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Equilibrium Configurations of Boundary Droplets in a Self-Organizing
Inhibitory System∗
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Abstract. In this paper, we study the behavior of boundary droplets in a compact domain for a self-organizing
inhibitory system based on the Ohta–Kawasaki diblock copolymer theory. The free energy of the
system is a sum of a local term that favors sets with boundaries that minimize perimeter and a
nonlocal term related to a Green’s function with Neumann boundary condition. The solutions of
this system depend on the domain Ω through the Green’s function, the curvature κ(ξ) for ξ ∈ ∂Ω,
and an interaction parameter γ that multiplies the nonlocal term. The interplay between these
factors influences the types of equilibria that are possible. When γ is small, a single stationary
boundary droplet tends to a location ξ∗ ∈ ∂Ω that maximizes κ(ξ). When γ is large compared
to the droplet size, the droplet tends to a location that minimizes Rb(ξ, ξ) – a function related
to the Green’s function of the domain. In the intermediate case, the droplet locates near a point
that minimizes Jb – a function involving both κ and Rb. When γ is sufficiently large, equilibrium
configurations consisting of droplet assemblies exist, and we discuss the location of these droplets
as well. We will focus on domains conformal to the unit disk and specifically an ellipse Ea with
semimajor axis a > 1. We examine the sharp interface problem and utilize its solutions to determine
the location of the boundary droplets. For an ellipse, we find Rb has two local minima co-located at
the points which minimize κ(ξ). The sharp interface theory is developed under the condition that
a droplet radius is sufficiently small. To investigate droplets of moderate size, we compute finite
element solutions of the diffuse interface model of the Ohta–Kawasaki equations and demonstrate
that the numerical solutions of the finite element model inherit the properties exhibited by solutions
of the sharp interface model. For the diffuse interface model, we consider a variety of numerical
solutions, including a single droplet and assemblies with as many 20 droplets.
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1. Introduction. In the Ohta–Kawasaki theory of diblock copolymers [8, 13], the density
field of A-monomers is given by a function u on domain Ω, the density of B-monomers is given
by 1− u and the free energy is

(1) I(u) =

∫

Ω

(

ǫ2

2
|Du|2 + σu2(1− u)2

)

dA+
ǫγ

2

∫

Ω

(

(−∆)−1/2(u− ω)
)2
dA.

The parameters ǫ > 0, σ > 0, and γ ≥ 0 are related to the Flory–Huggins interaction param-
eter, the index of polymerization, and the molecular weight of the minority phase. See [4]
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1354 JIAJUN LU, FRANK BAGINSKI, AND XIAOFENG REN

where a rigorous derivation of (1) can be found. In this paper, Ω ⊂ R
2 is a bounded domain,

0 < ǫ << 1, Du is the gradient of u, and u satisfies a mass conservation constraint

(2) −
∫

Ω
udA = ω, 0 < ω < 1,

where −
∫

Ω udA = |Ω|−1
∫

Ω udA. We define A =W 1,2(Ω) ∩
{

−
∫

Ω udA = ω
}

as the set of admissi-
ble functions. We refer to (1) and (2) as the diffuse interface model. The stationary solutions
of (1) subject to (2) satisfy the corresponding Euler–Lagrange equations, a nonlinear integro-
partial differential equation with constraint.

An approach that has proven to be successful in pattern formation problems has been to
study the Γ-limit, ǫ−1I → J as ǫ→ 0, i.e.,

(3) J (E) = τPΩ(E) +
γ

2

∫

Ω

(

(−∆)−1/2(χE − ω)
)2
dA, E ∈ Σ,

where Σ is the collection of all measurable subsets of Ω whose measure equals ω|Ω| and of
finite perimeter, τ =

∫ 1
0

√

σu2(1− u2) du =
√
2σ/6, and PΩ(E) is the perimeter of E (see

[5, 18, 19]). The sharp interface problem is the problem of finding the stationary points of (3)
subject to the condition |E| = ω|Ω|.

We can divide (1) by τ and redefine γ′ = γ/τ . This amounts to a rescaling of γ and J .
For convenience, we assume τ = 1 and drop the “prime” in γ′. Asymptotic analysis and the
Liapunov–Schmidt method applied to J for interior droplets have demonstrated the existence
of a stable single droplet and stable droplet assemblies when the droplet diameter is sufficiently
small. In [17], the small parameter ǫ is used to carry out perturbation analysis, and γ (an order
1 parameter) is used for bifurcation analysis to find wriggled lamellar solutions bifurcating
from the perfect lamellar solutions. The existence and stability of localized patterns (spots,
stripes, annuli) and periodic patterns (lamellar, hexagonal) in two dimensions are established
in [10]. In one space dimension, it can be shown that the minimizers of (1) or its companion
sharp interface Γ-limit problem are periodic (see, e.g., [3, 16]). Sternberg and Topaloglu have
shown that for a similar problem on a flat torus, the two interface lamellar solution is stable
for 0 < γ << 1 and becomes unstable when γ is sufficiently large (see [21, 23]).

For an inhibitory system on a compact domain as described here, there is an energy barrier
that prevents an internal droplet from drifting towards the boundary. Recently, the authors
in [15] obtained analytical results for the sharp interface model when Ω is an open connected
domain with C5 boundary. One of the principal results in [15] demonstrated that a droplet
could touch the boundary and that a small perturbed half-disk exists as a stable stationary
set. In particular, [15, Theorem 1.2] asserts that if ξ∗ ∈ ∂D is the center of the approximate
half-disk stationary set of radius ρ, then ξ∗ is known asymptotically in the following three
cases.

Case 1. If γ << ρ−2, as ρ → 0, then every limit point of ξ∗ is a point that maximizes
κ(ξ).

Case 2. If γ ∼ ρ−2, γρ2 → β as ρ→ 0, then every limit point of ξ∗ is a minimum of

Jb(ξ;β) := −2
3κ(ξ) +

1
2β(

π
2 )

2Rb(ξ, ξ).
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EQUILIBRIUM CONFIGURATIONS OF BOUNDARY DROPLETS 1355

Case 3. If γ >> ρ−2, then for ρ → 0, every limit point of ξ∗ is a minimum of Rb(ξ, ξ).
Rb(ξ, ξ) is called the remnant function and is related to the Green’s function with Neumann
boundary conditions (see (26)).

A key to establishing the results in [15] is the introduction of a generalization of a reflection
operator that can be defined with respect to any sufficiently smooth boundary domain. Since
we will focus on domains that are conformal to a unit disk, we can explicitly compute the
Green’s function with Neumann boundary conditions in terms of the fundamental solution of
the Neumann problem and the conformal map without the need of introducing this generalized
reflection operator. This enables us to show how features of the solutions of the inhibitory
system are influenced by D. Moreover, we can utilize directly the estimates and existence
results developed in [15] and [20] for the present work.

The domain Ω = Ea,b =
{

(x, y) : x2/a2 + y2/b2 ≤ 1
}

provides an excellent benchmark for
the problem defined by (1). With no loss of generality, we will assume b2 = a2−1 which leads
to an ellipse (denoted Ea) with foci (±1, 0) and semimajor axis a > 1. In the limiting cases, as
a→ 1+, Ea tends to a double cover of the line segment [−1, 1]; as a→ ∞, Ea tends to a disk
of infinite radius. The conformal mapping that takes Ea =

{

(x, y) : x2/a2 + y2/(a2 − 1) ≤ 1
}

to the unit disk can be expressed in terms of a Jacobi elliptic function (see Appendix A), and
so we are able to explicitly calculate the Green’s function with Neumann boundary conditions
and the related functions, Jb and Rb.

In section 2, we discuss the construction of a Neumann function for domains conformal
to a unit disk and introduce the remnant function Rb. In section 3, we present asymptotic
estimates of the free energy that are needed for the analysis of the sharp interface problem.
We also consider boundary droplet assemblies, but in this case, the combinatorics of possible
droplet locations leads to a complicated solution set. Nevertheless, we carry out a thorough
analysis of the sharp interface problem with two boundary droplets.

In order to study equilibrium configurations when the droplet size is not necessarily small
or when a disk assembly has many droplets, we resort to numerical methods. A variational
approach to the diffuse interface model, where ǫ is small, leads to an optimization-based
interior point solution process where one directly computes the minimizers of I. In the case of
the Ohta–Kawasaki model, this approach is robust and captures the features as demonstrated
by the solutions of the sharp interface problem. In section 4, we present a finite element
formulation of the problem:

Problem P: inf
u∈A

I(u).(4)

Our numerical investigations in section 4 are carried out by directly solving a discrete version
of (4). We present a number of case studies and find that the numerical solutions agree
qualitatively with the results predicted by the solutions of the sharp interface problem. Droplet
assemblies with as many as 20 droplets are computed.

2. Green’s function with Neumann boundary conditions. In this section, we review
conformal mapping theory as it applies to the solution of a boundary value problem of the
second kind. We will refer to such a solution as a Green’s function with Neumann boundary
conditions. It is also called a Neumann function.
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1356 JIAJUN LU, FRANK BAGINSKI, AND XIAOFENG REN

2.1. Conformal maps and solutions to Laplace’s equation. In this section, we consider
the general problem of solving the Neumann boundary value problem on a domain that can be
mapped conformally onto the unit disk. This procedure is well known (see, e.g., [7, 11, 24]),
and we present additional details for the convenience of the reader. To solve

(5)
∂2u

∂x2
+
∂2u

∂y2
= 0, (x, y) ∈ D,

with u(x, y) prescribed on ∂D, let U(ξ, η) = u (x(ξ, η), y(ξ, η)), where

z = f(ζ) = x(ξ, η) + iy(ξ, η),

and z = f(ζ) denotes a mapping that takes a unit disk in the ζ-plane to D. We will assume
that z = f(ζ) is conformal and for every ζ ∈ D, f(ζ) ∈ D and every point in D is of the form
f(ζ) with ζ ∈ D. A similar correspondence holds for every point on ∂D and ∂D. Furthermore,
we assume that z = f(ζ) is one-to-one. It follows that

∂2U

∂ξ2
+
∂2U

∂η2
= 0 in D,

and U is prescribed appropriately on the boundary. Moreover, there is an analytic inverse
g(z) such that f(g(z)) = z. Note, f(ζ) is analytic, f ′(ζ) 6= 0, and the mapping is one-to-one.
It follows that

(6) u(x, y) = U(ξ, η) = u (ξ(x, y), η(x, y))

with g(z) = ξ(x, y) + iη(x, y) solves (5). Thus, we have solved the boundary value problem
(5) via the conformal map z = f(ζ) and its conformal inverse ζ = g(z). It can be shown that
this approach preserves both Dirichlet and Neumann boundary conditions (see [24, p. 243]).

2.2. Neumann functions. The Green’s function of −∆ for the unit disk with Neumann
boundary conditions is

(7) G(ζ, ζ1) = − 1

2π
log |ζ − ζ1| −

1

2π
log |ζζ̄1 − 1|+ 1

2π

[

1
2 |ζ|

2 + 1
2 |ζ1|

2
]

+ C, ζ 6= ζ1

(see, e.g., [18]). In particular, G(ζ, ζ1) satisfies

−∆ζG(ζ, ζ1) = δ(ζ − ζ1)−
1

|D| in D,

∂nG(ζ, ζ1) = 0 on ∂D,

where ∂n denotes the normal derivative and C = −3/(8π) is chosen so that

(8)
1

|D|

∫

D

G(ζ, ζ1)dA(ζ) = 0.

Let ζ = g(z) be a one-to-one conformal mapping from a simply connected domain D in
the z-plane to the unit disk |ζ| < 1. Let z = x + iy and z1 = x1 + iy1. Using the Green’s
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function for the unit disk with Neumann boundary conditions and the results in section 2.1,
we have the Green’s function for D:

(9) G(z, z1) =
1

2π



log
1

|g(z)− g(z1)|
+ log

1
∣

∣

∣
g(z)g(z1)− 1

∣

∣

∣

+
|g(z)|2

2
+

|g(z1)|2
2



− 3

8π
.

Note, (8) is replaced by the condition

1

|D|

∫

D
G(z, z1)dA(z) = 0

for all z1 ∈ D.
Consider the first term in (9) and note

− 1

2π
log |g(z)− g(z1)| = − 1

2π
log |z − z1| −

1

2π
log

g(z)− g(z1)

z − z1
+

1

2π
iArg

g(z)− g(z1)

z − z1
.

Since the left-hand side of the last equation is real, we have

(10) − 1

2π
log |g(z)− g(z1)| = − 1

2π
log |z − z1| −

1

2π
Re

{

log
g(z)− g(z1)

z − z1

}

.

Considering the second term in (9), we find

− 1

2π
log
∣

∣

∣
g(z)g(z1)− 1

∣

∣

∣
= − 1

2π
log
(

g(z)g(z1)− 1
)

+
i

2π
Arg

(

g(z)g(z1)− 1
)

.

Since the left-hand side of the last equation is real,

(11) − 1

2π
log
∣

∣

∣
g(z)g(z1)− 1

∣

∣

∣
= − 1

2π
Re
{

log
(

g(z)g(z1)− 1
)}

.

We define g(z)−g(z1)
z−z1

to be g′(z1) for z = z1 so g(z)−g(z1)
z−z1

is analytic in D. Since g(z) is

one-to-one, it follows that g(z)−g(z1)
z−z1

6= 0. Hence, substituting (10) and (11) into (9), we find

G(z, z1) =
1

2π
log

1

|z − z1|
+R(z, z1),(12)

where (see [24, p. 240])

R(z, z1) =
1

2π
Re

[

log
1

g(z)g(z1)− 1
+ log

z − z1
g(z)− g(z1)

]

+
|g(z)|2

2
+

|g(z1)|2
2

− 3

8π
.(13)

R is the regular part of the Green’s function. By construction, for every z ∈ D

∆zR = − 1

|D| for all z1 ∈ D,

∂nR = ∂n

(

1

2π
log |z − z1|

)

, z1 ∈ ∂D.
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2.3. Remnant function Rb. In general, the Green’s function G(z, w) of −∆ on D with
the Neumann boundary condition is the sum of two parts:

(14) G(z, w) =
1

2π
log

1

|z − w| +R(z, w),

where the first term is the fundamental solution of the −∆ operator, and the second term R
is the regular part of G, a smooth function on D ×D. It is known that

(15) R(z, w) → ∞ if z → p, w → p, and p ∈ ∂D.

It is important to know how R blows up in (15). We create a reflection operation about
the boundary of D. This reflection operation, denoted by z → z̃, is defined for all z in a
neighborhood of ∂D.

In the case that D has analytic boundary, one may take z̃ to be the Schwarz reflection of
z. Let h be a bijective analytic function that maps D to the upper half of the complex plane
C, and maps ∂D to the real axis of C. Then

(16) z̃ = h−1(h(z)),

where the overline denotes complex conjugation.
Another way to do Schwarz reflection is by the inversion operation. Recall that inversion

about the unit disc D = {ζ ∈ C : |ζ| ≤ 1} is

(17) ζ → ζ∗ = 1/ζ.

Let g be a bijective analytic function that maps D to D. Then

(18) z̃ = g−1((g(z))∗).

With the reflection operation, the regular part R(z, w) of the Green’s function can itself
be decomposed into two parts:

(19) R(z, w) =
1

2π
log

1

|z − w̃| +Rb(z, w),

defined for z ∈ D and w ∈ Dδ, where Dδ is an open set consisting of points in D that are
δ-close to ∂D. The function Rb is smooth up to the boundary of D; one can extend the
domain of Rb(z, w) to (z, w) ∈ D×Dδ. In particular, Rb(z, z) is well defined for z ∈ ∂D. The
blowup behavior in (15) is caused by the first term of (19). With z, w ∈ D, z → p, w → p,
and p ∈ ∂D, Rb(z, w) → Rb(p, p) but

1
2π log 1

|z−w̃| blows up as z and w̃ approach p.

The results in our work are dependent on Rb(p, p) for p ∈ ∂D, instead of the whole function
Rb(z, w) for (z, w) ∈ D ×Dδ. By (19) we see that

Rb(p, p) = lim
w→p

(

R(p, w)− 1

2π
log

1

|p− w|

)

, p ∈ ∂D.(20)

Here we can replace w̃ by w because p ∈ ∂D.
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Let us illustrate the above construction for the case D = D. From (7), we have

(21) G(z, w) =
1

2π
log

1

|z − w| +
1

2π

[ |z|2
2

+
|w|2
2

+ log
1

|zw − 1|

]

− 3

8π

and

(22) R(z, w) =
1

2π

[ |z|2
2

+
|w|2
2

+ log
1

|zw − 1|

]

− 3

8π
.

One can see that R(z, w) → ∞ if z, w → p ∈ ∂D because of the log term.
By (19), and since w̃ = w∗ = 1/w in this case,

Rb(z, w) = R(z, w)− 1

2π
log

1

|z − w∗|
=

1

2π

[ |z|2
2

+
|w|2
2

+ log
1

|zw − 1|

]

− 3

8π
− 1

2π
log

|w|
|zw − 1|

=
1

2π

[ |z|2
2

+
|w|2
2

]

− 3

8π
− 1

2π
log |w|.

Note that Rb is smooth on D ×Dδ. The only singularity occurs at w = 0, but this point is
far away from the boundary of D. Finally we can take z = w = p ∈ ∂D in Rb(z, w) and find

(23) Rb(p, p) =
1

8π
, p ∈ ∂D,

which is a constant in this case.
For the case of the ellipse, we define Rb(z, w) as follows:

Rb(z, w) = R(z, w)− 1

2π
Re

{

log
1

g(z)− g(w̃)

}

=
1

2π
Re







log
1

[

g(z)g(w)− 1
]

1/g(w)

1/g(w)
+ log

z − w

g(z)− g(w)
+

1

2

[

|g(z)|2 + |g(w)|2
]

− 1

2π
log

1

g(z)− g(w̃)







− 3

8π

=
1

2π
Re

{

log
1

g(w)
+ log

z − w

g(z)− g(w)
+

1

2

[

|g(z)|2 + |g(w)|2
]

+ log
g(z)− g(w̃)

g(z)− 1/g(w)

}

− 3

8π
.

For w = p ∈ ∂D, it follows that g(p) ∈ ∂D, |g(p)| = 1, g(p̃) = 1/g(p), and

Rb(z, p) =
1

2π
Re

{

log
z − p

g(z)− g(p)
+

1

2

[

|g(z)|2 + |g(p)|2
]

}

− 3

8π
.
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Finally, if z → p ∈ ∂D, we find

(24) Rb(p, p) =
1

8π
+

1

2π
Re

{

log
1

g′(p)

}

.

At times, it will be convenient to write Rb = Rb(u, u), where u is described in (48).
The Green’s function for D = Ea is defined by (12) and (13) with

g(z) =
(

4
√
s
)

sn

((

2K

π
arcsin z

) ∣

∣

∣

∣

s

)

for z ∈ Ea,

where sn(·|s) is the Jacobi elliptic function of modulus s (see (44) in Appendix A where s is
defined and its relation to a is discussed). For economy of space, s can be omitted when its
definition is clear from the context. Rb is defined by (24) with

g′(z) =
2K

π

(

4
√
s
)

cn

(

2K

π
arcsin z

)

dn

(

2K

π
arcsin z

)

1√
1− z2

.

In particular, we have

G(z, w) =
1

2π

{

log
1

∣

∣
4
√
s
[

sn
(

2K
π arcsin z

)

− sn
(

2K
π arcsinw

)]∣

∣

(25)

+ log
1

∣

∣

∣
( 2
√
s )sn

(

2K
π arcsin z

)

sn
(

2K
π arcsinw

)

− 1
∣

∣

∣

+

√
s

2

[

∣

∣

∣

∣

sn

(

2K

π
arcsin z

)
∣

∣

∣

∣

2

+

∣

∣

∣

∣

sn

(

2K

π
arcsinw

)
∣

∣

∣

∣

2
]}

− 3

8π

and

(26) Rb(p, p) =
1

8π
+

1

2π







log
1

∣

∣

∣

2K
π ( 4

√
s ) cn

(

2K
π arcsin z

)

dn
(

2K
π arcsin z

)

/
√
1− z2

∣

∣

∣







.

As we shall see, Rb(p, p) for p ∈ ∂Ea has two energy wells which coincide with the minima of
κ(p).

Note that z = ±1 6∈ ∂Ea for a > 1. Moreover, g′(±1) can be defined through a limiting
process. As z → 1, arcsin(z) → 1

2π and we find

lim
z→1

dn

(

2K

π
arcsin z

)

=
√
1− s,

lim
z→1

cn
(

2K
π arcsin z

)

(1− z2)1/2
=

2K

π

√
1− s.

Similar results hold for z → −1 and it follows that

g′(±1) =

(

2K

π

)2

s1/4(1− s).
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3. Asymptotics. Stationary solutions of the related Γ-limit problem provide some clues
about droplet distribution at equilibrium. The density function u in (1) approximates the
indicator function for set E in (3), i.e., (u ≈ χE). Moreover, since ǫ−1I → J as ǫ → 0, a
sharp interface solution provides a good initial seed for the finite element method discussed
in section 4. For the convenience of the reader, we summarize a number of asymptotic esti-
mates that are relevant to the sharp interface analysis and refer to [15] and [20] for detailed
derivations. For a single droplet of radius ρ, there are three energy estimates corresponding
to how γ compares with ρ−2. Although [20] discusses assemblies with interior and boundary
droplets (similar in nature to to the solutions of the Coulombic repulsion problem discussed
in [12]), we focus our attention on boundary droplet assemblies in this paper.

3.1. Energy of a single boundary half-disk. The total energy of a stationary boundary
half-disk of radius ρ centered at ξ ∈ ∂D is (see [15, Lemma 2.3])

J (E) = πρ− 2ρ2κ(ξ)

3
+O(ρ3)(27)

+
γ

2

(

πρ4

4
log

1

ρ
+
πρ4

16
+

(

πρ2

2

)2

Rb(ξ, ξ) +O(ρ5)

)

,

where κ(ξ) is the boundary curvature at ξ ∈ ∂D. If 0 < γ << ρ−2, then it follows that

J (E) = πρ− 2ρ2κ(ξ)

3
+
γ

2

(

πρ4

4
log

(

1

ρ

))

+ o(ρ2)

and J (E) is minimized when κ(ξ) is maximized.
In the case γ ∼ 1

ρ2
and γρ2 → β as ρ→ 0, we find

J (E) = πρ− 2ρ2κ(ξ)

3
+
γ

2

(

πρ4

4
log

1

ρ
+
πρ4

16

)

(28)

+
ρ2β

2

(π

2

)2
Rb(ξ, ξ) + o(ρ2).

It follows that J (E) is minimized when ξ converges to a minimum of

Jb(ξ, β) := −2

3
κ(ξ) + 1

2β
(π

2

)2
Rb(ξ, ξ).(29)

To be consistent with [15], we use β to denote the limit of γρ2.
If γ >> ρ−2 is large and γρ3 is bounded, then the energy of a boundary droplet is

J (E) = πρ+
γ

2

(

πρ4

4
log

1

ρ
+
πρ4

16

)

+
γρ4

2

(π

2

)2
Rb(ξ, ξ) +O(ρ2).

The terms of order O(ρ2) can be ignored and J (E) is minimized when Rb(ξ, ξ) is minimized;
i.e., ξ tends to a minimum of Rb(ξ, ξ).

D
o
w

n
lo

ad
ed

 0
8
/1

5
/1

8
 t

o
 1

6
1
.2

5
3
.1

1
9
.1

0
1
. 
R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
:/

/w
w

w
.s

ia
m

.o
rg

/j
o
u
rn

al
s/

o
js

a.
p
h
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1362 JIAJUN LU, FRANK BAGINSKI, AND XIAOFENG REN

3.2. Energy of an assembly of boundary droplets. Following the notation in [20], we let
ρjb > 0 be the radius of a half-disk centered at ξjb ∈ ∂D for j = 1, 2, . . . , nb, i.e.,

Ej
b =

{

z ∈ D : |z − ξjb | < ρjb

}

.

A boundary disk assembly is denoted

E = ∪nb

j=1E
j
b .

When γ is sufficiently large, the first integral in (1) is approximately the total perimeter of
all the boundary half-disks and the total energy of a stationary disk assembly E is given by
(see [20, Lemma 29])

J (E) =

nb
∑

j=1

πρjb +O(ρ2)(30)

+
γ

2





nb
∑

j=1

π(ρjb)
4

4
log

1

ρjb
+
π(ρjb)

4

16
+

(

π(ρjb)
2

2

)2

Rb(ξ
j
b , ξ

j
b)

+

nb
∑

j=1

nb
∑

k=j+1

(

(πρjb)
2

2

)

(

(πρkb )
2

2

)

G(ξjb , ξ
k
b )



+O(γρ5).

3.3. Case studies. Before proceeding to the analysis of the ellipse, it is important to note
how Rb depends on the shape of the domain and specifically how it depends on the conformal
parameter a. In Figure 1, we present graphs of κ(u) and Rb(u, u) for a number of a’s. Recall
K = K(s2), but s depends on a through (43). In order to distinguish the critical points of
both κ and Rb, we superpose them using two different ordinate axis scales. In Figure 1, the
units on the left ordinate axis are with respect to κ(u); the units on the right ordinate axis
are with respect to Rb(u, u). Note that for all a > 1, Rb(u, u) has two wells located at the
points where κ is a minimum.

3.3.1. Single boundary droplet. For a single droplet with γ small, we see from Figure 1
and section 3.1 that J is minimized when κ is maximized (Case 1). In this case, the droplet
locates near ξ = ±a+0i. On the other hand, when γ is large, Figure 1 and section 3.2 suggest
that J is minimized when Rb is minimized (Case 3) and the droplet locates near ξ = 0± i.

To illustrate single droplet behavior in Ea in Case 2, we consider a =
√
2. To set a scale,

we considered a droplet of size ρ ≈ 0.1 and β ≈ 4. For the case γ << ρ−2 and γρ2 → β, Jb
can posses either two or four wells based on the value of β (see Figure 2).

3.3.2. Two boundary droplets. In the following section, we suppose γ >> 1
ρ2

and there

are two boundary droplets (Droplets 1 and 2) located at u = u1 and u = u2, respectively. We
can express the energy of the sharp interface problem as J = J (u1, u2) using (30) and ignoring
the terms O(γρ5). We found the graphics easier to visualize if we considered ui ∈ [0, 4K]
(instead of [−K, 3K] as was used previously). In Figure 3(a), we present the graph of J for
a =

√
2. The level sets of J are presented in Figure 3(b). After a careful examination of
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Figure 1. Rb(u, u), κ(u) for −K < u < 3K and 1 < a < 10.
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4. Finite element model. In the following, we suppose that ǫ > 0, σ > 0, and γ ≥ 0 are
fixed and Ω is a domain conformal to the unit disk.

4.1. Otha–Kawasaki finite element model. Let C1
pw(Ω;R) denote the set of piecewise

continuously differentiable functions u : Ω → R. H(Ω) denotes the Hilbert space W 1,2(Ω), the
completion of C1

pw(Ω;R) with respect to

||u||21,2 =
∫

Ω

(

|Du|2 + u2
)

dA.

V(Ω) is the completion of {v ∈ C2(Ω;R) ∩ C1(Ω̄;R), ∂nv = 0 on ∂Ω} with respect to

||v||22,2 =
∫

Ω

(

|∆v|2 + |Dv|2 + v2
)

dA.

V(Ω) is a closed subspace of W 2,2(Ω).
It will be convenient to rewrite (1) in a form that lends itself to numerics. With this in

mind, we define v to be a solution of the Neumann problem:

−∆v(x) = u(x)− ω, x ∈ Ω,

∂nv = 0, x ∈ ∂Ω,
∫

Ω
vdA = 0.(31)

The third condition in (31) holds because −
∫

Ω u dA = ω, where 0 < ω < 1. It follows that
v = (−∆)−1(u−ω). Formally, (−∆)−1 is an integral operator expressed in terms of a Green’s
function (see [2]). Using Green’s identity, we can rewrite the second integral in (1) as

∫

Ω

(

(−∆)−
1

2 (u− ω)
)2
dA =

∫

Ω

[

(−∆)−1(u− ω)
]

(u− ω)dA

=

∫

Ω
v(−∆v)dA

=

∫

Ω
|Dv|2dA.

With W (u) = u2(1− u)2, the free energy can be expressed as

I(u) =

∫

Ω

{

1
2ǫ

2|Du|2 + σW (u) + 1
2ǫγ|Dv|

2
}

dA,(32)

which, as we shall see, lends itself well to the computation of numerical minimizers.
For future reference, we record the weak formulation of (31): Given a fixed u ∈ H(Ω) and

0 < ω < 1, find v ∈ V(Ω) such that

a(v, φ) = (u− ω, φ) for all φ ∈ H(Ω),

a(u, φ) =

∫

Ω
Du ·DφdA,

(u− ω, φ) =

∫

Ω
(u− ω)φdA,(33)

and (u, φ) =
∫

Ω uφdA is the usual inner product on L2(Ω).
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Let P0, P1, and P2 denote vertices in a typical triangle τ . The vertices are positively
oriented so that e01 = P1 − P0, e12 = P2 − P1, e20 = P0 − P2, and e01 × e12 is the outer
normal to Ωh. In our discretization, the geometry is fixed and the degrees of freedom are the
values of the phase function u at vertices Pi for i = 1, . . . , N. There should be no confusion
between elements of the set {P0, P1, P2} denoting vertices of a generic triangle τ and elements
of the set {P1, P2, P3, . . . , PN} denoting vertices of the triangulation Ωh.

A finite element solution is sought in the finite dimensional space

Sh = {ϕh ∈ A, ϕh linear on τj},

where by linear we mean a function of the form w(x, y, z) = a+ bx+ cy+ dz for (x, y, z) ∈ τj .
When a 6= 0, such a function is said to be affine. Let Pj = (xj , yj , zj) and define Φi(x, y, z) so
that

Φi(Pj) =

{

1, i = j,
0, i 6= j,

1 ≤ i, j ≤ N,

where {Φi : i = 1, . . . , N} is a set of basis functions. Hence, any vh ∈ Sh can be written as

vh(x, y, z) =

N
∑

j=1

vjΦj(x, y, z),

where vj = v(Pj). The finite dimensional version of (31) is to find vh ∈ Sh such that

a(vh, ψ) = (uh − ω, ψ) for all ψ ∈ Sh,
∫

Ωh

vhdA = 0,(34)

where a(v, ψ) is defined in (33) and the last equation in (34) is the discrete version of the
mass constraint. Expressing vh in terms of the basis functions {Φj , j = 1, . . . , N} and then
inserting into (34), we are led to the linear system

N
∑

j=1

vja(Φj ,Φi) = (uh − ω,Φi), i = 1, . . . , N,(35)

N
∑

j=1

∫

Ωh

vjΦj dA = 0.(36)

The first N equations (35) can be written in the form AV = F , where A = (aij) = a(Φj ,Φi)
is the N × N stiffness matrix and F ∈ R

N is the forcing term. If we augment the matrix
A by appending a row derived from (36) and appending a zero to F , we are led to a matrix
equation ÃV = F̃ , where Ã is (N + 1)×N and F̃ ∈ R

N+1 (F̃N+1 = 0). The rank of Ã is N ,
so we form

(37) ÃT ÃV = ÃT F̃ , where V = (v1, . . . , vN )T .
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Note, for fixed 0 < ω < 1, the solution of (37) is unique. Thus,

(38) V =











v1
v2
...
vN











=
(

ÃT Ã
)−1

ÃT















(u1 − ω,Φ1)
(u2 − ω,Φ2)

...
(uN − ω,ΦN )

0















.

A function u ∈ H(Ω) is approximated by a uh ∈ Sh, i.e.,

uh(x, y, z) =

N
∑

j=1

ujΦj(x, y, z),

where uj = u(Pj). The linear mass constraint −
∫

Ωh
uhdA = ω is included in the definition of A

of feasible solutions. The mass constraint can be written in the form of

AeqU = ω|Ω| for some N × 1 matrix Aeq.(39)

It follows that
∫

Ω
|Du|2dA ≈

∫

Ωh

|Duh|2dA = UTAU

and
∫

Ω
|Dv|2dA ≈

∫

Ωh

|Dvh|2dA = V TAV,

where V is given by (38). For the second term in I(u), we have
∫

Ω
u2(1− u)2 dA ≈

∫

Ωh

u2h(1− uh)
2 dA = N(U), u ∈ H(Ω),

where the integration over Ωh is carried out exactly for the piecewise linear function uh,
leading to the nonlinear functional N(U) : RN → R.

We are lead to the discrete version of (4),

Problem Ph: inf
U∈RN ,AeqU=ω|Ω|

Ih(U),(40)

where Ih(U) = 1
2ǫ

2UTAU + σN(U) + 1
2γǫV

TAV and V denotes the unique solution of (38).
We say a solution U∗ (or u∗h) of Problem Ph is stable in Sh if the Hessian matrix

H∗ = H(U∗) =

[

∂2Ih(U∗)
∂ui∂uj

]

1≤i,j≤N

is positive definite, i.e., all eigenvalues of H∗ are positive. We say that a solution U∗ of
Problem Ph is unstable in Sh if at least one eigenvalue is negative. Otherwise, we say that the
stability in Sh is indeterminate. An equivalent way of saying this is a solution U∗ is stable in

Sh if
inf

||U ||6=0

1
2U

TH∗U > 0

for U = U∗ + δU and |δU | sufficiently small.
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(a) γ = 0 (b) γ = 1.11 (c) γ = 1.92

(d) γ = 2.25 (e) γ = 3.75 (f) γ = 5.55

Figure 7. Single boundary droplet solutions.

Table 2

Single boundary droplet data for intermediate values of γ; ρ = 0.46, ρ−2 = 4.73.

Figure γ ρ−2 γρ2 Case
7(a) 0 4.73 0.00 γ ≪ ρ−2

7(b) 1.11 4.73 0.235 γ ≪ ρ−2

7(c) 1.92 4.73 0.406 γ ∼ ρ−2

7(d) 2.25 4.73 0.476 γ ∼ ρ−2

7(e) 3.75 4.73 0.793 γ ≫ ρ−2

7(f) 5.55 4.73 1.174 γ ≫ ρ−2

4.2. Numerical results.

4.2.1. Single boundary droplet. Consider E√
2 and suppose ω = 0.075. Figure 7(a)–(f)

shows a boundary droplet moving from z =
√
2 + 0i to z = 0 − i as γ varies from 0 to 5.5.

These results are consistent with Cases 1–3 presented in section 1 and the analysis of the
Rb-function presented in section 3. See Table 2, where the values of γ need to be divided by τ
when comparing with the sharp interface model. When γ is zero or small, a boundary droplet
locates itself at a point of maximum curvature (Figure 7(a) and (b)). As γ increases, the
Rb-function and its interaction with the curvature of the boundary determine the location of
the droplet which moves along the boundary toward z = 0−i, as shown in Figure 7(c)–(e). As
γ increases further, the center of the droplet moves closer to 0− i but never quite gets there.
This is not unexpected, since the long- and short-range terms will continue to counterbalance
one another. The “pull” of the short-range term will always prevent the droplet from centering
at 0−i. This type of interaction also explains why a single droplet numerical solution does not
center precisely at one of the wells described in Figures 1 and 2 when γ > 0. In our numerical
model, a further increase in γ will cause the droplet to disintegrate and the numerical solution
will converge to a constant. The sharp interface model assumes ρ is small, and the analysis
does not offer precise estimates for parameter ranges in the three single droplet cases discussed
in section 3. Nevertheless, the numerical computations presented for the solutions of (4) are
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5. Concluding remarks. In this paper, we investigate boundary droplet pattern formation
in a two-phase system on a two-dimensional manifold. We focus on the case of an ellipse with
semimajor axis a > 1 and semiminor axis b =

√
a2 − 1. Based on the analysis of the sharp

interface problem, we are able to fully characterize the behavior of a single boundary droplet.
When γ is small, the droplet locates to a position ξ∗ = ±a + 0i that maximizes κ(ξ), the
curvature of the boundary. When γρ2 → β, the droplet locates to a position that minimizes
a linear combination of κ(ξ) and Rb(ξ, ξ). For large γ, the droplet locates to a position that
minimizes Rb. Rb has two local minima located at ξ ≈ 0± ib where κ is also minimized. We
are able to fully characterize the behavior of a boundary droplet assembly with nb = 2, but the
combinatorics of droplet location are complicated for assemblies where nb is large. In general,
there are numerous local minima and a numerical solution depends on a and γ as well as the
initial configuration of the assembly. Nevertheless, numerical solutions of the diffuse interface
problem of the Ohta–Kawasaki model were consistent with predictions based on the sharp
interface model. Using finite element solutions, we confirm the behavior of a single boundary
droplet. In addition, we compute droplet assemblies with 2 ≤ nb ≤ 20. In a boundary droplet
assembly with six droplets, numerical evidence suggests a local minimum with two distinct
droplet sizes. The droplets are arranged along the perimeter with the droplets alternating
in size. In future work, we plan to extend our analysis to include both interior droplets and
boundary droplets.

Appendix A. Conformal map of an ellipse to the unit disk. Consider the problem of
conformally mapping an ellipse

(41) Ea,b =
{

(x, y) | (x/a)2 + (y/b)2 < 1
}

onto the unit disk

D =
{

(u, v) | u2 + v2 < 1
}

.

Without loss of generality, we can assume a > 1 and b2 = a2 − 1 and, in this case, denote
the ellipse by Ea. The solution to this conformal mapping problem is well known (see, e.g.,
[6, 11, 22]). However, [6, 11] contain misprints and [22] requires some additional background
for our application. For these reasons, we present a self-contained exposition here.

Let −1
2π < ξ1 <

1
2π and 0 < ξ2 < c, where c = cosh−1(a) and b = sinh c. The period

rectangle R is

R =
{

ξ = ξ1 + iξ2 | − 1
2π < Re(ξ) < 1

2π, 0 < Im(ξ) < c
}

(see Figure 10(a)). By construction, z = sin ξ maps ξ ∈ R to z ∈ Ea with a = cosh c and
b = sinh c, i.e.,

(42) z = x+ iy = sin(ξ1 + iξ2) = sin ξ1 cosh ξ2 + i cos ξ1 sinh ξ2

and
(

x

cosh ξ2

)2

+

(

y

sinh ξ2

)2

= 1, 1 ≤ cosh ξ2 ≤ cosh c.
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(a) Period rectangle: R (b) Computing s for a =
√
2
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Figure 10. For a =
√
2: (a) period rectangle R; (b) intersection of y = 1

2
πK′(t2)/K(t2), t ∈ (0, 1) and

y = cosh−1 a; (c) Ea ∩ {Im(z) ≥ 0}; (d) D ∩ {Im(ζ) ≥ 0}.

When ξ2 = 0 and y = 0, the ellipse is degenerate, and the parametrization covers the seg-
ment − cosh c ≤ x ≤ cosh c two times. Orthogonal to this family of ellipses is the family of
hyperbolas,

(

x

sin ξ1

)2

−
(

y

cos ξ1

)2

= 1, −1
2π < ξ1 <

1
2π.

The boundary of an ellipse is parametrized by setting ξ2 = c and extending ξ1 to the interval
−1

2π < ξ1 <
3
2π.

Jacobi elliptic functions will be used to define the desired conformal map from Ea to D. The
Jacobi elliptic functions sn, cn, dn can be defined by certain integrals involving a parameter
m (see [1, Chap. 16–17]). The modulus of the Jacobi elliptic functions is denoted by k, where
k2 = m. In our application, m is real and 0 ≤ m ≤ 1. In particular, if

u(φ|m) :=

∫ φ

0

dθ
√

1−m sin2 φ
,

we define

snu = sn(u|m) = sin(φ|m), cn(u) = cn(u|m) = cos(φ|m), dn(u|m) = (1−m sin2 φ)1/2.

Dependence on m is denoted by a vertical slash preceding the parameter m. When the value
of the parameter is clear from context, m is sometimes suppressed. The real quarter period
of the Jacobi elliptic functions is denoted by K(m), where

K(m) =

∫ 1

0

dx
√

(1− x2)(1−mx2)
.
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Following the approach in [6], we define the imaginary quarter period of the corresponding
Jacobi elliptic functions to be iK′(m), where

K′(m) := 1
2K(1−m),

and seek to determine the value t satisfying the equation

(43)
π

2

K′(t2)
K(t2)

= c, 0 < t < 1.

The quantity π
2
K′

K
is known as the modulus of the Grötzsch ring and the related quantity

q = exp(−πK′/K) is called the nome. In Figure 10(b), we plot the function y = 1
2πK

′(t2)/K(t2)
for 0 < t < 1 and show its intersection with the line y = c, where c = cosh−1(a) and a =

√
2.

If the solution of (43) is denoted by t = s, we define

(44) K = K(s2) and K ′ = 1
2K(1− s2).

In Figure 10(c) we present the upper half of Ea with a =
√
2. Figure 10(d) shows the upper

half of D. Although the ellipse is cut from −1 + 0i to 1 + 0i on the real axis, the maps under
consideration can be analytically continued across the real axis by the Schwartz reflection
principle.

Since πK ′/(2cK) = 1 for z ∈ Ea,

arcsin z = ξ1 + iξ2,(45)

2K

π
arcsin z =

2K

π
ξ1 + i

2K

π

(

π

2c

K ′

K

)

ξ2,(46)

and it follows that

Re

(

2K

π
arcsin z

)

=
2K

π
ξ1 ∈ (−K,K),

Im

(

2K

π
arcsin z

)

=
2K ′

cπ
ξ2 ∈ (0,K ′).

The desired conformal map from z ∈ Ea to ζ ∈ D is

(47) ζ =
(

4
√
s
)

sn

((

2K

π
arcsin z

) ∣

∣

∣

∣

s

)

,

where t = s denotes the solution of (43) and K = K(s2) is defined in (44). When z = ±1, we
find ζ = ±s1/4, respectively. The image of the upper half of Ea is the upper half of the unit
disk D, as shown in Figure 10(d). Equation (47) is in agreement with [11, eq. (51)].

From (45) and (46), we set τ := u+ iv = 2K
π arcsin z. Hence,

(48) u =
2K

π
ξ1 ∈ (−K,K)
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and v = K′

c ξ2 ∈ (0,K ′). Setting ξ2 = c in (42), we can parametrize ∂Ea in terms of u which
leads to

z = x+ iy = asn(u) + ibcn(u) for −K < u < 3K,

or any interval of length 4K. The boundary curvature of Ea,b (see (41)) is

(49) κ(x, y) =
ab

((bx/a)2 + (ay/b)2)3/2
, (x, y) ∈ ∂Ea,b,

κ(±a, 0) = a/b2, and κ(0,±b) = b/a2.
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