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Abstract

The free energy of a ternary system, such as a triblock copolymer, is a sum of two parts: an interface
energy determined by the size of the interfaces separating the micro-domains of the three constituents,
and a long range interaction energy that serves to prevent unlimited micro-domain growth. In two
dimensions a parameter range is identified where the system admits stable stationary disc assemblies.
Such an assembly consists of perturbed discs made from either type-I constituent or type-II constituent.
All the type-I discs have approximately the same radius and all the type-II discs also have approximately
the same radius. The locations of the discs are determined by minimization of a function. Depending on
the parameters, the discs of the two types can be mixed in an organized way, or mixed in a random way.
They can also be fully separated. The first scenario offers a mathematical proof of the existence of a
morphological phase for triblock copolymers conjectured by polymer scientists. The last scenario shows
that the ternary system is capable of producing two levels of structure. The primary structure is at the
microscopic level where discs form near perfect lattices. The secondary structure is at the macroscopic
level forming two large regions, one filled with type-I discs and the other filled with type-II discs. A
macroscopic, circular interface separates the two regions.

Key words. ternary system, triblock copolymer, cylindrical phase, disk assembly, primary structure,
secondary structure
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1 Introduction

A ternary physical or biological system, such as the iron-nickel-chromium ternary alloy, is comprised of three
constituents. At low temperature, the constituents tend to separate and micro-domains rich in individual
constituents emerge. Over time these micro-domains grow in size. This coarsening process reduces the total
area of the interfaces separating the micro-domains.

However in many systems, coarsening tendencies are balanced by inhibitory forces which limit growth of
micro-domains. Triblock copolymers are archetypal examples. In an ABC triblock copolymer a molecule is
a subchain of type A monomers connected to a subchain of type B monomers which in turn is connected
to a subchain of type C monomers. Because of the repulsion between the unlike monomers, the different
type subchains tend to segregate. However since subchains are chemically bonded in molecules, segregation
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Figure 1: A triblock copolymer in the cylindrical phase and its cross section. Type A micro-domains are in
blue and type B micro-domains are in yellow. The rest of the region is filled by type C monomers

cannot lead to a macroscopic phase separation; only micro-domains rich in individual type monomers emerge,
forming morphological phases. Bonding of distinct monomer subchains provides an inhibition mechanism in
block copolymers.

One of the morphological phases in triblock copolymers predicted by polymer scientists is the cylindrical
phase [3, Figure 5(f)]. In this phase type A monomers form cylinder shaped micro-domains and type
B monomers also form cylinder shaped micro-domains. Type C monomers fill the remaining region. A
cross section of a triblock copolymer in the cylindrical phase shows an assembly of discs, some of type A
monomers and some of type B monomers; see Figure 1. An application of the main result in this paper will
mathematically confirm the existence of this phase as a stable stationary point of the free energy.

The ternary system considered here was originally derived by Ren and Wei in [22, 23] from Nakazawa
and Ohta’s density functional theory for triblock copolymers [15]. In two dimensions the system occupies
a bounded domain D in R

2 and has two sets of parameters. The first set consists of ω1, ω2, both in (0, 1).
Moreover, with ω3 = 1− (ω1 +ω2), ω3 ∈ (0, 1) as well. The second set of parameters forms a symmetric two
by two matrix γ,

γ =

[
γ11 γ12
γ12 γ22

]
. (1.1)

For triblock copolymers, the matrix γ is necessarily positive definite [23]. In [5] Choksi and Ren studied
diblock copolymer-homopolymer blends and arrived at the same model but with a positive semi-definite γ.
For these blends γ has one positive eigenvalue and one zero eigenvalue; (ω1, ω2) is the eigenvector associated
to the zero eigenvalue. In this paper γ is not necessarily positive definite. However, all the entries of γ are
assumed to be positive in this work.

Let Ω1, Ω2 ⊂ D be two Lebesgue measurable subsets of D and be disjoint in the sense that |Ω1∩Ω2| = 0.
Here | · | denotes the Lebesgue measure in R

2. The measures of Ωi, i = 1, 2, are fixed at

|Ωi| = ωi|D|, i = 1, 2. (1.2)

Denote Ω3 = D\(Ω1 ∪Ω2), so |Ω3| = ω3|D|. The free energy of the pair (Ω1,Ω2), or the triplet (Ω1,Ω2,Ω3),
is given by

J (Ω1,Ω2) =
1

2

3∑

i=1

PD(Ωi) +
2∑

i,j=1

γij

2

∫

D

(−∆)−1/2(χΩi
− ωi) (−∆)−1/2(χΩj

− ωj)dx. (1.3)

In functional (1.3), PD(Ωi) denotes the perimeter of Ωi in D. If Ωi has piecewise C1 boundary, then
∂Ωi∩D, the part of the boundary of Ωi that is inside D, is the interface that separates Ωi from the other two
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Ωj ’s, j ∈ {1, 2, 3}, j 6= i, and PD(Ωi) is simply the length of ∂Ωi ∩D. Note that ∂Ωi denotes the boundary
of Ωi in R

2. Part of ∂Ωi may overlap with the domain boundary ∂D, but the interface ∂Ωi ∩ D does not
include this part of ∂Ωi. For a general measurable Ωi,

PD(Ωi) = sup
{∫

Ωi

div g(x) dx : g ∈ C1
0 (D,R

2), |g(x)| ≤ 1 ∀x ∈ D
}
, (1.4)

and ∂Ωi ∩D should be interpreted as the reduced boundary of Ωi in D; see [34]. In the sum
∑3

i=1 PD(Ωi),
each of the interfaces ∂Ωi ∩D, i = 1, 2, 3, is counted twice, so a half is placed in front of this sum to remove
double counting. The first part of (1.3) is an interface energy equal to the total length of all interfaces.

The second part of (1.3) is a long range interaction term. For f ∈ L2(D) such that
∫
D
f(x)dx = 0, one

solves the Poisson equation with the zero Neumann boundary condition and zero average:

−∆v = f in D, ∂νv = 0 on ∂D,

∫

D

v(x)dx = 0. (1.5)

If the domain D is sufficiently smooth, this equation has a unique solution in H2(D), and hence it defines
an operator (−∆)−1 from the space {f ∈ L2(D) :

∫
D
f(x)dx = 0} to the space {v ∈ H2(D) : ∂νv =

0 on ∂D,
∫
D
v(x)dx = 0}; we write v = (−∆)−1f . The operator (−∆)−1 is positive definite and (−∆)−1/2

is its positive square root. In (1.3) (−∆)−1/2 acts on χΩi
− ωi where χΩi

is the characteristic function of Ωi

(χΩi
(x) = 1 if x ∈ Ωi and 0 if x ∈ D\Ωi).
A stationary point (Ω1,Ω2) of J consists of two disjoint subsets Ω1 and Ω2 of D, each bounded by

piecewise smooth curves. It satisfies the following equations:

κ1 + γ11IΩ1
+ γ12IΩ2

= λ1 on ∂Ω1 ∩ ∂Ω3 (1.6)

κ2 + γ12IΩ1
+ γ22IΩ2

= λ2 on ∂Ω2 ∩ ∂Ω3 (1.7)

κ0 + (γ11 − γ12)IΩ1
+ (γ12 − γ22)IΩ2

= λ1 − λ2 on ∂Ω1 ∩ ∂Ω2 (1.8)

T1 + T2 + T0 = ~0 at ∂Ω1 ∩ ∂Ω2 ∩ ∂Ω3 (1.9)

Ti ⊥ ∂D at ∂Ωi ∩ ∂Ω3 ∩ ∂D, i = 1, 2 (1.10)

T0 ⊥ ∂D at ∂Ω1 ∩ ∂Ω2 ∩ ∂D. (1.11)

The equation (1.6) holds on ∂Ω1 ∩ ∂Ω3 which is the interface between Ω1 and Ω3. On the left side of
(1.6) κ1 is the curvature of this interface with respect to the normal vector that points inward into Ω1. The
IΩi

’s are shorthand notations:

IΩi
= (−∆)−1(χΩi

− ωi), i = 1, 2, (1.12)

which we call inhibitors. The equations (1.7) holds on the interface between Ω2 and Ω3 and the curvature
κ2 is measured with respect to the normal vector pointing into Ω2; the equation (1.8) holds on the interface
between Ω1 and Ω2 and the curvature κ0 is measured with respect to the normal vector pointing into Ω1. On
the right sides of these equations there are unknown constants λ1 and λ2. These are Lagrange multipliers
associated with the constraints |Ωi| = ωi|D|, i = 1, 2.

The three interfaces, ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3 and ∂Ω1 ∩ ∂Ω2, may meet at a common point in D, which
is termed a triple junction point. In (1.9) T1, T2 and T0 are unit tangent vectors at triple junction points:
T1 is inward pointing and tangent to ∂Ω1 ∩ ∂Ω3, T2 is inward pointing and tangent to ∂Ω2 ∩ ∂Ω3, and T0
is inward pointing and tangent to ∂Ω1 ∩ ∂Ω2. The equation (1.9) is equivalent to the condition that at any
triple junction point the three interfaces meet at 120 degrees.

In the case that an interface meets the domain boundary ∂D, the equations (1.10) and (1.11) assert that
it does so perpendicularly. Here T1, T2 and T0 are again unit tangent vectors of ∂Ω1 ∩ ∂Ω3, ∂Ω2 ∩ ∂Ω3 and
∂Ω1 ∩ ∂Ω2 respectively.

In this paper we are interested in stationary points (Ω1,Ω2) of J possessing the following properties.
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1. Each of Ω1 and Ω2 is a union of multiple components.

2. Each component in Ω1 or Ω2 is close to a round disc.

3. Both Ω1 and Ω2 have positive distance from the domain boundary ∂D.

4. The components of Ω1 and Ω2 are well separated, in the sense that they are of positive distance from
each other.

We call such a stationary point a stationary disc assembly. It solves the first two of the six equations in
(1.6)-(1.11): (1.6) and (1.7). The rest are superfluous for disc assemblies.

We will find stationary disc assemblies when ω1 and ω2 are small and comparable. It is convenient to
introduce a fixed m ∈ (0, 1) and a small ǫ so that

ω1|D| = ǫ2m and ω2|D| = ǫ2(1−m). (1.13)

The area constraints (1.2) now take the form

|Ω1| = ǫ2m and |Ω2| = ǫ2(1−m). (1.14)

Henceforth ǫ is the main parameter of our problem.
The premise in this paper is the range of γ11, γ22, and γ12 in terms of ǫ. They should all be positive and

comparable, no less in order than 1
ǫ3 log 1

ǫ

and no greater in order than 1
ǫ3 . The precise conditions are in the

following existence theorem.

Theorem 1.1. Let D be a bounded and sufficiently smooth domain in R
2. For m ∈ (0, 1), K1,K2 ∈ N,

η > 0, and B > 0, there exists ǫ0 = ǫ0(D,m,K1,K2, η, B) > 0 so that if

1. 0 < ǫ < ǫ0,

2. each entry γij > 0 and each diagonal entry γii ∈
(

1+η
ρ3

i log 1

ρi

, 12−η
ρ3

i

)
, where ρ1 = ǫ( m

K1π
)1/2 and ρ2 =

ǫ( 1−m
K2π

)1/2,

3.
max {γij}
min {γij}

< B,

then J admits a stable stationary assembly of K1 type-I perturbed discs and K2 type-II perturbed discs,
satisfying (1.6), (1.7), and (1.14).

Moreover, the radii of the type-I discs in the assembly are close to ρ1 and the radii of the type-II discs
are close to ρ2. If

γij

|γ| → Γij as ǫ→ 0, (1.15)

the centers of the type-I discs are ξ∗,11 , ..., ξ
∗,K1

1 , and the centers of the type-II discs are ξ∗,12 , ..., ξ
∗,K2

2 , then

(ξ∗,11 , ..., ξ
∗,K1

1 , ξ
∗,1
2 , ..., ξ

∗,K2

2 ) is close to a minimum of the function

F (ξ11 , ..., ξ
K1

1 , ξ12 , ..., ξ
K2

2 ) =
Γ11m

2

K2
1

( K1∑

k=1

R(ξk1 , ξ
k
1 ) +

K1∑

k=1

K1∑

l=1,l 6=k

G(ξk1 , ξ
l
1)
)

+
2Γ12m(1−m)

K1K2

K1∑

k=1

K2∑

l=1

G(ξk1 , ξ
l
2)

+
Γ22(1−m)2

K2
2

( K2∑

k=1

R(ξk2 , ξ
k
2 ) +

K2∑

k=1

K2∑

l=1,l 6=k

G(ξk2 , ξ
l
2)
)
. (1.16)

4



For the precise meaning of the radius and the center of a perturbed disc, see (5.9). The smoothness
condition on D in Theorem 1.1 is to ensure that (−∆)−1 is well defined; any C2,α domain meets the
requirement [8, Section 6.7]. Note that ρ1 and ρ2 are the average radii of the type-I and type-II discs
respectively; |γ| is the operator norm of γ. The definition of the function F involves Green’s function G of
the −∆ operator on D with the Neumann boundary condition, and R which is the regular part of G.

A remark about condition 2 is in order. For i = 1 or 2, γii ∈
(

1+η
ρ3

i log 1

ρi

, 12−η
ρ3

i

)
is needed only if Ki ≥ 2.

If Ki = 1, this condition is relaxed to

γii ∈
(
0,

12− η

ρ3i

)
. (1.17)

A motivation of this theorem is presented in Section 2. The theorem and its proof contain detailed
information about stationary disc assemblies. Implications of the theorem include the determination of
optimal numbers of discs in assemblies, locations of the two type discs, and overall self-organized patterns
of discs. We will see how the parameters of our problem subtly affect the answers to these questions. When
γ is positive definite, stationary disc assemblies found in Theorem 1.1 match the cylindrical morphological
phase for triblock copolymers.

The proof of the theorem starts in Section 3. An assembly of K1 exact type-I discs and K2 exact type-II
discs is used as an approximate solution. The radii and the centers of the discs are undetermined at this
point. From Section 4 to Section 6, we prove that small and suitable perturbations of the discs will turn
the assembly to almost a solution of (1.6) and (1.7). This assembly of perturbed discs becomes an exact
solution if, in Section 7, the radii and centers of the perturbed discs are chosen properly. This approach is
a Lyapunov-Schmidt reduction procedure tailored to fit our nonlocal geometric variational problem.

In Theorem 1.1 all entries of γ are assumed to be positive; by condition 3 all entries of Γ are also positive.
It is natural to assume that γ11 and γ22 are positive, to limit the size of micro-domains. However γ12 may
not be positive, even for triblock copolymers. We believe that the case of negative γ12 will yield patterns
different from disc assemblies.

We end this introduction with a note on a binary counterpart of J . It is a simpler analogy of a binary
inhibitory system derived from the Ohta-Kawasaki theory [17] for diblock copolymers; see [16, 21]. The
binary problem has been studied intensively in recent years. All stationary points in one dimension were
known to be local minimizers [21]. Many stationary points in two and three dimensions were found that
match morphological phases in diblock copolymers [18, 25, 24, 26, 27, 11, 12, 28, 29, 32]. Global minimizers
were studied in [2, 31, 14, 4, 13, 9] for various parameter ranges. Applications of the second variation of the
free energy functional and its connections to minimality and Gamma-convergence were found in [6, 1]. A
binary analogy of F in (1.16), appeared in [24, 4, 9].

2 Motivation and implications

Before this work, only two types of stationary assemblies were known for inhibitory ternary systems in two
dimensions: core-shell assemblies [20] and double bubble assemblies [30]; see Figure 2. In these assemblies,
Ω3 serves as the background while Ω1 and Ω2 form disconnected components. In a core-shell assembly each
component consists of a core of type-I constituent surrounded by a shell of type-II constituent (also see [3,
Figure 5 (b)]); in a double bubble assembly each component is a perturbed double bubble where one of the
bubbles is made of type-I constituent and the other of type-II constituent.

A double bubble is enclosed by three circular arcs that meet in threes at two triple junction points
forming 120 degree angles. It is the solution to the two area isoperimetric problem [7, 10]. For double bubble
assemblies in ternary systems the following theorem was proved in [30].

Theorem 2.1. Let m ∈ (0, 1), K ∈ N, and ι ∈ (0, 1]. There exist positive numbers ǫ0, σ̃, and σ depending
on the domain D, m, K, and ι only, such that if the following three conditions hold

1. 0 < ǫ < ǫ0,
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Figure 2: A core-shell assembly and a double bubble assembly.

2.
σ̃

ǫ3 log 1
ǫ

≤ λ(γ) ≤ λ(γ) <
σ

ǫ3
,

3. ι λ(γ) ≤ λ(γ),

then there is a stable stationary assembly of K perturbed double bubbles, satisfying the constraints (1.14) and
the equations (1.6)-(1.9).

Here λ(γ) and λ(γ) are the two eigenvalues of γ, λ(γ) ≤ λ(γ), so the theorem requires that γ be positive
definite and the two eigenvalues remain comparable as ǫ → 0. It is interesting to see what happens if these
conditions are stressed or violated. From a positive definite γ, one can increase |γ12| so the two eigenvalues
become less comparable. Increasing |γ12| more gives one positive eigenvalue and one zero eigenvalue for γ.
Increasing |γ12| still further yields one positive eigenvalue and one negative eigenvalue.

Wang, Ren and Zhao [33] performed numerical calculations with a gradient flow of a diffuse interface
analogy of (1.3). If |γ12| is small compared to γ11 and γ22, double bubble assemblies appear. If γ12 is positive
and is tuned up to a larger value, double bubble assemblies lose to disc assemblies. Such a disc assembly
consists of many discs, each made of type-I constituent or type-II constituent. The two type discs are well
mixed in an organized way to form a good lattice structure. If γ12 is increased more, then the two type
discs are not well mixed; they appear randomly in the assembly. Finally if γ12 is increased further, the two
type discs no longer mix; they escape into two large separated regions. Theorem 1.1 is motivated by these
numerical calculations. Many observed phenomena are captured in the theorem.

The numbers K1 and K2 are prescribed in the theorem. This implies that there are multiple stationary
assemblies for given ǫ and γ. These assemblies differ in their numbers of discs. In the case that the γij ’s are
of the order 1

ǫ3 log 1

ǫ

we can find the optimal numbers of discs. Suppose that

γij =
1

ǫ3 log 1
ǫ

Γij , i, j = 1, 2, (2.1)

where the Γij ’s are positive and fixed. In relation to the Γij ’s in Theorem 1.1,

Γij =
Γij

|Γ| . (2.2)

To the leading order, the energy of the solution is

K1∑

k=1

(
2πrk1 +

γ11π

4
(rk1 )

4 log
1

rk1

)
+

K2∑

k=1

(
2πrk2 +

γ22π

4
(rk2 )

4 log
1

rk2

)
; (2.3)
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see Lemma 7.1. Let rki = ǫRk
i . Then the leading order of the above becomes

ǫ
[ K1∑

k=1

(
2πRk

1 +
Γ11π

4
(Rk

1)
4
)
+

K2∑

k=1

(
2πRk

2 +
Γ22π

4
(Rk

2)
4
)]

(2.4)

The Rk
i ’s are subject to the constraints

K1∑

k=1

π(Rk
1)

2 = m,

K2∑

k=1

π(Rk
2)

2 = 1−m.

Since the theorem asserts that the perturbed discs of the same type have approximately the same radius, we
take Rk

1 and Rk
2 to be R1 and R2 respectively where

R1 =
ρ1

ǫ
=

√
m

K1π
, R2 =

ρ2

ǫ
=

√
1−m

K2π
. (2.5)

and simplify (2.4) to

ǫK1

(
2π

√
m

K1π
+

Γ11π

4

( m

K1π

)2)
+ ǫK2

(
2π

√
1−m

K2π
+

Γ22π

4

(1−m

K2π

)2)

= ǫ
(
2
√
mπK

1/2
1 +

Γ11m
2

4π
K−1

1 + 2
√
(1−m)πK

1/2
2 +

Γ22(1−m)2

4π
K−1

2

)

With respect to K1 and K2 the above is minimized at

K1 =

(
Γ11

4

)2/3
m

π
, K2 =

(
Γ22

4

)2/3
1−m

π
, (2.6)

if one is willing to overlook the fact that K1 and K2 are integers. These are the optimal numbers of discs in
the sense that the energy of the disc assembly is the smallest if K1 and K2 assume the values of (2.6). One
should check that under (2.6),

γ11 =
4

ǫ3 log 1
ǫ

(K1π

m

)3/2
=

4

ρ31 log
1
ρ1

+O
( 1

ρ31
(
log 1

ρ1

)2
)
, (2.7)

and

γ22 =
4

ǫ3 log 1
ǫ

( K2π

1−m

)3/2
=

4

ρ32 log
1
ρ2

+O
( 1

ρ32
(
log 1

ρ2

)2
)
, (2.8)

so condition 2 of Theorem 1.1 is satisfied. Also note that with the optimal numbers of discs (2.6) the disc
radii become

ρ1 = ǫ
( 4

Γ11

)1/3
, ρ2 = ǫ

( 4

Γ22

)1/3
. (2.9)

These values do not depend on m.
The locations of the discs in a stationary disc assembly can be found by numerical minimization of

function F in (1.16). Recall that Green’s function G(x, y) as a function of x satisfies

−∆G(·, y) = δ(· − y)− 1

|D| in D; ∂νG(·, y) = 0 on ∂D;

∫

D

G(x, y)dx = 0 (2.10)

for each y ∈ D. One can write G as a sum of two terms:

G(x, y) =
1

2π
log

1

|x− y| +R(x, y). (2.11)
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Figure 3: Q11 = Q22 = 1 and Q12 = 0.2. From left to right: K1 = 10 and K2 = 90, K1 = 30 and K2 = 70,
K1 = K2 = 50.

Figure 4: Q11 = Q22 = Q12 = 1. From left to right: K1 = 10 and K2 = 90, K1 = 30 and K2 = 70,
K1 = K2 = 50.

The first term 1
2π log 1

|x−y| is the fundamental solution of the Laplace operator; the second term R is the

regular part of Green’s function, a smooth function of (x, y) ∈ D ×D. In the case that D is the unit disc,

G(x, y) =
1

2π
log

1

|x− y| +
1

2π

[ |x|2
2

+
|y|2
2

+ log
1

|xy − 1|
]
− 3

8π
, (2.12)

where y is the complex conjugate of y and D is viewed as a subset of C, so we have a closed formula for F .
Let

Q11 =
Γ11m

2

K2
1

, Q12 =
Γ12m(1−m)

K1K2
, Q22 =

Γ22(1−m)2

K2
2

, Q =

[
Q11 Q12

Q12 Q22

]
, (2.13)

where the Γij ’s are given in Theorem 1.1. Then Qij and Ki are the parameters that determine F .
We carry out numerical minimization of F , with D being the unit disc, for three main scenarios:

1. Q is positive definite,

2. Q has one positive eigenvalue and one zero eigenvalue,

3. Q has one positive and one negative eigenvalue.

Since the positivity of the matrix Q is equivalent to the positivity of the matrix Γ and Γ must be positive
definite for triblock copolymers, the second and third scenarios do not apply to triblock copolymers.

In the first scenario we take Q11 = Q22 = 1 and Q12 = 0.2 and run numerical minimization for three
cases of K1 and K2. Results are shown in Figure 3 where type-I discs are shown in blue and type-II discs
in yellow. The two type discs are well mixed; they arrange themselves in a very organized, nearly periodic
way, forming a lattice. We invite the reader to compare our Figure 3 to the triblock copolymer cylindrical
morphological phase in [3, Figure 5 (f)].
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Figure 5: Q11 = Q22 = 1 and Q12 = 1.2. From left to right: K1 = 10 and K2 = 90, K1 = 30 and K2 = 70,
K1 = K2 = 50.

In the second scenario, let Q11 = Q22 = Q12 = 1 so the two eigenvalues of Q are 2 and 0. For various
cases of K1 and K2 we see in Figure 4 that the two type discs mix in a disorganized and random way.

In the last scenario we take Q11 = Q22 = 1 and Q12 = 1.2 so Q has one positive eigenvalue and one
negative eigenvalue. For three cases of K1 and K2 we observe that the type-I and type-II discs segregate
macroscopically. Two large regions appear where one holds the type-I discs and the other holds the type-II
discs; see Figure 5.

When Q11 and Q22 are not equal, same conclusions hold. Those computational results are presented in
Appendix.

Here we see that the functional J is capable of producing a primary structure and a secondary structure.
A primary structure is visible at the microscopic level and for disc assemblies we see two type, near circular
discs. A secondary structure appears at the macroscopic level. In the first scenario, because the two type discs
are well mixed and well organized in a nearly periodic fashion, macroscopically one has a uniform structure.
In the second scenario, because the two type discs are not mixed in an organized way, macroscopically
one sees uneven concentration of the type-I and type-II constituents. In the third case macroscopically
there appear two large domains, one with high concentration of type-I constituent and the other with high
concentration of type-II constituent; the two regions are separated by a macroscopic interface of constant
curvature.

3 Exact discs

In this section we construct an assembly of exact discs and compute its energy. Later it will be used as an
approximate solution.

Let ξ11 , ..., ξ
K1

1 , ξ12 , ..., ξ
K2

2 be K1 + K2 points in D and r11, · · · , rK1

1 , r12, · · · , rK2

2 be K1 + K2 numbers.
Denote by Bk

i = {x ∈ R
2 : |x − ξki | < rki } an exact disc for i = 1, 2 and k = 1, 2, ...,Ki. Also introduce wk

i ,
the scaled area of Bk

i , so that

π(rki )
2 = ǫ2wk

i . (3.1)

The wk
i ’s form a point w in the set Wh which is the closure of

Wh =

{
w =

(
w1

1, ..., w
K1

1 , w1
2, ..., w

K2

2

)
∈ R

K1+K2 :
∣∣∣wk

1 − m

K1

∣∣∣ < h, k = 1, 2, ...,K1,

∣∣∣wk
2 − 1−m

K2

∣∣∣ < h, k = 1, 2, ...,K2,

K1∑

k=1

wk
1 = m,

K2∑

k=1

wk
2 = 1−m

}
. (3.2)

For now assume that

0 < h < min

{
m

2K1
,
1−m

2K2

}
; (3.3)

9



later h will be made sufficiently small. Initially w is fixed in Wh. Later in Section 7 it will vary. Of course
w1

i ,..., w
Ki

i can vary only if Ki > 1. If Ki = 1, then w1
i is fixed at m if i = 1 or 1−m if i = 2.

Recall the function F defined in (1.16). The domain of F is

Ξ = {ξ = (ξ11 , · · · , ξK1

1 , ξ12 , · · · , ξK2

2 ) : ξki ∈ D, i = 1, 2, k = 1, ...,Ki, ξ
k
i 6= ξlj if i 6= j or k 6= l}. (3.4)

It is known that R(x, x) → ∞ if x→ ∂D; see [19] for a more elaborate study of this property. Consequently
F (ξ) → ∞ as ξ → ∂Ξ where Ξ is viewed as a subset of R2(K1+K2). One can find a small enough δ > 0 such
that

min
ξ∈Ξ

F (ξ) < min
ξ∈Ξ\Ξδ

F (ξ). (3.5)

Here Ξδ is a subset of Ξ defined as

Ξδ = {ξ ∈ Ξ : d(ξki , ∂D) > δ, i = 1, 2, k = 1, ...,Ki, d(ξ
k
i , ξ

l
j) > 2δ if i 6= j or k 6= l}. (3.6)

In (3.6), with an abuse of notation, “d” stands for both the Euclidean distance in R
2 between two points

and the distance from a point to a set. Henceforth the number δ remains fixed.
The centers ξki of the discs Bk

i form a point ξ which is fixed in the closure of Ξδ:

ξ = (ξ11 , · · · , ξK1

1 , ξ12 , · · · , ξK2

2 ) ∈ Ξδ. (3.7)

Later in Section 7, ξ will vary. All quantitative estimates in this paper are uniform with respect to w ∈Wh

and ξ ∈ Ξδ.
Our initial requirement on ǫ0 of Theorem 1.1, the bound for ǫ, is that ǫ0 must be small enough so that

0 < rki = ǫ

√
wk

i

π
< ǫ0

√
wk

i

π
<
δ

2
(3.8)

holds for all w ∈Wh. With this choice of ǫ0 and with ǫ < ǫ0, for z
k
i ∈ Bk

i and x ∈ ∂D,

d(x, zki ) ≥ d(x, ξki )− d(ξki , z
k
i ) > δ − rki >

δ

2
. (3.9)

For zki ∈ Bk
i and zlj ∈ Bl

j , where i 6= j or k 6= l,

d(zki , z
l
j) ≥ d(ξki , ξ

l
j)− d(ξki , z

k
i )− d(ξlj , z

l
j) > 2δ − rki − rlj > δ. (3.10)

Hence the discs Bk
i are all inside D and well separated from each other. Moreover with zki ∈ Bk

i , z =
(z11 , · · · , zK1

1 , z12 , · · · , zK2

2 ) is in Ξ δ
2

, where the set Ξ δ
2

is defined as in (3.6).

Let B1 = ∪K1

k=1B
k
1 and B2 = ∪K2

k=1B
k
2 . Then (B1, B2) is an assembly of exact discs. For now the centers

ξki and the scaled areas wk
i are taken arbitrarily from Ξδ and Wh respectively. They will be determined in

Lemma 7.3. Our first result gives J (B1, B2), the energy of the exact disc assembly.
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Lemma 3.1.

J (B1, B2) =

K1
∑

k=1

2πrk1 +

K2
∑

k=1

2πrk2

+
γ11π

2

2

[

K1
∑

k=1

(

(

rk1
)4

8π
−

(

rk1
)4

log rk1

2π
+

(

r
k
1

)

4

R(ξk1 , ξ
k
1 )

)

+

K1
∑

k=1

K1
∑

l=1,l 6=k

(

r
k
1

)

2
(

r
l
1

)

2

G(ξk1 , ξ
l
1) +

K1
∑

k=1

K1
∑

l=1

(

(

rk1
)2 (

rl1
)4

8|D|
+

(

rk1
)4 (

rl1
)2

8|D|

)

]

+γ12π
2

K1
∑

k=1

K2
∑

l=1

[

(

r
k
1

)

2
(

r
l
2

)

2

G(ξk1 , ξ
l
2) +

(

rk1
)2 (

rl2
)4

8|D|
+

(

rk1
)4 (

rl2
)2

8|D|

]

+
γ22π

2

2

[

K2
∑

k=1

(

(

rk2
)4

8π
−

(

rk2
)4

log rk2

2π
+

(

r
k
2

)

4

R(ξk2 , ξ
k
2 )

)

+

K2
∑

k=1

K2
∑

l=1,l 6=k

(

r
k
2

)

2
(

r
l
2

)

2

G(ξk2 , ξ
l
2) +

K2
∑

k=1

K2
∑

l=1

(

(

rk2
)2 (

rl2
)4

8|D|
+

(

rk2
)4 (

rl2
)2

8|D|

)

]

.

Proof. The first part of J (B1, B2), denoted by Js(B1, B2) for short range interaction, is just the total arc
length:

Js (B1, B2) =

K1∑

k=1

2πrk1 +

K2∑

k=1

2πrk2 . (3.11)

The second part of J (B1, B2), denoted by Jl(B1, B2) for long range interaction, is

Jl (B1, B2) =
γ11

2

∫

D

| (−∆)−1/2 (χB1
− ω1) |2 dx

+γ12

∫

D

(
(−∆)

−1/2
(χB1

− ω1)
)(

(−∆)
−1/2

(χB2
− ω2)

)
dx

+
γ22

2

∫

D

| (−∆)−1/2 (χB2
− ω2) |2 dx

≡ I + II + III, (3.12)

where

I =
γ11

2

∫

D

|(−∆)−1/2 (χB1
− ω1) |2dx =

γ11

2

∫

B1

v1 (x) dx, (3.13)

II = γ12

∫

D

(
(−∆)

−1/2
(χB1

− ω1)
)(

(−∆)
−1/2

(χB2
− ω2)

)
dx

= γ12

∫

B2

v1 (x) dx, (3.14)

III =
γ22

2

∫

D

| (−∆)−1/2 (χB2
− ω2) |2 dx =

γ22

2

∫

B2

v2 (x) dx. (3.15)

Here v1 and v2 are the solutions of

−∆vi = χBi
− ωi in D, ∂νvi = 0 on ∂D,

∫

D

vi = 0, i = 1, 2.

One can write

v1 =

K1∑

k=1

vk1 , v2 =

K2∑

k=1

vk2 , (3.16)
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where vki solves

−∆vki = χBk
i
− π

(
rki
)2

|D| in D, ∂νv
k
i = 0 on ∂D,

∫

D

vki = 0.

Define

P k
i (x) =





− |x|2

4 +
(rki )

2

4 − (rki )
2

2 log rki ,

− (rki )
2

2 log |x|,
if|x| < rki ,

if|x| ≥ rki .
(3.17)

Then −∆P k
i (x− ξki ) = χBk

i
. Let vki = P k

i (x− ξki ) +Q(x, ξki ), where Q solves

−∆Q(x, ξki ) = −π
(
rki
)2

|D| in D,

∂νQ(x, ξki ) = ∂ν

(
rki
)2

2
log |x− ξki | on ∂D, (3.18)

∫

D

Q(x, ξki )dx = −
∫

D

P k
i (x− ξki )dx.

By (2.11) and (2.10),

−∆
(
π
(
rki
)2
R(x, ξki )

)
= −π

(
rki
)2

|D| in D,

∂ν

(
π
(
rki
)2
R(x, ξki )

)
= ∂ν

(
rki
)2

2
log |x− ξki | on ∂D, (3.19)

∫

D

(
π
(
rki
)2
R(x, ξki )

)
dx =

∫

D

(
rki
)2

2
log |x− ξki | dx.

Comparing (3.18) to (3.19), we deduce

Q(x, ξki ) = π
(
rki
)2
R(x, ξki ) +

π(rki )
4

8|D| . (3.20)

Thus,

vki (x) = P k
i (x− ξki ) + π

(
rki
)2
R(x, ξki ) +

π(rki )
4

8|D| , i = 1, 2, k = 1, ...,Ki. (3.21)

By (3.16),

∫

B1

v1 (x) dx =

K1∑

l=1

K1∑

k=1

∫

Bl
1

vk1 (x) dx.

When l = k, by (3.17),

∫

Bk
1

P k
1 (x− ξk1 )dx =

π
(
rk1
)4

8
− π

(
rk1
)4

log rk1
2

.

By (3.18), Q(x, ξk1 )−
π(rk

1
)2

4|D| |x− ξk1 |2 is harmonic in x. The mean value property of harmonic functions and

(3.20) imply

∫

Bk
1

Q(x, ξk1 )dx = π2
(
rk1
)4
R
(
ξk1 , ξ

k
1

)
+
π2(rk1 )

6

4|D| . (3.22)
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When l 6= k, by (3.17) and the mean value property of harmonic functions,

∫

Bl
1

P k
1 (x− ξk1 )dx = −π(r

l
1)

2(rk1 )
2

2
log |ξl1 − ξk1 |.

Similar to the derivation of (3.22), we have

∫

Bl
1

Q(x, ξk1 )dx = π2
(
rl1
)2 (

rk1
)2
R
(
ξl1, ξ

k
1

)
+

(
rl1
)2 (

rk1
)4

8|D| +

(
rk1
)2 (

rl1
)4

8|D| .

Hence,

∫

B1

v1 (x) dx = π2

[
K1∑

k=1

((
rk1
)4

8π
−
(
rk1
)4

log rk1
2π

+
(
rk1
)4
R
(
ξk1 , ξ

k
1

))
(3.23)

+

K1∑

k=1

K1∑

l=1,l 6=k

(
rk1
)2 (

rl1
)2
G
(
ξk1 , ξ

l
1

)
+

K1∑

k=1

K1∑

l=1

((
rk1
)2 (

rl1
)4

8|D| +

(
rk1
)4 (

rl1
)2

8|D|

)]
.

Similar calculations show that

∫

B2

v1 (x) dx = π2
K1∑

k=1

K2∑

l=1

[
(
rk1
)2 (

rl2
)2
G
(
ξk1 , ξ

l
2

)
+

(
rk1
)2 (

rl2
)4

8|D| +

(
rk1
)4 (

rl2
)2

8|D|

]
, (3.24)

∫

B2

v2 (x) dx = π2

[
K2∑

k=1

((
rk2
)4

8π
−
(
rk2
)4

log rk2
2π

+
(
rk2
)4
R
(
ξk2 , ξ

k
2

))
(3.25)

+

K2∑

k=1

K2∑

l=1,l 6=k

(
rk2
)2 (

rl2
)2
G
(
ξk2 , ξ

l
2

)
+

K2∑

k=1

K2∑

l=1

((
rk2
)2 (

rl2
)4

8|D| +

(
rk2
)4 (

rl2
)2

8|D|

)]
.

The lemma then follows from (3.23) - (3.25).

4 Perturbed discs

We set up a framework to study assemblies of perturbed discs in this section. Let φki , i = 1, 2, k = 1, ...,Ki,
be 2π periodic functions, collectively denoted as

φ = (φ11, · · · , φK1

1 , φ12, · · · , φK2

2 ). (4.1)

Using φ, we define K1 +K2 sets

Ωk
i =

{
ξki + teiθ : θ ∈ [0, 2π], t ∈

[
0,
√
(rki )

2 + 2φki (θ)

]}
, i = 1, 2, k = 1, ...,Ki. (4.2)

Since our domain is in R
2 we often use the complex notation for simplicity. In (4.2) eiθ is just (cos θ, sin θ).

The reader will see things like eiθ · x which is the inner product of two vectors eiθ and x in R
2.

Also in (4.2) |φki (θ)| must be small compared to (rki )
2, so Ωk

i is a perturbation of Bk
i . The area of Ωk

i is

|Ωk
i | =

∫ 2π

0

∫ √
(rki )

2+2φk
i (θ)

0

tdtdθ = π(rki )
2 +

∫ 2π

0

φki dθ. (4.3)

If the φki ’s satisfy

Ki∑

k=1

∫ 2π

0

φki dθ = 0, i = 1, 2, (4.4)
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then Ω1 = ∪K1

k=1Ω
k
1 and Ω2 = ∪K2

k=1Ω
k
2 satisfy the area constraints |Ω1| = ǫ2m and |Ω2| = ǫ2(1−m).

Let us define some Hilbert spaces. First

Z =
{
φ = (φ11, · · · , φK1

1 , φ12, · · · , φK2

2 ) : φki ∈ L2(S1), i = 1, 2, k = 1, ...,Ki,

Ki∑

k=1

∫ 2π

0

φki dθ = 0, i = 1, 2
}
.

(4.5)
Here S1 is the unit circle identified with [0, 2π]. The inner product on Z is

〈φ, ψ〉 =
2∑

i=1

Ki∑

k=1

∫ 2π

0

φki ψ
k
i dθ. (4.6)

In order to define the energy J on an assembly of such perturbed discs, one needs some smoothness on
φki . Let

Y =
{
φ ∈ Z : φki ∈ H1(S1), i = 1, 2, k = 1, ...,Ki

}
(4.7)

be a subspace of Z. Here H1(S1) is a usual Sobolev space on S1. The norm of Y is given by

||φ||2Y =

2∑

i=1

Ki∑

k=1

∫ 2π

0

(
((φki )

′)2 + (φki )
2
)
dθ. (4.8)

If ξ and w are held fixed, J is viewed as a functional of φ with the domain

Dom(J ) = {φ ∈ Y : ||φ||Y < βǫ2}. (4.9)

Recall that for all ǫ < ǫ0, ξ ∈ Ξδ and w ∈Wh, the exactly disc assembly (B1, B2) determined by ǫ, ξ, and w
has the property that z = (z11 , · · · , zK1

1 , z12 , · · · , zK2

2 ) ∈ Ξ δ
2

if zki ∈ Bk
i for i = 1, 2, and k = 1, · · · ,Ki. Choose

β in (4.9) sufficiently small so that for all ǫ < ǫ0, all (ξ, w) ∈ Ξδ ×Wh, and all φ ∈ Dom(J ), the perturbed
disc assembly (Ω1,Ω2) specified by ǫ, ξ, w, and φ has the property that z = (z11 , · · · , zK1

1 , z12 , · · · , zK2

2 ) ∈ Ξ δ
4

if zki ∈ Ωk
i . Hence the perturbed discs Ωk

i in (Ω1,Ω2) are well separated, and they all stay inside D, away
from ∂D.

One writes J (φ) for J (Ω1,Ω2). Then J (φ) = Js(φ) + Jl(φ), where Js(φ) and Jl(φ) are given in terms
of φ as

Js (φ) =

2∑

i=1

Ki∑

k=1

∫ 2π

0

√√√√√(rki
)2

+ 2φki (θ) +

((
φki
)′
(θ)
)2

(
rki
)2

+ 2φki (θ)
dθ (4.10)

Jl (φ) =
γ11

2

K1∑

k=1

K1∑

l=1

∫ 2π

0

∫ √

(rk1 )
2
+2φk

1
(θ)

0

∫ 2π

0

∫ √

(rl1)
2
+2φl

1
(η)

0

G(ξk1 + teiθ, ξl1 + τeiη)tτ dτdηdtdθ

+γ12

K1∑

k=1

K2∑

l=1

∫ 2π

0

∫ √

(rk1 )
2
+2φk

1
(θ)

0

∫ 2π

0

∫ √

(rl2)
2
+2φl

2
(η)

0

G(ξk1 + teiθ, ξl2 + τeiη)tτ dτdηdtdθ

+
γ22

2

K2∑

k=1

K2∑

l=1

∫ 2π

0

∫ √

(rk2 )
2
+2φk

2
(θ)

0

∫ 2π

0

∫ √

(rl2)
2
+2φl

2
(η)

0

G(ξk2 + teiθ, ξl2 + τeiη)tτ dτdηdtdθ

(4.11)
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Next consider the first variation of the functional J with respect to φ. For convenience introduce functions
Lk
i :

Lk
i ((φ

k
i )

′, φki ) =

√√√√√(rki
)2

+ 2φki (θ) +

((
φki
)′
(θ)
)2

(
rki
)2

+ 2φki (θ)
. (4.12)

A deformation in Y is simply

φ→ φ+ εψ (4.13)

for φ ∈ Dom(J ), ψ ∈ Y and ε ∈ R. The first variation of J is the directional derivative

dJ (φ+ εψ)

dε

∣∣∣∣∣
ε=0

=
dJs(φ+ εψ)

dε

∣∣∣∣∣
ε=0

+
dJl(φ+ εψ)

dε

∣∣∣∣∣
ε=0

, (4.14)

where

dJs(φ+ εψ)

dε

∣∣∣∣∣
ε=0

=
2∑

i=1

Ki∑

k=1

∫ 2π

0

(D1L
k
i ((φ

k
i )

′, φki )(ψ
k
i )

′ +D2L
k
i ((φ

k
i )

′, φki )ψ
k
i )dθ (4.15)

(D1 and D2 denote differentiation with respect to the first and the second arguments of Lk
i respectively),

and

dJl(φ+ εψ)

dε

∣∣∣∣∣
ε=0

= γ11

K1∑

k=1

∫ 2π

0

IΩ1
(ξk1 +

√(
rk1
)2

+ 2φk1(θ)e
iθ)ψk

1 (θ)dθ

+γ12

K1∑

k=1

∫ 2π

0

IΩ2
(ξk1 +

√(
rk1
)2

+ 2φk1(θ)e
iθ)ψk

1 (θ)dθ

+γ12

K2∑

k=1

∫ 2π

0

IΩ1
(ξk2 +

√(
rk2
)2

+ 2φk2(θ)e
iθ)ψk

2 (θ)dθ

+γ22

K2∑

k=1

∫ 2π

0

IΩ2
(ξk2 +

√(
rk2
)2

+ 2φk2(θ)e
iθ)ψk

2 (θ)dθ. (4.16)

We would like to have operators Ss and Sl so that

dJs(φ+ εψ)

dε

∣∣∣∣∣
ε=0

= 〈Ss(φ), ψ〉,
dJl(φ+ εψ)

dε

∣∣∣∣∣
ε=0

= 〈Sl(φ), ψ〉. (4.17)

This is always possible for Jl, but for Js, one must restrict φ to a smaller, more smooth space. Define

X =
{
φ ∈ Z : φki ∈ H2(S1), i = 1, 2, k = 1, ...,Ki

}
(4.18)

with the norm

||φ||2X =

2∑

i=1

Ki∑

k=1

∫ 2π

0

(
((φki )

′′)2 + ((φki )
′)2 + (φki )

2
)
dθ. (4.19)

Clearly X ⊂ Y ⊂ Z. One can define S = Ss + Sl on

Dom(S) = {φ ∈ X : ||φ||X < βǫ2} (4.20)
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where β is the same as the number in (4.9). Therefore Dom(S) ⊂ Dom(J ). The nonlinear operators Ss and
Sl map from Dom(S) to Z as follows. The component Sk

s,i(φ) is given as

Sk
s,i(φ) = Hk

i (φ
k
i )− λs,i(φi) (4.21)

where

Hk
i

(
φki
)
(θ) =

(
rki
)2

+ 2φki +
3((φk

i )
′

)
2

(rki )
2
+2φk

i

−
(
φki
)′′

((
rki
)2

+ 2φki +
((φk

i )
′

)
2

(rki )
2
+2φk

i

) 3

2

(4.22)

is the curvature operator, and λs,i(φi) is a number, depending on φi = (φ1i , · · · , φKi

i ), so chosen that

Ki∑

k=1

∫ 2π

0

Sk
s,i(φ) dθ = 0, i = 1, 2. (4.23)

Note that λs,i(φi) is the same for all k = 1, 2, · · · ,Ki. The components of Sl(φ) are

Sk
l,1(φ) = γ11IΩ1

(ξk1 +

√(
rk1
)2

+ 2φk1(θ)e
iθ) + γ12IΩ2

(ξk1 +

√(
rk1
)2

+ 2φk1(θ)e
iθ)− λl,1(φ) (4.24)

Sk
l,2(φ) = γ12IΩ1

(ξk2 +

√(
rk2
)2

+ 2φk2(θ)e
iθ) + γ22IΩ2

(ξk2 +

√(
rk2
)2

+ 2φk2(θ)e
iθ)− λl,2(φ) (4.25)

where λl,i(φ) are numbers that ensure

Ki∑

k=1

∫ 2π

0

Sk
l,i(φ) dθ = 0, i = 1, 2. (4.26)

We need to write Sk
l,i(φ) more explicitly. Let

Ak
1

(
φk1
)

= −γ11
2π

∫ 2π

0

∫ √

(rk1 )
2
+2φk

1
(η)

0

log

∣∣∣∣
√(

rk1
)2

+ 2φk1 (θ)e
iθ − teiη

∣∣∣∣ tdtdη

Bk
1

(
φk1
)

= γ11

∫ 2π

0

∫ √

(rk1 )
2
+2φk

1
(η)

0

R(ξk1 +

√(
rk1
)2

+ 2φk1 (θ)e
iθ, ξk1 + teiη)tdtdη.

When 1 ≤ l ≤ K1 and l 6= k,

Ckl
1

(
φk1 , φ

l
1

)
= γ11

∫ 2π

0

∫ √

(rl1)
2
+2φl

1
(η)

0

G(ξk1 +

√(
rk1
)2

+ 2φk1 (θ)e
iθ, ξl1 + teiη)tdtdη.

When 1 ≤ l ≤ K2,

Dkl
1

(
φk1 , φ

l
2

)
= γ12

∫ 2π

0

∫ √

(rl2)
2
+2φl

2
(η)

0

G(ξk1 +

√(
rk1
)2

+ 2φk1 (θ)e
iθ, ξl2 + teiη)tdtdη.

Similarly,

Ak
2

(
φk2
)

= −γ22
2π

∫ 2π

0

∫ √

(rk2 )
2
+2φk

2
(η)

0

log

∣∣∣∣
√(

rk2
)2

+ 2φk2 (θ)e
iθ − teiη

∣∣∣∣ tdtdη

Bk
2

(
φk2
)

= γ22

∫ 2π

0

∫ √

(rk2 )
2
+2φk

2
(η)

0

R(ξk2 +

√(
rk2
)2

+ 2φk2 (θ)e
iθ, ξk2 + teiη)tdtdη.
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When 1 ≤ l ≤ K2 and l 6= k,

Ckl
2

(
φk2 , φ

l
2

)
= γ22

∫ 2π

0

∫ √

(rl2)
2
+2φl

2
(η)

0

G(ξk2 +

√(
rk2
)2

+ 2φk2 (θ)e
iθ, ξl2 + teiη)tdtdη.

When 1 ≤ l ≤ K1,

Dkl
2

(
φk2 , φ

l
1

)
= γ12

∫ 2π

0

∫ √

(rl1)
2
+2φl

1
(η)

0

G(ξk2 +

√(
rk2
)2

+ 2φk2 (θ)e
iθ, ξl1 + teiη)tdtdη.

Then we obtain

Sk
1 (φ) = Hk

1

(
φk1
)
+Ak

1

(
φk1
)
+ Bk

1

(
φk1
)
+

K1∑

l=1,l 6=k

Ckl
1

(
φk1 , φ

l
1

)
+

K2∑

l=1

Dkl
1

(
φk1 , φ

l
2

)
− λ1(φ), (4.27)

Sk
2 (φ) = Hk

2

(
φk2
)
+Ak

2

(
φk2
)
+ Bk

2

(
φk2
)
+

K2∑

l=1,l 6=k

Ckl
2

(
φk2 , φ

l
2

)
+

K1∑

l=1

Dkl
2

(
φk2 , φ

l
1

)
− λ2(φ). (4.28)

Here λ1(φ) and λ2(φ) are two numbers, independent of k, so chosen that

Ki∑

k=1

∫ 2π

0

Sk
i (φ) dθ = 0, i = 1, 2. (4.29)

The equations (1.6) and (1.7) now become

S(φ) = 0. (4.30)

When ξ and w are fixed, the exact disc assembly (B1, B2) is represented by φ = 0 in X . We insert this
assembly into the left sides of (1.6) and (1.7) and see how much it deviates from a solution. In the present
notation the left sides of (1.6) and (1.7) are Sk

i (0) + λi(0). In the following we write ∇R or ∇G to denote

the gradient of R or G with respect to the first set of variables; namely ∇R(x, y) =
(

∂R(x,y)
∂x1

,
∂R(x,y)

∂x2

)
.

Lemma 4.1.

Sk
1 (0) + λ1(0) =

1

rk1
+ γ11

[
− (rk1 )

2

2
log rk1 + π(rk1 )

2
(
R(ξk1 , ξ

k
1 ) +∇R(ξk1 , ξk1 ) · rk1eiθ

)

+

K1∑

l=1,l 6=k

π(rl1)
2
(
G(ξk1 , ξ

l
1) +∇G(ξk1 , ξl1) · rk1eiθ

)
]

+γ12

[
K2∑

l=1

π(rl2)
2
(
G(ξk1 , ξ

l
2) +∇G(ξk1 , ξl2) · rk1eiθ

)
]
+O(|γ|ǫ4)

Sk
2 (0) + λ2(0) =

1

rk2
+ γ22

[
− (rk2 )

2

2
log rk2 + π(rk2 )

2
(
R(ξk2 , ξ

k
2 ) +∇R(ξk2 , ξk2 ) · rk2eiθ

)

+

K2∑

l=1,l 6=k

π(rl2)
2
(
G(ξk2 , ξ

l
2) +∇G(ξk2 , ξl2) · rk2eiθ

)
]

+γ12

[
K1∑

l=1

π(rl1)
2
(
G(ξk2 , ξ

l
1) +∇G(ξk2 , ξl1) · rk2eiθ

)
]
+O(|γ|ǫ4).
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Proof. The interfaces in the exact disc assembly are circles, so

Hk
i (0) =

1

rki
. (4.31)

Recall vli from (3.21), and v1 =
K1∑
l=1

vl1, v2 =
K2∑
l=1

vl2. Then

IB1
(ξk1 + rk1e

iθ) = v1(ξ
k
1 + rk1e

iθ) =

K1∑

l=1

vl1(ξ
k
1 + rk1e

iθ)

= − (rk1 )
2

2
log rk1 + π(rk1 )

2
(
R(ξk1 , ξ

k
1 ) +∇R(ξk1 , ξk1 ) · rk1eiθ

)

+

K1∑

l=1,l 6=k

π(rl1)
2
(
G(ξk1 , ξ

l
1) +∇G(ξk1 , ξl1) · rk1eiθ

)
+O(ǫ4), (4.32)

IB2
(ξk1 + rk1e

iθ) = v2(ξ
k
1 + rk1e

iθ) =

K2∑

l=1

vl2(ξ
k
1 + rk1e

iθ)

=

K2∑

l=1

π(rl2)
2
(
G(ξk1 , ξ

l
2) +∇G(ξk1 , ξl2) · rk1eiθ

)
+O(ǫ4), (4.33)

IB1
(ξk2 + rk2e

iθ) = v1(ξ
k
2 + rk2e

iθ) =

K1∑

l=1

vl1(ξ
k
2 + rk2e

iθ)

=

K1∑

l=1

π(rl1)
2
(
G(ξk2 , ξ

l
1) +∇G(ξk2 , ξl1) · rk2eiθ

)
+O(ǫ4), (4.34)

IB2
(ξk2 + rk2e

iθ) = v2(ξ
k
2 + rk2e

iθ) =

K2∑

l=1

vl2(ξ
k
2 + rk2e

iθ)

= − (rk2 )
2

2
log rk2 + π(rk2 )

2
(
R(ξk2 , ξ

k
2 ) +∇R(ξk2 , ξk2 ) · rk2eiθ

)

+

K2∑

l=1,l 6=k

π(rl2)
2
(
G(ξk2 , ξ

l
2) +∇G(ξk2 , ξl2) · rk2eiθ

)
+O(ǫ4). (4.35)

The lemma follows from (4.31) - (4.35) .

5 Linear analysis

The Fréchet derivative of S at φ is denoted by S ′(φ). It can also be interpreted as the second variation of J
because

∂2

∂ε1∂ε2

∣∣∣∣∣
ε1=ε2=0

J (φ+ ε1u+ ε2v) = 〈S ′(φ)(u), v〉. (5.1)
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In this section we study S ′(0), i.e. the linearized operator at the exact disc assembly (B1, B2). By (4.27)
and (4.28), consider the Fréchet derivative of each of the terms in S. Calculations show that

(Hk
i )

′

(0)(uki ) = − 1

(rki )
3
((uki )

′′

+ uki )

(
Ak

1

)′
(0)
(
uk1
)
(θ) = −γ11

2π

∫ 2π

0

uk1 (η) log |rk1eiθ − rk1e
iη|dη − γ11

2
uk1 (θ)

(
Bk
1

)′
(0)
(
uk1
)
(θ) = γ11

∫ 2π

0

uk1 (η)R(ξ
k
1 + rk1e

iθ, ξk1 + rk1e
iη)dη

+γ11
uk1 (θ)

rk1

∫

Bk
1

∇R
(
ξk1 + rk1e

iθ, y
)
· eiθdy

(
Ckl
1

)′
(0)
(
uk1 , u

l
1

)
(θ) = γ11

∫ 2π

0

ul1 (η)G(ξ
k
1 + rk1e

iθ, ξl1 + rl1e
iη)dη

+γ11
uk1 (θ)

rk1

∫

Bl
1

∇G
(
ξk1 + rk1e

iθ, y
)
· eiθdy

(
Dkl

1

)′
(0)
(
uk1 , u

l
2

)
(θ) = γ12

∫ 2π

0

ul2 (η)G(ξ
k
1 + rk1e

iθ, ξl2 + rl2e
iη)dη

+γ12
uk1 (θ)

rk1

∫

Bl
2

∇G
(
ξk1 + rk1e

iθ, y
)
· eiθdy

(
Ak

2

)′
(0)
(
uk2
)
(θ) = −γ22

2π

∫ 2π

0

uk2 (η) log |rk2eiθ − rk2e
iη|dη − γ22

2
uk2 (θ)

(
Bk
2

)′
(0)
(
uk2
)
(θ) = γ22

∫ 2π

0

uk2 (η)R(ξ
k
2 + rk2e

iθ, ξk2 + rk2e
iη)dη

+γ22
uk2 (θ)

rk2

∫

Bk
2

∇R
(
ξk2 + rk2e

iθ, y
)
· eiθdy

(
Ckl
2

)′
(0)
(
uk2 , u

l
2

)
(θ) = γ22

∫ 2π

0

ul2 (η)G(ξ
k
2 + rk2e

iθ, ξl2 + rl2e
iη)dη

+γ22
uk2 (θ)

rk2

∫

Bl
2

∇G
(
ξk2 + rk2e

iθ, y
)
· eiθdy

(
Dkl

2

)′
(0)
(
uk2 , u

l
1

)
(θ) = γ12

∫ 2π

0

ul1 (η)G(ξ
k
2 + rk2e

iθ, ξl1 + rl1e
iη)dη

+γ12
uk2 (θ)

rk2

∫

Bl
1

∇G
(
ξk2 + rk2e

iθ, y
)
· eiθdy

Separate S ′(0) into a dominant part E and a minor part F . The components of E are

Ek
i (u)(θ) = − 1

(rki )
3

(
(uki )

′′(θ) + uki (θ)
)
− γii

2π

∫ 2π

0

uki (η) log |rki eiθ − rki e
iη|dη − γii

2
uki (θ)− ei(u).
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The real valued linear operator ei is independent of k. It is so chosen that E maps from X to Z. The rest
of S ′(0) is denoted by F . Note that E is determined by H and A, and F is determined by B, C and D.

Decompose

Z =
∞
⊕

n=0
Z(n), (5.2)

where, when n 6= 0,

Z(n) =
{
a cosnθ + b sinnθ : a =

(
a11, · · · , aK1

1 , a12, · · · , aK2

2

)
∈ R

K1+K2 ,

b =
(
b11, · · · , bK1

1 , b12, · · · , bK2

2

)
∈ R

K1+K2

}
, (5.3)

and

Z(0) =
{
c =

(
c11, · · · , cK1

1 , c12, · · · , cK2

2

)
∈ R

K1+K2 :

Ki∑

k=1

cki = 0, i = 1, 2
}
. (5.4)

Below we will see that each Z(n) is invariant under E ; the eigenvectors of E are to be found in these Z(n)’s.
Let 1

k
i = (0, · · · , 0, 1, 0, · · · , 0) be a vector in R

K1+K2 . If i = 1, the k-th component of the vector is 1
and all the other components are 0. If i = 2, the (K1 + k)-th component of the vector is 1 and all the other
components are 0.

When n 6= 0, by the formula

log |1− eiθ| = −
∞∑

ñ=1

cos ñθ

ñ
,

we deduce

Ek
i (1

p
j cos(nθ)) =

{ (
n2−1
(rki )

3
+ γii

2n − γii

2

)
cos(nθ),

0

if j = i and p = k,

otherwise.

The same holds if 1p
j cosnθ is replaced by 1

p
j sinnθ. Thus,

E(1k
i cos(nθ)) =

(
n2 − 1

(rki )
3

+
γii

2n
− γii

2

)
1
k
i cos(nθ), (5.5)

E(1k
i sin(nθ)) =

(
n2 − 1

(rki )
3

+
γii

2n
− γii

2

)
1
k
i sin(nθ). (5.6)

This means that, when n 6= 0, in Z(n) there are K1 +K2 eigenvalues of E which are

µk
i,n :=

n2 − 1

(rki )
3

+
γii

2n
− γii

2
, i = 1, 2, k = 1, ...,Ki, (5.7)

whose multiplicity is 2. The corresponding eigenvectors are 1
k
i cos(nθ) and 1

k
i sin(nθ).

When n = 0, for every c ∈ Z(0),

Ek
i (c) =

(
− 1

(rki )
3
+ γii log

1

rki
− γii

2

)
cki − 1

Ki

Ki∑

l=1

(
− 1

(rli)
3
+ γii log

1

rli
− γii

2

)
cli, (5.8)

This shows that E(c) ∈ Z(0) when c ∈ Z(0). There are K1+K2−2 eigenvalues in Z(0) counting multiplicity.
Although an exact disc Bk

i has the well defined center ξki and the radius rki , after perturbation to Ωk
i

by φki , the notions of center and radius are no longer meaningful. Nevertheless, there is a special class
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of perturbations that preserve centers and radii, including the area of each perturbed disc. Let Π be the
orthogonal projection operator from Z to a subspace Z♭, where

Z♭ =

{
φ ∈ Z :

∫ 2π

0

φki dθ =

∫ 2π

0

φki cos θ dθ =

∫ 2π

0

φki sin θ dθ = 0, i = 1, 2, k = 1, ...,Ki

}
. (5.9)

Note that
Z♭ =

∞
⊕

n=2
Z(n). (5.10)

Also define

Y♭ = Y ∩ Z♭, X♭ = X ∩ Z♭. (5.11)

When φ ∈ Z♭, the perturbed disc described by φki is considered to be centered at ξki of radius rki . If φ ∈ Z\Z♭,
then ξki or rki cannot be interpreted as a center or a radius.

We are more interested in ΠS ′(0) and ΠE restricted to X♭ instead of S ′(0) and E on X . Since E maps X♭

into Z♭, ΠE = E on X♭.

Lemma 5.1. There exist c2 > 0 and h > 0 such that if ξ ∈ Ξδ and w ∈Wh, then

1.
〈ΠE(u), u〉 ≥ 2c2ǫ

−3||u||2Y
and

2.
||ΠE(u)||Z ≥ 2c2ǫ

−3||u||X

for all u ∈ X♭.

Proof. By (5.10) we consider

µk
i,n =

(n− 1)

2n(rki )
3

(
2n(n+ 1)− γii(r

k
i )

3
)

of (5.7) for n ≥ 2. According to condition 2 of Theorem 1.1,

γii(ρi)
3 < 12− η. (5.12)

By (3.1) and the definition of ρi in Theorem 1.1,

(rki )
2 =

ǫ2

π
wk

i , (ρ1)
2 =

ǫ2

π

m

K1
, (ρ2)

2 =
ǫ2

π

1−m

K2
. (5.13)

Choose h sufficiently small, so that, in addition to (3.3), one has the property

γii(r
k
i )

3 < 12− η

2
(5.14)

for all w ∈Wh. Thus, when n ≥ 2,

µk
i,n >

(n− 1)

2n(rki )
3

(
2n(n+ 1)− 12 +

η

2

)
. (5.15)

It follows that there exists c > 0, independent of n and ǫ, such that

µk
i,n ≥ c ǫ−3n2. (5.16)

Both parts of the lemma follow from (5.16).
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Henceforth h in the definition (3.2) of Wh is chosen in accordance with Lemma 5.1. We use c2 with a
lower case c and a subscript 2 to indicate that the constant is used for a lower bound of the second variation
of J at 0. The second part F of S ′(0) is minor.

Lemma 5.2. There exists C2 > 0 independent of ǫ and γ such that

‖F(u)‖Z ≤ C2|γ|ǫ ‖u‖Z
for all u ∈ X♭.

Proof. The operator F is given by

Fk
1 (u)(θ) = γ11

∫ 2π

0

uk1 (η)R(ξ
k
1 + rk1e

iθ, ξk1 + rk1e
iη)dη

+γ11
uk1 (θ)

rk1

∫

Bk
1

∇R
(
ξk1 + rk1e

iθ, y
)
· eiθdy

+

K1∑

l=1,l 6=k

γ11

∫ 2π

0

ul1 (η)G(ξ
k
1 + rk1e

iθ, ξl1 + rl1e
iη)dη

+

K1∑

l=1,l 6=k

γ11
uk1 (θ)

rk1

∫

Bl
1

∇G
(
ξk1 + rk1e

iθ, y
)
· eiθdy

+

K2∑

l=1

γ12

∫ 2π

0

ul2 (η)G(ξ
k
1 + rk1e

iθ, ξl2 + rl2e
iη)dη

+

K2∑

l=1

γ12
uk1 (θ)

rk1

∫

Bl
2

∇G
(
ξk1 + rk1e

iθ, y
)
· eiθdy − f1(u),

Fk
2 (u)(θ) = γ22

∫ 2π

0

uk2 (η)R(ξ
k
2 + rk2e

iθ, ξk2 + rk2e
iη)dη

+γ22
uk2 (θ)

rk2

∫

Bk
2

∇R
(
ξk2 + rk2e

iθ, y
)
· eiθdy

+

K2∑

l=1,l 6=k

γ22

∫ 2π

0

ul2 (η)G(ξ
k
2 + rk2e

iθ, ξl2 + rl2e
iη)dη

+

K2∑

l=1,l 6=k

γ22
uk2 (θ)

rk2

∫

Bl
2

∇G
(
ξk2 + rk2e

iθ, y
)
· eiθdy

+

K1∑

l=1

γ12

∫ 2π

0

ul1 (η)G(ξ
k
2 + rk2e

iθ, ξl1 + rl1e
iη)dη

+

K1∑

l=1

γ12
uk2 (θ)

rk2

∫

Bl
1

∇G
(
ξk2 + rk2e

iθ, y
)
· eiθdy − f2(u)

where f1(u) and f2(u) are real valued and independent of k. They ensure that F(u) is in Z.

Recall that ∇R (and ∇G) denotes the gradient of R with respect to the first set of variables. Let ∇̃R (and

∇̃G) denote the gradient of R with respect to the second set of variables, i.e. ∇̃R(x, y) = (∂R(x,y)
∂y1

,
∂R(x,y)

∂y2

).
Because

R(ξki + rki e
iθ, ξki + rki e

iη) = R(ξki , ξ
k
i ) +∇R(ξki , ξki ) · rki eiθ + ∇̃R(ξki , ξki ) · rki eiη +O(ǫ2),

G(ξki + rki e
iθ, ξlj + rlje

iη) = G(ξki , ξ
l
j) +∇G(ξki , ξlj) · rki eiθ + ∇̃G(ξki , ξlj) · rljeiη +O(ǫ2),
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and
∫ 2π

0
uki (η) dη =

∫ 2π

0
uki (η) cos η dη =

∫ 2π

0
uki sin η dη = 0, we obtain that

∥∥∥∥
∫ 2π

0

uki (η)R(ξ
k
i + rki e

iθ, ξki + rki e
iη) dη

∥∥∥∥
L2(S1)

≤ Cǫ2
∥∥uki

∥∥
L2(S1)

,

∥∥∥∥
∫ 2π

0

ulj(η)G(ξ
k
i + rki e

iθ, ξlj + rlje
iη) dη

∥∥∥∥
L2(S1)

≤ Cǫ2
∥∥ulj
∥∥
L2(S1)

.

Since the area of an exact disc is of order O(ǫ2),
∥∥∥∥∥
uki (θ)

rki

∫

Bk
i

∇R(ξki + rki e
iθ, y) · eiθ dy

∥∥∥∥∥
L2(S1)

≤ Cǫ
∥∥uki

∥∥
L2(S1)

,

∥∥∥∥∥
uki (θ)

rki

∫

Bl
j

∇G(ξki + rki e
iθ, y) · eiθ dy

∥∥∥∥∥
L2(S1)

≤ Cǫ
∥∥uki

∥∥
L2(S1)

.

The condition
Ki∑

k=1

∫ 2π

0

Fk
i (u)(θ)dθ = 0, i = 1, 2,

implies that
|fi(u)| ≤ C|γ|ǫ ‖u‖Z , i = 1, 2.

The lemma then follows.

Lemma 5.3. There exist c2 > 0 and ǫ0 > 0 such that when ǫ < ǫ0,

1.
〈ΠS ′(0)(u), u〉 ≥ c2ǫ

−3‖u‖2Y , for all u ∈ X♭,

2.
‖ΠS ′(0)(u)‖Z ≥ c2ǫ

−3‖u‖X , for all u ∈ X♭,

3. the operator ΠS ′(0) is one-to-one and onto from X♭ to Z♭.

Here c2 is the same as the c2 in Lemma 5.1.

Proof. By conditions 2 and 3 of Theorem 1.1, there exists Ĉ > 0 such that

ǫ3|γ| ≤ Ĉ. (5.17)

According to Lemma 5.2,

‖F(u)‖Z ≤ C2|γ|ǫ ‖u‖Z ≤ C2Ĉǫ
−2 ‖u‖Z ≤ c2ǫ

−3‖u‖Z (5.18)

for all u ∈ X♭, if ǫ is sufficiently small. By Lemma 5.1.1 and (5.18)

〈ΠS ′(0)(u), u〉 = 〈ΠE(u), u〉+ 〈ΠF(u), u〉
≥ 2c2ǫ

−3‖u‖2Y − c2ǫ
−3‖u‖2Z

≥ c2ǫ
−3‖u‖2Y ,

for all u ∈ X♭. This proves part 1.
By Lemma 5.1.2 and (5.18)

‖ΠS ′(0)(u)‖Z ≥ ‖ΠE(u)‖Z − ‖ΠF(u)‖Z
≥ 2c2ǫ

−3‖u‖X − c2ǫ
−3‖u‖Z

≥ c2ǫ
−3‖u‖X ,
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for all u ∈ X♭. This proves part 2.
For the third part it suffices to show that ΠS ′(0) is from X♭ onto Z♭. Note that ΠS ′(0) is an unbounded

self-adjoint operator on Z♭ with the domain X♭ ⊂ Z♭. If v ∈ Z♭ is perpendicular to the range of ΠS ′(0) i.e.
〈ΠS ′(0)(u), v〉 = 0 for all u ∈ X♭, then the self-adjointness of ΠS ′(0) implies that u ∈ X♭ and ΠS ′(0)(v) = 0.
By part 2, v = 0. Hence, the range of ΠS ′(0) is dense in Z♭. Part 2 also implies that the range of ΠS ′(0) is
a closed subspace of Z♭. Therefore ΠS ′(0) is onto.

Finally one needs an estimate on the second Fréchet derivative of S, i.e. the third variation of J .

Lemma 5.4. There exists C3 > 0 such that for all φ ∈ Dom(S), the following estimates hold for all u ∈ X
and v ∈ X ,

1.
|〈S ′′(φ)(u, v), v〉| ≤ C3

(
ǫ−5 + |γ|ǫ−2

)
‖u‖X ‖v‖2Y ,

2.
||S ′′(φ)(u, v)||Z ≤ C3

(
ǫ−5 + |γ|ǫ−2

)
‖u‖X ‖v‖X .

Note the use of C3 in these upper bounds for the third variation of J .

Proof. One proves this lemma by showing that, for all u = (u11, · · · , uK1

1 , u12, · · · , uK2

2 ) and v = (v11 , · · · , vK1

1 , v12 , · · · , vK2

2 )
in X ,

∥∥∥
(
Hk

i

)′′
(φki )(u

k
i , v

k
i )
∥∥∥
L2(S1)

≤ C3ǫ
−5
∥∥uki

∥∥
H2(S1)

∥∥vki
∥∥
H2(S1)

∥∥∥
(
Ak

i

)′′
(φki )(u

k
i , v

k
i )
∥∥∥
L2(S1)

≤ C3|γ|ǫ−2
∥∥uki

∥∥
H1(S1)

∥∥vki
∥∥
H1(S1)

∥∥∥
(
Bk
i

)′′
(φki )(u

k
i , v

k
i )
∥∥∥
L2(S1)

≤ C3|γ|ǫ−1
∥∥uki

∥∥
H1(S1)

∥∥vki
∥∥
H1(S1)

∥∥∥
(
Ckl
i

)′′
(φki , φ

l
i)(u

k
i , u

l
i)(v

k
i , v

l
i)
∥∥∥
L2(S1)

≤ C3|γ|ǫ−1
(∥∥uki

∥∥
H1(S1)

+
∥∥uli
∥∥
H1(S1)

)(∥∥vki
∥∥
H1(S1)

+
∥∥vli
∥∥
H1(S1)

)

∥∥∥
(
Dkl

i

)′′
(φki , φ

l
j)(u

k
i , u

l
j)(v

k
i , v

l
j)
∥∥∥
L2(S1)

≤ C3|γ|ǫ−1
(∥∥uki

∥∥
H1(S1)

+
∥∥ulj
∥∥
H1(S1)

)(∥∥vki
∥∥
H1(S1)

+
∥∥vlj
∥∥
H1(S1)

)

|λ′′i (φ)(u, v)| ≤ C3

(
ǫ−5 + |γ|ǫ−2

)
‖u‖X ‖v‖X .

We will not include the derivations of these estimates here. See the proofs of [25, Lemma 3.2] and [24,
Lemma 6.1] for similar results.

6 Reduction

In this section it will be proved that, for each (ξ, w) ∈ Ξδ ×Wh, there exists φ∗(·, ξ, w) such that

ΠS(φ∗(·, ξ, w)) = 0. (6.1)

In other words, there exist Ak
i , B

k
i , C

k
i ∈ R such that

Sk
i (φ

∗)(θ) = Ak
i +Bk

i cos θ + Ck
i sin θ, i = 1, 2, k = 1, 2, ...,Ki. (6.2)

Note that φ∗ is found in X♭, so the discs in the assembly φ∗(·, ξ, w) are centered at ξki of radii rki . In
the next section we will find a particular (ξ, w), denoted by (ξ∗, w∗), at which Ak

i = Bk
i = Ck

i = 0, i.e.
S(φ∗(·, ξ∗, w∗)) = 0. This means that by finding φ∗(·, ξ∗, w∗) the original problem (1.6) and (1.7) is reduced
to a problem of finding a (ξ∗, w∗) in the set Ξδ ×Wh.

Lemma 6.1. When ǫ is small enough, there exists φ∗ = φ∗(θ, ξ, w) ∈ X♭ for every (ξ, w) ∈ Ξδ ×Wh such
that φ∗(·, ξ, w) solves (6.1) and ‖φ∗(·, ξ, w)‖X ≤ 2C1

c2
|γ|ǫ7.
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Proof. Write S(φ) as
S(φ) = S(0) + S ′(0)(φ) +R(φ) (6.3)

where R(φ), defined by (6.3), is a higher order term. Turn (6.1) to a fixed point form:

φ = T (φ) (6.4)

where
T (φ) = −(ΠS ′(0))−1(ΠS(0) + ΠR(φ)). (6.5)

is an operator defined on W = {φ ∈ X♭ : ‖φ‖X ≤ bǫ2} ⊂ Dom(S). Here b > 0 is to be determined.
By Lemma 4.1, S(0) is a sum of a θ independent part, a eiθ part, and a quantity of order O(|γ|ǫ4). After

one applies the projection operator Π to S(0), the θ independent part and eiθ part vanish by the definition
of Z♭, so there exists C1 > 0 so that

‖ΠS(0)‖Z ≤ C1|γ|ǫ4. (6.6)

We use C1 to remind the reader that it is used in an upper bound estimate of the first variation of J . By
Lemma 5.3.2,

‖(ΠS ′(0))−1ΠS(0)‖X ≤ C1

c2
|γ|ǫ7. (6.7)

Lemma 5.4.2 implies that

‖R(φ)‖Z ≤ C3

(
ǫ−5 + |γ|ǫ−2

)
‖φ‖2X . (6.8)

By Lemma 5.3.2,

‖(ΠS ′(0))−1ΠR(φ)‖X ≤ C3

c2

(
ǫ−2 + |γ|ǫ

)
‖φ‖2X . (6.9)

For φ ∈ W, by (5.17), (6.5), (6.7), and (6.9) we obtain

‖T (φ)‖X ≤ C1

c2
|γ|ǫ7 + C3

c2

(
ǫ2 + |γ|ǫ5

)
b2 ≤

(C1

c2
Ĉǫ2 +

C3

c2
b2 +

C3

c2
Ĉb2

)
ǫ2.

Take

b = min
{ c2

4C3(1 + Ĉ)
,
β

2

}
(6.10)

where β comes from (4.20), the domain of S. Let ǫ be small enough such that C1

c2
Ĉǫ2 < b

2 and Lemma 5.3
holds. Then

‖T (φ)‖X ≤ bǫ2.

Therefore T maps W into itself.
Next show that T is a contraction. Let φ1, φ2 ∈ W. First note that

T (φ1)− T (φ2) = −(ΠS ′(0))−1(Π) (R(φ1)−R(φ2)) . (6.11)

Because

R(φ1)−R(φ2) = S(φ1)− S(φ2)− S ′(0)(φ1 − φ2), (6.12)

we deduce, with the help of Lemma 5.4.2, that

‖R(φ1)−R(φ2)‖Z
≤ ‖S ′(φ2)(φ1 − φ2)− S ′(0)(φ1 − φ2)‖Z +

C3

2

(
ǫ−5 + |γ|ǫ−2

)
‖φ1 − φ2‖2X

≤ C3

(
ǫ−5 + |γ|ǫ−2

)
‖φ2‖X ‖φ1 − φ2‖X +

C3

2

(
ǫ−5 + |γ|ǫ−2

)
‖φ1 − φ2‖2X

≤ C3

(
ǫ−5 + |γ|ǫ−2

)
(b+ b) ǫ2‖φ1 − φ2‖X

≤ 2b C3

(
ǫ−3 + |γ|

)
‖φ1 − φ2‖X .
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Then Lemma 5.3.2, (5.17) and (6.10) imply that

‖T (φ1)− T (φ2)‖X ≤ 2b C3

c2

(
1 + Ĉ

)
‖φ1 − φ2‖X ≤ 1

2
‖φ1 − φ2‖X . (6.13)

Hence T is a contraction mapping, and a unique fixed point φ∗ exists in W.
By the definition of W, ‖φ∗‖X = O(ǫ2). However, this can be improved, if we revisit the equation

φ∗ = T (φ∗) and derive from (6.5), (6.7) and (6.9) that

‖φ∗‖X ≤ ‖(ΠS ′(0))−1ΠS(0)‖X + ‖(ΠS ′(0))−1ΠR(φ)‖X ≤ C1

c2
|γ|ǫ7 + C3

c2

(
ǫ−2 + |γ|ǫ

)
‖φ∗‖2X .

Rewrite the above as
(
1− C3

c2

(
ǫ−2 + |γ|ǫ

)
‖φ∗‖X

)
‖φ∗‖X ≤ C1

c2
|γ|ǫ7. (6.14)

In (6.14) estimate

C3

c2

(
ǫ−2 + |γ|ǫ

)
‖φ∗‖X ≤ C3

c2

(
1 + |γ|ǫ3

)
b ≤ C3

c2

(
1 + Ĉ

)
b ≤ 1

4
(6.15)

by (5.17) and (6.10). The estimate of φ∗ follows from (6.14) and (6.15).

We state a result regarding S ′ at φ∗(·, ξ, w). It implies that φ∗ is stable with respect to deformations
within X♭.

Lemma 6.2. When ǫ is sufficiently small, for all u ∈ X♭

1.
〈ΠS ′(φ∗)(u), u〉 ≥ c2

2
ǫ−3‖u‖2Y

2.
‖ΠS ′(φ∗)(u)‖Z ≥ c2

2
ǫ−3‖u‖X .

Here c2 is the same constant as the one in Lemma 5.3.

Proof. Lemma 5.3.1, Lemma 5.4.1 and Lemma 6.1 imply that

〈ΠS ′(φ∗)(u), u〉 = 〈ΠS ′(0)(u), u〉+ 〈Π(S ′(φ∗)− S ′(0))u, u〉
≥ c2ǫ

−3‖u‖2Y − C3

(
ǫ−5 + |γ|ǫ−2

)
‖φ∗‖X ‖u‖2Y

≥
(
c2 −

2C1C3Ĉ

c2
(1 + Ĉ)ǫ2

)
ǫ−3‖u‖2Y .

The first part of the lemma follows if ǫ is sufficiently small so that 2C1C3Ĉ
c2

(1 + Ĉ)ǫ2 ≤ c2
2 .

By Lemma 5.3.2, Lemma 5.4.2 and Lemma 6.1,

‖ΠS ′(φ∗)(u)‖Z ≥ ‖ΠS ′(0)(u)‖Z − ‖Π(S ′(φ∗)− S ′(0))(u)‖Z
≥ c2ǫ

−3‖u‖X − C3

(
ǫ−5 + |γ|ǫ−2

)
‖φ∗‖X ‖u‖X

≥
(
c2 −

2C1C3Ĉ

c2
(1 + Ĉ)ǫ2

)
ǫ−3‖u‖X .

As before, the second part follows if ǫ is small so that 2C1C3Ĉ
c2

(1 + Ĉ)ǫ2 ≤ c2
2 .
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7 Existence

It was found, in Lemma 6.1, that for each (ξ, w) ∈ Ξδ × Wh, there exists φ∗(·, ξ, w) ∈ X♭ such that
ΠS(φ∗(·, ξ, w)) = 0. In this section, we will find a particular (ξ, w), denoted by (ξ∗, w∗), such that
S(φ∗(·, ξ∗, w∗)) = 0. The starting point is a good estimate of the energy of φ∗(·, ξ, w).

Lemma 7.1. It holds uniformly for all (ξ, w) ∈ Ξδ ×Wh and sufficiently small ǫ,

J (φ∗(·, ξ, w)) =

2∑

i=1

Ki∑

k=1

(
2πrki +

γiiπ
2

2

(
(rki )

4

8π
−
(
rki
)4

log rki
2π

))

+
γ11π

2

2

( K1∑

k=1

(
rk1
)4
R
(
ξk1 , ξ

k
1

)
+

K1∑

k=1

K1∑

l=1,l 6=k

(
rk1
)2 (

rl1
)2
G
(
ξk1 , ξ

l
1

)
)

+γ12π
2

K1∑

k=1

K2∑

l=1

(
rk1
)2 (

rl2
)2
G
(
ξk1 , ξ

l
2

)

+
γ22π

2

2

( K2∑

k=1

(
rk2
)4
R
(
ξk2 , ξ

k
2

)
+

K2∑

k=1

K2∑

l=1,l 6=k

(
rk2
)2 (

rl2
)2
G
(
ξk2 , ξ

l
2

)
)

+O(|γ|ǫ6).

Proof. Expanding J (φ∗) yields

J (φ∗) = J (0) + 〈S(0), φ∗〉+ 1

2
〈S ′(0)(φ∗), φ∗〉+ 1

6
〈S ′′(τφ∗)(φ∗, φ∗), φ∗〉

(7.1)

for some τ ∈ (0, 1). On the other hand expanding S(φ∗), and then applying Π on both sides give

‖ΠS(φ∗)−ΠS(0)−ΠS ′(0)(φ∗)‖Z ≤ sup
τ∈(0,1)

1

2
‖ΠS ′′(τφ∗)(φ∗, φ∗)‖Z . (7.2)

Since ΠS(φ∗) = 0, (7.2) shows that

‖ΠS(0) + ΠS ′(0)(φ∗)‖Z ≤ sup
τ∈(0,1)

1

2
‖ΠS ′′(τφ∗)(φ∗, φ∗)‖Z ,

which implies that

‖〈ΠS(0), φ∗〉+ 〈ΠS ′(0)(φ∗), φ∗〉‖Z ≤
(

sup
τ∈(0,1)

1

2
‖ΠS ′′(τφ∗)(φ∗, φ∗)‖Z

)
‖φ∗‖X . (7.3)

Since φ∗ ∈ X♭,
〈ΠS(0), φ∗〉 = 〈S(0), φ∗〉, 〈ΠS ′(0)(φ∗), φ∗〉 = 〈S ′(0)(φ∗), φ∗〉. (7.4)

Then (7.3) shows that

‖〈S(0), φ∗〉+ 〈S ′(0)(φ∗), φ∗〉‖Z ≤
(

sup
τ∈(0,1)

1

2
‖ΠS ′′(τ(φ∗))(φ∗, φ∗)‖Z

)
‖φ∗‖X . (7.5)

By (7.5), (7.1) yields that

|J (φ∗)− J (0)− 1

2
〈S(0), φ∗〉| ≤ 5

12

(
sup

τ∈(0,1)

‖ΠS ′′(τ(φ∗))(φ∗, φ∗)‖Z
)
‖φ∗‖X .
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Therefore (6.6), (7.4), Lemma 5.4.2 and Lemma 6.1 imply that

|J (φ∗)− J (0)| ≤ 1

2
|〈S(0), φ∗〉|+ 5

12

(
sup

τ∈(0,1)

‖ΠS ′′(τ(φ∗))(φ∗, φ∗)‖Z
)
‖φ∗‖X

≤ 1

2
(C1|γ|ǫ4)

2C1

c2
|γ|ǫ7 + 5

12
C3

(
ǫ−5 + |γ|ǫ−2

)(2C1

c2
|γ|ǫ7

)3

= |γ|2ǫ11
(
C2

1

c2
+

10C3C
3
1

3c32
(1 + |γ|ǫ3)|γ|ǫ5

)
.

Finally one uses Lemma 3.1 and (5.17) to complete the proof.

As (ξ, w) varies in Ξδ ×Wh, the energy of φ∗(·, ξ, w), J (φ∗(·, ξ, w)), is now viewed as a function of (ξ, w)
on Ξδ ×Wh. We treat both Ξδ and Wh as manifolds with boundary. The product of the two, Ξδ ×Wh,
is also a manifold with boundary. It turns out that every critical point of J (φ∗(·, ξ, w)) in Ξδ ×Wh, the
interior of Ξδ ×Wh, corresponds to a stationary point of J .

Lemma 7.2. If (ξc, wc) is an (interior) critical point of the function (ξ, w) → J (φ∗(·, ξ, w)), then φ∗(·, ξc, wc)
solves S(φ∗(·, ξc, wc)) = 0, i.e. the disc assembly represented by φ∗(·, ξc, wc) is a stationary point of J .

Proof. Let Ω = (Ω1,Ω2) be the perturbed disc assembly characterized by φ∗(·, ξ, w). Suppose that the
boundary of Ωk

i , the k-th component of Ωi, i = 1, 2, k = 1, ...,Ki, is parametrized by R
k
i ; namely

R
k
i (θ, ξ, w) = ξki +

√
ǫ2

π
wk

i + 2φ∗,ki (θ, ξ, w) eiθ, k = 1, · · · ,Ki, i = 1, 2. (7.6)

Here we write ǫ2

π w
k
i in place of (rki )

2 to emphasize the dependence on w. The unit tangent and normal
vectors of Rk

i are

T
k
i (θ, ξ, w) =

∂Rk
i (θ,ξ,w)
∂θ

| ∂Rk
i (θ,ξ,w)

∂θ |
, N

k
i (θ, ξ, w) = iTk

i (θ, ξ, w), (7.7)

respectively. Recall that we identify vectors in plane with complex numbers; hence the use of complex
multiplication in (7.7). Note that Nk

i (θ, ξ, w) is inward pointing with respect to Ωk
i .

Let one of w1
1, · · · , wK1

1 , w1
2, · · · , wK2

2 , say wk
i , vary, and keep the others fixed; all of ξ11 , · · · , ξK1

1 ,
ξ12 , · · · , ξK2

2 are also fixed. One treats wk
i as a deformation parameter and R

l
j , j = 1, 2 and l = 1, ...,Kj ,

as a deformation. Unlike the deformation (4.13), this deformation does not stay within the class of assem-
blies with the fixed centers and radii. Nevertheless, one can still obtain a first variation formula of this
deformation:

∂J (φ∗(·, ξ, w))
∂wk

i

= −
2∑

j=1

Kj∑

l=1

∫

∂Ωl
j

κjN
l
j ·Xl

j ds−
2∑

j=1

Kj∑

l=1

∫

∂Ωl
j

(γj1IΩ1
+ γj2IΩ2

)Nl
j ·Xl

j ds (7.8)

see [30, Lemma 2.4] for a similar formula. Here N
l
j is the normal vector defined in (7.7) and X

l
j is the

infinitesimal element of the deformation:

X
l
j(θ, ξ, w) =

∂Rl
j(θ, ξ, w)

∂wk
i

. (7.9)

Following the setup in Section 4, especially (4.27) and (4.28), one rewrites (7.8) as

∂J (φ∗(·, ξ, w))
∂wk

i

= −
2∑

j=1

Kj∑

l=1

∫

∂Ωl
j

(Sl
j(φ

∗) + λj(φ
∗))Nl

j ·Xl
jds. (7.10)

28



Since ΠS(φ∗) = 0, there exist Al
j(ξ, w), B

l
j(ξ, w), C

l
j(ξ, w) ∈ R, j = 1, 2, l = 1, ...,Kj , such that

Sl
j(φ

∗(·, ξ, w)) = Al
j(ξ, w) +Bl

j(ξ, w) cos θ + Cl
j(ξ, w) sin θ, j = 1, 2. (7.11)

Also, because
∑Kj

l=1

∫ 2π

0
Sl
j(φ

∗) dθ = 0 by (4.29),

Kj∑

l=1

Al
j(ξ, w) = 0, j = 1, 2. (7.12)

Moreover,

N
l
j ·Xl

j

ds

dθ
= i

∂Rl
j(θ, ξ, w)

∂θ
·Xl

j(θ, ξ, w)

=




∂φ∗,l
j

∂θ√
ǫ2

π w
l
j + 2φ∗,lj

eiθi−
√
ǫ2

π
wl

j + 2φ∗,lj eiθ


 ·





ǫ2

2π
+

∂φ
∗,k
i

∂wk
i

√

ǫ2

π
wk

i +2φ∗,k
i

eiθ

∂φ
∗,l
j

∂wk
i

√

ǫ2

π
wl

j+2φ∗,l
j

eiθ

if j = i and l = k

otherwise

=





− ǫ2

2π − ∂φ∗,k
i

∂wk
i

−∂φ∗,l
j

∂wk
i

if j = i and l = k

otherwise
. (7.13)

Using the facts that
∫ 2π

0
φ
∗,l
j dθ =

∫ 2π

0
φ
∗,l
j cos θdθ =

∫ 2π

0
φ
∗,l
j sin θdθ = 0, one obtains

∫ 2π

0

∂φ
∗,l
j

∂wk
i

dθ =

∫ 2π

0

∂φ
∗,l
j

∂wk
i

cos θ dθ =

∫ 2π

0

∂φ
∗,l
j

∂wk
i

sin θ dθ = 0. (7.14)

It follows from (7.10), (7.11), (7.13), and (7.14) that

∂J (φ∗(·, ξ, w))
∂wk

i

= ǫ2(Ak
i (ξ, w) + λi). (7.15)

At the critical point (ξc, wc) of J ,

∂J (φ∗(·, ξ, w))
∂wk

i

∣∣∣∣∣
(ξ,w)=(ξc,wc)

= µi, i = 1, 2, k = 1, ...,Ki. (7.16)

Here µ1 and µ2 are the Lagrange multipliers associated with the constraints
∑K1

k=1 w
k
1 = m and

∑K2

k=1 w
k
2 =

1−m. Then (7.15) and (7.16) imply

Ak
i (ξc, wc) = ǫ−2µi − λi, i = 1, 2, k = 1, ...,Ki. (7.17)

This shows that Ak
i (ξc, wc) is independent of k. By (7.12) we conclude that

Ak
i (ξc, wc) = 0, i = 1, 2, k = 1, ...,Ki. (7.18)

Next let the first component of ξki , denoted ξ
k,1
i , vary and keep the other components of ξ and all com-

ponents of w fixed. Again treat ξk,1i as a deformation parameter and R as a deformation. This deformation
also goes beyond the class of assemblies with fixed centers and radii. Now let X be the infinitesimal element
of this deformation:

X
l
j(θ, ξ, w) =

∂Rl
j(θ, ξ, w)

∂ξ
k,1
i

. (7.19)
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Again compute

N
l
j ·Xl

j

ds

dθ
= i

∂Rl
j(θ, ξ, w)

∂θ
·Xl

j(θ, ξ, w)

=




∂φ∗,l
j

∂θ√
ǫ2

π w
l
j + 2φ∗,lj

eiθi−
√
ǫ2

π
wl

j + 2φ∗,lj eiθ


 ·





1 +

∂φ
∗,k
i

∂ξ
k,1
i

√

ǫ2

π
wk

i +2φ∗,k
i

eiθ

∂φ
∗,l
j

∂ξ
k,1
i

√

ǫ2

π
wl

j+2φ∗,l
j

eiθ

if j = i and l = k

otherwise

=





−
∂φ

∗,k
i

∂θ
√

ǫ2

π
wk

i +2φ∗,k
i

sin θ −
√

ǫ2

π w
k
i + 2φ∗,ki cos θ − ∂φ∗,k

i

∂ξk,1
i

− ∂φ∗,l
j

∂ξk,1
i

if j = i and l = k

otherwise

. (7.20)

Similar to (7.14), one has

∫ 2π

0

∂φ
∗,l
j

∂ξ
k,1
i

dθ =

∫ 2π

0

∂φ
∗,l
j

∂ξ
k,1
i

cos θ dθ =

∫ 2π

0

∂φ
∗,l
j

∂ξ
k,1
i

sin θ dθ = 0. (7.21)

Consequently

∂J (φ∗(·, ξ, w))
∂ξ

k,1
i

= −
∫ 2π

0

(
Ak

i (ξ, w) +Bk
i (ξ, w) cos θ + Ck

i (ξ, w) sin θ + λi
)


−

∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ −
√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 dθ

= (Ak
i (ξ, w) + λi)

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 dθ

+Bk
i (ξ, w)

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 cos θ dθ

+Ck
i (ξ, w)

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 sin θ dθ. (7.22)

As in [30, Lemma 2.4], the variation of the area of Ωk
i under this deformation is given by

∂

∂ξ
k,1
i

∫

Ωk
i

dx = −
∫

∂Ωk
i

N
k
i ·Xk

i ds

=

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 dθ. (7.23)

On the other hand, the area of Ωk
i is fixed at ǫ2wk

i under this deformation, so the integral in (7.23) vanishes,

30



and (7.22) is simplified to

∂J (φ∗(·, ξ, w))
∂ξ

k,1
i

= Bk
i (ξ, w)

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 cos θ dθ

+Ck
i (ξ, w)

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 sin θ dθ. (7.24)

Since ‖φ∗‖X = O(|γ|ǫ7) according to Lemma 6.1, the two integrals in (7.24) are estimated as follows:

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 cos θ dθ = ǫ

√
wk

i π +O(|γ|ǫ6), (7.25)

∫ 2π

0




∂φ∗,k
i

∂θ√
ǫ2

π w
k
i + 2φ∗,ki

sin θ +

√
ǫ2

π
wk

i + 2φ∗,ki cos θ


 sin θ dθ = O(|γ|ǫ6). (7.26)

At (ξc, wc),

∂J (φ∗(·, ξ, w))
∂ξ

k,1
i

∣∣∣∣∣
(ξ,w)=(ξc,wc)

= 0. (7.27)

Then (7.24), (7.25), (7.26), and (7.27) show that

Bk
i (ξc, wc)

(
ǫ

√
wk

i π +O(|γ|ǫ6)
)
+ Ck

i (ξc, wc)
(
0 +O(|γ|ǫ6)

)
= 0. (7.28)

Finally if ξk,2i , the second component of ξki , is taken as a deformation parameter, then in an analogous
way one deduces

Bk
i (ξc, wc)

(
0 +O(|γ|ǫ6)

)
+ Ck

i (ξc, wc)

(
ǫ

√
wk

i π +O(|γ|ǫ6)
)

= 0. (7.29)

The equations (7.28) and (7.29) form a linear homogeneous system for Bk
i (ξc, wc) and Ck

i (ξc, wc). This
system is non-singular if ǫ is small. Hence

Bk
i (ξc, wc) = Ck

i (ξc, wc) = 0, i = 1, 2, k = 1, ...,Ki. (7.30)

Combining (7.30) with (7.18) one deduces that S(φ∗(·, ξc, wc)) = 0.

Since Ξδ ×Wh is compact, there exists (ξ∗, w∗) ∈ Ξδ ×Wh, that minimizes (ξ, w) → J (φ∗(·, ξ, w)). The
next lemma asserts that (ξ∗, w∗) is attained in the interior of Ξδ × Wh, and hence is a critical point of
J (φ∗(·, ξ, w)).

Lemma 7.3. Let (ξ∗, w∗) ∈ Ξδ ×Wh be a minimum of the function (ξ, w) → J (φ∗(·, ξ, w)). When h and ǫ
are sufficiently small, (ξ∗, w∗) must be in Ξδ ×Wh, the interior of Ξδ ×Wh.

Proof. Suppose (ξ∗, w∗) → (ξ◦, w◦) as ǫ→ 0, possibly along a subsequence. It suffices to prove that (ξ◦, w◦)
is in Ξδ ×Wh.

First show that w◦ = w̃ where

w̃ =

(
m

K1
, · · · , m

K1
,
1−m

K2
, · · · , 1−m

K2

)
. (7.31)
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Since wk
1 = ǫ−2π(rk1 )

2 = m
K1

(rk
1
)2

ρ2

1

and wk
2 = ǫ−2π(rk2 )

2 = 1−m
K2

(rk
2
)2

ρ2

2

, Lemma 7.1 implies that

J (φ∗(·, ξ, w)) =

2∑

i=1

Ki∑

k=1

(
2πrki − γiiπ

2

2

(
rki
)4

log rki
2π

)
+O(|γ|ǫ4)

=
γ11π

4

(
K1

m

)2

ρ41 log
1

ρ1

K1∑

k=1

(
8

γ11ρ
3
1 log

1
ρ1

(
K1

m

)− 3

2
√
wk

1 +
(
wk

1

)2
)

+
γ22π

4

(
K2

1−m

)2

ρ42 log
1

ρ2

K2∑

k=1

(
8

γ22ρ
3
2 log

1
ρ2

(
K2

1−m

)− 3

2
√
wk

2 +
(
wk

2

)2
)

+O(|γ|ǫ4), (7.32)

Let

g1(x) =
8

γ11ρ
3
1 log

1
ρ1

(
K1

m

)− 3

2 √
x+ x2 and g2(x) =

8

γ22ρ
3
2 log

1
ρ2

(
K2

1−m

)− 3

2 √
x+ x2

be two functions. By condition 2 of Theorem 1.1,

8

γiiρ
3
i log

1
ρi

≤ 8

1 + η
, i = 1, 2. (7.33)

Then g1 is convex on on (( 1
1+η )

2

3
m
K1

,∞) and g2(x) is convex on (( 1
1+η )

2

3
1−m
K2

,∞). Decrease h, last specified

in Lemma 5.1, of Wh if necessarily so that when w ∈Wh,

wk
1 >

(
1

1 + η

) 2

3 m

K1
, k = 1, ...,K1, wk

2 >

(
1

1 + η

) 2

3 1−m

K2
, k = 1, ...,K2. (7.34)

Because
∑K1

k=1 w
k
1 = m and

∑K2

k=1 w
k
2 = 1−m, by the convexity of g1 and g2,

γ11π

4

(
K1

m

)2

ρ41 log
1

ρ1

K1∑

k=1

(
8

γ11ρ
3
1 log

1
ρ1

(
K1

m

)− 3

2
√
wk

1 +
(
wk

1

)2
)

+
γ22π

4

(
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1−m

)2

ρ42 log
1

ρ2

K2∑

k=1

(
8

γ22ρ
3
2 log

1
ρ2

(
K2

1−m

)− 3

2
√
wk

2 +
(
wk

2

)2
)

(7.35)

is minimized at w = w̃. If w◦ were not w̃, then J (φ∗(·, ξ∗, w∗)) > J (φ∗(·, ξ∗, w̃)) when ǫ is sufficiently small,
a contradiction to the assumption that (ξ∗, w∗) is a minimum of J (φ∗(·, ξ, w)).

Next we show that
F (ξ◦) = min

ξ∈Ξ
F (ξ). (7.36)

Take w = w∗ and denote the corresponding r by r∗. By Lemma 7.1, we deduce that

Fǫ(ξ) : =
2

|γ|ǫ4

{
J (φ∗(·, ξ, w∗))−

2∑

i=1

Ki∑

k=1


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γiiπ
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2



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8π
−

(
r
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i

)4
log r∗,ki

2π


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}

=
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2
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R
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+
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w
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+O
(
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)
.
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According to (1.15), (1.16) and the fact that w∗ → w̃, one obtains that as ǫ→ 0,

Fǫ(ξ) → Γ11m
2

K2
1

( K1∑

k=1

R(ξk1 , ξ
k
1 ) +

K1∑

k=1

K1∑

l=1,l 6=k

G(ξk1 , ξ
l
1)
)

+
2Γ12m(1−m)

K1K2

K1∑

k=1

K2∑

l=1

G(ξk1 , ξ
l
2)

+
Γ22(1−m)2

K2
2

( K2∑

k=1

R(ξk2 , ξ
k
2 ) +

K2∑

k=1

K2∑

l=1,l 6=k

G(ξk2 , ξ
l
2)
)

= F (ξ) , uniformly with respect to ξ ∈ Ξδ.

If ξ◦ were not a minimum of F , then let ξ̃ be a minimum of F so that F (ξ̃) < F (ξ◦). Then Fǫ(ξ̃) < Fǫ(ξ
∗)

when ǫ is sufficiently small. Consequently, by the definition of Fǫ, J (φ∗(·, ξ̃, w∗)) < J (φ∗(·, ξ∗, w∗)) when ǫ
is sufficiently small, a contradiction to the fact that (ξ∗, w∗) is a minimum of J (φ∗(·, ξ, w)).

Since w◦ = w̃ is in Wh and any minimum of F is attained in Ξδ by (3.5), (ξ◦, w◦) is in Ξδ ×Wh.

Note that the lower bound

γii >
1 + η

ρ3i log
1
ρi

(7.37)

in condition 2 of Theorem 1.1 is only used in (7.33). In the case Ki = 1 where i = 1 or 2, there is only one
wk

i , which is w1
i , and it is fixed at m if i = 1 or 1 − m if i = 2. There is no need for minimization with

respect to this wk
i . Then one can relax the bound on γii in this case to (1.17).

Proof of Theorem 1.1. By Lemma 7.3, the minimum (ξ∗, w∗) of the function (ξ, w) → J (φ∗(·, ξ, w)) is
attained in the interior of Ξδ ×Wh, so it is a critical point. Lemma 7.2 then asserts that φ∗(·, ξ∗, w∗) is a
stationary point of J .

Our assertion that φ∗(·, ξ∗, w∗) is a stable assembly is based on the fact that this stationary point is
obtained in successive (local) minimization steps. In Section 6 for each (ξ, w) in Ξδ ×Wh, φ

∗(·, ξ, w) was
found as a fixed point. Because of Lemma 6.2.1, φ∗(·, ξ, w) is locally minimizing in X♭, that is in the class of
assemblies whose discs are centered at ξki and of area ǫ2wk

i . Then in Lemma 7.3, (ξ∗, w∗) is taken to be the
minimum in Ξδ ×Wh.

Appendix: More minimization of F

We present more numerical minimization tests for F . Again D is the unit disc and three scenarios are
considered: Q has two positive eigenvalues, Q has one positive and one zero eigenvalues, and Q has one
positive and one negative eigenvalues. However Q11 is no longer equal to Q22 in this appendix. Type-I discs
are plotted in blue and type-II discs in yellow.

For scenario one, we tested Q11 = 0.5, Q22 = 1.5, Q12 = 0.2, and various values for K1 and K2. Results
are shown in Figure 6. Again, like in Figure 3, the two type discs are well mixed in an organized way;
macroscopically the distinct constituents are distributed uniformly.

Regarding scenario two, we tested Q11 = 0.5, Q22 = 4.5, and Q12 = 1.5, so the two eigenvalues are 0 and
5; see Figure 7. As in Figure 4, the two type discs are not well mixed.

For scenario three, we tested Q11 = 0.5, Q22 = 1.5, and Q12 = 1; see Figure 8. These outcomes are
similar to the ones in Figure 5. The main difference is that regions of type-I discs are more crowded than
regions of type-II discs. For example when K1 = K2 = 50, the blue disc region is smaller than the yellow
disc region. This phenomenon is attributed to the fact Q11 < Q22.
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Figure 6: Q11 = 0.5, Q22 = 1.5 and Q12 = 0.2. First row from left to right: K1 = 10 and K2 = 90, K1 = 30
and K2 = 70, K1 = K2 = 50. Second row from left to right: K1 = 70 and K2 = 30, K1 = 90 and K2 = 10.

Figure 7: Q11 = 0.5, Q22 = 4.5 and Q12 = 1.5. First row from left to right: K1 = 10 and K2 = 90, K1 = 30
and K2 = 70, K1 = K2 = 50. Second row from left to right: K1 = 70 and K2 = 30, K1 = 90 and K2 = 10.
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Figure 8: Q11 = 0.5, Q22 = 1.5 and Q12 = 1. First row from left to right: K1 = 10 and K2 = 90, K1 = 30
and K2 = 70, K1 = K2 = 50. Second row from left to right: K1 = 70 and K2 = 30, K1 = 90 and K2 = 10.
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