D
Z 2�

0

1

2�
K0
�
b
ˇ̌
1 � ei.!��/ ˇ̌�� cosn.! � �/ cosn� � sinn.! � �/ sinn�

�
d!

D cosn�

Z 2�

0

1

2�
K0
�
b
ˇ̌
1 � ei!

ˇ̌�
cosn! d! � sinn�

Z 2�

0

1

2�
K0
�
b
ˇ̌
1 � ei!

ˇ̌�
sinn! d!

D cosn�

Z �

0

1

�
K0

�
2b sin

!

2

�
cosn! d!: (4.23)

Similarly, take  to be sinn� for n D 1; 2; : : : , to find

Z 2�

0

1

2�
K0

�ˇ̌
bei� � bei!

ˇ̌�
sinn! d! D sinn�

Z �

0

1

�
K0

�
2b sin

!

2

�
cosn! d!: (4.24)

By Lemma 2.3 one concludes from (4.23) and (4.24) that on cosn� and sinn� the integral operator

(4.21) acts like

cosn� ! b4In.b/Kn.b/ cosn�; sinn� ! b4In.b/Kn.b/ sinn�: (4.25)

For the multiplication operator (4.22), direct calculation gives

1

b

Z

jyj<b

1

2�
K 0
0

�ˇ̌
bei� � y

ˇ̌� bei� � y
jbei� � yj dy � ei�

D
Z

jz�1j<1

b

2�
K 0
0.bjzj/e

i�z

jzj dz � ei� ;
�
y D bei� .1 � z/

�

D
Z 2

0

Z arccos.r=2/

� arccos.r=2/

b

2�
K 0
0.b r/.cos a/r dadr; .z D reia/

D
Z 2

0

b

�
K 0
0.b r/

r
1 �

� r
2

�2
r dr

D
Z 1

�1

b

2�
K 0
0

�
b
p
2 � 2u

�p
2C 2u du;

�
r D

p
2 � 2u

�

D �
Z �

0

1

�
K0

�
2b sin

!

2

�
cos! d!; .integration by parts and u D cos!/

D �I1.b/K1.b/; (4.26)

where the last line follows from Lemma 2.3 with n D 1. Hence the multiplication operator (4.22) is

simply

 ! �b4I1.b/K1.b/ : (4.27)

Then (4.20) follows from (4.25) and (4.27).
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Because of the translation invariance of the problem, S 0.0/ always has a nontrivial kernel;

namely when n D 1, �1 D 0 and the corresponding eigenspace H 1 is always contained in the

kernel. The stability of the bubble depends on whether the other �n’s, n D 0; 2; 3; 4,.., are all

positive. To study this issue, define the curves

C n D
˚
.�; b/ W n2 � 1C �b3

�
In.b/Kn.b/ � I1.b/K1.b/

�
D 0

	
(4.28)

in the � -b quadrant. Any .�; b/-point on the curve C n corresponds to a bubble whose eigenvalue

�n vanishes. Note that when n D 0, one has the same curve C 0 previously given in (3.11). As in

the C 0 case one may regard C n as the graph of the function

� D Cn.b/ � 1 � n2
b3
�
In.b/Kn.b/ � I1.b/K1.b/

� ; b 2 .0;1/: (4.29)

Each C n divides the � -b quadrant into two regions:

Rn;s D
˚
.�; b/ W n2 � 1C �b3

�
In.b/Kn.b/ � I1.b/K1.b/

�
> 0

	
; (4.30)

Rn;u D
˚
.�; b/ W n2 � 1C �b3

�
In.b/Kn.b/ � I1.b/K1.b/

�
< 0

	
: (4.31)

Note that

R0;s D Rd ; R0;u D Ri (4.32)

where Rd and Ri are given in (3.13) and (3.12), respectively. Note that R0;s lies on the right of the

curve C 0, while Rn;s is on the left of C n for n D 2; 3; : : :

If .�; b/ is in Rn;s , then the bubble Bb.0/ is stable with respect to the n-th mode; if .�; b/ is in

Rn;u, then the bubble is unstable with respect to this mode. In the case n D 0, .�; b/ 2 R0;s D Rd
means that the bubble is stable with respect to radial perturbations, i.e. radially stable; if .�; b/ 2
R0;u D Ri , then the bubble is radially unstable. A stable bubble is stable with respect to all modes,

and hence .�; b/ must be in the intersection

\

nD0;2;3;:::
Rn;s : (4.33)

The following lemma gives a simple description of this set.

Lemma 4.2 For every b > 0,

1. CnC1.b/ > Cn.b/ when n D 2; 3; : : : ,

2. C2.b/ > C0.b/.

Proof. Denote I�K� by P� where � 2 RC. Since

b3
�
CnC1.b/ � Cn.b/

�
D .2nC 1/P1 � .n2 C 2n/Pn C .n2 � 1/PnC1

.P1 � Pn/ .P1 � PnC1/
; (4.34)

it suffices to show the numerator on the right is positive. It is known [4, Theorem 1 (4)] that the

function t ! Pp
t .b/ is log-convex for t > 0. Since a log-convex function is convex, for any

0 < � < 1

Pq
.1��/�2

1
C��2

2

.b/ < .1 � �/P�1
.b/C �P�2

.b/ :
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Part 1 follows if �1 D 1, �2 D nC 1 and � D n2�1
n2C2n .

Next observe that by [4, Theorem 2, Eqn. (19)] and the fact that Pn is deceasing in n,

P1 6
1

2
P0 C 1

2
P2 <

3

4
P0 C 1

4
P2; (4.35)

from which Part 2 follows.

Lemma 4.2 implies that the curves C n in the � -b quadrant do not intersect. If n < m, C n is to

the left of Cm. The set \nD0;2;3;:::Rn;s is simply the region between C 0 and C 2, i.e.,

\

nD0;2;3;:::
Rn;s D Rd \R2;s : (4.36)

The stability of bubbles is summarized in the following theorem.

Theorem 4.3 Let ˛ and � be given positive numbers.

1. The functional J with ˛ and � being its parameters can have at most one radially stable bubble.

Consequently there can be at most one stable bubble.

2. A bubble Bb.0/ is stable if C0.b/ < � < C2.b/.

Proof. Part 2 follows from the discussion above and (4.29) that defines Cn. For part 1, note that a

radially stable bubble corresponds to a point .�; b/ 2 R0;s D Rd in the � -b quadrant. In Rd , (recall

the proof of Theorem 3.4), a s˛ curve and a verticle � line can intersect at most once, since s˛.b/ is

decreasing with respect to b in Rd .

We have learned that for given ˛ and � there may be zero, one, two, or even three bubbles. So

the bubble radius b is not uniquely determined by .�; ˛/. On the other hand for given � and b, there

is a unique ˛ by (3.6). Define

T W .�; b/ ! .�; ˛/ �
�
�;
1C �b2I1K0

b

�
: (4.37)

If T is restricted to the region Rd (also termed R0;s), then the restriction, denoted by TRd
, is

one to one. Denote the inverse of TRd
by T �1

Rd
, which maps from T .Rd / back to Rd . Note that

T .\nD0;2;3;:::Rn;s/ � T .Rd / since \nD0;2;3;:::Rn;s � Rd . With the help of T one can precisely

identify regions for .�; ˛/ that give rise to radially stable bubbles and stable bubbles, respectively.

Theorem 4.4 If .�; ˛/ 2 T .Rd /, then with .�; b/ D T �1
Rd
.�; ˛/, Bb.0/ is a radially stable bubble.

If .�; ˛/ 2 T .\nD0;2;3;:::Rn;s/, then with .�; b/ D T �1
Rd
.�; ˛/, Bb.0/ is a stable bubble.

Figure 3 shows T .\nD0;2;3;:::Rn;s/ in purple and T .Rd /nT .\nD0;2;3;:::Rn;s/ in yellow. Note

that the union of the yellow and the purple regions in Figure 3 equals the union of the green and the

blue regions in Figure 2.

5. Droplet assemblies on a bounded domain

Beginning in this section we study the singular limit JD on a bounded domain D and show

that when ˛ and � are in a proper range, the functional JD admits stable stationary sets that are

assemblies of perturbed small discs.
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FIG. 3. If .�; ˛/ is in the purple region, there is a stable bubble; if .�; ˛/ is in the yellow region, there is a bubble that is

stable with respect to radial perturbations, but not stable with respect to some other perturbations. The union of the yellow

and the purple regions is the same as the union of the blue and green regions in Figure 2. The yellow region is separated from

the purple region by the image of the curve C2 under T . (Only the ebook/online version of this article contains full color

images.)

Since

I0.b/K0.b/ D
�

log
1

b

��
1C o.1/

�
; In.b/Kn.b/ D 1

2n

�
1C o.1/

�
; n D 1; 2; 3; : : :

when b is small [1, (9.6.7)–(9.6.9)], one deduces that

C0.b/ D 1

b3.I0K0 � I1K1/
D 1

b3 log 1
b

�
1C o.1/

�
; (5.1)

C2.b/ D 3

b3.I1K1 � I2K2/
D 12

b3

�
1C o.1/

�
: (5.2)

Consequently for every ı > 0 there exists b0 > 0 such that

(
.�; b/ W 0 < b < b0;

1C ı

b3 log 1
b

< � <
12 � ı
b3

)
�

\

nD0;2;3;:::
Rn;s : (5.3)

The set on the left side of (5.3) will play a critical role in the next theorem. First assume that D is

sufficiently smooth and there is a Green’s function of the equation (1.6), denoted by G D G.x; y/,
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so that

ND.˝/.x/ D
Z

D

G.x; y/�˝.y/ dy: (5.4)

One can decompose G into two parts:

G.x; y/ D 1

2�
K0
�
jx � yj

�
CR.x; y/; (5.5)

where the modified Bessel function K0.jx � yj/ is singular when x D y while the regular part R is

smooth. Second introduce a key quantity in this section, a function F defined in terms of G and R,

for K distinct points �1, �2,. . . , �K in D:

F.�1; �2; : : : ; �K/ D
KX

kD1
R.�k ; �k/C

KX

kD1

KX

lD1;l¤k
G.�k ; �l /: (5.6)

Third recall the mapping T from (4.37) and its restriction TRd
to Rd .

Theorem 5.1 Let D be a bounded and sufficiently smooth domain in R
2, K 2 N and ı > 0. There

exists b0 > 0 depending on D, K, and ı, such that if

1. .�; ˛/ 2 T .Rd /,
2. b < b0,

3. 1Cı
b3 log 1

b

< � < 12�ı
b3 ,

where .�; b/ D T �1
Rd
.�; ˛/, then JD , with ˛ and � being its parameters, admits a stationary set that

is an assembly of K perturbed discs. Moreover,

1. the radii of all the perturbed discs are approximately the same;

2. if the centers of the perturbed discs are �1� ; �
2
� ; : : : ; �

K
� , then as b ! 0, .�1� ; �

2
� ; : : : ; �

K
� /

converges to a minimum of F , possibly along a subsequence;

3. this stationary assembly is stable in some sense.

A few remarks are in order. This strategy of the proof of Theorem 5.1 was first developed

by Ren and Wei in [38, 39] for the Ohta-Kawasaki diblock copolymer problem [31]. It was later

successfully applied to more sophisticated nonlocal geometric variational problems [35, 40]. The

main difference between the diblock copolymer problem studied in [38] and the present problem

lies in the the bubble profile used in the construction. In [38] there always exists a unique bubble

simply because of an area constraint on the permissible sets. That bubble is stable if the nonlocal

interaction term in [38] is not too large. Here we have no area constraint. The very subtle existence

and stability properties of the bubble used in the proof of Theorem 5.1 come from Theorems 3.4

and 4.3.

For the diblock copolymer problem, Choski and Sternberg [13] studied the stability issue by a

second variation formula, and Acerbi, Fusco and Morini [2] showed that positivity of the second

variation implies local minimality for stationary sets.

The smoothness requirement onD is only needed to ensure that the operatorND is well defined.

This is the case if D is of the class C 2;˛ [22, Section 6.7]. By (5.3) the range of .�; ˛/ specified

by the three conditions stated in the theorem is not empty. The corresponding .�; b/ is in a tail of

\nD0;2;3;:::Rn;s with small b. In this tail, b ! 0 is equivalent to � ! 1.
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To get a rough idea what ˛ and � look like when b ! 0 in this theorem, note

˛ D 1C �b2I1K0

b
D
1C �b3

2
log 1

b

�
1C o.1/

�

b
(5.7)

by [1, (9.6.7) and (9.6.8)]. In the two borderline cases of the third assumption of the theorem,

1. if � � 1

b3 log 1
b

, then ˛ � 3
2b

;

2. if � � 12
b3 , then ˛ � 6

b
log 1

b
.

Hence as b ! 0, both ˛ and � approach 1, although � does so much faster than ˛ does.

We start with a construction of assemblies of exact discs whose radii are close to b. First let

� D
n
� D

�
�1; �2; : : : ; �K

�
W �k 2 D; �k ¤ �l if k ¤ l

o
; (5.8)

which is the domain of the function F given in (5.6). Then, for � > 0, define

�� D
n
� D

�
�1; �2; : : : ; �K

�
W �k 2 D; dist

�
�k ; @D

�
> �; dist

�
�k ; �l

�
> 2� for k ¤ l

o
: (5.9)

Regarding F defined in (5.6), note that G.x; y/ ! 1 if y ! x. The techniques in [35] may also

be used to study the behavior of R.x; y/ when x and y are close to @D. In particular based on the

property that R.z; z/ ! 1 if z ! @D, one can find a sufficiently small � such that

inf
�2�n��

F.�/ > inf
�2�

F.�/: (5.10)

This implies that the minimum of F on � is achieved inside �� . The number � is fixed throughout

the paper.

Let � D .�1; �2; : : : ; �K/ 2 �� , the closure of �� in R
2K , and make an approximate solution

that is an assembly of small discs centered at the �k’s. The radii of the discs are bˇk where the ˇk’s

are not yet determined. Collectively write ˇ D .ˇ1; ˇ2; : : : ; ˇK/ 2 B� , where B� is the closure of

a box B� in R
K defined by

B� D
˚
ˇ W ˇk 2 .1 � �; 1C �/

	
: (5.11)

The number � will be specified and made small later, so the radii bˇk become close to b. For now

we only require that � 2 .0; 1/. Take b0 to be sufficiently small so that when b < b0,

b; bˇk <
�

2
for all ˇ 2 B� : (5.12)

Let P0 be the union of discs P k0 centered at �k of radii bˇk :

P0 D [KkD1P
k
0 where P k0 D

˚
x 2 R

2 W jx � �kj 6 bˇk
	
: (5.13)

Because of (5.12) the assembly P0 consists of non-overlapping discs, and P0 is contained in D.

Lemma 5.2 Let � 2 �� and ˇ 2 B� . Then

JD.P0/ D
KX

kD1

�
2�bˇk � ˛�.bˇk/2 C ��.bˇk/2

2

�
1 � 2I1.bˇk/K1.bˇk/

��

C
KX

kD1

��2.bˇk/4

2
R.�k ; �k/C

KX

kD1

KX

lD1;l¤k

��2.bˇk/2.bˇl /2

2
G.�k ; �l /CO.�b6/:
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Proof. Since, by Lemma 2.1,

Z

jxj<t

Z

jyj<t

1

2�
K0.jx � yj/ dydx D �t2

�
1 � 2I1.t/K1.t/

�
;

one obtains (with t D bˇk)

JD.P0/ D
KX

kD1

�
2�bˇk � ˛�.bˇk/2 C �

2

Z

Pk
0

Z

Pk
0

1

2�
K0.jx � yj/ dydx

�

C
KX

kD1

�

2

Z

Pk
0

Z

Pk
0

R.x; y/ dydx C
KX

kD1

KX

lD1;l¤k

�

2

Z

Pk
0

Z

P l
0

G.x; y/ dydx

D
KX

kD1

�
2�bˇk � ˛�.bˇk/2 C ��.bˇk/2

2

�
1 � 2I1.bˇk/K1.bˇk/

��

C
KX

kD1

�

2

Z

Pk
0

Z

Pk
0

R.x; y/ dydx C
KX

kD1

KX

lD1;l¤k

�

2

Z

Pk
0

Z

P l
0

G.x; y/ dydx:

Denote the gradient ofR.x; y/ (G.x; y/ resp.) with respect to x by rR.x; y/ (rG.x; y/ resp.), and

the gradient with respect to y by erR.x; y/ (erG.x; y/ resp.). Then

Z

Pk
0

R.x; y/ dy D
Z

jy��k j<bˇk

�
R.x; �k/C erR.x; �k/ � .y � �k/CO.b2/

�
dy

D �.bˇk/2R.x; �k/CO.b4/

and
Z

Pk
0

Z

Pk
0

R.x; y/ dydx

D
Z

jx��k j<bˇk

�
�.bˇk/2R.x; �k/CO.b4/

�
dx

D
Z

jx��k j<bˇk

�
�.bˇk/2R.�k ; �k/C .bˇk/2rR.�k ; �k/ � .x � �k/CO.b4/

�
dx

D �2.bˇk/4R.�k ; �k/CO.b6/:

Similarly Z

Pk
0

Z

P l
0

G.x; y/ dydx D �2.bˇk/2.bˇl /2G.�k ; �l /CO.b6/:

The lemma then follows from these estimates.

To introduce a perturbed assembly, let �k , k D 1; 2; : : : ; K, be 2�-periodic functions. Let

P k
�k D f�k C rei� W r 2

h
0; bˇk

q
1C 2�k.�/

i
; � 2 S

1g (5.14)
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be a perturbed disc, and

P� D [KkD1P
k
�k (5.15)

be a perturbed assembly. Here one writes � D .�1; �2; : : : ; �K/ and P� to emphasize that

this assembly depends on �. In fact, P� also depends on ˇ D .ˇ1; ˇ2; : : : ; ˇK/ and � D
.�1; �2; : : : ; �K/, and these dependencies will be exploited later.

Next specify the domain for � so that JD can be viewed as a functional of �. The first space is

L2.S1;RK/, a Hilbert space with the inner product

h�; i D
KX

kD1

Z 2�

0

�k.�/ k.�/ d�: (5.16)

The second space isH 1.S1;RK/; the third space isH 2.S1;RK/. They are standard Sobolev spaces,

with range in R
K . The norms of the latter two spaces are defined by

k�k2
H1 D

Z 2�

0

KX

kD1

�
.�k;0/2 C .�k/2

�
d�; k�k2

H2 D
Z 2�

0

KX

kD1

�
.�k;00/2 C .�k;0/2 C .�k/2

�
d�;

(5.17)

respectively. The three spaces are nested: H 2.S1;RK/ � H 1.S1;RK/ � L2.S1;RK/.

As a functional of �, the domain of JD is

Dom.JD/ D
˚
� 2 H 1.S1;RK/ W k�kH1 < �1

	
(5.18)

with �1 > 0 small enough so that

q
1C 2�k.�/ 2 .0; 2/; for all � 2 S

1: (5.19)

This and (5.12) imply that

bˇk
q
1C 2�k.�/ 2 .0; �/ (5.20)

where � is given in (5.10). Hence P� comprises of non-overlapping perturbed discs and P� � D.

As a functional of �, JD.P�/ is written more explicitly as

JD.�/ D
KX

kD1

Z 2�

0

bˇk

s
.�k;0/2

1C 2�k
C 1C 2�k d�

� ˛
KX

kD1
.bˇk/2

Z 2�

0

1C 2�k

2
d� C �

2

Z

P�

Z

P�

G.x; y/ dxdy: (5.21)

Again for a general ˝ � D and a deformation ˝" of ˝, there is a first variation formula:

dJD.˝"/

d"

ˇ̌
ˇ
"D0

D �
Z

@˝

�
K.@˝/ � ˛ C �ND.˝/

�
N � X ds; (5.22)

which holds for sufficiently smooth ˝" that does not meet the boundary of D. The vector N is the

inward pointing unit normal on @˝ and ds is the arc length element of @˝. The vector X is the
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infinitesimal element of the deformation of @˝. The Euler–Lagrange equation (1.8) also follows

from formula (5.22).

Define a deformation of P� by deforming � to

� C " ; � 2 Dom.JD/ and  2 H 1.S1;RK/; (5.23)

which gives rise to P�C" . Denote the boundary of the k-th component of this assembly by

Rk" .�/ D �k C bˇk
q
1C 2

�
�k.�/C " k.�/

�
ei� ; � 2 S

1: (5.24)

Denote the inward normal vector of Rk0 by Nk and the infinitesimal element of the deformation Rk"
by Xk . Then, if � 2 H 2.S1;RK/,

Nk � Xk ds D i
@Rk"

@�

ˇ̌
ˇ
"D0

� @Rk"

@"

ˇ̌
ˇ
"D0

d�

D
� bˇk @�

k

@�p
1C 2�k

ei� i � bˇk
q
1C 2�kei�

�
�
� bˇk kp

1C 2�k
ei�
�
d�

D �.bˇk/2 k d�: (5.25)

The first variation of JD now becomes

dJD.� C " /

d"

ˇ̌
ˇ
"D0

D
KX

kD1

Z 2�

0

�
K.@P k

�k / � ˛ C �ND.P�/
�
.bˇk/2 k d�: (5.26)

Introduce a nonlinear operator SD W Dom.SD/ ! L2.S1;RK/ with the domain

Dom.SD/ D
˚
� 2 H 2.S1;RK/ W k�kH2 < �1

	
(5.27)

where �1 is the same as the one in (5.18). Let SD D .S1D; S
2
D; : : : ; S

K
D/ and define its k-th

component by

SkD.�/ D .bˇk/2
�
K.@P k

�k / � ˛ C �ND.P�/
�

(5.28)

where the right side of (5.28) is evaluated at @P k
�k . More specifically this quantity is evaluated at

�kCbˇk
p
1C 2�k.�/ ei� and viewed as a function with � being the input variable. If one computes

the curvature of @P k
�k in terms of �k , then an explicit formula is obtained:

SkD.�/.�/ D
bˇk

�
1C 2�k C 3.�k;0/2

1C2�k � �k;00
�

�
1C 2�k C .�k;0/2

1C2�k

�3=2 � ˛.bˇk/2

C �.bˇk/2
Z

P�

G.�k C bˇk
q
1C 2�k.�/ ei� ; y/ dy: (5.29)

The Euler–Lagrange equation (1.8) now becomes the equation SD.�/ D 0.
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With the operator SD one can write the first variation (5.26) more concisely as

dJD.� C " /

d"

ˇ̌
ˇ
"D0

D hSD.�/;  i: (5.30)

The right side of (5.30) is meaningful if either � 2 Dom.SD/ and  2 L2.S1;RK/, or � 2
Dom.JD/ and  2 H 1.S1;RK/.

Next consider the second variation of JD , which is also the Fréchet derivative of SD . Let � C
"1 C "2� be a two parameter deformation of �. Then

@2JD.� C "1 C "2�/

@"1@"2

ˇ̌
ˇ
"1D"2D0

D hS 0
D.�/ ; �i (5.31)

Here S 0
D.�/ is the Fréchet derivative of SD at � and

 ! S 0
D.�/ (5.32)

is a self-adjoint linear operator from H 2.S1;RK/ � L2.S1;RK/ to L2.S1;RK/. The quadratic

form hS 0
D.�/ ; �i is defined if � 2 Dom.SD/, 2 H 2.S1;RK/, and � 2 L2.S1;RK/. Moreover,

one can also use the left side of (5.31) to interpret the quadratic form if � 2 Dom.JD/, and

 ; � 2 H 1.S1;RK/.

Introduce some subspaces

L2[ .S
1;RK/ D

n
� 2 L2.S1;RK/ W

Z 2�

0

�k.�/ d� D
Z 2�

0

�k.�/ cos � d�

D
Z 2�

0

�k.�/ sin � d� D 0; 8k
o

(5.33)

H 1
[ .S

1;RK/ D
n
� 2 H 1.S1;RK/ W

Z 2�

0

�k.�/ d� D
Z 2�

0

�k.�/ cos � d�

D
Z 2�

0

�k.�/ sin � d� D 0; 8k
o

(5.34)

H 2
[ .S

1;RK/ D
n
� 2 H 2.S1;RK/ W

Z 2�

0

�k.�/ d� D
Z 2�

0

�k.�/ cos � d�

D
Z 2�

0

�k.�/ sin � d� D 0; 8k
o

(5.35)

and denote the orthogonal projection from L2.S1;RK/ to L2
[
.S1;RK/ by ˘ . Geometrically one

can interpret an element in L2
[
.S1;RK/ (or H 1

[
.S1;RK/ or H 2

[
.S1;RK/) as an assembly whose

perturbed discs have well defined centers �k and well defined radii bˇk . More specifically, the

condition
R 2�
0
�k.�/ d� D 0 implies that bˇk can be interpreted as the radius of the perturbed disc

P k
�k ; the condition

R 2�
0
�k.�/ cos � d� D

R 2�
0
�k.�/ sin � d� D 0 defines �k as the center of P k

�k .

6. Solving ˘SD.�/ D 0

It is not realistic to solve SD.�/ D 0 for arbitrarily given ˇ and �. Instead in this section we solve

a weaker equation, ˘SD.�/ D 0, in H 2
[
.S1;RK/.
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Lemma 6.1 There exists C1 > 0 such that k˘SD.0/kL2 6 C1�b
6.

Proof. Insert P0 into the left side of the Euler–Lagrange equation (1.8). Since

K.@P k0 / D 1

bˇk
; (6.1)

it remains to estimate

ND.P0/.�
k C bˇkei� / D

Z

P0

G
�
�k C bˇkei� ; y

�
dy

D
Z

Pk
0

1

2�
K0
�ˇ̌
�k C bˇkei� � y

ˇ̌�
dy C

Z

Pk
0

R
�
�k C bˇkei� ; y

�
dy

C
KX

lD1;l¤k

Z

P l
0

G
�
�k C bˇkei� ; y

�
dy:

The first integral of the last line was calculated in (2.1):
Z

Pk
0

1

2�
K0
�ˇ̌
�k C bˇkei� � y

ˇ̌�
dy D

Z

jyj<bˇk

1

2�
K0
�ˇ̌
bˇkei� � y

ˇ̌�
dy D bˇkI1.bˇ

k/K0.bˇ
k/:

(6.2)

As in the proof of Lemma 5.2, the second and the third integrals become
Z

Pk
0

R.�k C bˇkei� ; y/ dy

D
Z

Pk
0

�
R.�k C bˇkei� ; �k/C erR.�k C bˇkei� ; �k/ � .y � �k/CO.b2/

�
dy

D �.bˇk/2R.�k C bˇkei� ; �k/CO.b4/

D �.bˇk/2R.�k ; �k/C �.bˇk/2rR.�k ; �k/ � bˇkei� CO.b4/ (6.3)

Z

P l
0

G.�k C bˇkei� ; y/ dy

D
Z

P l
0

�
G.�k C bˇkei� ; �l /C erG.�k C bˇkei� ; �l / � .y � �l /CO.b2/

�
dy

D �.bˇl /2G.�k C bˇkei� ; �l /CO.b4/

D �.bˇl /2G.�k ; �l /C �.bˇl /2rG.�k ; �l / � bˇkei� CO.b4/; (6.4)

uniformly with respect to � . By (6.1), (6.2), (6.3), and (6.4), one derives

K.@P0/ � ˛ C �ND.P0/

D 1

bˇk
� ˛ C �bˇkI1.bˇ

k/K0.bˇ
k/C ��.bˇk/2R.�k ; �k/C ��.bˇk/3rR.�k ; �k/ � ei�

C
KX

lD1;l¤k
��.bˇl /2G.�k ; �l /C

KX

lD1;l¤k
��.bˇl /2.bˇk/rG.�k ; �l / � ei� CO.�b4/ (6.5)

on @P k0 . The lemma follows from (6.5), (5.28), and the definition of the ˘ operator.
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In Lemma 6.1 the upper case C1 is used in an upper bound estimate and the subscript 1 reminds

us that the estimate is for the first variation of JD at 0. In the next lemma we will use a lower case

c2 in a lower bound estimate on the second variation of JD at 0.

Lemma 6.2 There exists c2 > 0 such that the following two statements hold when � is sufficiently

large.

1. For all  2 H 2
[
.S1;RK/,

k˘S 0
D.0/ kL2 > c2bk kH2 :

The linear map˘S 0
D.0/ is one-to-one and onto fromH 2

[
.S1;RK/ to L2

[
.S1;RK/ whose inverse

is bounded by k.˘S 0
D.0//

�1k 6
1
c2b

.

2. For all  2 H 1
[
.S1;RK/,

h˘S 0
D.0/ ; i > c2bk k2

H1 :

Proof. One computes S 0
D from (5.29) and finds the k-th component of the linear operator S 0

D.0/ to

be

S
0;k
D .0/ D bˇk.� k;00� k/C�

KX

lD1
.bˇk/2.bˇl /2

Z 2�

0

G.�kCbˇkei� ; �lCbˇlei!/ l .!/ d!

C �

KX

lD1
.bˇk/2.bˇl /

Z

P l
0

rG.�k C bˇkei� ; y/ dy � ei� l .�/: (6.6)

One separates S 0
D.0/ into a major part L and a minor part M : S 0

D.0/ D LCM . Here

Lk D bˇk.� k;00 �  k/C �

Z 2�

0

.bˇk/4

2�
K0.jbˇkei� � bˇkei! j/ k.!/ d!

C �

Z

jyj<bˇk

.bˇk/3

2�
K 0
0.jbˇkei� � yj/ bˇ

kei� � y
jbˇkei� � yj dy � ei� k.�/

C �

Z 2�

0

.bˇk/4R.�k ; �k/ k.!/ d!

C �

KX

lD1;l¤k

Z 2�

0

.bˇk/2.bˇl /2G.�k ; �l / l .!/ d!; (6.7)

M k D �

Z 2�

0

.bˇk/4
�
R.�k C bˇkei� ; �k C bˇkei!/ �R.�k ; �k/

�
 k.!/ d!

C �

Z

Pk
0

.bˇk/3rR.�k C bˇkei� ; y/ dy � ei� k.�/

C �

KX

lD1;l¤k

Z 2�

0

.bˇk/2.bˇl /2
�
G.�k C bˇkei� ; �l C bˇlei!/ �G.�k ; �l /

�
 l .!/ d!

C �

KX

lD1;l¤k

Z

P l
0

.bˇk/2.bˇl /rG.�k C bˇkei� ; y/ dy � ei� l .�/: (6.8)
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The minor part is estimated easily:

kM kL2 6 C�b5k kL2 ; 8 2 L2.S1;RK/: (6.9)

For the major part L, decompose the space L2.S1;RK/ into a Hilbert sum:

L2.S1;RK/ D H 0 ˚
�

˚1
nD1 ˚K

kD1H
k
n

�
(6.10)

where

H 0 D
˚
 D .c1; c2; : : : ; cK/ W ck 2 R

	
(6.11)

H k
n D

˚
 D .0; 0; : : : ; 0;  k ; 0; : : : ; 0/ W  k D A cosn� C B sinn�; A;B 2 R

	
: (6.12)

Each H k
n is a two dimensional eigenspace of L, whose corresponding eigenvalue is

�kn D bˇk.n2 � 1/C �.bˇk/4
�
In.bˇ

k/Kn.bˇ
k/ � I1.bˇk/K1.bˇk/

�
: (6.13)

To prove (6.13), since the last two terms of Lk in (6.7) vanish on H k
n whenever n > 1, it suffices

to study the integral operator

 k !
Z 2�

0

.bˇk/4

2�
K0
�ˇ̌
bˇkei� � bˇkei!

ˇ̌�
 k.!/ d! (6.14)

and the multiplication operator

 k !
Z

jyj<bˇk

.bˇk/3

2�
K 0
0

�ˇ̌
bˇkei� � y

ˇ̌� bˇkei� � y
jbˇkei� � yj dy � ei� k.�/: (6.15)

As in (4.25), taking  k to be cosn� or sinn� , one finds that the integral operator (6.14) acts like

cosn� ! .bˇk/4In.bˇ
k/Kn.bˇ

k/ cosn�; sinn� ! .bˇk/4In.bˇ
k/Kn.bˇ

k/ sinn�: (6.16)

For the multiplication operator (6.15), arguing like (4.27) yields

 k ! �.bˇk/4I1.bˇk/K1.bˇk/ k : (6.17)

Then (6.13) follows from (6.16) and (6.17).

The space H 0 is not an eigenspace, but an invariant subspace under L. However H 0 and H k
1

are not of concern at this point, since only the restriction of L toH 2
[
.S1;RK/ needs to be analyzed.

Note that

L2[ .S
1;RK/ D ˚1

nD2 ˚K
kD1 H

k
n; (6.18)

so L maps H 2
[
.S1;RK/ into L2

[
.S1;RK/.

To further study (6.13), let t D bˇk and set

�n.t/ D t .n2 � 1/C �t4
�
In.t/Kn.t/ � I1.t/K1.t/

�
: (6.19)

Then

�kn D �n.bˇ
k/ (6.20)
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At this point we use the important upper bound condition �b3 < 12 � ı, part of condition 3, in

Theorem 5.1. Choose � in (5.11) small enough so that

�t3 < 12 � ı

2
(6.21)

for all ˇ 2 B� . It is known that

lim
t!0

In.t/Kn.t/ D 1

2n
; for n D 1; 2; : : : (6.22)

by [1, (9.6.7)-(9.6.9)]. For n D 2, by (6.21), (6.22) and I2.t/K2.t/ � I1.t/K1.t/ < 0,

lim inf
t!0

�2.t/

t
> .22 � 1/C

�
12 � ı

2

��1
4

� 1

2

�
> 0: (6.23)

For n > 3, since In.t/Kn.t/ � I1.t/K1.t/ > �I1.t/K1.t/, and n2 � 1 > 32 � 1 D 8 for n D
3; 4; 5; : : : ; one has

�n.t/

t
> 8 �

�
12 � ı

2

�
I1.t/K1.t/ ! 8 �

�
12 � ı

2

��1
2

�
> 0; as t ! 0: (6.24)

Moreover, since jIn.t/Kn.t/ � I1.t/K1.t/j < I1.t/K1.t/ and I1.t/K1.t/ is bounded on .0; 1/ by

(6.22),

lim
n!1

�n.t/

n2t
D lim
n!1

n2 � 1C �t3
�
In.t/Kn.t/ � I1.t/K1.t/

�

n2
D 1 (6.25)

uniformly with respect to t 2 .0; 1/. By (6.23), (6.24) and (6.25), there exist c2 > 0 and t0 > 0 such

that
�n.t/

n2t
> 3c2; for all t 2 .0; t0/ and all n D 2; 3; 4; : : : (6.26)

Consequently for sufficiently small b and �

�kn
n2

> 2c2b; for all n D 2; 3; : : : (6.27)

For any  2 H 2
[
.S1;RK/, if one expands it by a trigonometric series

 D
1X

nD2

�
An cosn� C Bn sinn�

�
; An; Bn 2 R

K ; (6.28)

then the H 2 norm of  can be equivalently given by

k k2
H2 D

1X

nD2
�
�
jAnj2n4 C jBnj2n4

�
: (6.29)

On the series (6.28), L acts like

L D
1X

nD2

0
BB@

0
BB@

�1nA
1
n

�2nA
2
n

: : :

�Kn A
K
n

1
CCA cosn� C

0
BB@

�1nB
1
n

�2nB
2
n

: : :

�Kn B
K
n

1
CCA sinn�

1
CCA : (6.30)
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The L2 norm of L is

kL k2
L2 D

1X

nD2

KX

kD1
�
�
.�knA

k
n/
2 C .�knB

k
n /
2
�
: (6.31)

It follows from (6.27), (6.29), and (6.31) that

kL kL2 > 2c2bk kH2 (6.32)

for all  2 H 2
[
.S1;RK/. Combining (6.32) with (6.9), one obtains

k˘S 0
D.0/ kL2 > kL kL2 � kM kL2

> 2c2bk kH2 � C�b5k kL2

> c2bk kH2 (6.33)

for all  2 H 2
[
.S1;RK/, if b is sufficiently small.

Similarly, for any  2 H 1
[
.S1;RK/, if one expands it by a trigonometric series as in (6.28),

then the H 1 norm of  can be equivalently given by

k k2
H1 D

1X

nD2
�
�
jAnj2n2 C jBnj2n2

�
: (6.34)

The inner product hL ; i is

hL ; i D
1X

nD2

KX

kD1
�
�
�kn.A

k
n/
2 C �kn.B

k
n /
2
�
; 8 2 H 1

[ .S
1;RK/: (6.35)

Then by (6.27), (6.34), and (6.35),

hL ; i > 2c2bk k2
H1 ; 8 2 H 1

[ .S
1;RK/I (6.36)

by (6.9) and (6.36)

h˘S 0
D.0/ ; i D hL ; i C hM ; i

> 2c2bk k2
H1 � kM kL2k kL2

> 2c2bk k2
H1 � C�b5k k2

L2

> c2bk k2
H1 ; 8 2 H 1

[ .S
1;RK/; (6.37)

if b is small.

The standard theory of second order linear differential equations asserts that ˘S 0
D.0/ is an

unbounded self-adjoint operator on L2
[
.S1;RK/ with the domain H 2

[
.S1;RK/ � L2

[
.S1;RK/.

If Q 2 L2
[
.S1;RK/ is perpendicular to the range of ˘S 0

D.0/, i.e. h˘S 0
D.0/ ;

Q i D 0 for

all  2 H 2
[
.S1;RK/, then the self-adjointness of ˘S 0

D.0/ implies that Q 2 H 2
[
.S1;RK/ and

˘S 0
D.0/

Q D 0. This together with (6.33) shows Q D 0. Hence, the range of ˘S 0
D.0/ is dense

in L2
[
.S1;RK/. Finally (6.33) implies that the range of ˘S 0

D.0/ is a closed subset of L2
[
.S1;RK/.

Therefore ˘S 0
D.0/ is onto.
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An upper bound for the third variation of JD , i.e. the second Fréchet derivative of SD , is needed

in later work. Following our convention, we use an upper case C3 in the next lemma for this bound.

Lemma 6.3 1. There exists C3 > 0 such that for all � 2 Dom.SD/, and all  ; � 2 H 2.S1;RK/,

kS 00
D.�/. ; �/kL2.S1;RK / 6 C3.b C �b4/k kH2.S1;RK /k�kH2.S1;RK /:

2. There exists C3 > 0 such that for all � 2 Dom.SD/, and all  2 H 2.S1;RK/ and

� 2 H 1.S1;RK/,

jhS 00
D.�/. ; �/; �ij 6 C3.b C �b4/k kH2.S1;RK /k�k2

H1.S1;RK /
:

The proof, which is skipped, follows from straightforward calculation. Part 1 is similar to [39,

Lemma 3.2] or [38, Lemma 6.1], and Part 2 is similar to [39, Lemma 4.1] or [38, Lemma 7.2]. The

next lemma is the key result of this section.

Lemma 6.4 There exists �� 2 H 2
[
.S1;RK/ \ Dom.SD/ such that k��kH2 D O.�b5/ and

˘SD.��/ D 0.

Proof. For � 2 H 2
[
.S1;RK/ \Dom.SD/, write

˘SD.�/ D ˘SD.0/C˘S 0
D.0/� C˘R.�/; (6.38)

where R.�/ is a higher order term defined by (6.38). Define an operator T from H 2
[
.S1;RK/ \

Dom.SD/ into H 2
[
.S1;RK/ by

T .�/ D �
�
˘S 0

D.0/
��1�

˘SD.0/C˘R.�/
�
; (6.39)

and rewrite the equation ˘SD.�/ D 0 as a fixed point problem T .�/ D �.

Let c 2 .0; �1/, where �1 is given in (5.18) and (5.27), and define a closed ball

W D
˚
� 2 H 2.S1;RK/ W k�kH2 6 c

	
:

For � 2 W ,

kR.�/kL2 6
1

2
sup
�2.0;1/

kS 00
D.��/.�; �/kL2 6

C3.b C �b4/

2
k�k2

H2 (6.40)

by Lemma 6.3 (1). Then by Lemma 6.1 and Lemma 6.2 (1),

kT .�/kH2 6


�˘S 0

D.0/
��1

�k˘SD.0/kL2 C k˘R.�/kL2

�

6
1

c2b

�
C1�b

6 C C3.b C �b4/

2
c2
�

6
C1�b

5

c2
C C3.1C �b3/

2c2
c2: (6.41)

Hence T maps W into itself if one first chooses c small and then b small.
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Let �; Q� 2 W and use Lemma 6.3 (1) to derive

kT .�/ � T . Q�/kH2 6 k.˘S 0
D.0//

�1k k˘R.�/ �˘R. Q�/kL2

6
1

c2b
k˘SD.�/ �˘SD. Q�/ �˘S 0

D.0/.� � Q�/kL2

6
1

c2b
k˘SD.�/ �˘SD. Q�/ �˘S 0

D.
Q�/.� � Q�/kL2

C 1

c2b
k.˘S 0

D.
Q�/ �˘S 0

D.0//.� � Q�/kL2

6
1

2c2b
sup
�2.0;1/

k˘S 00
D..1 � �/ Q� C ��/.� � Q�; � � Q�/kL2

C 1

c2b
sup
�2.0;1/

k˘S 00
D.�

Q�/. Q�; � � Q�/kL2

6
C3.b C �b4/

2c2b
k� � Q�k2

H2 C C3.b C �b4/

c2b
k Q�kH2k� � Q�kH2

6
C3.b C �b4/

2c2b
.2c C 2c/k� � Q�kH2

D 2C3.1C �b3/c

c2
k� � Q�kH2 : (6.42)

Hence T is a contraction if c is small, and the contraction mapping principle asserts that T has a

fixed point in W . This fixed point is denoted ��, as it solves ˘SD.�/ D 0.

To prove the estimate of ��, revisit the equation � D T .�/, satisfied by ��, and derive from

(6.39) and (6.40) that

k��kH2 6


�˘S 0

D.0/
��1

.k˘SD.0/kL2 C k˘R.��/kL2/

6
1

c2b

�
C1�b

6 C C3.b C �b4/

2
k��k2

H2

�
:

Rewrite the above as

�
1 � C3.1C �b3/

2c2
k��kH2

�
k��kH2 6

C1�b
5

c2
: (6.43)

In (6.43)
C3.1C �b3/

2c2
k��kH2 6

C3.1C �b3/

2c2
c 6

1

2
(6.44)

if c is sufficiently small. The estimate of �� follows from (6.43) and (6.44).

Note that P��
is not yet a stationary assembly of JD . The equation ˘SD.��/ D 0 means that

there exist Ak0 ; A
k
1 ; B

k
1 2 R such that

SkD.��/ D Ak0 C Ak1 cos � C Bk1 sin �; k D 1; 2; : : : ; K: (6.45)

Later we will find particular ˇ and � such that Ak0 ; A
k
1 ; B

k
1 in (6.45) vanish.
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Some properties of �� are shown in the next lemma. The first part gives a measurement of the

non-degeneracy of the assembly �� within the class of assemblies with well defined centers and

radii; the second part shows that �� is locally energy minimizing in this class.

Lemma 6.5 Let c2 be the same positive constant as in Lemma 6.2.

1. When � is large,

k˘S 0
D.��/ kL2 >

c2b

2
k kH2

for all  2 H 2
[
.S1;RK/.

2. When � is large,

h˘S 0
D.��/ ; i >

c2b

2
k k2

H1

for all  2 H 1
[
.S1;RK/.

Proof. By Lemmas 6.2 (1), 6.3 (1), and 6.4,

k˘S 0
D.��/ kL2 > k˘S 0

D.0/ kL2 � sup
�2.0;1/

k˘S 00
D.��

�/.��;  /kL2

> c2bk kH2 � C3.b C �b4/k��kH2k kH2

>
�
c2b � CC3.b C �b4/�b5

�
k kH2

>
c2b

2
k kH2 :

if b is sufficiently small. This proves Part 1.

There exists Q� 2 .0; 1/ such that

h˘S 0.��/ ; i D h˘S 0
D.0/ ; ; i C h˘S 00. Q���/.��;  /;  i:

By Lemma 6.3 (2),

jh˘S 00
D. Q���/.��;  /;  ij 6 C3.b C �b4/k��kH2k k2

H1 : (6.46)

The second part follows from Lemmas 6.2 (2) and 6.4, since

h˘S 0
D.��/ ; i > c2bk k2

H1 � CC3.b C �b4/�b5k k2
H1 >

c2b

2
k k2

H1

if b is sufficiently small.

7. Finding the correct ˇ and �

Now we investigate the impacts of ˇ D .ˇ1; ˇ2; : : : ; ˇK/ and � D .�1; �2; : : : ; �K/. Denote the ��
in Lemma 6.4 by ��.�; ˇ; �/ to emphasize its dependence on ˇ and �. Define

J.ˇ; �/ D JD
�
��.�; ˇ; �/

�
; .ˇ; �/ 2 B� ���: (7.1)

Lemma 7.1 Any critical point .ˇc ; �c/ 2 B� � �� of J corresponds to a stationary assembly

P��.�;ˇc ;�c/ of JD , i.e. SD.��.�; ˇc ; �c// D 0.
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Proof. Let us denote the parametrization of the boundary of P��.�;ˇ;�/ by R D .R1;R2; : : : ;RK/

where

Rk.�; ˇ; �/ D �k C bˇk
q
1C 2�k� .�; ˇ; �/ e

i� ; k D 1; 2; : : : ; K: (7.2)

The unit tangent and normal vectors of Rk are

Tk.�; ˇ; �/ D
@Rk.�;ˇ;�/

@�ˇ̌
ˇ @Rk.�;ˇ;�/

@�

ˇ̌
ˇ
; Nk.�; ˇ; �/ D i Tk.�; �/; (7.3)

respectively. Note that Nk.�; ˇ; �/ is inward pointing with respect to P k
�k

�

Let one of ˇ1, ˇ2, . . . , ˇK , say ˇk , vary, and keep the others fixed; all of �1, �2, . . . , �K are also

fixed. One treats ˇk as a deformation parameter and R as a deformation. Unlike the deformation

(5.23), this deformation does not preserve radii. By (5.22) and (5.28),

@JD
�
��.�; ˇ; �/

�

@ˇk
D �

KX

lD1

1

.bˇl /2

Z

@P l

�l
�

S lD.��/N
l � Xl ds: (7.4)

Here Nl is the normal vector defined in (7.3) and Xl is the infinitesimal element of the deformation:

Xl .�; ˇ; �/ D @Rl .�; ˇ; �/

@ˇk
: (7.5)

Note that

Nl � Xl
ds

d�
D i

@Rl .�; ˇ; �/

@�
� Xl .�; ˇ; �/

D
� bˇl

@�l
�

@�p
1C 2�l�

ei� i � bˇl
q
1C 2�l� e

i�
�

�

8
ˆ̂̂
<
ˆ̂̂
:

�
b
p
1C 2�k� C

bˇk @�k
�

@ˇkp
1C2�k

�

�
ei� if l D k

bˇ l @�l
�

@ˇkp
1C2�l

�

ei� if l ¤ k

D

8
<
:

�
�
b2ˇk.1C 2�k� /C b2.ˇk/2

@�k
�

@ˇk

�
if l D k

�.bˇl /2 @�
l
�

@ˇk if l ¤ k
: (7.6)

Since ˘SD.��/ D 0, there exist Al0.ˇ; �/; A
l
1.ˇ; �/; B

l
1.ˇ; �/ 2 R, l D 1; 2; : : : ; K, such that

S lD
�
��.�; ˇ; �/

�
D Al0.ˇ; �/C Al1.ˇ; �/ cos � C B l1.ˇ; �/ sin �: (7.7)

Using the facts that
R 2�
0
�l� d� D

R 2�
0
�l� cos � d� D

R 2�
0
�l� sin � d� D 0, one obtains

Z 2�

0

@�l�
@ˇk

d� D
Z 2�

0

@�l�
@ˇk

cos � d� D
Z 2�

0

@�l�
@ˇk

sin � d� D 0:

It follows from (7.4), (7.6), and (7.7) that

@JD
�
��.�; ˇ; �/

�

@ˇk
D 2�Ak0.ˇ; �/

� 1
ˇk

�
: (7.8)
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At the critical point .ˇc ; �c/ of J ,

@JD
�
��.�; ˇ; �/

�

@ˇk

ˇ̌
ˇ
.ˇ;�/D.ˇc ;�c/

D 0: (7.9)

Therefore (7.8) implies

Ak0.ˇc ; �c/ D 0 (7.10)

which holds for every k D 1; 2; : : : ; K.

Next let the first component of �k , denoted �k1 , vary and keep the other components of � and all

components of ˇ fixed. Again treat �k1 as a deformation parameter and R as a deformation. Unlike

(5.23) this deformation does not preserve centers. Now let X be the infinitesimal element of this

deformation:

Xl .�; ˇ; �/ D @Rl .�; ˇ; �/

@�k1
: (7.11)

Again compute

Nl � Xl
ds

d�
D i

@Rl .�; ˇ; �/

@�
� Xl .�; ˇ; �/

D
� bˇl

@�l
�

@�p
1C 2�l�

ei� i � bˇl
q
1C 2�l�e

i�
�

�

8
ˆ̂̂
ˆ̂<
ˆ̂̂
ˆ̂:

�
.1; 0/C

bˇk @�k
�

@�k
1p

1C2�k
�

ei�
�

if l D k

bˇ l @�l
�

@�k
lp

1C2�l
�

ei� if l ¤ k

D

8
ˆ̂̂
<
ˆ̂̂
:

�
� bˇk @�k

�

@�p
1C2�k

�

sin � � bˇk
p
1C 2�k� cos � � .bˇk/2 @�

k
�

@�k
1

�
if l D k

�.bˇl /2 @�
l
�

@�k
1

if l ¤ k

; (7.12)

and consequently deduce

@JD
�
��.�; ˇ; �/

�

@�k1
D 1

.bˇk/2

Z 2�

0

�
Ak0.ˇ; �/C Ak1.ˇ; �/ cos � C Bk1 .ˇ; �/ sin �

�

� bˇk
@�k

�

@�p
1C 2�k�

sin � C bˇk
q
1C 2�k� cos �

�
d�:

D Ak0.ˇ; �/

Z 2�

0

1

bˇk

� @�k
�

@�p
1C 2�k�

sin � C
q
1C 2�k� cos �

�
d�

C Ak1.ˇ; �/

Z 2�

0

1

bˇk

� @�k
�

@�p
1C 2�k�

sin � C
q
1C 2�k� cos �

�
cos � d�

C Bk1 .ˇ; �/

Z 2�

0

1

bˇk

� @�k
�

@�p
1C 2�k�

sin � C
q
1C 2�k� cos �

�
sin � d�:

(7.13)
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Since k��kH2 D O.�b5/ according to Lemma 6.4, the last two integrals are estimated as follows:

Z 2�

0

1

bˇk

0
@

@�k
�

@�p
1C 2�k�

sin � C
q
1C 2�k� cos �

1
A cos � d� D �

bˇk
CO.�b4/ (7.14)

Z 2�

0

1

bˇk

0
@

@�k
�

@�p
1C 2�k�

sin � C
q
1C 2�k� cos �

1
A sin � d� D O.�b4/: (7.15)

At .ˇc ; �c/, since
@JD.��.�; ˇ; �//

@�k1

ˇ̌
ˇ
.ˇ;�/D.ˇc ;�c/

D 0 (7.16)

and A0.ˇc ; �c/ D 0 by (7.10), (7.13) becomes

Ak1.ˇc ; �c/
� �

bˇk
CO.�b4/

�
C Bk1 .ˇc ; �c/

�
0CO.�b4/

�
D 0: (7.17)

Finally if �k2 , the second component of �k , is taken as the deformation parameter, then in an

analogous way one deduces

Ak1.ˇc ; �c/
�
0CO.�b4/

�
C Bk1 .ˇc ; �c/

� �

bˇk
CO

�
�b4

��
D 0: (7.18)

The equations (7.17) and (7.18) follow form a linear homogeneous system for Ak1.ˇc ; �c/ and

Bk1 .ˇc ; �c/. This system is non-singular if b is small. Hence

Ak1.ˇc ; �c/ D Bk1 .ˇc ; �c/ D 0; (7.19)

for every k D 1; 2; : : : ; K. Combining (7.19) with (7.10) one deduces that SD.��.�; ˇc ; �c// D
0.

For J.ˇ; �/ there is the following estimate.

Lemma 7.2 It holds uniformly with respect to .ˇ; �/ 2 B� ��� that

J.ˇ; �/ D
KX

kD1

 
2�bˇk � ˛�.bˇk/2 C ��.bˇk/2

2

�
1 � 2I1.bˇk/K1.bˇk/

�
!

C
KX

kD1

��2.bˇk/4

2
R.�k ; �k/C

KX

kD1

KX

lD1;l¤k

��2.bˇk/2.bˇl /2

2
G.�k ; �l /CO.�b6/:

Proof. Expanding JD.P��
/ yields

JD.P��
/ D JD.P0/C

KX

kD1

Z 2�

0

SkD.0/�
k
� d� C 1

2

KX

kD1

Z 2�

0

�
S

0;k
D .0/��

�
�k� d� CO.�3b16/:

(7.20)

The error term in (7.20) is obtained by Lemmas 6.3 (2) and 6.4.
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On the other hand ˘SD.��/ D 0 implies that

˘
�
SD.0/C S 0

D.0/�� CR.��/
�

D 0:

Take the inner product of the last equation with �� and integrate to derive, with the help of Lemma

6.3 (1),
KX

kD1

Z 2�

0

SkD.0/�
k
� d� C

KX

kD1

Z 2�

0

�
S

0;k
D .0/��

�
�k� d� D O.�3b16/:

Rewrite (7.20) as

JD.P��
/ D JD.P0/C 1

2

KX

kD1

Z 2�

0

SkD.0/�
k
� d� CO.�3b16/:

Lemmas 6.1, 6.4, and the fact that �� 2 H 2
[
.S1;RK/ imply that

JD.P��
/ D JD.P0/CO.�2b11/CO.�3b16/:

Then apply Lemma 5.2 and treat �b3 as O.1/ to complete the proof.

Proof of Theorem 5.1. Let .ˇ�; ��/ be a minimum of J on B� � �� . We need to show that if b

is small, then .ˇ�; ��/ is in B� � �� , the interior of B� � �� , so that .ˇ�; ��/ is a critical point

of J and Lemma 7.1 applies. Let b ! 0 and .ˇ�; ��/ converge, possibly along a subsequence, to

.ˇı; �ı/ 2 B� ��� .

First we claim that ˇı D .1; 1; : : : ; 1/, which is in B� . One needs the estimate

I1.t/K1.t/ D 1

2
C
� t
2

�2
log

t

2
CO.t2/ (7.21)

for I1.bˇ/K1.bˇ
k/, and the estimate

1 � ˛b C �b2
�b
2

CO.b2/
��

log
2

b
CO.1/

�
D 0 (7.22)

for ˛. Here (7.21) follows from [1, (9.6.10) and (9.6.11)]; (7.22) follows from (3.4) and [1, (9.6.10)

and (9.6.13)].

Assume that �b3 log 1
b

! 
 . Because of the lower bound condition 1C ı < �b3 log 1
b

, part of

condition 3, in Theorem 5.1, 
 must fall in the range Œ1 C ı;1�, a crucial fact in this proof. Note

that 
 may be 1. To find a uniform limit of 1

�b4 log 1
b

J.ˇ; �/ as b ! 0, we appeal to Lemma 7.2

and derive the following limits:

1

�b4 log 1
b

.2�bˇk/ ! 2�



ˇk ; (7.23)

1

�b4 log 1
b

�
� ˛�.bˇk/2

�
! ��

� 1



C 1

2

�
.ˇk/2 (7.24)
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by (7.22),

1

�b4 log 1
b

���.bˇk/2
2

�
1 � 2I1.bˇk/K1.bˇk/

��
! �

4
.ˇk/4 (7.25)

by (7.21), and

1

�b4 log 1
b

� KX

kD1

��2.bˇk/4

2
R.�k ; �k/C

KX

kD1

KX

lD1;l¤k

��2.bˇk/2.bˇl /2

2
G.�k ; �l /CO.�b6/

�
! 0:

(7.26)

Then Lemma 7.2 implies that

1

�b4 log 1
b

J.ˇ; �/ !
KX

kD1

�2�


ˇk � �

� 1



C 1

2

�
.ˇk/2 C �

4
.ˇk/4

�
(7.27)

uniformly onB���� as b ! 0. It is interesting to note that the above right hand side is independent

of �. Consequently

1

�b4 log 1
b

�
J.ˇ�; ��/ � J..1; 1; : : : ; 1/; ��/

�

!
KX

kD1

�2�


ˇkı � �

� 1



C 1

2

�
.ˇkı /

2 C �

4
.ˇkı /

4
�

�
KX

kD1

�2�


1 � �

� 1



C 1

2

�
12 C �

4
14
�
: (7.28)

The function

f .w/ D 2�



w � �

� 1



C 1

2

�
w2 C �

4
w4 (7.29)

has w D 1 as a strict local minimum, since 
 > 1 and so 1=
 2 Œ0; 1/. Fix � in (5.11) to be small

enough so that in the interval .1� 2�; 1C 2�/, w D 1 is the only critical point of the function f . If

ˇı were not .1; 1; : : : ; 1/, then the right side of (7.28) is positive since each ˇkı is in Œ1 � �; 1C ��.

Consequently when b is sufficiently small J.ˇ�; ��/ > J..1; 1; : : : ; 1/; ��/, a contradiction to the

choice of .ˇ�; ��/.
Next show that �ı is a minimum of F on � . Let �m be a minimum of F . Then �m 2 �� by

(5.10). By Lemma 7.2 and the just proved fact that ˇ� ! .1; 1; : : : ; 1/,

1

�b4

�
J.ˇ�; ��/ � J.ˇ�; �m/

�

D
KX

kD1

�2.ˇk�/
4

2
R.�k� ; �

k
� /C

KX

kD1

KX

lD1;l¤k

�2.ˇk�/
2.ˇl�/

2

2
G.�k� ; �

l
�/

�
KX

kD1

�2.ˇk�/
4

2
R.�km; �

k
m/ �

KX

kD1

KX

lD1;l¤k

�2.ˇk�/
2.ˇl�/

2

2
G.�km; �

l
m/CO.b2/

! �2

2

�
F.�ı/ � F.�m/

�
: (7.30)
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If �ı were not a minimum of F , then the last line of (7.30) would be positive, a contradiction to

the choice of .ˇ�; ��/. Now that �ı is a minimum of F , �ı is necessarily in �� by (5.10). Therefore

�� 2 �� when b is sufficiently small.

We have shown that .ˇ�; ��/ is a critical point of J . Lemma 7.1 implies that P��.�;ˇ�;��/ is a

stationary assembly of JD . The first additional assertion of the theorem that all the perturbed discs

in P��.�;ˇ�;��/ have approximately the same radius comes from the fact that ˇ� ! .1; 1; : : : ; 1/; the

second assertion follows from the facts that �� ! �ı and �ı is a minimum of F .

A thorough study of the stability of the stationary assembly found in Theorem 5.1 is beyond

the scope of this paper. To get a sense of stability for the stationary assemby P��.�;ˇ�;��/, recall

that P��.�;ˇ�;��/ is found in two steps. First for each .ˇ; �/ 2 B� � �� , a fixed point P��.�;ˇ;�/ is

constructed in a class of assemblies with well defined centers �k and radii bˇk . The fixed point is

shown to be locally minimizing JD within this class of assemblies by Lemma 6.5 (2). In the second

step JD is minimized among the P��.�;ˇ;�/’s where .ˇ; �/ ranges in B� � �� , and P��.�;ˇ�;��/

emerges as a minimum. Therefore P��.�;ˇ�;��/ is a mimimum of minima, on which we base our

assertion that P��.�;ˇ�;��/ is stable. We feel that the second variation of JD should be positive

definite based on the properties of P��.�;ˇ�;��/ proved in this paper, but we do not have a proof.

Appendix A. The shape of C 0

Let i be a nonnegative integer and Pi � IiKi be the product of modified Bessel functions. Using

I 0
0 D I1, K 0

0 D �K1, I 0
1 D I0 � 1

z
I1, K 0

1 D �K0 � 1
z
K1 and I1K0 C I0K1 D 1

z
, a direct

computation yields

P 0
0 D 2I1K0 � 1

z
; (A.1)

P 0
1 D 1

z
� 2I1K0 � 2

z
P1 : (A.2)

Define h W .0;1/ ! R such that h.z/ � z3.P0.z/ � P1.z//. Since h is analytic, at every critical

point �, one can write h as h.z/ D h.�/C .z � �/�g.z/ where � > 2 is an integer and g is analytic

at � and g.�/ ¤ 0. If � is even, then � is called a type-1 critical point. Moreover it is a strict

local minimum, termed minimizing type-1 critical point, if g.�/ > 0; it is a strict local maximum,

termed maximizing type-1 critical point, if g.�/ < 0. If � is odd, then h is strictly monotone in a

neighborhood of � and � is called a type-2 critical point.

The asymptotic behavior of In and Kn for small and large b [1, (9.6.10)-(9.6.13) and (9.7.5)]

implies that h.0/ D 0, h.1/ D 1=4, h0.z/ > 0 if z is small, and h0.z/ < 0 if z is large. Therefore a

global maximum Ob exists. It can only be a maximizing type-1 critical point. Also, since h is analytic,

there are only finitely many critical points on .0;1/.

In the first step of the proof one shows that Ob is the only type-1 critical point that h has. Suppose

on the contrary that there were more than one type-1 critical points. Let the smallest type-1 critical

point be z1. Since h0.z/ > 0 for small z, z1 must be maximizing. Otherwise, if z1 were minimizing,

there would be another maximizing type-1 critical point smaller than z1. Let z2 be the second

smallest type-1 critical point. Since h is strictly decreasing on .z1; z2/, z2 must be minimizing. One

claims that

z2 >
3

2
: (A.3)
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By (A.1) and (A.2),

h0 D z2.3P0 � P1 � 2C 4zI1K0/; (A.4)

and

h00 �
�4
z

�
h0 D 2z

�
� 3P0 C 2P1 C 2z2.P0 � P1/

�
(A.5)

Denote

W D �3P0 C 2P1 C 2z2.P0 � P1/: (A.6)

One shows that W.z/ < 0 when z 2 .0; 3=2C ı/ for some ı > 0.

When z 2 .0; 1�,
W D �P0 C 2.1 � z2/.�P0 C P1/ < 0 (A.7)

since P0 > P1 > 0. When z 2 .1;
p
3=2�,

W D .�3C 2z2/P0 C 2.1 � z2/P1 6 2.1 � z2/P1 < 0 : (A.8)

When z 2 .
p
3=2; 3=2�, one writes

W D 2.z2 � 1/
� 2z2 � 3
2.z2 � 1/P0 � P1

�
: (A.9)

Observe that 2z2�3
2.z2�1/ is increasing on .1;1/, so 2z2�3

2.z2�1/ 6
2.3=2/2�3
2..3=2/2�1/ D 3=5. Then (A.9) implies

W 6 2.z2 � 1/
�3P0
5

� P1
�
: (A.10)

It is known that both P0 and P1 are decreasing functions [32, Theorem 3.1]. Hence

3P0.z/

5
� P1.z/ 6

�3
5

�
P0

�r3

2

�
� P1

�3
2

�
D �0:0115 : : : < 0: (A.11)

Therefore W < 0 on .
p
3=2; 3=2 C ı/ for some ı > 0. Combining this with (A.7) and (A.8) one

has W < 0 on .0; 3=2C ı/.

Then (A.5) implies

h00 �
�4
z

�
h0 < 0 (A.12)

on .0; 3=2C ı/. By the maximum principle, the local minimum z2 cannot be in .0; 3=2C ı/. This

proves (A.3).

Since z2 is a minimizing type-1 critical point and h0.z/ < 0 when z is large, there must be at

least another type-1 critical point z3 after z2 and z3 must be maximizing. Between z2 and z3, h is

strictly increasing. Then h0.z2/ D h0.z3/ D 0, and h0.z/ > 0 on .z2; z3/. Let y 2 .z2; z3/ be a

maximum of h0 on Œz2; z3�.

Write (A.5) as

h00 � 4

z
h0 � 4h D 2z.�3P0 C 2P1/:

Differentiating yet one more time yields

h000 � 4

z
h00 C

� 9
z2

� 4
�
h0 D 9.P0 � P1/ > 0: (A.13)
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By the maximum principle, the non-negative local maximum y of h0 cannot be in .3=2;1/ where
9
z2 � 4 < 0. Hence

y 6
3

2
: (A.14)

With (A.3) and (A.14) one has a contradiction: 3=2 < z2 < y 6 3=2. Therefore h has only one

type-1 critical point Ob which is maximizing.

In the second step one shows that h has no type-2 critical point. Indeed, if h has a type-2 critical

point �, then h takes the form h.z/ D h.�/C .z� �/�g.z/, where � > 3 is odd and g.�/ ¤ 0. Since

h0.�/ D h00.�/ D 0, (A.12) indicates no such � can exist in .0; 3=2C ı/.

Finally suppose there is a type-2 critical point � 2 .3=2;1/, then (A.13) implies that

h000.�/ > 0; (A.15)

and hence h has the form h.z/ D h.�/ C .z � �/3g.z/ with g.�/ > 0. This gives h0.�/ D 0 and

h0.z/ > 0 when z 2 .�; � C �/ for some � > 0. Since h0.z/ < 0 when z is sufficiently large, h0

has a positive local maximum in .�;1/ � .3=2;1/. This violates the maximum principle applied

to (A.13).

In conclusion h has a unique critical point Ob, the global maximum of h; h0.z/ > 0 if z 2 .0; Ob/
and h0.z/ < 0 if z 2 . Ob;1/.

Appendix B. Uniqueness of N̨
We show that the equation

b2.I0K0 � I1K1/C bI1K0 D 1

2
(B.1)

admits a unique positive solution.

Define Q W .0;1/ ! R such that Q.z/ � z

2
� z2I1.z/K0.z/. Then

Q0.z/ D 1

2
� zI1K0 � z2.I0K0 � I1K1/ D Q.z/ � h.z/

z
; (B.2)

where h is the same function as defined in Appendix A. It is clear that critical points of Q are roots

of (B.1). Our task amounts to showing Q has exactly one critical point.

First extract some asymptotic information about Q for later use. For small positive z,

Q.z/ � z

2
; h.z/ � �z3 log z; Q0.z/ � 1=2: (B.3)

When z is large, one has

Q.z/ D 1

4
CO.

1

z2
/; h.z/ D 1

4
CO.

1

z2
/ (B.4)

by (2.5) and 3.16) respectively.

Now solve the equation

Q0.z/ D Q.z/ � h.z/
z
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for Q with a general initial condition at .z0;Q.z0// to get

Q.z/ D z
�Q.z0/

z0
�
Z z

z0

h.t/

t2
dt
�

D z
�Q.z0/

z0
C h.t/

t

ˇ̌
ˇ
z

z0

�
Z z

z0

h0.t/

t
dt
�
:

Let z0 ! 1 and use (B.4) to deduce

Q.z/ D h.z/C z

Z 1

z

h0.t/

t
dt: (B.5)

Consequently

Q0.z/ D
Z 1

z

h0.t/

t
dt; (B.6)

and

Q00.z/ D �h
0.z/

z
: (B.7)

Recall that h0.t/ > 0 when t 2 .0; Ob/ and h0.t/ < 0 when t > Ob. Then Q0.z/ < 0 if z > Ob and Q0

is strictly increasing on . Ob;1/. On .0; Ob/, Q0 is strictly decreasing. Since Q0.z/ � 1
2
> 0 for small

z by (B.3) and Q0. Ob/ < 0, Q0 has a unique zero in .0; Ob/.
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