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Abstract

The free energy of a ternary system, such as a triblock copolymer, is a sum of two parts: an interface
energy determined by the size of the interfaces separating the micro-domains of the three constituents,
and a long range interaction energy that serves to prevent unlimited micro-domain growth. In two
dimensions a parameter range is identified where the system admits stable stationary disc assemblies.
Such an assembly consists of perturbed discs made from either type-I constituent or type-II constituent.
All the type-I discs have approximately the same radius and all the type-II discs also have approximately
the same radius. The locations of the discs are determined by minimization of a function. Depending on
the parameters, the discs of the two types can be mixed in an organized way, or mixed in a random way.
They can also be fully separated. The first scenario offers a mathematical proof of the existence of a
morphological phase for triblock copolymers conjectured by polymer scientists. The last scenario shows
that the ternary system is capable of producing two levels of structure. The primary structure is at the
microscopic level where discs form near perfect lattices. The secondary structure is at the macroscopic
level forming two large regions, one filled with type-I discs and the other filled with type-II discs. A
macroscopic, circular interface separates the two regions.

Key words. ternary system, triblock copolymer, cylindrical phase, disk assembly, primary structure,
secondary structure
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1 Introduction

A ternary physical or biological system, such as the iron-nickel-chromium ternary alloy, is comprised of three
constituents. At low temperature, the constituents tend to separate and micro-domains rich in individual
constituents emerge. Over time these micro-domains grow in size. This coarsening process reduces the total
area of the interfaces separating the micro-domains.

However in many systems, coarsening tendencies are balanced by inhibitory forces which limit growth of
micro-domains. Triblock copolymers are archetypal examples. In an ABC triblock copolymer a molecule is
a subchain of type A monomers connected to a subchain of type B monomers which in turn is connected
to a subchain of type C monomers. Because of the repulsion between the unlike monomers, the different
type subchains tend to segregate. However since subchains are chemically bonded in molecules, segregation

*Corresponding author. Phone: 1 202 994-6791; Fax: 1 202 994-6760; E-mail: ren@Qgwu.edu
tSupported in part by NSF grant DMS-1714371.



®e O & O @ O e
ONN BROEN BEOEE NG
® O ® C ® O @
ONN BRGHN BECEE BNO)
e C e C @ C @
O e C e e 0
e O e 0 @ O e

I\
e
—
~
.
~
~
~.

Figure 1: A triblock copolymer in the cylindrical phase and its cross section. Type A micro-domains are in
blue and type B micro-domains are in yellow. The rest of the region is filled by type C monomers

cannot lead to a macroscopic phase separation; only micro-domains rich in individual type monomers emerge,
forming morphological phases. Bonding of distinct monomer subchains provides an inhibition mechanism in
block copolymers.

One of the morphological phases in triblock copolymers predicted by polymer scientists is the cylindrical
phase [3, Figure 5(f)]. In this phase type A monomers form cylinder shaped micro-domains and type
B monomers also form cylinder shaped micro-domains. Type C monomers fill the remaining region. A
cross section of a triblock copolymer in the cylindrical phase shows an assembly of discs, some of type A
monomers and some of type B monomers; see Figure 1. An application of the main result in this paper will
mathematically confirm the existence of this phase as a stable stationary point of the free energy.

The ternary system considered here was originally derived by Ren and Wei in [22, 23] from Nakazawa
and Ohta’s density functional theory for triblock copolymers [15]. In two dimensions the system occupies
a bounded domain D in R? and has two sets of parameters. The first set consists of wy, wy, both in (0, 1).
Moreover, with wg = 1 — (w1 +w2), w3 € (0,1) as well. The second set of parameters forms a symmetric two

by two matrix +,
Y11 V12
= . 1.1
7 { Y12 722 } (L.1)

For triblock copolymers, the matrix v is necessarily positive definite [23]. In [5] Choksi and Ren studied
diblock copolymer-homopolymer blends and arrived at the same model but with a positive semi-definite ~.
For these blends ~ has one positive eigenvalue and one zero eigenvalue; (w1, ws) is the eigenvector associated
to the zero eigenvalue. In this paper 7 is not necessarily positive definite. However, all the entries of v are
assumed to be positive in this work.

Let Q1, Q5 C D be two Lebesgue measurable subsets of D and be disjoint in the sense that 21 NQs| = 0.
Here | - | denotes the Lebesgue measure in R?. The measures of €);, i = 1,2, are fixed at

| = wi|D|, i=1,2. (1.2)

Denote Q3 = D\(Q2; UQs), so |Q23] = ws|D|. The free energy of the pair (Q1,s), or the triplet (21, Qs, Q3),
is given by

T(,Q,) = ZPD Z Yig / 2 (v, —w) (=A) Y2 (xq, — w))da. (1.3)

,j=1

In functional (1.3), Pp(€2;) denotes the perimeter of Q; in D. If {; has piecewise C! boundary, then
092; N D, the part of the boundary of ; that is inside D, is the interface that separates §2; from the other two



Q;’s, j €{1,2,3}, j # i, and Pp(€2;) is simply the length of 9Q; N D. Note that 9; denotes the boundary
of ©; in R2. Part of 9; may overlap with the domain boundary 0D, but the interface 92; N D does not
include this part of 9€2;. For a general measurable €;,

Pp() = sup{/ﬂv divg(z)dz: g € Cj(D,R?), |g(x)| <1V € D}7 (1.4)

and 9Q; N D should be interpreted as the reduced boundary of Q; in D; see [34]. In the sum Z?Zl Pp (),
each of the interfaces 9Q2; N D, i = 1,2, 3, is counted twice, so a half is placed in front of this sum to remove
double counting. The first part of (1.3) is an interface energy equal to the total length of all interfaces.

The second part of (1.3) is a long range interaction term. For f € L?(D) such that Jp f(x)dz =0, one
solves the Poisson equation with the zero Neumann boundary condition and zero average:

—Av=fin D, ,v=0o0n 0D, / v(z)dz = 0. (1.5)
D

If the domain D is sufficiently smooth, this equation has a unique solution in H?(D), and hence it defines
an operator (—A)~! from the space {f € L*(D) : [}, f(z)dz = 0} to the space {v € H*(D) : dv =
0 on 0D, [,v(z)dx = 0}; we write v = (—A)~! f. The operator (—A)~! is positive definite and (—A)~1/2
is its positive square root. In (1.3) (—A)~1/2
(xq,(z) =1if x € Q; and 0 if z € D\;).

A stationary point (Q1,3) of J consists of two disjoint subsets ©; and Qs of D, each bounded by
piecewise smooth curves. It satisfies the following equations:

acts on xqo, —w; where xq, is the characteristic function of Q;

k1 +711lo, + v12la, = A1 on 09 NOQs (1.6)

ko + vi2la, +ve2la, = Az on 002 NON; (1.7)

ko + (711 — 12)la, + (112 —v22)la, = A1 — A2 on 995 NN (1.8)
Ti+To+Ty = 0 at 9Q; NN NN (1.9)

T, L 0D at 9 NoQNOD, i=1,2 (1.10)

To L 0D at 901 N0, NOD. (1.11)

The equation (1.6) holds on 9§23 N 93 which is the interface between 0y and Q3. On the left side of
(1.6) k1 is the curvature of this interface with respect to the normal vector that points inward into €. The
Io,’s are shorthand notations:

Io, = (_A>_1(XQ1' _wi)ﬂ i1=1,2, (1.12)

which we call inhibitors. The equations (1.7) holds on the interface between Qs and Q3 and the curvature
Ko is measured with respect to the normal vector pointing into Qs; the equation (1.8) holds on the interface
between 2 and Q9 and the curvature kg is measured with respect to the normal vector pointing into ;. On
the right sides of these equations there are unknown constants A\; and Ay. These are Lagrange multipliers
associated with the constraints |Q;| = w;|D|, i = 1,2.

The three interfaces, 901 N 9Nz, 9N N IN3 and 9Ny N N, may meet at a common point in D, which
is termed a triple junction point. In (1.9) T3, 75 and Ty are unit tangent vectors at triple junction points:
Ty is inward pointing and tangent to 9Q; N 903, Ts is inward pointing and tangent to Qs N 903, and Ty
is inward pointing and tangent to 91 N 9. The equation (1.9) is equivalent to the condition that at any
triple junction point the three interfaces meet at 120 degrees.

In the case that an interface meets the domain boundary 9D, the equations (1.10) and (1.11) assert that
it does so perpendicularly. Here T, To and T are again unit tangent vectors of 92y N 03, 902 N 9Nz and
001 N 0y respectively.

In this paper we are interested in stationary points (Q1,Qs) of J possessing the following properties.



1. Each of 7 and 5 is a union of multiple components.
2. Each component in 21 or €5 is close to a round disc.
3. Both Q; and €25 have positive distance from the domain boundary 9D.

4. The components of 2, and 25 are well separated, in the sense that they are of positive distance from
each other.

We call such a stationary point a stationary disc assembly. It solves the first two of the six equations in
(1.6)-(1.11): (1.6) and (1.7). The rest are superfluous for disc assemblies.

We will find stationary disc assemblies when w; and w, are small and comparable. It is convenient to
introduce a fixed m € (0,1) and a small € so that

w1|D| = €*m and wy|D| = 2(1 — m). (1.13)
The area constraints (1.2) now take the form
Q4] = ?m and |Qp| = €2(1 —m). (1.14)

Henceforth € is the main parameter of our problem.

The premise in this paper is the range of y11, 22, and 712 in terms of €. They should all be positive and
comparable, no less in order than 1(1)g r and no greater in order than 63 The precise conditions are in the
following existence theorem.

Theorem 1.1. Let D be a bounded and sufficiently smooth domain in R%. For m € (0,1), K;, Ky € N,
n >0, and B > 0, there ezists ¢ = eo(D, m, K1, Ka,1,B) > 0 so that if

1. 0 < €< e,

2. each entry v;; > 0 and each diagonal entry v; € ( L 123"), where p; = e(%)l/2 and py =

pilog -7 pi w

(1 m)1/2

Kom )

3. maxini} _ g,

min {v;; }

then J admits a stable stationary assembly of Ky type-1 perturbed discs and Ko type-II perturbed discs,
satisfying (1.6), (1.7), and (1.14).

Moreover, the radii of the type-I discs in the assembly are close to p1 and the radii of the type-II discs
are close to po. If

Yij rig

— I'ij as e = 0, (1.15)
vl
the centers of the type-I discs are €%, ..., €7, and the centers of the type-II discs are €5, ..., 552, then
&t T’Kl,gg’l, ey ;’KQ) 1s close to a minimum of the function
F m? SRS
11
F(f%a' ) 1 a§2w 582 ) = (ZR§1751 JFZ Z flafl)
k=11=1,l#k
K1 Ko
2F12m
+— G(&,
e ;; 393y,
Fzz m)? UL
2T (ZR@@ +Y. Y GEd).  (116)
k=11=1,1#k



For the precise meaning of the radius and the center of a perturbed disc, see (5.9). The smoothness
condition on D in Theorem 1.1 is to ensure that (—A)~! is well defined; any C%% domain meets the
requirement [8, Section 6.7]. Note that p; and ps are the average radii of the type-I and type-II discs
respectively; || is the operator norm of v. The definition of the function F involves Green’s function G of
the —A operator on D with the Neumann boundary condition, and R which is the regular part of G.

A remark about condition 2 is in order. For i = 1 or 2, v;; € ( Lt 12§ ) is needed only if K; > 2.

p3 log p%. TP

If K; =1, this condition is relaxed to
Vi € (0,1273”). (1.17)
Pi

A motivation of this theorem is presented in Section 2. The theorem and its proof contain detailed
information about stationary disc assemblies. Implications of the theorem include the determination of
optimal numbers of discs in assemblies, locations of the two type discs, and overall self-organized patterns
of discs. We will see how the parameters of our problem subtly affect the answers to these questions. When
v is positive definite, stationary disc assemblies found in Theorem 1.1 match the cylindrical morphological
phase for triblock copolymers.

The proof of the theorem starts in Section 3. An assembly of K; exact type-I discs and K exact type-IT
discs is used as an approximate solution. The radii and the centers of the discs are undetermined at this
point. From Section 4 to Section 6, we prove that small and suitable perturbations of the discs will turn
the assembly to almost a solution of (1.6) and (1.7). This assembly of perturbed discs becomes an exact
solution if, in Section 7, the radii and centers of the perturbed discs are chosen properly. This approach is
a Lyapunov-Schmidt reduction procedure tailored to fit our nonlocal geometric variational problem.

In Theorem 1.1 all entries of  are assumed to be positive; by condition 3 all entries of I" are also positive.
It is natural to assume that ;1 and 92 are positive, to limit the size of micro-domains. However ;2 may
not be positive, even for triblock copolymers. We believe that the case of negative v1o will yield patterns
different from disc assemblies.

We end this introduction with a note on a binary counterpart of J. It is a simpler analogy of a binary
inhibitory system derived from the Ohta-Kawasaki theory [17] for diblock copolymers; see [16, 21]. The
binary problem has been studied intensively in recent years. All stationary points in one dimension were
known to be local minimizers [21]. Many stationary points in two and three dimensions were found that
match morphological phases in diblock copolymers [18, 25, 24, 26, 27, 11, 12, 28, 29, 32]. Global minimizers
were studied in [2, 31, 14, 4, 13, 9] for various parameter ranges. Applications of the second variation of the
free energy functional and its connections to minimality and Gamma-convergence were found in [6, 1]. A
binary analogy of F' in (1.16), appeared in [24, 4, 9].

2 Motivation and implications

Before this work, only two types of stationary assemblies were known for inhibitory ternary systems in two
dimensions: core-shell assemblies [20] and double bubble assemblies [30]; see Figure 2. In these assemblies,
Q3 serves as the background while 2; and Q5 form disconnected components. In a core-shell assembly each
component consists of a core of type-I constituent surrounded by a shell of type-II constituent (also see [3,
Figure 5 (b)]); in a double bubble assembly each component is a perturbed double bubble where one of the
bubbles is made of type-I constituent and the other of type-II constituent.

A double bubble is enclosed by three circular arcs that meet in threes at two triple junction points
forming 120 degree angles. It is the solution to the two area isoperimetric problem [7, 10]. For double bubble
assemblies in ternary systems the following theorem was proved in [30].

Theorem 2.1. Let m € (0,1), K € N, and v € (0,1]. There exist positive numbers ey, &, and o depending
on the domain D, m, K, and ¢ only, such that if the following three conditions hold

1. 0 < e < e,



Figure 2: A core-shell assembly and a double bubble assembly.

o — = o
L —— <A <\ < =,
T (M) <A < 3

3. 1A(7) < X(7),

then there is a stable stationary assembly of K perturbed double bubbles, satisfying the constraints (1.14) and
the equations (1.6)-(1.9).

Here A(7) and A(7) are the two eigenvalues of 7y, A(7) < A(7), so the theorem requires that v be positive
definite and the two eigenvalues remain comparable as € — 0. It is interesting to see what happens if these
conditions are stressed or violated. From a positive definite -y, one can increase |y12| so the two eigenvalues
become less comparable. Increasing |vy12| more gives one positive eigenvalue and one zero eigenvalue for +.
Increasing |vy12| still further yields one positive eigenvalue and one negative eigenvalue.

Wang, Ren and Zhao [33] performed numerical calculations with a gradient flow of a diffuse interface
analogy of (1.3). If |y12| is small compared to 11 and 722, double bubble assemblies appear. If 15 is positive
and is tuned up to a larger value, double bubble assemblies lose to disc assemblies. Such a disc assembly
consists of many discs, each made of type-I constituent or type-II constituent. The two type discs are well
mixed in an organized way to form a good lattice structure. If 75 is increased more, then the two type
discs are not well mixed; they appear randomly in the assembly. Finally if ;5 is increased further, the two
type discs no longer mix; they escape into two large separated regions. Theorem 1.1 is motivated by these
numerical calculations. Many observed phenomena are captured in the theorem.

The numbers K; and K5 are prescribed in the theorem. This implies that there are multiple stationary
assemblies for given ¢ and . These assemblies differ in their numbers of discs. In the case that the v;;’s are
of the order @ we can find the optimal numbers of discs. Suppose that

1

Ty, ij=1,2, 2.1
6310g% J 2y ( )

Yij =

where the I';;’s are positive and fixed. In relation to the I';;’s in Theorem 1.1,

I‘. .
[ =—2. 2.2
J |F| ( )
To the leading order, the energy of the solution is
asl T 1 Gk T 1
Z 2k 4 it (r¥)*1og —- |+ Z 2mrk 4 122 (r8)*1og k) ; (2.3)
— 4 ) — 4 Ty



see Lemma 7.1. Let r¥ = eRF. Then the leading order of the above becomes

asl 'y K Toom
e[Z(ZwR’f U (R’“)) Z(m’g (15! )} (2.4)

k=1 k=1

The RF’s are subject to the constraints

Kl K2
> w(R)?=m, Y w(R§’=1-m.
k=1 k=1

Since the theorem asserts that the perturbed discs of the same type have approximately the same radius, we
take RY and R} to be Ry and Ry respectively where

1/m,R2 _ (2.5)
271'
and simplify (2.4) to
m Tiyym/s o m \2 1—-m Tom/1—m\2
K (2 (=) Ky (2mf (52)
61<7r1qw+ 1 \Kr )*f 2(” FKor | 4 \Kon

1"11m

Tyy(1 —m)?
= e<2\/m7rK11/2+ ym — K ' +2y/(1— )7TK21/2+¥K2_1)

With respect to K7 and K5 the above is minimized at

rll 2/3 m I‘QQ 2/3 1—m
Ki=(-2) = K =(-2 2.
! ( 4 > w2 4 T (26)

if one is willing to overlook the fact that K7 and K5 are integers. These are the optimal numbers of discs in
the sense that the energy of the disc assembly is the smallest if K; and Ky assume the values of (2.6). One
should check that under (2.6),

4 Kim 3/2 4 1
e () ol ) =
e log- v m I54 0g o; pl(log/)—l)
and 4 K 3/2 4 1
2T
Y22 = 1 ( ) - 3 1 +O( 2)> (28)
ESIOg; 1—-m p210g)072 pg(log?t)

so condition 2 of Theorem 1.1 is satisfied. Also note that with the optimal numbers of discs (2.6) the disc

radii become
1/3 1/3 09
pl_e(ru> ’ p2_6<Fm> ' (29)
These values do not depend on m.

The locations of the discs in a stationary disc assembly can be found by numerical minimization of
function F in (1.16). Recall that Green’s function G(z,y) as a function of x satisfies

—AG(Ly)=06(-—-y) — ﬁ in D; 8,G(-,y) =0 on dD; /DG(x,y)dx =0 (2.10)

for each y € D. One can write G as a sum of two terms:

1 1
Gz, y) = — logm + R(z,y). (2.11)

2T



Figure 3: Qll = QQQ =1 and Q12 =0.2.
K; = Ky =50.

°
c 0 ®o0

Figure 4: Q11 = Q22 = Q12 = 1. From left to right: K; = 10 and Ko = 90, K; = 30 and Ky = 70,
K, = Ky = 50.

1
[z—y]
regular part of Green’s function, a smooth function of (z,y) € D x D. In the case that D is the unit disc,

The first term 5-log

is the fundamental solution of the Laplace operator; the second term R is the

1
G(z,y) = -—log

o (2.12)

where 7 is the complex conjugate of y and D is viewed as a subset of C, so we have a closed formula for F'.
Let
Toz(1 —m)? Q11 Q12
, = , = , = , 2.13
K? @z KK, @2z K2 @ Q12 Q22 (2.13)

where the I';;’s are given in Theorem 1.1. Then @;; and K; are the parameters that determine F.
We carry out numerical minimization of F', with D being the unit disc, for three main scenarios:

F11m2 F12m(1 — m)

Qu =

1. @ is positive definite,
2. @ has one positive eigenvalue and one zero eigenvalue,
3. @ has one positive and one negative eigenvalue.

Since the positivity of the matrix @ is equivalent to the positivity of the matrix I" and I" must be positive
definite for triblock copolymers, the second and third scenarios do not apply to triblock copolymers.

In the first scenario we take Q11 = @22 = 1 and @12 = 0.2 and run numerical minimization for three
cases of K7 and K. Results are shown in Figure 3 where type-I discs are shown in blue and type-II discs
in yellow. The two type discs are well mixed; they arrange themselves in a very organized, nearly periodic
way, forming a lattice. We invite the reader to compare our Figure 3 to the triblock copolymer cylindrical
morphological phase in [3, Figure 5 (f)].



Figure 5: Q11 = Q22 = 1 and Q12 = 1.2. From left to right: K7 = 10 and K5 = 90, K7 = 30 and Ky = 70,
K, = Ky =50.

In the second scenario, let Q11 = Q22 = Q12 = 1 so the two eigenvalues of @) are 2 and 0. For various
cases of K; and K5 we see in Figure 4 that the two type discs mix in a disorganized and random way.

In the last scenario we take Q11 = Q22 = 1 and @12 = 1.2 so @ has one positive eigenvalue and one
negative eigenvalue. For three cases of K7 and Ky we observe that the type-I and type-II discs segregate
macroscopically. Two large regions appear where one holds the type-I discs and the other holds the type-II
discs; see Figure 5.

When Q11 and Q22 are not equal, same conclusions hold. Those computational results are presented in
Appendix.

Here we see that the functional 7 is capable of producing a primary structure and a secondary structure.
A primary structure is visible at the microscopic level and for disc assemblies we see two type, near circular
discs. A secondary structure appears at the macroscopic level. In the first scenario, because the two type discs
are well mixed and well organized in a nearly periodic fashion, macroscopically one has a uniform structure.
In the second scenario, because the two type discs are not mixed in an organized way, macroscopically
one sees uneven concentration of the type-I and type-II constituents. In the third case macroscopically
there appear two large domains, one with high concentration of type-I constituent and the other with high
concentration of type-II constituent; the two regions are separated by a macroscopic interface of constant
curvature.

3 Exact discs

In this section we construct an assembly of exact discs and compute its energy. Later it will be used as an
approximate solution.

Let &1,..., f(l,fé,...,fé(z be K; + Ky points in D and r{,--- ,7"{(1,7’%,~~~ ,rfz be K; + K5 numbers.
Denote by BF = {z € R? : |z — ¢F| < rF} an exact disc for i = 1,2 and k = 1,2, ..., K;. Also introduce w¥,
the scaled area of Bgﬂ so that

m(rf)? = ey, (3.1)

3

The wk’s form a point w in the set W), which is the closure of

W, = {w = (w%,...,w{ﬁ,w%,...,ué(z) e RE1+Kz . ’w’f — Kﬂ‘ <h, k=12 .. K,
1

1—-m asl Ko
‘w’;—Tz’dz, k:1,2,...,K2,Zw’f:m,zw’gzl—m}. (3.2)

k=1 k=1

For now assume that
m 1—m

O<h<ming—1,——¢; 3.3
mm{ZKl 2K, } (3.3)



later h will be made sufficiently small. Initially w is fixed in W},. Later in Section 7 it will vary. Of course
wh..., wZK can vary only if K; > 1. If K; = 1, then w} is fixed at m if i = 1 or 1 —m if i = 2.

Recall the function F defined in (1.16). The domain of F' is

E={{=(¢, G, 82 feD i=12 k=1, K, &£ ifitjork#£1}. (34)

It is known that R(xz,z) — oo if ¢ — 9D; see [19] for a more elaborate study of this property. Consequently
F (&) = 0o as € — O where E is viewed as a subset of R2F1+52) One can find a small enough § > 0 such
that

inF(§) < min F(£). 3.5
min &) (i &) (3.5)

Here =5 is a subset of = defined as
Es={(€Z:d(&,0D)>06, i=1,2 k=1,..,K; d(&,&)>20ifi#jor k#1}. (3.6)

In (3.6), with an abuse of notation, “d” stands for both the Euclidean distance in R? between two points
and the distance from a point to a set. Henceforth the number § remains fixed.
The centers £F of the discs BF form a point ¢ which is fixed in the closure of Zs:

f:(fi,"', {(175%7""52)6575' (3'7)

Later in Section 7, £ will vary. All quantitative estimates in this paper are uniform with respect to w € Wh
and £ € Es.
Our initial requirement on €y of Theorem 1.1, the bound for ¢, is that ¢y must be small enough so that

2 Foos
0<rf:e\/w7’ <em/“’71<5 (3.8)

holds for all w € Wj,. With this choice of €y and with € < €g, for 2¥ € B¥ and z € 9D,

A, ) > (o, €6) — d(el, 24y > 5~k > 2. (39)

For zF € BF and zé GBé,wherei#jork;él,

kol k ¢l k k Ll k_
d(z; 7zj) > d( i,ﬁj) —d(&7,z7) —d( j,zj) >26 =1 —1r; >0 (3.10)
Hence the discs BF are all inside D and well separated from each other. Moreover with zF € BF » =
(21,25 20 oo 2K2) isin s, where the set Z; is defined as in (3.6).
Let B, = Uff:llB{“ and By = Uszleé. Then (Bj, Bs) is an assembly of exact discs. For now the centers

ff and the scaled areas wf are taken arbitrarily from =5 and W), respectively. They will be determined in

Lemma 7.3. Our first result gives J (B, Ba), the energy of the exact disc assembly.

10



Lemma 3.1.

J (B1, Bo) g 2rrt + E 27rh
2 [ K1 k)4 k4 k
Y117 (1) _ (rf)" logrt k)4 k ok
+72 k§ 1 ( . o + (7”1) R(&7,€7)

5 32 () () e+ 5 (O« )

k=11=1,l#k k=1 1=1
L ke kol (T]f)2 (Tl2)4 (Tlf)4 (Té)Q
o835 1) () ot 4 LR G
o [ K2 K4 k4 k
B ) )
k=1

Ko Ko Ko Ko

55 5 () () e+ 555 (VL (LT

k=11=1,l#k k=11=1

Proof. The first part of J (By, Bs), denoted by Js(B1, Bs) for short range interaction, is just the total arc

length:
K1 Ko
Js (B1,Bs) = Z27rr’f + Z27rr’§.
k=1 k=1

The second part of J (B, Bs), denoted by J;(Bi, B2) for long range interaction, is
Ji(By,By) = 711/ | (— 1/2 B, — w1) ‘2 dx

e [ ((—A)*”Q (3 — ) ((-8)7 (xp, —w2) )

’)’22/ | (— 1/2 (xB, — ws) |? do
= I+IT+III
where
= / ()72 (g, —wn) Pz = 2L [y () d,
2 D 2 B4

1= a7 0, =) ((8) (- w2)) d
= 712/ vy () dz,
1 = 722/ | (—A)"Y2 (xp, — ws) \zdx:% va (z) da.
Here v; and vy are the solutions of
—Av; = xp, —w; in D, d,v; =0 on 9D, /Dvi =0,i=1,2

One can write
K1 KZ
Z Kk Z k
- Ul B UQ = UQ 5
k=1 k=1
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(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)



where v} solves

—AvF = xpr — T (rl) in D, 8,v% =0 on 9D, / vf =0.
D] D
v O ) TS
B S Jogrk, ifla] <k,
PF(z) = 4 (;1,?)2 7 108 o] > ok (3.17)
—-—5—log |z], =T
Then —APF(x —¢&F) = Xk Let vF = PF(z — &F) + Q(w, €F), where Q solves
2
m (rF)
A ky — .\t D
Q(x7 51) |D| m )
k2
2,Q(z,£F) = 0, (7‘22) log |z — &F| on OD, (3.18)
Qaghis = ~ [ PHa -
D D
By (2.11) and (2.10),
2
2 ATy .
—A (71' (rf) R(x, f)) = - |(D> in D,
k)2 k (Tff k
0y (71' (r¥)" R(x, & )) = &,T log |z — &| on 0D, (3.19)
( k)2 k (Tf)Q k
T (rf)” R(z, & )) dr = - log |z — &| dz.
D D
Comparing (3.18) to (3.19), we deduce
2 m(rk)4
Qanel) =7 ()" Rta, )+ T (3.20)
Thus,
k k k k)2 k m(ri)t
vi(x) =Pz — &)+ (ri) R(z, &) + S 1=1,2, k=1,..,K,. (3.21)
By (3.16),
Ky K
/ v (x)dx:ZZ/l o (x) de.
B 1=1 k=1"51
When [ = k, by (3.17),
4 4
Plk(x B ff)dw _ T (r’f) o7 (r’f) log r’f.
B{“ 8 2

By (3.18), Q(z, &F) — ﬂilrg)ﬁ |z — £F|? is harmonic in z. The mean value property of harmonic functions and
(3.20) imply

w2 (e
4|D| -

[ Qghas = ()" R(eh ) + 6.2

12



When [ # k, by (3.17) and the mean value property of harmonic functions,

i k
/Bl Pf(z — &f)de = fw log [¢1 — &7

Similar to the derivation of (3.22), we have

rll2rlf4 T’IfQTll4
Aﬂm%aMm:ﬁO@%@fR@hﬁ%+(ééﬂ +(§$|)'

1

Hence,
K k)4 k 41 k
/131 vy (z)der = WQ[kzl <(217T) _ (rl)Qﬂong + (r’f)4R(§f,§f)) (3.23)
K1 1 1 4 Tk 4 7‘1 2
i3S G (ke +zz( 8|D| ! %ugl) )]
k=11=1,l#k k=11=1

Similar calculations show that

/B v (z)de = QZZ [ (51752) (7“123157“2) + (legug?) ]7 (3.24)

k=1 1=1
Ko k)4 k4 k
r ry ) logr
mewzﬂﬂng_(%WQH@%@ﬁw (3.25)
2 k=1
4 4 2
e & 04" ()
r 2 ¢l68) *ZZ< o ) |
k=11=1,1£k k=11=1
The lemma then follows from (3.23) - (3.25). O

4 Perturbed discs

We set up a framework to study assemblies of perturbed discs in this section. Let qS i1=1,2,k=1,.. K;,
be 27 periodic functions, collectively denoted as

d):(d)%v"', 1 7¢27"'7 2 %) (4.1)
Using ¢, we define K7 + K> sets

— {gf +te? 1 0 e0,2n),t € {0, (rk)2 + 2¢>§(a)] } L i=1,2 k=1,..,K;. (4.2)

Since our domain is in R? we often use the complex notation for simplicity. In (4.2) €l is just (cos 6, sin 6).
The reader will see things like €!? - z which is the inner product of two vectors e and z in R2.
Also in (4.2) |¢¥(#)| must be small compared to (rF)2, so QF is a perturbation of B¥. The area of QF is

2T +2¢'k(9 2
0F| = / / tdtdd = w(r¥)? + [ okdo. (4.3)
0

If the ¢¥’s satisfy
K; 27
Z/ ¢rdo =0, i = 1,2, (4.4)
k=170

13



then Q) = UL QF and Qy = UR2 QF satisfy the area constraints [Q| = ¢2m and |Qq| = €2(1 —m).
Let us deﬁne some Hilbert spaces. First

K; 27
zz{ap:(qﬁ,---, Kiogl o gl2) 0 gk e L2(SY), i:1,2,k:1,...,Ki,Z/0 ¢§d9=o,¢:1,2}.
k=1

(4.5)
Here S is the unit circle identified with [0, 27]. The inner product on Z is
2 K; 2m
V=D | diwld. (4.6)
i=1 k=170

In order to define the energy J on an assembly of such perturbed discs, one needs some smoothness on
ok, Let

Y={peczZ: ¢gfeH (S, i=12 k=1,. K} (4.7)

be a subspace of Z. Here H'(S!) is a usual Sobolev space on S!. The norm of ) is given by

ol =35 [ ok + ) (5)

i=1 k=1

If ¢ and w are held fixed, J is viewed as a functional of ¢ with the domain

Dom(J) ={d € Y l¢lly < Be*}. (4.9)

Recall that for all € < €g, £ € Z5 and w € Wy, the exactly disc assembly (Bj, By) determined by ¢, £, and w
has the property that z = (2, - ,zf(l,zé, e ,252) € Eg if 28 € BF fori =1,2,and k = 1,--- , K;. Choose
B in (4.9) sufficiently small so that for all € < €, all (§,w) € =5 x W), and all ¢ € Dom(JT), the perturbed
disc assembly (Qy, Q) specified by €, £, w, and ¢ has the property that z = (z],--- 251 23 ... 252) ¢ Es
if 2% € QF. Hence the perturbed discs QF in (Q1,Q5) are well separated, and they all stay inside D, away
from 0D.

One writes J(¢) for J (21,Q2). Then J(¢) = Ts(¢) + Ji(¢), where J;(¢) and Ji(¢) are given in terms
of ¢ as

2
Ki o (((;57?)' (9))
2 i
9)=> Z/ (rF)" +208(0) + —5—L— (4.10)
i=1k=1"0 (rF)” +205(0)
’711 K1 27 T +2¢1 0) p2om +2¢l (n) ] )
Ji9) = 5 Z / / / / G(Er + e, €L + 1l tr drdndtdd
k=1 1=1
K, 2 +2¢k(9 27 +2¢2(n ) )
+712 Z Z/ / / / G(&F + te'? &) + el tr drdndtdd
k=1 I=1
Ko 27 +2¢2 0) p2m py/ r2 +2¢2(n)
+22 Z Z/ / / / G(&5 +te? & + e tr drdndtdd
k=1 I=1
(4.11)

14



Next consider the first variation of the functional J with respect to ¢. For convenience introduce functions

Li-‘:
(et @)
LE(@YY, o) = | (rF)? 20k (0) + "/ 4.12
((¢7)", &) (rf)” +205(9) () 1 2040) (4.12)
A deformation in ) is simply
¢ = ¢+erp (4.13)
for ¢ € Dom(J), ¥ € Y and € € R. The first variation of J is the directional derivative
J(@+ep)|  _ dTs(d+ep) AT (¢ + £¢)
de - de * de ’ (4.14)
e=0 e=0 e=0
where
d S : o ’r / ! !/
P S [ (Dusk(o) ob)why + Darb((ot ) o etas (4.15)
e=0 i=1k=1

(D and D denote differentiation with respect to the first and the second arguments of L¥ respectively),
and

AT (¢ + &)
de

==m2/1m& (r)” + 205(6)c )0k (6)do
+m2/1m§ (1) + 205(6)e )0} (6)d
+m2/1m§ (r4)” + 205(6) )05 (6)d

+m2/1m§ (r4) + 205(0)¢) 5 (6)do. (4.16)

We would like to have operators S; and S; so that

dTs(¢ + €v)
de

dJi(o + e)

= <SS(¢)7I¢)>3 dE

e=0

= (Su(e), V). (4.17)

e=0

This is always possible for 7;, but for Js, one must restrict ¢ to a smaller, more smooth space. Define

X={peZ: ¢feH*S"), i=12 k=1,.,K;} (4.18)
with the norm
WM—ZZ/ (((@5)")2 + (65))2 + (¢1)?) do. (4.19)
1=1 k=1

Clearly X C Y C Z. One can define S = S; + S; on

Dom(S) = {¢p € X : ||§||x < Be®} (4.20)

15



where § is the same as the number in (4.9). Therefore Dom(S) C Dom(J). The nonlinear operators S, and
S; map from Dom(S) to Z as follows. The component S¥,(¢) is given as

SEi(9) = Hi(6F) — As,i() (4.21)
where
3 qbf 2 /
(r4)? + 208 + L - ()"
M (67) (0) = A B (4.22)
k)2 (GRS
(" 20t + L5
is the curvature operator, and A, ;(¢;) is a number, depending on ¢; = (¢}, - - ,¢iKi), so chosen that
K 2m
S| SE¢)ydd=0,i=1,2. (4.23)
k=170
Note that s ;(¢;) is the same for all k =1,2,--- , K;. The components of S;(¢) are
Sh@) = ey (6 + /()" +265(0)e”) + malo, (€8 + 1/ ()" + 205(0)e) — M) (424)
Sta(@) = ialay (& +\/ (r5)" +265(0)e”) + 2210, (€5 + 1/ (5)” + 205(0)) — Nia(@)  (4.25)
where A\, ;(¢) are numbers that ensure
K; 27
Z/ Sri(¢) do =0, i=1,2. (4.26)
k=170

We need to write Slkl(qb) more explicitly. Let

+2d> (n
Alf (¢lf) = %1/ / log

271- +2¢1 . .
7”/ / (5“ (k) + 20} (0)e, € + tel)tdtdn.

(rlf)Q + 26% (0)e? — te™ | tdtdn

B (4%)

When 1 <1< Ky and [ # k,

Kl ( ik o (rt)"+20 () k £\ 2 k 0 .l i
Cr (o1, ¢1) = 711/0 /0 G(E + 1/ (rF)” + 2% (0)€!?, &l + te)tdtdn.

Whenlgngg,
KL ( k4l o (rs) 204 k 2 i0 ¢l i
D (ohol) = | [ GEl +1/ () + 204 (0), €4 + temytatan,
0 0
Similarly,

(7"2) + 205 (0)e? — te| tdtdn

T2 +2¢2
A5 (gh) = 12 / / ' Jog

27 Tz +2¢2(77 5 ) )
By (65) = 722 /0 / ) RS + 1/ (rk)? + 205 (0)€¥, & + te')tdtdn.
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When 1 <1< Ky and | # k,

Kl (k4 o (rs) 204 k k)2 k 0 ¢l i
C5' (¢5,05) = 722 / / G(EE +\/ (k)" + 205 (0)€?, €4 + tei)tdtdn.
0 0

When 1 <1 < Ky,

kl ik o (rt)" #2053 k k)2 k 0 ¢l i
D5 (¢5,41) = 712/ / G(&5 +1\/ (r5)” + 295 (0)e, &1 + te)tdtdn.
0 0

Then we obtain

K>
St(o) = HY (o) + Af (¢F) + BY (4%) + Z CH (g, 00) + ) DI (61, ¢5) — M(9),  (4.27)
=1

I= 1l;£k

Ky
S5 (¢) = M (dh) + A5 (¢5) + By (65) + Z CE (5. 0h) + > DE (g5, 0h) — Aa(9).  (4.28)

1=1,1#k =1

Here A1(¢) and Aa(¢) are two numbers, independent of k, so chosen that

K; 27
Z/ Sk)do=0,i=1,2. (4.29)
k=170

The equations (1.6) and (1.7) now become
S(¢) = 0. (4.30)

When ¢ and w are fixed, the exact disc assembly (B, Bs) is represented by ¢ = 0 in X. We insert this
assembly into the left sides of (1.6) and (1.7) and see how much it deviates from a solution. In the present
notation the left sides of (1.6) and (1.7) are S¥(0) + X;(0). In the following we write VR or VG to denote
OR(x,y) 6R(M/)>

:El ) 812

the gradient of R or G with respect to the first set of variables; namely VR(x,y) = (

Lemma 4.1.

k\2
SHO+0(0) = —%bgr’fﬂ(r’ff(R(f’f@fHW(f?ff)~r’fei9)
1
K
+ Y w(r))? (GEF, &) + VG(ET, &) - r 19)]
1=1,l#£k
Ko
712 Z G(&1,&) + VG(Er, &) - rie) | +O0(1yle")
k
S5O0+ 2(0) = +92 —(’“;> log r§ + m(r£)” (R(€h, €6) + VR(Eh, &) - rhe)
2
Ko
Z G(&.6) +VG(&.&) 7 19)]
1=1,l
Ki
712 Z G(&5,€1) + VG(&,61) - r5e) | +O(lyle).
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Proof. The interfaces in the exact disc assembly are circles, so

HE(0) = rik (4.31)

Ky K>
Recall v! from (3.21), and v; = > v, v = > vl. Then
=1 =1

K1
Ip, (€5 +rhe®) = vi(eh +rie®) =3 ok (e + rkei?)
=1

k\2
= O ogrt 4 x(rh) (i €h) + VR(EL €b) - rbe”)
K1

+ > () (G €) + VG(EF, &) - i) + O(eh), (4.32)
1=1,l%k

Ko
Ip, (&5 +71€%) = wo(éf +rfe) = vb(el +rie”)
=1

=

= m(rh)? (G(&F, &) + VG(EF, &) - rfe®) + O(e"), (4.33)
=1

K1
Ip, (&5 +75e) = oi(&5 +r5e%) =) vl (& +rke)
=1

=

=S ()2 (G(ek €+ V(R €) - he?) + O, (4.34)
=1

Ko
Io, (€5 +75e®) = va(eh +r5e®) = 3 ob(eh + rkei?)
=1

k\2
= O ok 4 n(h)? (R € + VREE ) - rhe?)

Ko

+ ) w(rh)? (G5, &) + VG(E5,€5) - r5e”) + O(e?). (4.35)
1=1,l#k

The lemma follows from (4.31) - (4.35) . O

5 Linear analysis

The Fréchet derivative of S at ¢ is denoted by S’(¢). It can also be interpreted as the second variation of J
because

82
881 682

61:62:0

T(o+e1u+ezw) = (S'(¢)(u),v). (5.1)
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In this section we study &’(0), i.e. the linearized operator at the exact disc assembly (B, B2). By (4.27)
and (4.28), consider the Fréchet derivative of each of the terms in S. Calculations show that

H) O = — () +ud)
2m
! Y i Pt i
(A1) O @) ©) = —5= | i (m)loglrie” —rieldn - *ut (0)

, 27 ) .
(B 0) () ©) = i [ b (R +rbe ef +rbeman

uk (6 ) .
s [ TR (e 4t ) oy

1 1

27

(€ ) (ahd) 0) = o [ b () Gleh + kel + ey
0
ut (0

71— / VG (& + e y) - edy
™ JB!

2m
(D) (0) (uf,ub) () = ma /O uy (1) G(&7 +7ie”, & + rpe™)dn
ut (0)

12— / VG (& +rie?y) - edy
7'1 312

2m
! g i i i
(A5 ) () @) = 3% [ ub (o) log|rhe” — el — 22k (0
, 27 ) .
(B) () () 6) = v [ ) RUH + el & + rheydn
0
ub (0 . )
D0 [ R (e+rke.y) - ey
2 Bk

2
(CHY (0) (u,d) (6) = mo / b (n) G(Eh + e b+ rhemydn

uk (0 . i
+ygp —2 ,(C ) / VG (§§ + r§e‘97y) ey
T2 Bé

(D5 (0) (ub,ub) ()

27
2 / s (n) G(E + r5e®, €L+ rhemydy
0

ub (0 . )
e ,S ) / VG (& +r5e? y) - edy
Ty  JBL
Separate §’(0) into a dominant part £ and a minor part F. The components of £ are
o) = - . ((uh)"(8) + ub(6)) — 22 /% uf (1) log [rket? — rlel|dn — Tk (0) — e4(u).
K3 (rf)S K3 K3 27_(_ 0 K3 3 K3 2 (]
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The real valued linear operator e; is independent of k. It is so chosen that £ maps from X to Z. The rest
of §'(0) is denoted by F. Note that £ is determined by H and A, and F is determined by B, C and D.

Decompose
Z= & Z(n), (5.2)
n=0
where, when n # 0,
Z(n) = {acosn@ + bsinnf :a= (a%7"' ,afl,a%, e 7(1?2) e REi+K:
b= (b}la"' ’bfl,b%’... ’b§2> ERK1+K2}, (5.3)
and
K;
Z(0) = {c = (c{,--- ekl ,c§2) eRMFR . N k=0, i = 1,2}. (5.4)
k=1

Below we will see that each Z(n) is invariant under &; the eigenvectors of £ are to be found in these Z(n)’s.
Let 1¥ = (0,---,0,1,0,---,0) be a vector in RE1+¥2_ If j = 1 the k-th component of the vector is 1
and all the other components are 0. If i = 2, the (K; + k)-th component of the vector is 1 and all the other
components are 0.
When n # 0, by the formula

we deduce

5{“(1? cos(nd)) =

(7(1:1:):} + g;z — 72”) cos(n@), if j =4 and p =k,
0 otherwise.

The same holds if 17 cosnf is replaced by 1% sinnf. Thus,

21 v
E(1F cos(nh)) = <n(rk)3 + ;—n - é) 1% cos(nf), (5.5)

e R .
£(1Fsin(nd)) = <”(Tk)3 + ;? - 72> 1% sin(nd). (5.6)

This means that, when n # 0, in Z(n) there are K1 + K eigenvalues of £ which are

U S R
(’rk)g +% — 7, 1 = 1,2, ]{}: 17...7Ki7 (57)

ko
:ui,n T

whose multiplicity is 2. The corresponding eigenvectors are 1% cos(nf) and 1% sin(nf).
When n = 0, for every ¢ € Z(0),

1 1 1 & 1 1
k i\ k AW
Je)=(—753 tuilog 4 — - | — — — g trilog 7 — — )¢, :
et = (g rwnp =5 )4 - (g e =5 o
This shows that £(c) € Z(0) when ¢ € Z(0). There are K; + K5 —2 eigenvalues in Z(0) counting multiplicity.

Although an exact disc B has the well defined center £ and the radius ¥, after perturbation to QF

by ¢f, the notions of center and radius are no longer meaningful. Nevertheless, there is a special class
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of perturbations that preserve centers and radii, including the area of each perturbed disc. Let IT be the
orthogonal projection operator from Z to a subspace Z,, where

27 27 2
Zb:{qSEZ: oF do = PF cos B df = PEsinfdd =0, i =1,2, kzl,...,Ki}. (5.9)
0
Note that oo
2, = @ Z(n). (5.10)
n=2
Also define
V=YNz, X=XNZ,. (5.11)

When ¢ € Z;,, the perturbed disc described by ¢F is considered to be centered at £F of radius r¥. If ¢ € Z\ Z,,
then §f or ¥ cannot be interpreted as a center or a radius.

We are more interested in IIS’(0) and II€ restricted to &, instead of &’(0) and £ on X. Since £ maps X,
into Z,, II€ = &€ on A,.
Lemma 5.1. There exist c; > 0 and h > 0 such that if £ € 25 and w € W), then

1.
(TE(w),u) > 2c0¢ 3wl

and

IIE(u)]lz > 2e2e"[[ullx
for allu € A,.
Proof. By (5.10) we consider

b = g (20 ) =)

of (5.7) for n > 2. According to condition 2 of Theorem 1.1,
ii(pi)® <12 = 1. (5.12)
By (3.1) and the definition of p; in Theorem 1.1,

2
5 €1-—m
= ) 1
) (P2) T K, (5 3)

Choose h sufficiently small, so that, in addition to (3.3), one has the property

Yii(ry)* < 12— g (5.14)
for all w € Wj,. Thus, when n > 2,
k (n—1) ( 77)
- 2 1) —12+ = ). .1
Win > 20 ()2 n(n+1) + 5 (5.15)

It follows that there exists ¢ > 0, independent of n and e, such that
uﬁn > ce 32, (5.16)

Both parts of the lemma follow from (5.16). O
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Henceforth h in the definition (3.2) of W}, is chosen in accordance with Lemma 5.1. We use ¢y with a
lower case ¢ and a subscript 2 to indicate that the constant is used for a lower bound of the second variation
of J at 0. The second part F of §’(0) is minor.

Lemma 5.2. There exists Co > 0 independent of € and v such that
[Fw)llz < Calrlelull 2

for allu e AX,.

Proof. The operator F is given by

2
FH0) = o [ k) B+ ke g+ ek an

]1€ (9) i0 i6
+’Y]1 k VR (61 + Tl e, y) dy
1

27
711/ G(EF +rfe? & +rie™)dn
1= 1l;£k

+ Z ’Yll / VG (& + el y) - edy
I=1,1#k i Bi

+Z%2/ ub () G(EY + 1€, & + rhe™)dn

uk (9 ) )
+Z’71217“,§)/Bl VG (f’f-krlfe‘a,y) ~e“’dy—f1(u),
=1

2

27
FO) = m [ o) RO + b, + rhemay
0
kg
+722u2( ) VR (52 +7"2610ay) edy
Tk k
5 JBb
K T
n 22: o G(EF 1 1k el® el 4l ginyg
Y22 uy (1) G(&5 +rae”, & +ree')dn
1=1,1£k 0
K> k
ug (0 i i
+ Z Va2 2£)/ZVG(§§+T§eG,y)~eedy
1=1,l#k 2 JB;
K1 21
#3 o mz [ ul () Gleh + rke, €+ vl
=1 0
= Ug (0) VG (ek k _i6 0 g
+3 2 ral (&5 +r5e,y) - e’dy — fo(u)
=1 1

where fi(u) and fa(u) are real valued and independent of k. They ensure that F(u) is in Z.
Recall that VR (and VG) denotes the gradient of R with respect to the first set of variables. Let VR (and
V@) denote the gradient of R with respect to the second set of variables, i.e. VR(z,y) = (M M).

7] ’ O
Because ” .
R(&F +rfe & +rfe) = R(EF,€F) + VR, &) - rie + VR(EF, &) - rie + 0(e%),
G(§f+rfei‘9’§;+réein) = G( fa§;)+VG( zk7§é) 'Tzl'ceie—i_%G( f7£§)'r§ein+o(€2)>
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and fo% uk(n)dy = [7™ uk(n) cosndn = fo% uk sinndn = 0, we obtain that

i 0 7
27
|[ton otk atenal < 08 gy,
0 L2(S1)
2
|[T oot + bt rteman| < 0@ ud] e,
0 L2(S1)
Since the area of an exact disc is of order O(€?),
uk (0 : .
SO [ VRE by < Celll] g
T3 Bf L2(S1)
ug (9 i i
[ VGt )y < Ol pagen,
Ty B! L2(S1)

The condition
Ki ron
Z/ FFu)(0)do =0, i =1,2,
k=170
implies that
[fiw)| < Chylellullz, i =1,2.
The lemma then follows.
Lemma 5.3. There exist co > 0 and eg > 0 such that when € < €,

1.
(I18'(0) (u), u) > cae?||ull3,, for allu € X,

ITIS(0)(u)|| 2z > coe 3||ullx, for allu € X,
3. the operator IIS'(0) is one-to-one and onto from X, to Z,.

Here co is the same as the co in Lemma 5.1.

Proof. By conditions 2 and 3 of Theorem 1.1, there exists C > 0 such that
e < C.
According to Lemma 5.2,
IF @Iz < Calyle Jul; < CoCe? [lull 5 < exe™ull 2
for all u € A}, if € is sufficiently small. By Lemma 5.1.1 and (5.18)
(IS (0)(u),u) = (& (u), u) + (TLF(u), u)

> 2e0¢|ull}y — coe %
> e ?ul3,
for all uw € &],. This proves part 1.
By Lemma 5.1.2 and (5.18)
IS (0)(w)l|z > [HE()||z — [[TIF(u)| 2
> 2c0¢ ?|ullx — c2e|lul|z
> cxe?ullx
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for all u € X,. This proves part 2.

For the third part it suffices to show that II1S’(0) is from X, onto Z,. Note that I1S’(0) is an unbounded
self-adjoint operator on Z, with the domain &, C Z,. If v € Z, is perpendicular to the range of IIS’(0) i.e.
(TIIS'(0)(u),v) = 0 for all u € A&}, then the self-adjointness of IIS’(0) implies that u € A}, and I1S’(0)(v) = 0.
By part 2, v = 0. Hence, the range of I1S’(0) is dense in Z,. Part 2 also implies that the range of T18’(0) is
a closed subspace of Z,. Therefore IIS'(0) is onto. O

Finally one needs an estimate on the second Fréchet derivative of S, i.e. the third variation of 7.

Lemma 5.4. There exists C3 > 0 such that for all ¢ € Dom(S), the following estimates hold for all u € X
and v € X,

1.
(" (9)(u,v),0) < Cs (€7° + y]e2) [lull 0],

18" (#)(u, )|z < Cs3 (€77 + [7le™?) ullx [lv]lx -

Note the use of C3 in these upper bounds for the third variation of 7.

Pw;gf One proves this lemma by showing that, for all u = (u},--- ,uf* ud, - Jui?)and v = (v},--- 0 0l - -
in X,

|6 @bt b, g < O b laen [0 sy

|49 @het )| < O [l el o

|85 whadob)| < Ohle T sy ot o
e @k bt et )|, < Ol (s s+ lblragsny ) (1o Lirsgsny + ol )
[ @b )t < O (lebllascsey 108 lirsny) (1etllscsey + 15 s )

N (@) (u,0)] < Cs (€7 + ye?) [lullx 0]l -

We will not include the derivations of these estimates here. See the proofs of [25, Lemma 3.2] and [24,
Lemma 6.1] for similar results. O

6 Reduction
In this section it will be proved that, for each (£, w) € Z5 x W}, there exists ¢*(-, &, w) such that
IS (¢* (-, &, w)) = 0. (6.1)
In other words, there exist A¥, B¥ C¥ € R such that
SF(¢)(0) = A + BFcos0 + CFsing, i = 1,2, k=1,2,.., K,. (6.2)

Note that ¢* is found in &, so the discs in the assembly ¢*(-,&,w) are centered at ¢F of radii r¥. In
the next section we will find a particular (&,w), denoted by (£*,w*), at which A¥ = BF = CF =0, ie.
S(¢*(-,&*,w*)) = 0. This means that by finding ¢*(-,£*, w*) the original problem (1.6) and (1.7) is reduced

to a problem of finding a (£*,w*) in the set Z5 x Wj.

Lemma 6.1. When ¢ is small enough, there exists ¢* = ¢*(0,&,w) € X, for every (£,w) € E5 x W}, such
that ¢*(-, &, w) solves (6.1) and ||¢* (-, &, w)||x < 22 |y|€".

= ¢y
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Proof. Write S(¢) as

S(¢) = 8(0) + §'(0)(¢) + R(¢) (6.3)
where R(¢), defined by (6.3), is a higher order term. Turn (6.1) to a fixed point form:
¢="T(¢) (6.4)
where
T(¢) = —(118'(0)) ™" (IS (0) + TIR(¢)). (6.5)

is an operator defined on W = {¢ € &, : ||¢||x < be?} C Dom(S). Here b > 0 is to be determined.

By Lemma 4.1, S(0) is a sum of a 6 independent part, a €' part, and a quantity of order O(|y|e*). After
one applies the projection operator II to S(0), the # independent part and e’ part vanish by the definition
of Z,, so there exists C7 > 0 so that

TS (0)]| 2 < Cilylet. (6.6)

We use C to remind the reader that it is used in an upper bound estimate of the first variation of J. By
Lemma 5.3.2,

_ C
|(15'(0) IS ()l < e (6.7)
Lemma 5.4.2 implies that
IRz < Cs (7 + le?) ll¢ll%- (6.8)
By Lemma 5.3.2,
_ Cz , _
IS (0) T IR ()2 < ij (€72 + Ile) llll%- (6.9)
For ¢ € W, by (5.17), (6.5), (6.7), and (6.9) we obtain
C C Cy ~ C Cs -
IT@lx < 2l + 22 (4 1) 02 < (20 + 2202 4 Z20n2) e
Co Co C2 C2 C2
Take
b:min{LHQ} (6.10)
403(1 + C) 2

where  comes from (4.20), the domain of S. Let € be small enough such that %6’62 < % and Lemma 5.3
holds. Then
1T (@)l x < be?.

Therefore T maps W into itself.
Next show that 7 is a contraction. Let ¢1, ¢2 € W. First note that

T(d1) = T(2) = —(118'(0)) ™" (I) (R(¢1) — R(2)) (6.11)

Because

R(61) — R(¢2) = S(¢1) — S(¢2) — S'(0)(¢1 — 2), (6.12)
we deduce, with the help of Lemma 5.4.2, that

IR(¢1) = R(¢2)llz

< 1S (@61~ 2) S O61 — ba)llz + 2 (7 + hle) 61 — ally
C

< Ca(eP e oallxllon = dalla + 5 (€7 + yle™®) llgr — dal}

< Gy (7 + 1) (b+b) 61 — allx

< 20Cs (e + 1) |61 — b2l x-
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Then Lemma 5.3.2, (5.17) and (6.10) imply that

2bC3
C

IT(61) ~ T@llx < 2% (14:) g1~ bl < 5llé1 — bl (613)

Hence 7 is a contraction mapping, and a unique fixed point ¢* exists in W.
By the definition of W, ||¢*||x+ = O(e?). However, this can be improved, if we revisit the equation
¢* = T (¢*) and derive from (6.5), (6.7) and (6.9) that

l6* [l < (TS (0) T'IS (0) | + [|(TLS"(0)) ' IR ()2 < %Iv\67 + % (€7 + [vle) o™ 1%

Rewrite the above as

& - * * C
<1 — = (e +le) 1o x> 167112 < == yl€". (6.14)
C2 Co
In (6.14) estimate
Cs * Cs 3 Cs . 1
— <= <= <= .
(2 hle) ol < (4 hie)b < (14 C) b < g (6.15)
by (5.17) and (6.10). The estimate of ¢* follows from (6.14) and (6.15). O

We state a result regarding S’ at ¢*(-,&,w). It implies that ¢* is stable with respect to deformations
within Xb~

Lemma 6.2. When € is sufficiently small, for all u € &
1.

(IS (") (u),u) > S e ully

18" () @)z > e ull-

Here cy is the same constant as the one in Lemma 5.3.

Proof. Lemma 5.3.1, Lemma 5.4.1 and Lemma 6.1 imply that

(I1S"(¢7) (), u) (IS (0)(w), u) + ((S'(¢*) — S'(0))u, u)

> coe ?|ull3 — Cs (€7 + |yle?) 19" [l lJull3
20,C5C .
> ((:2 _ %(1 + C)€2> e_3||u||§,.
2

The first part of the lemma follows if € is sufficiently small so that %(1 +C)e? < 2.
By Lemma 5.3.2, Lemma 5.4.2 and Lemma 6.1,

TS (¢")(u)llz = TS (0)(u)][z — [T(S"(¢") — S'(0))(u)l| 2
> o Pfuflx = Cs (77 + [yle™?) lo*[lxflullx
2 ) .
> (Cz - ﬂ(l + C)e2> € |full -
C2
As before, the second part follows if € is small so that %(1 + ) < Z. O
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7 Existence

It was found, in Lemma 6.1, that for each (£,w) € Zs x Wy, there exists ¢*(-,&,w) € A, such that

IIS(¢*(-,&,w)) = 0. In this section, we will find a particular (£, w), denoted by (£*,

S(¢*(-,&*,w*)) = 0. The starting point is a good estimate of the energy of ¢*(-, &, w).
Lemma 7.1. It holds uniformly for all (£,w) € 25 x W}, and sufficiently small e,

T (6" (- ZZ <2wr? + %;2 <(§7T)4 () erog rf))

i=1 k=1

+7112”2<§:( R (&, &b) +21: 21: G (€1 61))

k=1 k=11=1,l#k
+y1om ZZ 7"1 51752)
k=11=1
"Y 7_(2 K2 4 K2 Kz B 9
22
+—fz<j£j(r§) R(&.&G)+Y > () (1) <¥(£§,£Q)>
k=1 k=11=1,l#k
+O(|7]¢%).

Proof. Expanding J(¢*) yields

T0) = T0)+(80),6°) + (S O)6),67) + 58" (76°)(",6"), )

for some 7 € (0,1). On the other hand expanding S(¢*), and then applying II on both sides give

[TIS(¢") — 11S(0) — IS'(0)(¢7)[z < sup %IIHS"(T¢*)(¢*,¢*)HZ-

7€(0,1)

Since IIS(¢*) = 0, (7.2) shows that

ITIS(0) +T1S"(0)(¢")l| 2 < sup IIHS”(T¢*)(¢*,¢*)HZ,

T€(0,
which implies that
I{15(0), ¢) + (LIS"(0)(¢"), ¢") |z < ( sup ||H5”(T¢>*)(¢*,¢*)I|z> 16" x-

Since ¢* € A,
(IIS(0), %) = (S(0),¢%), (IIS'(0)(¢"),8") = (S'(0)(¢7), ¢").

Then (7.3) shows that
1(S(0),67) + (S"(0)(¢7), 6"}z < ( zépl)*llﬂs"( (¢ ))(¢*,¢*)Ilz> 6%l -

By (7.5), (7.1) yields that

T67) - T0) - 5(50), 67 < = ( 2&P1)|H3”(T(¢*))(¢*7¢*)|z> 6
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Therefore (6.6), (7.4), Lemma 5.4.2 and Lemma 6.1 imply that

T6) - TO) < 1509 >|+f’2<sup |H5"(T(¢*))(¢*7¢*)|z> 1612

7€(0,1)

1 2C" 5 _ _ 2C1 3
< ~(C 4 7 C 5 2 7
< @G -hle + 5 5 (€72 +v]e™®) o e

C? 10CsC3
2 11 ( U4 3C7 3 5

fr— - ]_ .

et (S 4+ BB+ ke

Finally one uses Lemma 3.1 and (5.17) to complete the proof. O

As (&, w) varies in Z5 x W, the energy of ¢*(-, &, w), J(¢*(-, &, w)), is now viewed as a function of (£, w)
on Z5 x W;,. We treat both Z5 and W), as manifolds with boundary. The product of the two, Z5 x Wy,
is also a manifold with boundary. It turns out that every critical point of J(¢*(-,&,w)) in E5 x Wy, the
interior of Z5 x W), corresponds to a stationary point of 7.

Lemma 7.2. If (§.,w.) is an (interior) critical point of the function (&, w) — J(¢*(-, &, w)), then ¢* (-, &c, we)
solves S(¢* (-, &, we)) =0, d.e. the disc assembly represented by ¢* (-, &, w.) is a stationary point of J.

Proof. Let Q = (Q1,Q2) be the perturbed disc assembly characterized by ¢*(-,&,w). Suppose that the
boundary of QF, the k-th component of Q;, i = 1,2, k = 1, ..., K;, is parametrized by R¥; namely

79

Rf(97§7 ) g +\/2w +2¢*k(9 57 ) ; kzlasz7Z:172 (76)

. 2
Here we write %w’?

% in place of (r¥)? to emphasize the dependence on w. The unit tangent and normal
vectors of R} are

ORY(0,¢,w)
k k .k
Ti (9,6,’(1}) = W? Nz (675710) :1Ti (97571‘0)’ (77)
00
respectively. Recall that we identify vectors in plane with complex numbers; hence the use of complex
multiplication in (7.7). Note that N¥(6, ¢, w) is inward pointing with respect to QF.

Let one of wi,- - ,wf(l, wd, - ,wgﬁ, say wf, vary, and keep the others fixed; all of &, | f(l,
&, 755(2 are also fixed. Onme treats w” as a deformation parameter and R§7 j=12andl =1,.. Kj,

as a deformation. Unlike the deformation (4.13), this deformation does not stay within the class of assem-
blies with the fixed centers and radii. Nevertheless, one can still obtain a first variation formula of this
deformation:

* KJ
% ZZ/ ;NL - X1 ds—ZZ/ (j1lo, +72lo,)NL - Xbds (7.8
j=11=1 709 s

see [30, Lemma 2.4] for a similar formula. Here N is the normal vector defined in (7.7) and X! is the
infinitesimal element of the deformation:

1
X5(0,¢,w) = {ma(fuf’)- (7.9)
Following the setup in Section 4, especially (4.27) and (4.28), one rewrites (7.8) as
07 (¢ (¢ S L x!
a— ;;/{ml )+ Aj(¢%))NL - X ds. (7.10)
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Since IIS(¢*) = 0, there exist Aé(f,w)7B§(§,w)7C§(§,w) eR,j=1,2,1=1,..,Kj, such that
/% 1 l . 1 - o
S](d) (,5711))) = A](§7w) + B](SJU) CO&Q + Cj(ga w) blnea J = 1a 2 (711)

Also, because 31 1f St(¢*)df = 0 by (4.29),

K
ZAg(g,w) =0, j=1,2 (7.12)
Moreover,
dS aRl'(97§7 )
N-xXL—2 = 2L X
2 aghk
LJ’, 2 .
o ST eu" if j=iand =k
= \/ —w} +2¢*l R %wf—i%:’k
l + 2¢* l 'd)j,; 5
\/ dw} o otherwise
%w}—i—%? !
N fj—iandi—k
T 21 T OwF Hj=1rand =
= it . 7.13
_ g7 otherwise ( )
6wf
sing the facts that = " cos = 7" sin = 0, one obtains
Using the facts that [, ¢5'd0 = [77 ¢7' cos0df = [ ¢ sindf = 0, b
27 a(b*l 2m 8¢’5’l 2m 6@5*-’1
J 0d9:/ J_sinfdf = 0. 7.14
) G /0 urF cos ) o sin (7.14)
It follows from (7.10), (7.11), (7.13), and (7.14) that
aj d)* '7£7w
% = €2 (AF (& w) + \i). (7.15)
At the critical point (&, w.) of 7,
0 (-
M =, i=1,2 k=1,.. K, (7.16)
o (60)=(€crw)

Here g1 and po are the Lagrange multipliers associated with the constraints ZkK:ll wh =m and 22{:21 wh =

1 —m. Then (7.15) and (7.16) imply
Ab(Eowe) =€ =N, =12, k=1,.., K. (7.17)
This shows that A¥(&.,w.) is independent of k. By (7.12) we conclude that
AFE,w) =0, i=1,2, k=1,..,K,. (7.18)

Next let the first component of £F, denoted ff ’1, vary and keep the other components of £ and all com-

ponents of w fixed. Again treat 55 "1 as a deformation parameter and R as a deformation. This deformation
also goes beyond the class of assemblies with fixed centers and radii. Now let X be the infinitesimal element
of this deformation:

ORL(0, ¢, w)
ot

(3

XL(0,&,w) = (7.19)
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Again compute

ds OR.(6,&,w)
1~ _ S l
Nj'Xj@ = IT'X]'(07£’UJ)
o1 "
k,1 .
d¢*, 2% e’ ifj=iandl=k
wl i6 VEwkr2er"
= l 7w —|—2¢) e . ap*i
\/T% ) otherwise
Swi20;"
26, . Eo K 97" ifj=iandl=k
—%Slne_ %u}l +2¢Z) COSQ_ P i,l J
= Luwk+2¢] o & . (7.20)
— o o otherwise
Similar to (7.14), one has
21 9! 21 9yt 21 9t
/ ¢1§ - df = / ¢k cosfdf = / (b]z 7 sinfdf = 0. (7.21)
0o 0" 0 851 o 0§
Consequently
8\7 ¢* '7§7w o 1
W = 7/0 (A¥(&,w) + BF(&,w) cos O + CF (&, w) sind + \;)

sm(‘)—mcosﬂ do
2m
= (Af(f,w)—i—)\i)/ sm@—l—\/TQ(b*kcose do
0 w +2qz5*k
27
+Bf(§,w)/ smHJrWCOSG cos 8 db

27
+Cf(€,w)/ —9%% ______sinf + WCOS@ sinf df. (7.22)
0 /e w +2¢*k

As in [30, Lemma 2.4], the variation of the area of Q¥ under this deformation is given by

% / da NF - XVds
0§ Jak a0k

2m
= / sinf 4/ —wk + 2¢ *coso | db. (7.23)
: W E

On the other hand, the area of QF is fixed at 2w’ under this deformation, so the integral in (7.23) vanishes,
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and (7.22) is simplified to

*(, 27
M{f’w)) = Bf(faw)/ sm9+\/mcosﬂ cos 0 do
o : W
27 6¢>*k
‘5‘05(5,“1)/ sm@—i—mcose singdf. (7.24)
: \/W

Since ||¢*||x = O(]y]€”) according to Lemma 6.1, the two integrals in (7.24) are estimated as follows:

2m
/ —% _sinf+ \/ —w +2¢; Feosf | cos@d) = e whr + O(|y|€%), (7.25)
0 / k + 2¢* k

2m ad’*k
/ smﬁ—i—\/—w +2¢7"cosf | sinf0dd = O(]]ed). (7.26)
0 /e w +2¢*k

At (507 wC)7
8j(¢*(,§,w)) —0 (7 27)
k,1 : :
0%; (& w)=(Ec,we)
Then (7.24), (7.25), (7.26), and (7.27) show that
Bl e/ + O(le)) + CHEerw) (04 O(h1e®) =0, (7.29)

Finally if {f 2 the second component of £F, is taken as a deformation parameter, then in an analogous
way one deduces

B (&e,we) (0+ O([y[€®)) + CF (& we) (m [wkm + O(meﬁ)) =0. (7.29)

The equations (7.28) and (7.29) form a linear homogeneous system for B¥(¢.,w.) and CF(&.,w.). This
system is non-singular if € is small. Hence

BF (&, we) = CF(Eywe) =0, i=1,2, k=1,..,K;. (7.30)
Combining (7.30) with (7.18) one deduces that S(¢*(+, &, w)) = 0. O

Since =5 x W), is compact, there exists (£*,w*) € Z5 x W, that minimizes (§,w) — J(¢*(+,§,w)). The
next lemma asserts that (£*,w*) is attained in the interior of =5 x W}, and hence is a critical point of

Lemma 7.3. Let (£*,w*) € 5 x W}, be a minimum of the function n (§,w) = J(¢* (-, &, w)). When h and €
are sufficiently small, (£*,w*) must be in Z5 x Wy, the interior of E5 x Wy,

Proof. Suppose (£*,w*) — (£°,w°) as ¢ — 0, possibly along a subsequence. It suffices to prove that (£°,w®)
is in 25 x Wi,
First show that w°® = w where

@_<m... ml_m,...’l_m>_ (7.31)




m (T}f)z 1-m (7”;)2

Since wf = e 2m(rf)? = 2 27— and wy = e *n(rf)? = 13 %, Lemma 7.1 implies that
2 K; 2 (,k\4 k
" _ k_ QuT (rf) logr} 4
Tetgm) = 23 (amt - 2L o
2 K1 _3
yum K1> 4, 1 8 (Kl) > . ) 2
= — log — - v wi 4+ (w
(m P P1 Z <71101 IOg* ! ( 1)
2 K, _3
Y227 K2 4 1 8 ( KQ ) 2 k k\2
+ = lo v/ ws + (w
4 (1—m) P28 o Z(vzzpzlog L—m s+ (w2)
+O(|7]€), (7.32)
Let
3 3
8 K\ ? 8 K \?
gx) = ——— (1) Vr+az? and  go(x) = 3 T ( 2 ) VT + x?
’anl logp—1 m Y2205 logp—2 1—-m

be two functions. By condition 2 of Theorem 1.1,
8 8
<
vipilog o~ 1+m

. i=1,2. (7.33)

Then g¢; is convex on on ((ﬁ)g %+ 00) and gg(x) is convex on ((ﬁ)% 11?;”,00). Decrease h, last specified
in Lemma 5.1, of W}, if necessarily so that when w € W,
2 2
1 3 m 1 31—
k k
wy > |— ) —, k=1,.., Ky, wg >|—— , k=1,..., K. 7.34
' <1+n) K b <1+n) K2 ? (7:34)

Because Zszl1 wl = m and Z,Ifil wh =1 —m, by the convexity of g; and g,

K1

2 _3
Y117 K1 4 1 8 Kl) 2 k k\2
A et log — = (= \/
4 <m> m gmz<7np110g m wr o (un)
Ky, \2 1 & 8 Ky \~
() s 1 ()
—m p2 Yazpilog o= \1—m

is minimized at w = w. If w® were not w, then j(¢*(~, & w)) > J(d* (-, €5, w)) when € is sufficiently small,
a contradiction to the assumption that (£*,w*) is a minimum of J(¢*(-, &, w)).
Next we show that

e

wh + (w§)2> (7.35)

F(&°) = EnillF(f)- (7.36)
c=
Take w = w* and denote the corresponding r by r*. By Lemma 7.1, we deduce that
2 K k4 k) 1o r*’k
2 * * wr | Yamd [ (r") (1 ) g
Fe : = Sy - 2 L7 2 —
(©) 7|€4{J(¢>( &) ;kd w4 - o
2 [~ K, K1 K
11
- |{ (3 () ety + 3 3 witviialehe) )
K k=1 k=11=1,#k
K1 Ko
+12 Y 3 witwp'G (e, ¢)
k=1 1=1
Va2 ot ) 2 Ky Ko .
22 (3 () R+ > > w w;‘7G(€§,§é))}+O(62).
k=1 k=11=1,l#£k
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According to (1.15), (1.16) and the fact that w* — w, one obtains that as e — 0,

r K1 K
F.(¢) 11m (2351751 +;;I1Zl¢k 51751)
2F12m L&
e ;;G &, 6)
+F22 (ZR§2752 "‘Z Z G§2752)
h=11=1,1#k

= F (¢), uniformly with respect to & € Zs.

If £€° were not a minimum of F, then let £ be a minimum of F so that F(f:) < F(£°). Then F.(€) < F.(£%)
when e is sufficiently small. Consequently, by the definition of Fe, J(¢*(-, &, w*)) < J(¢*(+,&*, w*)) when €
is sufficiently small, a contradiction to the fact that (£*,w*) is a minimum of J(¢*(-, &, w)).

Since w°® = w is in W), and any minimum of F is attained in =5 by (3.5), (£°,w®) is in Z5 x W), O
Note that the lower bound 14
Ul
p; log -

in condition 2 of Theorem 1.1 is only used in (7.33). In the case K; = 1 where ¢ = 1 or 2, there is only one
wk, which is w} 2 and it is fixed at m if ¢ = 1 or 1 — m if ¢ = 2. There is no need for minimization with
respect to this w¥. Then one can relax the bound on +;; in this case to (1.17).

Proof of Theorem 1.1. By Lemma 7.3, the minimum (£*,w*) of the function ({,w) — J(¢*(,§,w)) is
attained in the interior of Z5 x Wj, so it is a critical point. Lemma 7.2 then asserts that ¢*(-, &, w*) is a
stationary point of 7.

Our assertion that ¢*(-,£*,w*) is a stable assembly is based on the fact that this stationary point is
obtained in successive (local) minimization steps. In Section 6 for each (£, w) in Z5 x Wy, ¢*(-, &, w) was
found as a fixed point. Because of Lemma 6.2.1, ¢*(-, f, ) is locally minimizing in X}, that is in the class of
assemblies whose discs are centered at 57’3 and of area €2 w . Then in Lemma 7.3, (£*,w*) is taken to be the
minimum in =5 x Wj. O

Appendix: More minimization of F

We present more numerical minimization tests for F'. Again D is the unit disc and three scenarios are
considered: @ has two positive eigenvalues, @@ has one positive and one zero eigenvalues, and @ has one
positive and one negative eigenvalues. However Q11 is no longer equal to Q22 in this appendix. Type-I discs
are plotted in blue and type-II discs in yellow.

For scenario one, we tested Q11 = 0.5, Q22 = 1.5, Q12 = 0.2, and various values for K7 and K5. Results
are shown in Figure 6. Again, like in Figure 3, the two type discs are well mixed in an organized way;
macroscopically the distinct constituents are distributed uniformly.

Regarding scenario two, we tested Q11 = 0.5, Q22 = 4.5, and @12 = 1.5, so the two eigenvalues are 0 and
5; see Figure 7. As in Figure 4, the two type discs are not well mixed.

For scenario three, we tested Q17 = 0.5, Q22 = 1.5, and Q12 = 1; see Figure 8. These outcomes are
similar to the ones in Figure 5. The main difference is that regions of type-I discs are more crowded than
regions of type-1I discs. For example when K; = K5 = 50, the blue disc region is smaller than the yellow
disc region. This phenomenon is attributed to the fact Q11 < Q22-
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Figure 6: Q11 = 0.5, Q22 = 1.5 and @12 = 0.2. First row from left to right: K; = 10 and Ky = 90, K; = 30
and Ky = 70, K1 = K5 = 50. Second row from left to right: K7 = 70 and K> = 30, K7 = 90 and K> = 10.

Figure 7: Q11 = 0.5, Q22 = 4.5 and @12 = 1.5. First row from left to right: K; = 10 and Ky = 90, K; = 30
and Ky =70, K1 = K5 = 50. Second row from left to right: K7 = 70 and Ko = 30, K7 = 90 and K> = 10.
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Figure 8: @17 = 0.5, Q22 = 1.5 and Q12 = 1. First row from left to right: K; = 10 and Ky = 90, K; = 30
and Ky = 70, K1 = K5 = 50. Second row from left to right: K7 = 70 and K5 = 30, K7 = 90 and K> = 10.
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