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Abstract. In this paper, we study the behavior of boundary droplets in a compact domain for a self-organizing
inhibitory system based on the Ohta—Kawasaki diblock copolymer theory. The free energy of the
system is a sum of a local term that favors sets with boundaries that minimize perimeter and a
nonlocal term related to a Green’s function with Neumann boundary condition. The solutions of
this system depend on the domain Q through the Green’s function, the curvature x(§) for £ € 99,
and an interaction parameter v that multiplies the nonlocal term. The interplay between these
factors influences the types of equilibria that are possible. When ~ is small, a single stationary
boundary droplet tends to a location &, € 9 that maximizes x(£). When ~ is large compared
to the droplet size, the droplet tends to a location that minimizes Rp(£,€) — a function related
to the Green’s function of the domain. In the intermediate case, the droplet locates near a point
that minimizes J, — a function involving both x and R,. When + is sufficiently large, equilibrium
configurations consisting of droplet assemblies exist, and we discuss the location of these droplets
as well. We will focus on domains conformal to the unit disk and specifically an ellipse E, with
semimajor axis a > 1. We examine the sharp interface problem and utilize its solutions to determine
the location of the boundary droplets. For an ellipse, we find R, has two local minima co-located at
the points which minimize «(§). The sharp interface theory is developed under the condition that
a droplet radius is sufficiently small. To investigate droplets of moderate size, we compute finite
element solutions of the diffuse interface model of the Ohta—Kawasaki equations and demonstrate
that the numerical solutions of the finite element model inherit the properties exhibited by solutions
of the sharp interface model. For the diffuse interface model, we consider a variety of numerical
solutions, including a single droplet and assemblies with as many 20 droplets.
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1. Introduction. In the Ohta—Kawasaki theory of diblock copolymers [8, 13], the density
field of A-monomers is given by a function v on domain 2, the density of B-monomers is given
by 1 — u and the free energy is

(1) I(u):/9<622|Du|2—|—0u2(1—u)2> dA+6;/Q<(—A)_1/2(u—w)>2dA.

The parameters € > 0,0 > 0, and v > 0 are related to the Flory—Huggins interaction param-
eter, the index of polymerization, and the molecular weight of the minority phase. See [4]
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where a rigorous derivation of (1) can be found. In this paper, 2 C R? is a bounded domain,
0 < € << 1, Du is the gradient of u, and wu satisfies a mass conservation constraint

(2) ][udA:w, O<w<l,
Q

where f, udA = [Q|7! [, udA. We define A = W'2(Q) N {{,udA = w} as the set of admissi-
ble functions. We refer to (1) and (2) as the diffuse interface model. The stationary solutions
of (1) subject to (2) satisfy the corresponding Euler-Lagrange equations, a nonlinear integro-
partial differential equation with constraint.

An approach that has proven to be successful in pattern formation problems has been to
study the I-limit, e '] — J as € — 0, i.e.,

(3) T(E) = 1Po(E) + ;/Q ((—A)—W(XE - w))2 dA, E€¥,

where ¥ is the collection of all measurable subsets of 2 whose measure equals w|Q)| and of
finite perimeter, 7 = fol Vour(l —u?) du = v/20/6, and Po(E) is the perimeter of E (see
[5, 18, 19]). The sharp interface problem is the problem of finding the stationary points of (3)
subject to the condition |E| = w|Q.

We can divide (1) by 7 and redefine v/ = /7. This amounts to a rescaling of v and J.
For convenience, we assume 7 = 1 and drop the “prime” in +/. Asymptotic analysis and the
Liapunov—Schmidt method applied to J for interior droplets have demonstrated the existence
of a stable single droplet and stable droplet assemblies when the droplet diameter is sufficiently
small. In [17], the small parameter € is used to carry out perturbation analysis, and v (an order
1 parameter) is used for bifurcation analysis to find wriggled lamellar solutions bifurcating
from the perfect lamellar solutions. The existence and stability of localized patterns (spots,
stripes, annuli) and periodic patterns (lamellar, hexagonal) in two dimensions are established
in [10]. In one space dimension, it can be shown that the minimizers of (1) or its companion
sharp interface I'-limit problem are periodic (see, e.g., [3, 16]). Sternberg and Topaloglu have
shown that for a similar problem on a flat torus, the two interface lamellar solution is stable
for 0 < v << 1 and becomes unstable when + is sufficiently large (see [21, 23]).

For an inhibitory system on a compact domain as described here, there is an energy barrier
that prevents an internal droplet from drifting towards the boundary. Recently, the authors
in [15] obtained analytical results for the sharp interface model when €2 is an open connected
domain with C® boundary. One of the principal results in [15] demonstrated that a droplet
could touch the boundary and that a small perturbed half-disk exists as a stable stationary
set. In particular, [15, Theorem 1.2] asserts that if & € 9D is the center of the approximate
half-disk stationary set of radius p, then &, is known asymptotically in the following three
cases.

Case 1. If v << p~2, as p — 0, then every limit point of &, is a point that maximizes

K(8)

Case 2. If v ~ p=2, vp? — 3 as p — 0, then every limit point of &, is a minimum of

To(&: 8) = —3k(8) + 58(5)* Ry (&, ).
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Case 3. If v >> p~2, then for p — 0, every limit point of &, is a minimum of Rp(&,€).
Ry(&,€) is called the remnant function and is related to the Green’s function with Neumann
boundary conditions (see (26)).

A key to establishing the results in [15] is the introduction of a generalization of a reflection
operator that can be defined with respect to any sufficiently smooth boundary domain. Since
we will focus on domains that are conformal to a unit disk, we can explicitly compute the
Green’s function with Neumann boundary conditions in terms of the fundamental solution of
the Neumann problem and the conformal map without the need of introducing this generalized
reflection operator. This enables us to show how features of the solutions of the inhibitory
system are influenced by D. Moreover, we can utilize directly the estimates and existence
results developed in [15] and [20] for the present work.

The domain Q@ =E,p = {(z,y) : 2?/a* 4+ y?/b*> < 1} provides an excellent benchmark for
the problem defined by (1). With no loss of generality, we will assume b?> = a? — 1 which leads
to an ellipse (denoted E,) with foci (£1,0) and semimajor axis a > 1. In the limiting cases, as
a — 17, E, tends to a double cover of the line segment [—1,1]; as a — oo, E, tends to a disk
of infinite radius. The conformal mapping that takes E, = {(z,y) : 2*/a® + y*/(a® — 1) < 1}
to the unit disk can be expressed in terms of a Jacobi elliptic function (see Appendix A), and
so we are able to explicitly calculate the Green’s function with Neumann boundary conditions
and the related functions, J, and Rp.

In section 2, we discuss the construction of a Neumann function for domains conformal
to a unit disk and introduce the remnant function Rp. In section 3, we present asymptotic
estimates of the free energy that are needed for the analysis of the sharp interface problem.
We also consider boundary droplet assemblies, but in this case, the combinatorics of possible
droplet locations leads to a complicated solution set. Nevertheless, we carry out a thorough
analysis of the sharp interface problem with two boundary droplets.

In order to study equilibrium configurations when the droplet size is not necessarily small
or when a disk assembly has many droplets, we resort to numerical methods. A variational
approach to the diffuse interface model, where € is small, leads to an optimization-based
interior point solution process where one directly computes the minimizers of I. In the case of
the Ohta—Kawasaki model, this approach is robust and captures the features as demonstrated
by the solutions of the sharp interface problem. In section 4, we present a finite element
formulation of the problem:

4 Probl :inf I(w).
4) roblem P inf (u)

Our numerical investigations in section 4 are carried out by directly solving a discrete version
of (4). We present a number of case studies and find that the numerical solutions agree
qualitatively with the results predicted by the solutions of the sharp interface problem. Droplet
assemblies with as many as 20 droplets are computed.

2. Green’s function with Neumann boundary conditions. In this section, we review
conformal mapping theory as it applies to the solution of a boundary value problem of the
second kind. We will refer to such a solution as a Green’s function with Neumann boundary
conditions. It is also called a Neumann function.
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2.1. Conformal maps and solutions to Laplace’s equation. In this section, we consider
the general problem of solving the Neumann boundary value problem on a domain that can be
mapped conformally onto the unit disk. This procedure is well known (see, e.g., [7, 11, 24]),
and we present additional details for the convenience of the reader. To solve

Pu 0%u
(5) 922 + 02
with u(z,y) prescribed on 9D, let U(&,n) = u(x(§,n),y(&,n)), where

and z = f(¢) denotes a mapping that takes a unit disk in the {-plane to D. We will assume
that z = f({) is conformal and for every ¢ € D, f(¢) € D and every point in D is of the form
f(¢) with ¢ € D. A similar correspondence holds for every point on D and 0D. Furthermore,
we assume that z = f({) is one-to-one. It follows that

:07 (xay) €D7

0’U  0*U )

8752 + 87772 = 0 1n ]D),
and U is prescribed appropriately on the boundary. Moreover, there is an analytic inverse
g(z) such that f(g(z)) = z. Note, f({) is analytic, f'(¢) # 0, and the mapping is one-to-one.
It follows that

(6) u(z,y) =U(&n) =u(&(z,y),n(z,y))

with g(2) = &(z,y) + in(z,y) solves (5). Thus, we have solved the boundary value problem
(5) via the conformal map z = f({) and its conformal inverse ¢ = g(z). It can be shown that
this approach preserves both Dirichlet and Neumann boundary conditions (see [24, p. 243]).

2.2. Neumann functions. The Green’s function of —A for the unit disk with Neumann
boundary conditions is

1

1
2T

(1) GGG =5

1 _
log|¢ — G = 5-log € — 1]+ o [3IC* +31G ] + € ¢# G

(see, e.g., [18]). In particular, G((, (1) satisfies

CAG(CG) = 8(C—G) — — in D,

DI
anG(C’ Cl) =0on a]Da
where 0,, denotes the normal derivative and C' = —3/(87) is chosen so that
1
8 /GC,C dA(¢) = 0.
(®) o7 | 66ia)

Let ¢ = g(z) be a one-to-one conformal mapping from a simply connected domain D in
the z-plane to the unit disk || < 1. Let z = x + iy and z; = x1 + iy;. Using the Green’s
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function for the unit disk with Neumann boundary conditions and the results in section 2.1,
we have the Green’s function for D:

1 1 2 2 3
(9) G(Z,Zl) - IOg +10g + |g(2’)‘ + ‘9(21)’ -
27 lg(z) — g(=1)] ‘9(2)9(21) 1 2 2 8m
Note, (8) is replaced by the condition
i)
— [ G(z,z1)dA(z) =0
5 [, Glemaae)
for all z; € D.
Consider the first term in (9) and note
1 1 1. 9(z)—g(z) 1. g(2) —g(z1)
1 - = loglz— 21| — —log DL =T~ ipg e NE) T IV
5 108l9(2) —g(21)] = —5log |z — z1] — o log e
Since the left-hand side of the last equation is real, we have
1 1 1 9(z) —g(z1)
1 . - — ——log|z — 21| — —Re{log L " IEU L
(10) 3= 108la() — g(aa)| = 5 Togl 1] - 5 {tog 222

Considering the second term in (9), we find

—flog‘g )—1’ :_710g( (2)g (21)—1) +%Arg (Q(Z)@—l)-

Since the left-hand side of the last equation is real,

1 1 —

(1) — 5108 |9(2)9(z1) — 1] = =5 —Re {1og (9(2)gCe1) — 1) }

We define % to be ¢'(z1) for z = 21 so g(zi_gle) is analytic in D. Since g(z) is
one-to-one, it follows that 9(27 # 0. Hence, substituting (10) and (11) into (9), we find

1
12 = log ——
( ) G(ZVZl) o Og|Z—Z]_‘ +R(2721)7
where (see [24, p. 240])
1 =2 g(=)I> | lg(z)> 3

13) R(z,z1) = —Re [log —— + log + + - —.
(13) R( ) 2T g(2)g(z1) — 1 g9(z) —g(z1) 2 2 8T

R is the regular part of the Green’s function. By construction, for every z € D

1
A;R=—— forall D
2 D] orall z e,

1
OnR =0, <logz—21]>, z1 € 0D.
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2.3. Remnant function Rj. In general, the Green’s function G(z,w) of —A on D with
the Neumann boundary condition is the sum of two parts:
1 1

(14) G(z,w) = — log

— + R

where the first term is the fundamental solution of the —A operator, and the second term R
is the regular part of G, a smooth function on D x D. It is known that

(15) R(z,w) = o0 if z = p, w— p, and p € ID.

It is important to know how R blows up in (15). We create a reflection operation about
the boundary of D. This reflection operation, denoted by z — Z, is defined for all z in a
neighborhood of 0D.

In the case that D has analytic boundary, one may take Z to be the Schwarz reflection of
z. Let h be a bijective analytic function that maps D to the upper half of the complex plane
C, and maps 9D to the real axis of C. Then

(16) Z=h"(h(2)),

where the overline denotes complex conjugation.
Another way to do Schwarz reflection is by the inversion operation. Recall that inversion
about the unit disc D={C € C: |(| <1} is

(17) (= ¢ =1/C

Let g be a bijective analytic function that maps D to D. Then

(18) =97 ((9(2))").

With the reflection operation, the regular part R(z,w) of the Green’s function can itself
be decomposed into two parts:

1 1
1 R — —log—— +R

defined for z € D and w € Dg, where Dy is an open set consisting of points in D that are
d-close to D. The function R} is smooth up to the boundary of D; one can extend the
domain of Ry(z,w) to (z,w) € D x Ds. In particular, Ry(z, z) is well defined for z € 9D. The

blowup behavior in (15) is caused by the first term of (19). With z,w € D, z — p, w — p,
and p € 9D, Ry(z,w) — Ry(p,p) but % log ﬁ blows up as z and w approach p.

The results in our work are dependent on R, (p, p) for p € 9D, instead of the whole function
Ry(z,w) for (z,w) € D x Ds. By (19) we see that

1
2 =1 - —1 D.
(20 Rulp) = fimy (Rpw) = potog L) ped

lp — wl

Here we can replace w by w because p € 0D.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/15/18 to 161.253.119.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

EQUILIBRIUM CONFIGURATIONS OF BOUNDARY DROPLETS

Let us illustrate the above construction for the case D = D. From (7), we have

1 1 T[22 |wl? 1 3
21 G =1 — B 1 -
(21) (z,w) or 08 |z —w| = 27 { p T e |zw — 1| 87
and
1 [z |w]? 3
22 R = — | 1 .
(22) (2, w) 271'[2 T TR T T e
One can see that R(z,w) — oo if z,w — p € D because of the log term.
By (19), and since w = w* = 1/w in this case,
Ry(z,w) = R(zw) — —— log —
bR&, W) = A W) T o 08 |z — w*
1 |z|2+]w2+1 1 3 1, wl
=—|—=—+——+Flog——| ——— —log———
or | 2 2 STw—1]) 8t 2 Claw— 1
1 [|z2  |w]? 31, ]
=—|——+—|—-———loglw
or |2 2| 8r 2

1359

Note that Ry is smooth on D x Ds. The only singularity occurs at w = 0, but this point is
far away from the boundary of D. Finally we can take z = w =p € 9D in Ry(z,w) and find

1
2 - D
(23) Ry(p,p) o p € 0D,

which is a constant in this case.
For the case of the ellipse, we define Ry(z,w) as follows:

Ry(z,w) = R(z,w) — %Re {log M}

1 1 1/g(w) ¥ w 1 ) )
= —Re< lo 9w 1 . .
o " [g(z)Mq] Vga) B9 —gw) 2 [lg(2)* + 1g(w)[*]
_i lo 1 B 3
2 () —g(@) [ 8r
1 L ,
= %Re {logg " +log g(Z) — g(UJ) + 5 Ug(z)‘2 + ‘g(w>‘2]
o g<>—9<w>} 3
i gg(z) —1/g(w) 8

For w = p € 9D, it follows that g(p) € ID, |g(p)| =1, g(p) = 1/g(p), and

3 9GP + )P | - o

1
= — 1
Ry(z,p) 27rRe{ og -

—-p
)-l-

9(z) —g(p
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Finally, if z — p € 0D, we find

1 1 1
24 R = —+ —Reqlog—— 7.
(24) b(pp) = o+ o e{ og g,(p)}

At times, it will be convenient to write R, = Ry(u, u), where u is described in (48).
The Green’s function for D = E, is defined by (12) and (13) with

o(=) = (¢5) s ((27{{ arcsin z>

where sn(+|s) is the Jacobi elliptic function of modulus s (see (44) in Appendix A where s is
defined and its relation to a is discussed). For economy of space, s can be omitted when its
definition is clear from the context. Ry is defined by (24) with

2K 2K 2K 1
g/(z) = 7 (é/g) cn (77 arcsin Z) dn (7]' arcsin Z) \/ﬁ

s) for z € E,,

In particular, we have

1 1
25 G(z,w)=—<lo
(25) (2, w) 27 { s | /s [sn (2£ arcsinz) — sn (£ arcsinw) | |
1
+ log
(/s )sn (25 arcsin 2) sn (25 arcsinw) — 1’
NG 2K . \|? 2K . 2 3
+ — ||sn | — arcsinz + |sn | — arcsinw - —
2 T T 8T
and
1 1 1
2 -+
(26)  Rp(p,p) = g+ 5§ log

‘% (¢/s)cn (25 arcsin z) dn (22 arcsin 2) /v/1 — 22‘ '

As we shall see, Ry(p,p) for p € OE, has two energy wells which coincide with the minima of

k(p).
Note that z = +£1 ¢ 9E, for a > 1. Moreover, ¢’'(+1) can be defined through a limiting
process. As z — 1, arcsin(z) — 47 and we find

limdn [ — arcsinz | =
z—1 e

2K

V1—s,
cn (7 arcsin z) 2K
—/1—s.
- s

lim (1—z212

Similar results hold for z — —1 and it follows that

g (£1) = <2K)2 sY4(1—s).

s
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3. Asymptotics. Stationary solutions of the related I'-limit problem provide some clues
about droplet distribution at equilibrium. The density function u in (1) approximates the
indicator function for set E in (3), i.e., (u =~ xg). Moreover, since e 'I — J as ¢ — 0, a
sharp interface solution provides a good initial seed for the finite element method discussed
in section 4. For the convenience of the reader, we summarize a number of asymptotic esti-
mates that are relevant to the sharp interface analysis and refer to [15] and [20] for detailed
derivations. For a single droplet of radius p, there are three energy estimates corresponding
to how ~ compares with p~2. Although [20] discusses assemblies with interior and boundary
droplets (similar in nature to to the solutions of the Coulombic repulsion problem discussed
in [12]), we focus our attention on boundary droplet assemblies in this paper.

3.1. Energy of a single boundary half-disk. The total energy of a stationary boundary
half-disk of radius p centered at £ € 9D is (see [15, Lemma 2.3])

e 7(8) = rp— 2258 o)
4 1 4 2\ 2
+% (”Z log — + % + <7r§> Ry(&,6) + 0(p5)> ,

where (&) is the boundary curvature at & € 9D. If 0 < v << p~2, then it follows that

() =mp— 2L T (W h0g (1)) 4o

3 4

and J(F) is minimized when x(§) is maximized.

In the case v ~ p% and yp? — B as p — 0, we find

_i_i

(28) T(E) =mp— L2 4 T

20%K(8)
P= (4 p 16

4 4
1
TP logf—i—ﬂp )

2 ™
22 (2) mife.o) +ol?).

It follows that J(F) is minimized when £ converges to a minimum of

(29) e B) = —an(©) +38 (5) Rile.0).

To be consistent with [15], we use 3 to denote the limit of vp2.
If v >> p~2 is large and 7p? is bounded, then the energy of a boundary droplet is

4 4 4
_ V(TP e L L TP 2P (TN 2
g5y =mp+ (T tox s + ) + 20 (3) Rute. ) + 002

The terms of order O(p?) can be ignored and J(E) is minimized when Ry (€, €) is minimized;
i.e., £ tends to a minimum of Ry(&,§).
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~ 3.2. Energy of an assembly of boundary droplets. Following the notation in [20], we let
py, > 0 be the radius of a half-disk centered at & € D for j =1,2,...,m, i.e.,

Eg:{zeD:|z—£Z\ <pg}.
A boundary disk assembly is denoted
E=U Ey.

When 7 is sufficiently large, the first integral in (1) is approximately the total perimeter of
all the boundary half-disks and the total energy of a stationary disk assembly FE is given by
(see [20, Lemma 29))

(30) J(E) =Y mp,+0(p")
j=1
S R R WU S T R
+5 ; I log;l;Jr T Ry(€],€))

np o M 100)2 0k)2 .
+> 0N <( g”) ) (( f;”) )G(£Z755) +0(vp°).

j=1 k=j+1

3.3. Case studies. Before proceeding to the analysis of the ellipse, it is important to note
how R}, depends on the shape of the domain and specifically how it depends on the conformal
parameter a. In Figure 1, we present graphs of x(u) and Rp(u,u) for a number of a’s. Recall
K = K(s?), but s depends on a through (43). In order to distinguish the critical points of
both x and Rp, we superpose them using two different ordinate axis scales. In Figure 1, the
units on the left ordinate axis are with respect to k(u); the units on the right ordinate axis
are with respect to Rp(u,u). Note that for all @ > 1, Ry(u,u) has two wells located at the
points where £ is a minimum.

3.3.1. Single boundary droplet. For a single droplet with v small, we see from Figure 1
and section 3.1 that J is minimized when x is maximized (Case 1). In this case, the droplet
locates near £ = +a+0i. On the other hand, when ~ is large, Figure 1 and section 3.2 suggest
that J is minimized when Ry is minimized (Case 3) and the droplet locates near £ = 0 £ i.

To illustrate single droplet behavior in E, in Case 2, we consider a = v/2. To set a scale,
we considered a droplet of size p ~ 0.1 and B ~ 4. For the case v << p~2 and yp> — 8, Jp
can posses either two or four wells based on the value of § (see Figure 2).

3.3.2. Two boundary droplets. In the following section, we suppose vy >> p% and there
are two boundary droplets (Droplets 1 and 2) located at u = u; and u = ug, respectively. We
can express the energy of the sharp interface problem as J = J (u1, u2) using (30) and ignoring
the terms O(yp°). We found the graphics easier to visualize if we considered u; € [0,4K]
(instead of [—K,3K]| as was used previously). In Figure 3(a), we present the graph of J for

a = /2. The level sets of J are presented in Figure 3(b). After a careful examination of
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a? =1.01 a?=1.1

Rb(u.u)
(

Ry(u.u)

2035 4

1 2 1 2
-K<u<3K -K<u<3K

a? =36 a? =100

0.102

F(h(u,u)

Soes

2 oib

R, (‘L‘LU)

<
X

0.166

0.164
2

1 2
-K<u<3K

Figure 1. Ry(u,u), k(u) for —K < u < 3K and 1 < a < 10.
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jK<u<3él(:0253 ¢ ° ¢ * B ¢ ‘—K<u<§K‘J:23 ¢ ° ¢ * B ¢ ‘—K<u<§K‘J:AZ
Figure 2. Jy(u; B) for —K < u < 3K, a* =2, vp*> = .

(a) J(ui,us), a = V2. (b) Level sets J = C

(c.1) ¢ (c.8) (c.2) (c.3) (c4) < (c.b)

(OO OO

Figure 3. Two boundary droplets in an ellipse with a = /2.

the level sets, we determined there were a total of eight local minima which are enumerated
in Figure 3(b). The droplets corresponding to these respective local minima are presented
in Figure 3(c.1)—(c.8). Note that because z(u,0) = z(u,4K) and 2(0,u) = 2(4K,u), Critical
points 1 and 8 and critical points 4 and 5 represent the same respective boundary points. If
we use the fact that J is symmetric, i.e., J(u1,u2) = J(u2,u1) and do not label the droplets,
we find there are three distinct two-droplet assemblies.

Next, we consider Eg and find a total of six two-droplet assemblies as shown in Figure 4.
In this case, a = 9, b = 8.94, and the ellipse is nearly a disk. If we ignore labeling the droplets,
there are three distinct two-droplet assemblies in this case.

Next, we consider E3 and find a total of eight two-droplet assemblies, as shown in Figure 5.
In this case, a = 3, b = 2.83, and the ellipse is nearly a circle in this case as well. If we ignore
labeling the droplets, there are four distinct two-droplet assemblies in this case.
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(a) J(ur,u2), a=9. (b) Level sets J = C

(c4) < (c.b) (c.6) (e.7)

Sl

Figure 4. Two boundary droplets in an ellipse with a = 9.

(a) J(u1,u2), a=3. (b) Level sets J = C

=\

(c.1) (c.2) (c.3) (c.4) (c.5) (c.6) (c.7) (c.8)

OOLOOLOO

Figure 5. Two boundary droplets in an ellipse with a = 3.
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4. Finite element model. In the following, we suppose that € > 0,0 > 0, and v > 0 are
fixed and 2 is a domain conformal to the unit disk.

4.1. Otha-Kawasaki finite element model. Let C},(Q;R) denote the set of piecewise
continuously differentiable functions u : @ — R. H(Q) denotes the Hilbert space W12(Q), the
completion of C’;w(Q; R) with respect to

|%72 = / (|Du|2 + u2) dA.
Q
V(Q) is the completion of {v € C?(;R) N C (4 R), d,v = 0 on 9N} with respect to

el = [ (180 + Dol + 02) da.
Q

[|u

V(Q) is a closed subspace of W?22(Q).
It will be convenient to rewrite (1) in a form that lends itself to numerics. With this in
mind, we define v to be a solution of the Neumann problem:

—Av(z) = u(x) — w, x €,
Onv = 0, x € 01,
(31) / vdA = 0.
Q

The third condition in (31) holds because f,u dA = w, where 0 < w < 1. It follows that
v=(—=A)"}(u—w). Formally, (—A)~! is an integral operator expressed in terms of a Green’s
function (see [2]). Using Green’s identity, we can rewrite the second integral in (1) as

/Q((A)_é(“W))2dA:/Q[(A)_1(uw)] (4 — w)dA
—/v(—Av)dA

B Q
:/ | Dv|?dA.
Q

With W (u) = u?(1 — u)?, the free energy can be expressed as
(32) I(u) :/ {3¢*|Duf’ + oW (u) + 3ev|Dv[*} dA,
Q

which, as we shall see, lends itself well to the computation of numerical minimizers.
For future reference, we record the weak formulation of (31): Given a fixed u € H(f2) and
0 <w <1, find v € V() such that

a(v,¢) = (u—w,) forall ¢ e H(Q),
a(u, ) = /QDu-DqﬁdA,
(33) (w=w.0) = [ (u=w)oda

and (u, ) = [, updA is the usual inner product on L2(9).
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We will follow the usual finite element approach to discretizing (4) (see, e.g., [9]). To
insure an accurate finite element solution, the meshes for triangular discretization used in our
numerical calculations are generated by Persson’s mesh generator [14] which produces high-
quality meshes consisting of triangles that are almost equilateral. This is a desirable property
when solving PDEs with the finite element method. Upper bounds on the errors depend only
on the smallest angle in the mesh, and if all angles are close to 60°, good numerical results are
achievable. A mesh of an ellipse with (a,b) = (v/2,1) and h = 0.086 is shown in Figure 6(a).
A typical triangle 7 is shown in Figure 6(b). Let € be a triangulation of Q with positive
orientation, i.e., Q) = U;V:Tﬂ'j, where 7; denotes a typical triangle and N is the number of
triangles in Q. Let P = {P1, Py, ..., Py} denote the vertices in the triangulation €2, where
h is the average edge length of the triangles. In Table 1, we present a summary of the meshes
used in our calculations. Typically, € ~ %h produced reasonable results. We will use the terms
coarse, medium, fine, and ultrafine when referring to meshes with h = 0.08, 0.04, 0.02, and
0.01, respectively. With an unstructured grid, we found that the computation time was long
with an ultrafine mesh, but a medium to fine grid was sufficient to capture the important
features characterizing the patterns in the solutions at the respective scales. From a practical
standpoint, if the features in a pattern are too fine, a coarse mesh will not be able to capture
those features. In this case, the solution process terminates with the solver evolving a constant
solution. However, if h is chosen to be at the proper scale when compared with the features
of the patterns of interest, then a medium grid will suffice.

Vi
SRS

Vave
OISR
glﬁ'AKVAvAvAVA%ﬁiﬁhﬁ"‘

e01

(a) Mesh (N, Np) = (746,1,394). (b) Triangle 7, positively oriented.

Figure 6. (a) A triangulation of z*/2 +y° =1, h = 0.086; (b) typical triangle T € Q.

Table 1
Mesh statistics.

Grid h N Nrp
Coarse 0.0861 746 1,394
Medium | 0.0435 | 2,828 | 5,462
Fine 0.0217 | 11,112 | 21,838
Ultrafine | 0.0109 | 44,050 | 87,330
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Let Py, P;, and P, denote vertices in a typical triangle 7. The vertices are positively
oriented so that egy = P, — Py, e12 = Po — Py, eog = Py — P>, and eg1 X ejz is the outer
normal to €. In our discretization, the geometry is fixed and the degrees of freedom are the
values of the phase function u at vertices P; for ¢ = 1,..., N. There should be no confusion
between elements of the set { Py, P;, P} denoting vertices of a generic triangle 7 and elements
of the set { Py, P», P3, ..., Py} denoting vertices of the triangulation .

A finite element solution is sought in the finite dimensional space

Sy = {en € A, ¢y, linear on 75},

where by linear we mean a function of the form w(z,y, 2) = a+bx + cy + dz for (z,y, 2) € 75.
When a # 0, such a function is said to be affine. Let P; = (x},¥;, 2;) and define ®;(z,y, 2) so
that

1, i=j, o
@i(Pj):{O Z;é; 1<4,j <N,

where {®; : i =1,..., N} is a set of basis functions. Hence, any v, € S}, can be written as

n(@,y, 2 ng (2,9, 2

where v; = v(P;). The finite dimensional version of (31) is to find vy, € Sj, such that

a(vp,¥) = (up —w, 1) for all P € Sy,
(34) / vpdA =0,
Qp

where a(v,) is defined in (33) and the last equation in (34) is the discrete version of the
mass constraint. Expressing vj, in terms of the basis functions {®;,j =1,..., N} and then
inserting into (34), we are led to the linear system

(35) Zv] a(®;,®;) = (up, —w, ®;), i=1,...,N,

(36) Z/ v;®; dA = 0.
j=178n

The first N equations (35) can be written in the form AV = F, where A = (a;;) = a(®;, ®;)
is the N x N stiffness matrix and F' € RY is the forcing term. If we augment the matrix
A by appendmg a row derived from (36) and appending a zero to F', we are led to a matrix
equation AV = F, where A is (N +1) x N and F € RVN*! (Fy,; = 0). The rank of A is N,
so we form

(37) ATAV = ATF, where V = (vq,...,un)T.
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Note, for fixed 0 < w < 1, the solution of (37) is unique. Thus,

v (u1 —w, 1)
' (ug — w, P2)
V2 e\ —1 L
(38) v=| | | = (ATA) AT :
' (un —w, ®N)
UN 0

A function u € H(2) is approximated by a uy € Sy, i.e.,

(x,y,z Zuj (x,y,z

where u; = u(P;). The linear mass constraint th updA = w is included in the definition of A
of feasible solutions. The mass constraint can be written in the form of

(39) AU = w|2|  for some N x 1 matrix Ae,.
It follows that
/ |Dul?dA~ | |Dup|?dA=UTAU
Q Q,

and

/ |Dv|?dA z/ |Dup|?dA = VT AV,
Q Qp
where V' is given by (38). For the second term in I(u), we have
/ 21— u)? dA ~ / (1 —up) dA = N(U), ueHQ),
Q O

where the integration over €2 is carried out exactly for the piecewise linear function wuy,
leading to the nonlinear functional N(U) : RY — R.
We are lead to the discrete version of (4),

(40) Problem Py: inf "),
UERN AqU=w|Q)

where I"(U) = 32UTAU + oN(U) + 3veVT AV and V denotes the unique solution of (38).
We say a solution U* (or uj) of Problem Py, is stable in S}, if the Hessian matrix
821’1(U*)}
auiauj 1<i,j<N
is positive definite, i.e., all eigenvalues of H* are positive. We say that a solution U* of
Problem P, is unstable in S}, if at least one eigenvalue is negative. Otherwise, we say that the

stability in S, is indeterminate. An equivalent way of saying this is a solution U* is stable in
Sy, if

H* = H({U") = {

inf TUTH*U >0
1U]1#0

for U =U* + U and |6U| sufficiently small.
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(a)y=0 (b) y=1.11 (c) y=1.92

(d) vy=1225 (e) y=3.75 (f) y=15.55

Figure 7. Single boundary droplet solutions.

Table 2
Single boundary droplet data for intermediate values of ~v; p = 0.46, p~2 = 4.73.

Figure | = p 2| ~p? Case

7(a) 0 | 4731 000 | y<p?

7(b) | 111 | 473 | 0.235 | v < p?
7(c) | 192 | 4.73 | 0.406 | v ~p 2
7(d) | 2.25 | 473 | 0476 | 4~ p 2
7(e) | 3.75 | 4731 0.793 | v p?
7(F) | 555 | 473 | 1174 | > p2

4.2. Numerical results.

4.2.1. Single boundary droplet. Consider E 5 and suppose w = 0.075. Figure 7(a)—(f)

shows a boundary droplet moving from z = v/2 + 0i to z = 0 — i as v varies from 0 to 5.5.
These results are consistent with Cases 1-3 presented in section 1 and the analysis of the
Rp-function presented in section 3. See Table 2, where the values of v need to be divided by 7
when comparing with the sharp interface model. When - is zero or small, a boundary droplet
locates itself at a point of maximum curvature (Figure 7(a) and (b)). As 7 increases, the
Rp-function and its interaction with the curvature of the boundary determine the location of
the droplet which moves along the boundary toward z = 0—4, as shown in Figure 7(c)—(e). As
~ increases further, the center of the droplet moves closer to 0 — ¢ but never quite gets there.
This is not unexpected, since the long- and short-range terms will continue to counterbalance
one another. The “pull” of the short-range term will always prevent the droplet from centering
at 0—i. This type of interaction also explains why a single droplet numerical solution does not
center precisely at one of the wells described in Figures 1 and 2 when v > 0. In our numerical
model, a further increase in v will cause the droplet to disintegrate and the numerical solution
will converge to a constant. The sharp interface model assumes p is small, and the analysis
does not offer precise estimates for parameter ranges in the three single droplet cases discussed
in section 3. Nevertheless, the numerical computations presented for the solutions of (4) are
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consistent with the predictions based on the sharp interface model for a single droplet. All
numerical solutions were found to be stable in Sy,.

4.2.2. Boundary droplet assemblies. In section 3.3.2, we considered the sharp interface
problem for boundary droplet assemblies. Based on the droplet position predicted by the sharp
interface model, it was not difficult to place two, three, or four droplets of approximately the
same size and have the numerical solution of (40) converge. For the solutions presented in
Figure 8, we set € = 0.016, h = 0.04, 0 = 1, and w = 0.075.

In Figure 9, we present droplet assemblies with n, = 2,3,6,8,12,20; a = 9 in Figure
9(a) and (b), a = 6 in Figure 9(c)—(g), (i)-(j), and a = 3 in Figure 9(h). Figures 9(a)-(j)
are consistent with the droplet locations based on the sharp interface model. Figure 9(g) is
interesting, because it appears there are two different droplet sizes in the same assembly.

(b) v = 18.04 (c) y=127.51 (d) y =41.1

Gamma: 27511 B Garma: 4101

(e) v = 27.06 (g) v = 31.01 (h) v = 36.08

Gamma: 2708 31 Gamma: 3101

Figure 8. Boundary droplet assemblies n, = 2,3,4.

(a) np =2,a =09, b) np =2,a =09, (¢) np =3,a =6, (d) np =3,a =26, (e) np =4,a =6,

w =0.10.y = 0.2 w = 0.075,v = 0.10 w=0.10,v=1 w = 0.125,7 = 0.5 w=0.11,v = 1.11

(f) np =5,a =6, (g) np =6,a =6, (h) np =8,a =3, (i) np =12,a =6, (j) np =20,a =6,
w=0.125,v = 2.0 w=0.15~ = 0.22 w=0.125,~v = 10 w=0.15~=1.0 w=0.15~=11.75
N
|
£,

Figure 9. Droplet assemblies for nearly circular domains; ny = 2,3,4,5,6,8,12, 20.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/15/18 to 161.253.119.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1372 JIAJUN LU, FRANK BAGINSKI, AND XIAOFENG REN

5. Concluding remarks. In this paper, we investigate boundary droplet pattern formation
in a two-phase system on a two-dimensional manifold. We focus on the case of an ellipse with
semimajor axis a > 1 and semiminor axis b = v/a? — 1. Based on the analysis of the sharp
interface problem, we are able to fully characterize the behavior of a single boundary droplet.
When ~ is small, the droplet locates to a position , = +a + 0i that maximizes x(&), the
curvature of the boundary. When vp? — 3, the droplet locates to a position that minimizes
a linear combination of (&) and Ry(§,&). For large ~, the droplet locates to a position that
minimizes Rp. Rp has two local minima located at £ =~ 0 &£ b where & is also minimized. We
are able to fully characterize the behavior of a boundary droplet assembly with n; = 2, but the
combinatorics of droplet location are complicated for assemblies where ny is large. In general,
there are numerous local minima and a numerical solution depends on a and ~ as well as the
initial configuration of the assembly. Nevertheless, numerical solutions of the diffuse interface
problem of the Ohta—Kawasaki model were consistent with predictions based on the sharp
interface model. Using finite element solutions, we confirm the behavior of a single boundary
droplet. In addition, we compute droplet assemblies with 2 < n; < 20. In a boundary droplet
assembly with six droplets, numerical evidence suggests a local minimum with two distinct
droplet sizes. The droplets are arranged along the perimeter with the droplets alternating
in size. In future work, we plan to extend our analysis to include both interior droplets and
boundary droplets.

Appendix A. Conformal map of an ellipse to the unit disk. Consider the problem of
conformally mapping an ellipse

(41) Eop = {(z,9) | (x/a)” + (y/b)* <1}

onto the unit disk
D = {(u,v) | u* +v* < 1}.

Without loss of generality, we can assume a > 1 and > = a? — 1 and, in this case, denote
the ellipse by E,. The solution to this conformal mapping problem is well known (see, e.g.,
[6, 11, 22]). However, [6, 11] contain misprints and [22] requires some additional background
for our application. For these reasons, we present a self-contained exposition here.

Let —im < & < 37 and 0 < & < ¢, where ¢ = cosh™(a) and b = sinhc. The period
rectangle R is

R={{=&+i& |— 37 <Re(§) <im0 <Im({) < c}

(see Figure 10(a)). By construction, z = sin& maps £ € R to z € E, with a = cosh¢ and
b =sinhc, i.e.,

(42) z=x+ iy =sin(& + i&2) = sin &y cosh & + i cos & sinh &

and

2 2
z Y
=1, 1< coshé& < coshec.
(cosh@) + <sinh§2> , 1 <cosh& < coshe

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/15/18 to 161.253.119.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

EQUILIBRIUM CONFIGURATIONS OF BOUNDARY DROPLETS 1373

(a) Period rectangle: R (b) Computing s for a = v/2

Modulus of Grotzsch ring
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Figure 10. For a = v/2: (a) period rectangle R; (b) intersection of y = $wK'(t?)/K(t*),t € (0,1) and
y = cosh ! a; (c) Eq N {Im(z) > 0}; (d) DN {Im(¢) > 0}.

When & = 0 and y = 0, the ellipse is degenerate, and the parametrization covers the seg-
ment — coshc < x < cosh ¢ two times. Orthogonal to this family of ellipses is the family of

hyperbolas,
s\ 2 y 2
— =1. -1 L
<sin§1) <cos§1> ;T <& <

The boundary of an ellipse is parametrized by setting {2 = ¢ and extending &; to the interval
7%71’ <& < %71'.

Jacobi elliptic functions will be used to define the desired conformal map from E, to D. The
Jacobi elliptic functions sn, cn,dn can be defined by certain integrals involving a parameter
m (see [1, Chap. 16-17]). The modulus of the Jacobi elliptic functions is denoted by k, where
k? = m. In our application, m is real and 0 < m < 1. In particular, if

¢ df
u(olm) i= [ =T
0 1—msin“¢
we define

snu = sn(u|m) = sin(@|m), cn(u) = en(u|m) = cos(d|m), dn(u|m) = (1 — msin¢)"/2.

Dependence on m is denoted by a vertical slash preceding the parameter m. When the value
of the parameter is clear from context, m is sometimes suppressed. The real quarter period
of the Jacobi elliptic functions is denoted by K(m), where

1 dx
KW”:A VA=) —ma?)
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Following the approach in [6], we define the imaginary quarter period of the corresponding
Jacobi elliptic functions to be iK’(m), where

K'(m) := 5K(1 —m),

1
2
and seek to determine the value ¢ satisfying the equation

7 K/ (%)
2 K(2)

(43) =c, 0<t<l.

The quantity %KVI is known as the modulus of the Grotzsch ring and the related quantity
q = exp(—K'/K) is called the nome. In Figure 10(b), we plot the function y = $7K'(t?)/K(t?)
for 0 <t < 1 and show its intersection with the line y = ¢, where ¢ = cosh™!(a) and a = /2.
If the solution of (43) is denoted by ¢ = s, we define

(44) K =K(s%) and K’ =1IK(1 -s%.

1
2
In Figure 10(c) we present the upper half of E, with a = v/2. Figure 10(d) shows the upper
half of D. Although the ellipse is cut from —1 + 07 to 1 + 07 on the real axis, the maps under
consideration can be analytically continued across the real axis by the Schwartz reflection
principle.

Since 7K'/(2¢K) =1 for z € E,,

(45) arcsin z = &1 + i&o,

2K 2K 2K K’
(46) — arcsin z = 7@‘1 + 17 <;TCK> &,

and it follows that

2K 2K
Re ( arcsin z) =—& € (K, K),
T

s

2K 2K’
Im ( arcsin z) = & € (0,K).
T cm

The desired conformal map from z € E, to ( € D is

(47) ¢=(Vs)sn <<Qf arcsin z)

where ¢ = s denotes the solution of (43) and K = K(s?) is defined in (44). When z = +1, we
find ¢ = +s4, respectively. The image of the upper half of E, is the upper half of the unit
disk D, as shown in Figure 10(d). Equation (47) is in agreement with [11, eq. (51)].

From (45) and (46), we set 7 := u + iv = 2£ arcsin 2. Hence,

T

(48) u = %& € (-K,K)
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and v = %52 € (0, K'). Setting & = c in (42), we can parametrize JE, in terms of u which
leads to
z=x+1y = asn(u) +iben(u) for — K <u < 3K,

or any interval of length 4K. The boundary curvature of E,p (see (41)) is

ab
((bz/a)? + (ay/b)2)**

(49) ’%(x7y) = (SC, y) € aEa,b;

k(%a,0) = a/b?, and k(0, £b) = b/a>.

Acknowledgments. The authors are grateful to the reviewers whose comments helped to
improve the exposition in the paper. The authors are also grateful to Valerio Batista-Ramos
for clarifying the definition of the modulus s in Appendix A. The authors acknowledge the
Colonial One high-performance computing resource at The George Washington University.

REFERENCES

[1] I. ABRAMOWITZ AND M. STEGUN, Handbook of Mathematical Functions, Dover, New York, 1972.

[2] T. AUBIN, Nonlinear Analysis on Manifolds. Monge-Amperé Equations, Springer-Verlag, New York, 1980.

[3] X. CHEN AND Y. OSHITA, Periodicity and uniqueness of global minimizers of an energy functional con-
taining a long-range interaction, SIAM J. Math. Anal., 37 (2005), pp. 1299-1332, https://doi.org/10.
1137/S0036141004441155.

[4] R. CHOKSI AND X. REN, On the derivation of a density functional theory for microphase separation of
diblock copolymers, J. Stat. Phys., 113 (2003), pp. 151-176.

[5] Y. Hu, Disc Assemblies and Spike Assemblies in Inhibitory Systems, Ph.D. thesis, Department of Math-
ematics, George Washington University, 2016.

[6] S. KANAS AND T. SuGAwA, On conformal representations of the interior of an ellipse, Ann. Acad. Sci.
Fenn. Math., 31 (2006), pp. 329-348.

[7] A. KARAGEORGHIS AND Y.-S. SMYRLIS, Conformal mapping for the efficient mfs solution of Dirichlet
boundary value problems, Computing, 83 (2008), pp. 1-24.

K

[8] K. Kawasaki, T. OHTA, AND M. KOHROGUI, Equilibrium morphology of block copolymer melts. 2, Macro-
molecules, 21 (1988), pp. 2972-2980, https://doi.org/10.1021 /ma00188a014.
[9] S. LARSSON AND V. THOMEE, Partial Differential Equations with Numerical Methods, Springer-Verlag,

Berlin, Heidelberg, New York, 2003.
[10] C. B. MurATOV, Theory of domain patterns in systems with long-range interactions of coulomb type,
Phys. Rev. E, 66 (2002), pp. 66-108.
. NEHARI, Conformal Mapping, Dover, New York, 1975.
. J. NURMELA, Minimum-energy point charge configurations on a circular disk, J. Phys. A, 31 (1998),
p- 1035.

[13] T. OuTA AND K. KAWASAKI, FEquilibrium morphology of block copolymer melts, Macromolecules, 19
(1986), pp. 2621-2632, https://doi.org/10.1021/ma00164a028.

[14] P. O. PERSSON AND G. STRANG, A simple mesh generator in MATLAB, SIAM Rev., 46 (2004), pp. 329—
345.

[15] X. REN AND D. SHouP, The impact of the domain boundary on an inhibitory system: Existence and
location of a stationary half disc, Comm. Math. Phys., 340 (2015), pp. 355-412, https://doi.org/10.
1007/s00220-015-2451-4.

[16] X. REN AND J. WEL, On energy minimzers of the diblock copolymer problem, Interfaces Free Bound. 5
(2003), pp. 193-238, https://doi.org/10.1007/300220-015-2451-4.

[17] X. REN AND J. WEIL, Wriggled lamellar solutions and their stability in the diblock copolymer problem,
SIAM J. Math. Anal., 37 (2005), pp. 455—489, https://doi.org/10.1137/S0036141003433589.

(11]
(12]

= N

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 08/15/18 to 161.253.119.101. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1376 JIAJUN LU, FRANK BAGINSKI, AND XIAOFENG REN

[18] X. REN AND J. WEL, Many droplet pattern in the cylindrical phase of diblock copolymer morphology, Rev.
Math. Phys., 19 (2007), pp. 879-921.

[19] X. REN AND J. WEIL, Oval shaped droplet solutions in the saturation process of some pattern formation
problems, SIAM J. Appl. Math., 70 (2009), pp. 1120-1138, https://doi.org/10.1137,/080742361.

[20] D. SHOUP, Half Disc Sets on the Boundary of a Binary Inhibitory System, Ph.D. thesis, Department of
Mathematics, George Washington University, 2015.

[21] P. STERNBERG AND 1. TOPALOGLU, On the global minimizers of a nonlocal isoperimetric problem in two
dimensions, Interfaces Free Bound., 13 (2011), pp. 155-169.

[22] G. SzEGO, Conformal mapping of the interior of an ellipse onto a circle, Amer. Math. Monthly, 57 (1950),
pp. 474-478.

[23] I. TOPALOGLU, On a nonlocal isoperimetric problem on the two-sphere, Comm. Pure Appl. Math., 12
(2013), pp. 597-620.

[24] H. F. WEINBERGER, A First Course in Partial Differential Equations with Complex Variables and Trans-
form Methods, Dover, New York, 1965.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



	Introduction
	Green's function with Neumann boundary conditions
	Conformal maps and solutions to Laplace's equation
	Neumann functions
	Remnant function Rb

	Asymptotics
	Energy of a single boundary half-disk
	Energy of an assembly of boundary droplets
	Case studies
	Single boundary droplet
	Two boundary droplets


	Finite element model
	Otha–Kawasaki finite element model
	Numerical results
	Single boundary droplet
	Boundary droplet assemblies


	Concluding remarks
	Appendix A. Conformal map of an ellipse to the unit disk
	Acknowledgments

