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1. Introduction

Patterned states arise in many physical and biological systems
as orderly outcomes of self-organization principles. Examples in-
clude morphological phases in block copolymers, animal coats,
and skin pigmentation. Common among these pattern-forming
systems is that a deviation from homogeneity has a strong positive
feedback on its further increase. On its own, this would lead
to an unlimited increase and spreading. Consequently, pattern
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formation additionally requires a longer ranging confinement of
the locally self-enhancing process.

In this paper we use a phase field model with a fully nonlocal
self-interaction energy. For a phase field u(x), x € D C R", the free
energy of u is given by

-1 /D /D Jx, y)utx

The first termin (1.1) is the self-interaction energy of the field u and
the second term is the bulk energy of u. The function F is typically
a double well potential, like F(u) = (1/4)u*(1 — u)? or a linear
perturbation of this. The Euler-Lagrange equation of (1.1) is the
integral equation

) — u(y))? dxdy +/F(u)dx. (1.1)

D

—Ju] +j(x)u + f(u) =0 inD (1.2)
where
Jlul(x /] x, yu(y)dy, j /J(x y)dy, (1.3)

and f is the derivative of F.In (1.2) J[-]is an integral operator which
makes the equation nonlocal. The functional (1.1) is defined in an
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[P space, 1 < p < oo, and (1.2) holds almost everywhere with
respect to the Lebesgue measure.

This problem was first studied by Bates, Fife, Ren, and Wang
in [1] where the domain D is taken to be R. Subsequent works
on this problem include [2-6]. In all these papers the kernel |
is assumed to be non-negative. A non-negative kernel penalizes
spacial deviation of the phase field. This effect is analogous to the
gradient term in the standard Allen-Cahn problem [7]:

1
Inc(w) = | (5IVul®> + F(u)) dx.
el = [ (31907 + Fw) b

This is a local problem whose Euler-Lagrange equation is the
partial differential equation

(1.4)

— Au+f(u)=0, x € D; 3—3:0,xe8D. (1.5)

Like the gradient termin (1.4) a non-negative J in (1.1) captures
the growth property in a self-organized system but misses the
inhibition property. We argue that an inhibition property can be
recovered if | changes sign.

In the Discussion section we demonstrate this viewpoint by
showing that the FitzZHugh-Nagumo system, an archetypical in-
hibitory system, leads to a functional like (1.1). The interaction
kernel J(x, y) should be positive if x is close to y so that short dis-
tance self-interaction is repulsive, but becomes negative if x is far
from y so that long distance self-interaction can be attractive. We
also explain a connection between our problem and the fractional
Laplace operator that has been studied intensively in recent years.

While the paper [1] was devoted to traveling wave solutions of
the gradient flow of (1.1), they also found critical points of (1.1)
that are discontinuous. Whether or not (1.2) has discontinuous
solutions depends on the nonlinearity f and the singularity of
J(x, y)when x and y are close. If the singularity is mild, then J[u](x)
is a continuous function of x. Then by (1.2), j(x)u(x)+ f (u(x)) should
also be continuous with respect to x. However if j(x)u + f(u) is
not monotone with respect to u, then u(x) does not need to be
continuous in order for j(x)u(x) + f(u(x)) to be continuous with
respect to x.

Admitting discontinuous solutions makes the problem (1.1)
very appealing in applications. Similar ideas have appeared in
peridynamics which uses integral equations instead of partial
differential equations to study damage in continuum mechanics
[8-10]. This paper is concerned with solutions of (1.2) that are
continuous except for a finite number of jump discontinuous
points; see Section 2 for the precise definition of such solutions.

As an early work on discontinuous solutions of (1.2), we do not
seek a theory for a general kernel. Instead we choose some special
J’s that allow us to carry out a thorough analysis of the problem.
We solve this problem in one dimension, i.e. D = (0, 1) and uses a
piecewise linear function f as the nonlinearity.

Between Sections 2 and 5, J is the Green's function of the
differential operator

2

d
—A—+B,A>0,BeR
dx2+

with the zero Neumann boundary condition; namely for every
ye(0,1)

(1.6)

3?J(x,
AT gy, y) = a0y,
X (1.7)
aJ(0,y)  9J(1,y)
ax  ax

Here A and B must satisfy

B
— % —k*n% k=0,1,2,... (1.8)
A

More explicitly
cosh(\/g(l —y)) cosh(\/gx)
, X
V/ABsinh \/g =
Jx,y) = (1.9)
cosh(\/g(l — x)) cosh(ﬁy) .
+/ABsinh \/g ’ =7

Note that B can be positive or negative. If B is negative then \/E is
imaginary and (1.9) can be alternatively written as

o)l )
JTAB[ sin \/@

o 1) )

B AB]sin /| 2| ’

Fig. 1 shows three cases of J, one with B > 0 and two with B < 0.
Integrating J we find

j(x)=B71, x € (0, 1).

, X<

Jx,y)= (1.10)

(1.11)

The first notable property of this kernel is the mild singularity at
x = y; ] is continuous on [0, 1] x [0, 1] and differentiable except
when x = y. Another property of J is its sign. When B > 0, ] is
everywhere positive; when B < 0, ] may change sign. Fig. 1 shows
graphs of | for several values of B.

In Section 6 we study another kernel:

3y% + 3% — 6y +2

, X<y
Jx,y) = 6A (1.12)
3y% + 3x% — 6x + 2
, X=Y
B6A

This kernel is the Green'’s function of the operator (1.6) when B = 0.
Since (1.8) does not hold, this Green’s function is the solution of a
different equation:

() _ A0.y) _ a(Ly) _

0x 0x

—A S(x—y)—1,

X2
1
/ Jx,y)dx = 0.
0

The graph of this J is plotted in Fig. 1 as well. It has a simple shape
and changes sign.

The starting point of our work is the notion of pre-solutions. A
pre-solution satisfies an inhomogeneous linear differential equa-
tion; see Section 2. Every jump discontinuous solution of (1.2) is
a pre-solution. However a pre-solution is not necessarily a jump
discontinuous solution. In Section 3 we give sufficient conditions
that yield jump discontinuous solutions from pre-solutions; see
Theorems 3.1 and 3.2.

At this point a peculiar phenomenon arises. Often times there
is a multitude of solutions to (1.2). One can almost arbitrarily pre-
scribe the location of discontinuity points and construct solutions.
A selection principle is needed so we can weed out unimportant
solutions. This is accomplished in Section 4 where we introduce the
notion of critical solutions. The idea is to use the points of discon-
tinuity of a solution, say &1, &, ..., &y, as parameters and view the
energy I as a function of these parameters. Namely I = I(u(-, £))
where & = (&1,&;, ..., &y) and u(-, &) is the jump discontinuous
solution whose discontinuous points are &7, &, ..., &y. A critical
solution is characterized by parameters that yield a critical point
of the energy. It turns out that the number of critical solutions
is much smaller. It is proved in Theorem 4.4, that if B > 0 for
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Fig. 1. Graphs of ] for different values of B. A = 1 in all cases.

each N € N there is only one critical solution with N jump
discontinuity points, which jumps ‘up’ at the first discontinuous
point. The discontinuous points &1, &, ..., &y of this critical solution
are equidistant:

251 =6—-61=86 -5 ==& — &1 =2(1-&).

There are no critical solutions if —1 < B < 0. And if B < —1 there
may be other critical solutions in addition to the equidistant ones.

In Section 5 we proceed further to classify the critical solutions.
We are particularly interested in the ones that locally minimize
I(u(-, €)), because these are stable and robust under perturbation.
Theorem 5.3 shows that when B > 0, all critical solutions (which
are precisely the equidistant ones) are locally maximizing; when
B < —1 a criterion is found that determines the type of each
critical solution. Minimizing solutions do exist in this case. It is
known that the local problem (1.5) does not admit any stable non-
constant solution [11]. In this aspect (1.1) with a non-negative
kernel behaves like a local model.

Our journey from pre-solutions to jump discontinuous solu-
tions, then to critical solutions, and finally to minimizing solutions
is repeated in Section 6 for the kernel of (1.12). This J, because
it changes sign, shares a number of properties with the kernel of
(1.10) where B < —1. There are equidistant and non-equidistant
critical solutions, some of which are minimizing.

(1.14)

2. Pre-solutions

We take f to be a piecewise linear function

u+1 ifu<o0
fuy=10 ifu=0 (2.1)
u—1 ifu>0

or

f(u) =u — sgn(u) (2.2)

where sgn is the sign function: sgn(u) = —1ifu < 0, sgn(u) = 1if
u > 0and sgn(u) = 0if u = 0. Note that for this f,

(u — sgn(u))?

Consequently, we transform (1.2) into
—Jul+B 'u+u—sgn(u)=0 (2.4)
Define
1
)= [ Iy (25)
0

which satisfies
—Av”" +Bv =u, v'(0)=v'(1)=0. (2.6)
Then (2.4) can also be written as a system:

—v+B lu+u—sgnu)=0
—Av"+Bv=u (2.7)
V(0)=2'(1)=0

A solution u of (2.4) is termed jump discontinuous if there exist
51,52,...,51\],0 < S] < Ez < v <§N < 1,suchthat

1. uis continuous oneach (&,_1, &), k= 1,2, ..., N+1,where
§o=0andéyi1 =1,

2. uoneach (&_1, &) has a continuous extension to [&,_1, &],

3. u(x) < 0ifx € [&—1,&] and k is odd, and u(x) > O if
X € [&_1, &] and k is even, where u(&_1) = “mx—>s,j:1 u(x)
and u(&,) = limx»skf u(x).

In this paper, we are only interested in jump discontinuous so-
lutions of (2.4). Note that u(x) < 0 on (0, &) and u(x) > 0 on
(&1, &), so u jumps ‘up’ at the first discontinuous point &;. One can
certainly consider jump discontinuous solutions that jump ‘down’
at &1. We do not consider these ‘jump down’ solutions in this paper.
They may be treated in an equivalent fashion to the jump ‘up’ ones
considered here.
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Having a piecewise linear function f in our problem is not the
primary reason for the existence of jump discontinuous solutions.
If there is a jump discontinuous solution of (2.4), one can always
modify the function f(u) for u near 0 to turn it into a smooth
function. As long as the discontinuous solution jumps past the
region where the modification to f is made, the discontinuous
solution remains to be a solution to the new problem with the
modified, smooth nonlinearity.

If B = —1, then there is no jump discontinuous solution. This is
because (2.4) implies v = — sgn(u) but v is continuous and sgn(u)
has discontinuities at &, if u is jump discontinuous. Thus we assume

B#—1 (2.8)

throughout this paper.
We define the notion of pre-solutions at this point. Let 0 =

& < & < -+ < &v < &vy1 = 1 be a partition of [0, 1] and
& =(&,&, ..., &) Apre-solution u of the partition & is a solution
of
N+1
—Jul+B 'u+u-— Z(—l)k)((gk,1.sk) =0 (2.9)
k=1
Alternatively, if (2.8) holds, with v = J[u], (2.9) implies
N+1
v+
LE DY A 1,60 (2.10)
B T+1

Then —Av” + Bv = uyields
N+1

D B (=D X80

B+1 B~ 1+1

— AV + , v(0)=1'(1)=0.

(2.11)

Hence when (2.8) and (1.8) hold, we may equivalently call a solu-
tion v of (2.11) a pre-solution of &.
For the differential operator

d? B?
—A— 4+ ——,

dx? + B+1
with the zero Neumann boundary condition in (2.11), we impose
the assumption

(2.12)

BZ

— £ k72 k=0,1,2,... (2.13)
AB+1)

so that it is invertible. We set

B2
w=]— (2.14)
AB+1)
with the convention that w is positive when A(Bil > 0and pw is

imaginary with a positive imaginary part if ;- +1) < 0.The Green’s
function of this operator, with the Neumann boundary condition,
is

cosh(u(1 — y)) cosh(ux) x<y
Gx,y) = Apsinh pu ’ . (2.15)
cosh(u(1 — x)) cosh(uy) .
Ap sinh o X2y

When B < —1, u is imaginary and the above can be written
alternatively as

_cos(|p](1 — y)) cos(|p|x)

Alp|sin |pl
_ cos(|p|(1 — X)) cos(|p]y)

Alp|sin |pl

, X<)Y

G(x,y) = (2.16)

x>y

)

If we have a jump discontinuous solution u to (2.4) with dis-
continuities at &1, &, ..., &y, then u is also a pre-solution with
the partition & = (&, &, ..., &v). However a pre-solution is not
necessarily a jump discontinuous solution. For a pre-solution u to
be a jump discontinuous solution, it must satisfy the condition

{u(x) <0 ifxel&_1,&] k=1,3,5,...

u(x) >0 ifxe[& 1, & k=2,4,6,... (2.17)

By (2.10) a pre-solution is continuous on each (&;_1, &) and admits

a continuous extension to [&x_1, &]. In (2.17), we take u(&;_1) =

lim)HE’+1 u(x) and u(&) = limxﬂékf u(x) when considering x €
.

[Ek—l’ Sk]-

Lemma 2.1. Suppose that & is a partition and (1.8), (2.
hold. Then the pre-solution of & is given by

8),and (2.13)

k—1
2 .
W = g (cosh(u(1 - x) ,;HY sinh(11§))
o (—1)
— cosh(ux) Z(—l)’ sinh(u(1 — Sj))) + 3
=k
forx € [&1, &l
Proof. Since
1 S (=1 X))
R R
we deduce that, if x € (&_1, &),
< (% cosh(u(1 - x))cosh(py) (—1)
v(x) = Z/EH Ap sinh B-1+1
¥ cosh(u(1 — x)) cosh(py) (—1) d
+ /gkf1 A sinh 2 B141
/Ek cosh(u(1 — y))cosh(ux) (—1)¢ J
* ) A sinh Bir1”

dy

N % /Ef cosh(u(1 — y)) cosh(ux) (—1)
& Ap sinh B 1+1

Jj=k+1

_ ’Z] cosh(yu(1 — x))(sinh(u&;) — sinh(ug1)(~1Y
A(B~1 + 1)u? sinh

j=1
cosh(u(1 — x))(sinh(ux) — sinh(ué&—
+ AB~1+ 1)u?sinh u
cosh(ux)(— sinh(u(1 — &)) + sinh(p(1 — x)))(— 1)k
+ A(B~1 4+ 1)u? sinh
N+1

n Z cosh(ux)(— sinh(z4(1 — &)) + sinh(z2(1 — &_1))(—1)
AB~1+ 1u?sinh

D)=1)

Jj=k+1
& 2cosh(u(1 — x)sinh(ug)(—1)
I Bsinh
j=1
N ”il 2 cosh(ux) sinh(u(1 — &_1))(— 1)
) Bsinh
Jj=k+1
cosh(u(1 — x)) sinh(ux)(—1)¢
Bsinh
cosh(ux) sinh(pe(1 — x))(—1)¢
+ -
Bsinh
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k—

\ 2 cosh(u(1 — x)) sinh(u&j)(—1)

Bsinh

j=1

2 cosh(ux) sinh(u(1 — §)(—1Y  (—1F
B Z Bsinh p + B

proving the lemma. O

We call either v given in Lemma 2.1 or the corresponding u from
(2.10) a pre-solution. The pre-solution u, or v, of a partition & is
often written as u(x, &), or v(x, &), when its dependence on & needs
to be emphasized.

Partitions of spec1al interest are the equidistant ones, where
g = 21 k=1,2,..., N.The following follows from Lemma 2.1.

N
Corollary 2.2. Suppose that & is an equidistant partition, & = 2157&1
k = 1,2,...,N, and (1.8), (2.8), and (2.13) hold. Then the pre-
solution is

B (_-1)k+1 k—1 (_-l)k
~ Bcosh (&) COSh('u( N ))+ B’

ifx € [Ek-1, &l (2.18)
In particular,
2k — 1
v( ):O, k=1,...,N, (2.19)
2N

and the following symmetry properties hold: for all x € [0, %]

N
v(x) = —v(% —x) = —v(% +x) (2.20)
2

= (.—.])N]u<N_1 —x) = (—1)”’111(1\’1; ! +x)

3. Jump discontinuous solutions

Here we give sufficient conditions that yield jump discontinu-
ous solutions from pre-solutions.

Theorem 3.1. Let (1.8) and (2.13) hold, & be a partition, and u(-, §)
be the pre-solution of €.

1. If B > 1, then u is a jump discontinuous solution of (2.4).
2. IfB< — ‘sz(% — 1, then u is a jump discontinuous solution of
(2.4)

Proof. Let B > 1. First consider the interval [&,_1, &] with an odd
k. We show that u(x) < 0ifx € [&_1, &] where the value of u
at &,_1 and & are taken to be the continuous extension of u(x) for
X € (&k—1, &) in this proof. Note that, since

k—1

> (=1 sinh(ug) < sinh(u&_1),

j=1

— Z —1Y sinh(u

by(2.]0) and Lemma 2.1
B~ + Nux) = v(x) —1

(1—§)) < sinh(u(1 — &)),

= Bsinhp <COSh(”(1 = X)) sinh(u&—1)

+ cosh(ux) sinh(uu(1 — gm) - % 1

By the convexity of cosh((1 — x)) sinh(u&,_1) + cosh(ux) sinh(
(1 — &)) with respect to x, the maximum value of this quantity is
attained either at x = &,_1 or x = &;. In the first case

cosh(u(1 — &,—1)) sinh(p&x—1) + cosh(pér—1) sinh(pe(1 — &))
< cosh(u(1 — &—1)) sinh(ué—1)
+ cosh(u&p—1) sinh(u(1 — &1))
= sinh u;
in the second case

cosh(s(1 — &) sinh(pe&y—1) + cosh(pe&y) sinh(u(1 — &))
< cosh(u(1 — &)) sinh(u&i) + cosh(uéi) sinh(ua(1 — &)

= sinh u
as well. Therefore, for x € [&_1, &] and k is odd,
1 2 . 1 1
) < 57 (Fommm sinh 1) = 5 (51) <0
since B > 1.

Similarly one can show that, for x € [&_1, &] and k is even,
u(x) > 0. This proves part 1.
Now let B < ls!ﬁ"‘L” 1. Since u is imaginary, we use
sinh(if) = isin® and cosh(if) = cosf and Lemma 2.1 to derive

that, for x € [Sk—l s ‘i:k]v

k—1

_ 2 -
(B + ) = o s cos(|u|(1—x));<—1) sin(|j1%)
N .
—cos(lplx) Y (=1 sin(|ul(1 — &)
j=k
(_1)k k
+ 5 T (D)

Suppose that k is odd. Then, for x € [£,_1, &],

~1
B+ Dux) < ——— |Bsm|m ]2]:1+Z —7—1
2N 1
T Blsin(luDl B
<0
since B < —% — 1. Consequently u < 0 on [£1, &] when k

is odd, since B~! + 1 > 0 here. Similarly, when k is even, u > 0 on
[£x—1, &k]. Part 2 is proved. O

The bounds in Theorem 3.1 are as good as one can get for
arbitrary partitions. For equidistant partitions the next theorem
gives better sufficient conditions.

Theorem 3.2. Let& = 5V k= 1,2,.
partition and (1.8) and (2.13) hold.

., N, be an equidistant

1.If B > O, then the pre-solution of | %~ 1)}k:1 is a jump

discontinuous solution of (2.4).

2. If B € (0, —1), then the pre-solution of{
solution of (2.4).

3. IfB< —1and

B < M —1, forallx e [O,

Cos(lm)

(2k—1)

N
}k=1 is not a

)
2N

then the pre-solution of { % 1)}k
solution of (2.4).

is a jump discontinuous
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Proof. Let u be the pre-solution of | 21 }::1. By the symmetry of

2N
the pre-solution in Corollary 2.2, uis a jump discontinuous solution
of (2.4) provided that u is negative on the first interval [0, &;] =
[0, o 1. Forx € [0, 51,
_ cosh(ux) 1 1
~ Beosh (&) B

If B > 0, then w is positive and the right side of the above
equation is negative since 0 < <M < 1 Hence u(x) < 0 and

cosh( )
part 1 follows.

(B~ + Nu(x) = v(x) —

IfB € (—1,0), u is positive and on [0, 5],
h 1
B!+ () = v(x) — 1= o) 1
Bcosh(ué) B
Then
h 1
(e —)= fim - OSwx) 1

v g (B+ 1) cosh(u€)

Hence the pre-solution u(x) is positive when x € [0, &;] is close to
&,. If u were a solution of (2.4), then (2.4) and (2.9) imply

N+1

k
Z(_ 1 ) X(8k—1.81)

k=1

sgn(u) =

which does not hold if x € (0, &) and x is close to &;. This proves
part 2.

If B < —1, then p is imaginary and for x € [0, 5],
_ cos(|plx) 1

B4 Nu(x) = — 1~

( Ju(x) = Beos(1) B

cos(|p1x)

Then the right side is negative if B < —# 5 — 1 forallx € [0
COS(W)

1
’ m]v
from which part 3 follows. O

4. Critical solutions

In this section we denote the pre-solution of partition & by
u(-, &) where & = (&1,&,...,&v). We view & as a parameter
and u(-, &) as a family of pre-solutions parametrized by &. The
corresponding v = J[u] is denoted v(-, &) as well. The energy of
u(-, &) is I(u(-, £)), which is now viewed as a function of &. For
simplicity we write I(§) for I(u(-, £)).

If the pre-solution u(-, ¢) is a jump discontinuous solution of
(2.4) where {gk} _, Is a particular partition, then for any partition
{Ek}k:1 that is sufficiently close to {gk}"’: (namely, each & is
sufficiently close to ¢ ), the pre-solution u(-, &) of partition & is also
a jump discontinuous solution of (2.4). Hence the set of £ € RN
where u(-, £) is a jump discontinuous solution of (2.4) is open.

We introduce the notion of critical solutions. Let u(-, £ ) be a pre-
solution family parametrized by partition {ék}k ; and {gk}N be a
particular partition. Then the pre-solution u(-, ¢)is called a crltlcal
solution if u(-, ¢) is a jump discontinuous solution of (2.4) and ¢
is a critical point of the function & — I(u(-, &)). Depending on the
type of this critical point, u(-, ¢) is called a minimizing solution (or
maximizing solution, saddle solution, resp.) if ¢ is a minimum (or
maximum, saddle, resp.) of & — I(u(-, &)).

Lemma4.1. Let(1.8),(2.8),and (2.13) hold. If v(-, £ )is a pre-solution

parametrized by &, then

du(x, ) _ 2(-1)
3& B '+1

Gx,&), j=1,2,...,N

Proof. Since

1 N+1 k
- }:SR&E@@
v(x, &) = /0 G(x,y) 2 T ] dy

differentiating with respect to §; yields the lemma. 0O

Lemma 4.2. Let (1.8), (2.8), and (2.13) hold. Suppose that the pre-
solution u(-, &) is a jump discontinuous solution of (2.4) at &. Then

al  2(—1)yt! _
375 = mv(&,é), ]= 1,2,...,N
j
In particular, %f) = Oifand only ifv(§;,£) =0,

Proof. Let & be in the region where u(-, £) is a jump discontinuous
solution of (2.4). By (2.4) and with v = J[u],

I(¢) = I(u

/ F(u(x, §))d
0

1
= % / (—][u]u +B ' 4+ (u— sgn(u))z) dx
0

/ /ny u(x, &) — u(y, £)) dxdy

1

1
= / (—(B’1u +u —sgn(u))u + B~ 1u?
2 Jo

+(u — sgn(u )))dx

= / (1 —sgn(u

_ v + sgn(u)
—iﬁ(“*ﬂwiﬁ:T?“
1 1 1 sgn(u)v
_5/0(1_B4+1_ )dx

B~14+1
B—] 1
T2BT+1) 2(3 11 /

so we arrive at the formula
B! 1
2B-1+1) 2(B14+1)
N+1

<[ (o) D) o (41)

k=

N+1

( Z( 1)X5k 1Ek))

I(§) =

Differentiation of (4.1) with respect to & and Lemma 4.1 imply

al 1 du(x, &)
9 _2(3—1+1)/0 ( 3% Z( Do) d
_(—U’lv(%‘j,é)
B1+1
i+1 1 N N+1
= éq]z_ 1 /(; (BG,(TLEJ)] ;(_l)kx(ék—lfk)(x)> dx
(=D £)
B1+1
. (—1)y* (g, §) _ (—1Yu(§, &)
B-1+1 B 1+1
_ 2(—1y* (g, §)
B~ 141

proving the lemma. O
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Remark 4.3. By Corollary 2.2 and Lemma 4.2, if the pre-solution of
an equidistant partition is a jump discontinuous solution, then it is
a critical solution.

Before stating the main theorem in this section we introduce
the notation a = b mod (Im )Z, which means that there is an

integer n such thata = b + r:‘

Theorem 4.4. Let (1.8) and (2.13) hold, and u(-, &) be the pre-
solution of a partition &€ = (&1, &2, ..., &n).

1. If B > 0, then u(-, &) is a critical solution if and only if & =
21 e & is an equidistant partition.

2N
2. If B € (—1, 0), then no pre-solution is a critical solution.
3. IfB < —1 and the pre-solution u(-, &) is a jump discontinuous

solution of (2.4), then u(-, &) is a critical solution if and only if

_52 &1 %’3 52: :EN—SN—l_

Proof. Part 1. Let u be the pre-solution of an equidistant partition.
Theorem 3.2.1 shows that u is necessarily a jump discontinuous
solution of (2.4). Corollary 2.2 asserts that the corresponding v
satisfies v(&) = 0,k = 1,2, ..., N, and then Lemma 4.2 implies
that u is a critical solution.
Conversely, let u(-, &) be a critical solution. Then the corre-

sponding v(-, &) satisfies

ch V(0= 0, u(E) =0

V=———, 0 =0, v =

B+1 B1+1 !

on the interval (0, &1). Because n > 0 in this case, (4.3) admits a
unique solution

—Av” +

(4.3)

o(x, §) = %ﬁ’;’; - %, x € (0, &). (4.4)
On the interval (&1, &), v satisfies
B L =0 we) = (45)
B+1 B~1+1
which admits a unique solution
§1+6
o, £) = — A 7 ) € (61.5). (46)

Bcoshu(@)

As a solution of (2.11), v is a C! function on (0, 1). Then the
derivatives of (4.4) and (4.6) must match at &;. Hence

psinhpgy _ psinh p(5152) 47)
Bcosh pu&; Bcosh pu(5152) '
which implies

251 =6 —é&. (4.8)
This argument can be continued to yield
S-&61=5—"5H=8&§&= =& —&-1=2(1-4&), (49)

namely that £ is the equidistant partition {2~}

Part 2. Suppose on the contrary that a pre—solutlon u(-, &)is a
critical solution. Since x> 0 in this case, the argument in the
proof of part 1 can again be used to show that & is an equidistant
partition, i.e. & = 2’;—&1 However Theorem 3.2.2 asserts that a pre-
solution of an equidistant partition cannot be a solution of (2.4). So
u(-, £) is not a critical solution.

Part 3. Let u(-, &), together with the corresponding v(-, &), be the
pre-solution of a partition & and assume that u(-, &) is also a critical

solution. Then v(§;) =0,j = 1,2, ...
v satisfies

, N by Lemma 4.2. On (0, &),

ch L W) =0, (&)
v=— , V'(0)=0, v =

B+1 B 1+1 !
Because u is imaginary when B < —1, (4.10) may not be solvable.
If |4|§1 = nm + 7 for some non-negative integer n, then the
corresponding homogeneous problem of (4.10) has a nontrivial

kernel spanned by cos ||x. However by the self-adjointness of the
problem and the fact that

&1 1 1/, T, .
cos |u|x<—7) dx = —(sm(nn + =)- smO)
0 B-1+1 |l 2

(577)

s
B1+1

+1 ( 1 ) 20,

[ul\ B~ 1+1

problem (4.10) has no solution. Therefore |u|§; = nw + 7 cannot

occur. Now that |u|§; # nm + 5 for any non-negative integer

n, (4.10) admits a unique solution, which is the same as the pre-
solution v(-, &), and it takes the form

_ Av// +

(4.10)

Cos | |x 1

= — — 0 . 411
X) Beos|ule, B x€(0,61) (411)
Next consider v on (&1, & ). We have
, B 1
— AV + v(61) =0, v(&) = (4.12)

V= —/——,
B+1 B1+1

If "”(%7_5” = nm + 7 for some non-negative integer n, then the

corresponding homogeneous problem of (4.12) has a nontrivial
kernel spanned by sin(|u|(x — &1)). But

2 1 1
/g sin(|u|(x — 51))(m) dx = —m<cos(2nn + )

1
1
— cos O) (7)
B1+1

- |i|<B 11+1) 70,

so by the self-adjointness, problem (4.12) has no solution. Hence
m # nw + 7 for any non-negative integer n. Then (4.12)
admlts a unique solution, same as the pre-solution v(-, £), and it
takes the form

cos(|ul(x — £5%2))
v(x) = — B cos EE] tg Xl d) (4.13)

Since v is a C! function on (0, 1), the derivatives at & computed
from (4.11) and (4.13) must match, i.e.

_lplsinplg _ |psin HEE 414

Beos|ulsi  Beos '“‘(51 f) '
This means that
tan |u|&; = tan “"(5227_51) (4.15)
Similarly, one can show that

[ul(§2 —&1) lwl(&3 —&)  ul(Ew — én-1)
tan = tan — ...—tan

2 2 2
= tan |u|(1 —én) (4.16)

Then (4.2) follows from (4.15) and (4.16).
Conversely, assume that a partition £ satisfies the condition (4.2)
and the pre-solution of £ is a jump discontinuous solution of (2.4).
First we claim that none of |u|§ "”(52 LR I“‘(EN Sn-1),
[14](1—&n) can be written as nx + 7 for some non-negative mteger
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n. Otherwise if one of them takes this form, then all of them will
have this form by (4.2), namely

T — T
|M|$1=ﬂ1ﬂ+*,M=nzn+f,...,
2 2 2
(4.17)
M:nn+z Inl(1—&v)=n ﬂ_i_ﬁ
) N 5’ 1 N N+1 )
for some non-negative integers ny, ny, ..., nyy1. Then
] = |ul&r + |ul(& — &) + [nl(&3 — &)
+- A l(E = Ev—1) + Irl(1 — &n)
= (o + Z) + 2+ ) 2 + )
b ) N
T
+<nN+1n+5)
=(m+2np+---+2ny +nyp +N)w
a contradiction to (2.13).
Next consider the following N + 1 problems:
Av” + B v = ! V(0)=v(&)=0 (4.18)
B+1 B 1+1 T oerE :
P L ) =u&)=0 (4.19)
—Av v = , v = = X
B+ 1 B 1+1 ! 2
A B L )= e =0 (420
—Av v=(-1)"———, v(ény-1)= = .
B+1 B1+1 Nt N
—Av + B v =(—1)V*! ! vEN) =0 (1) =0 (421)
B+1 B1+1 N '

Each of these problems admits a unique solution because of the
claim above, and they take the forms of (4.11) and (4.13), etc. To-
gether they form a continuous function on (0, 1), which we denote
by v. Moreover (4.2) implies that (4.14) holds, so the derivative
of v is continuous on (0, 1). Consequently, v solves (2.11), i.e. v
is the pre-solution of &. The corresponding u(-, &) obtained from
(2.10), is a jump discontinuous solution of (2.4) by the assumption
of part 3. Since v(&) = 0,k = 1,2, ..., N, u(-, &) is also a critical
solution. O

5. Minimizing solutions

Lemma 5.1. Let (1.8), (2.8), and (2.13) hold. Suppose that the pre-
solution u(-, &) is a jump discontinuous solution of (2.4) at &. Then

321 4(_1)j+k+1

T (B g B T
1 —4 2(-1y*
R TEES AL I S A
Hence, the Hessian of I is given by
—G(&1,61)  G(&1,86)  —Gl&, &)
4 G(&2,81) —G(&, &)  G(&, &)
H= oy |68 Cob) Gt
U,(Slvf) 0 0
2 0 —V'(&2, ) 0
F— 0 0

B-1 +1 v/(SBs S)

Here the prime over v denotes the derivative of v(x, &) with respect
to x.

Proof. By Lemmas 4.1 and 4.2, for k # j,
1 2(=1y*" ou(§, €)
A&&  BT4+1 0&
2(—1y*1 2(—1)
B-'+1 B 1+1
4(_])i+k+1
= 7G iy .
g 1y 06 &)
When k = j, by Lemmas 4.1 and 4.2,
P 2A=1) vl )
8%‘].2 B—1 +1 3%‘]
2(=1y*" 2(=1y 2(—1y*
= — G iy &i _— iy
B1+1 B 141 (g] Sj)"‘ B_1+1U(€:] &)
-4 2(—1y*1
— G(&, &
R S

proving the lemma. O

G(&. &)

v'(§, 8).

For a partition & that satisfies the condition (4.2), define

o = |l cOt2Ipulés = |pe] cot |al(E; — &1)
= Jul ot [pel(En — Evor) = lulcot2ul(1 — &) (5.1)
B = Il csc2lpulés = |pu] csclul(r — &)
= lulesclul(Ey — Evo) = Il csc2lul(1 — &) (5.2)
- e — &)
y = |ultan|pu|é = Iultanf
== I a5 63)

These three numbers depend on the partition & and | |. We already
know from the proof of Theorem 4.4.3 that none of 2|u|&1, ||(&2 —
&)y |l(En —En—1), and 2| |(1—E&y) can be of the form (2n+ 1)
for some integer n. Moreover none of them can be written as 2nx
either. Otherwise

[l = (&1 + [ul(E2 — &) + |ul(E3 — &2)
+ooe (€ — Env-1) + [l(1 —&n)
would be an integer multiple of i, a contradiction to (2.13). Hence

a, B, and y are all finite numbers.
Let Q be the N x N matrix

1 100 --- 0
1 0o 10 --- 0
Q=0 1 0 1 --- O (5.4)
0O 000 --- 1
for N > 2. Denote the eigenvalues of Q by q1, @2, ..., qn. It is
known that these g;’s are
j—1 N+1
2 42c0s 0= o5 NE s odd:
N 2
j—1 N
2, 0, £2cos 7T(IN ), ji=273..., 3 if N is even. (5.5)
See for instance [12, Appendix B] for a proof. f N = 1, our

convention is to set Q to be the 1 x 1 matrix whose entry is 2 and
consequently q; = 2.

Lemma 5.2. Let (2.13) hold, & be a partition that satisfies (4.2), and
G be the N x N symmetric matrix whose (j, k)-entry is G(&, &;). Then
the eigenvalues of G are

1

—_——  k=1,2,...,N.
Ao — qxB)
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Proof. Let A be an eigenvalue of G, namely that there exists a
nonzero vector b = (by, by, ..., by)" such that

N

> Gl& §)bj = Aby, k=1,2,....N.
j=1

First consider the simplest case N = 1. Then

_cos(|p|(1 — &1)) cos(|]€1)

A =G, 6)= - (5.6)
Al sin |l
Since our convention is g; = 2when N = 1,
1 _ 1
Ao —q18)  A(2|ulcot |28 — 2|u| csc|u|281)
= {5 ) cot|ulé
<2A|M|
_( -1 >c05|u|-§1cos|u|(1—€1)
2A|pl|/ sin [l cos |pl(1 — &)
—1\ cos cos 1-—
_ ( ) [ e1&1 . [](1 — &) (5.7)
Alul sin ||

Here to reach the last line, we use sin |u|(1 — 2&;) = 0, which
follows from (4.2) when N = 1. Since (5.6) and (5.7) agree, the
theorem holds when N = 1.

When N > 2, let

N
() =) Glx, &by (5.8)
j=1

Hence

b
[—¢'lg = Zk’ and ¢(&) = Aby.

Then for every k,
(¢l = ——¢(&)
¢ E"_AA{ k)-

Let £ = (£(£1), ¢(&), ..., (En))T. We proceed to find an N x N

matrix T so that

[—¢'lg, = (TE

Then we convert the original eigenvalue problem Gb = Ab to a

new eigenvalue problem:

B ()
¢ = m C. .

On (&1, &), ¢(x) = c¢q cos|ulx 4 ¢y sin |p|x. From here we write,
in the matrix notation,
£(-1)] _ [coslulgr sinlulg1] e
sinfulg | |c2]
We denote the 2 by 2 matrix by A;, for the left of &;. To the right we

¢(&) | |cos|ulg
have similarly, on (§j, &41), £(x) = €1 cos |u|x + C; sin | |x and
[c(&) | _[cosinlg  sinlulg ][
_§(§j+1) cos |ul&ir1  sin|ul&ipq | | G2
with the 2 by 2 matrix denoted by Ag. Hence

-C1 _ a1
o =n]

&) ] on (§_1, &),

éji )} on (&, &y1).

Then
—{'(&=) = IMI[SiHIMIEj, — cos |u|gj]A;1 Egﬁ”]
—{'(g+) = IMI[Sinlulsj, — cos |u|gj]A;1 E_giﬂ]

and

[=¢'ly = |l sin|ulg cos |1ul5]

16| -1 (&)
x(a [;(%) } A [ctém})’

We compute
A7l = 1 sin || —sin|p|&—1
A _ ) )
sin |w|(& — &-1) [ —cos|ul§ cos|ul§ia
Al 1 sin |p|&j41 — sin | 1§
R = w1 4| — ) R
sin|p|(&1 — &) [~ Cos |uljr1  cos|ul§;
So T is a triagonal matrix. For j = 2,3,...,N — 1, the three

nontrivial entries of the jth row are
—|ulese|pl(§ — &i-1)s

|| cot [u](§ — &—1) + ] cot (] (&11 — &),
—lplesc|pl(&er — &)-

For the first row of T, since

c(x) = 8 o Iulx, x € (0, &), and

 cos |ul&
—¢/(61-) = |pl tan |l g (&),

the first two entries are

—|p| tan |w|&y 4 |u| cot|p|(52 — &1), —Imlcsc|uml(&2 — &)

Similarly the last two entries of the last row of T are

—lplesclpl(n —&n—1), [ulcot|w|(En —En—1)—|up| tan [u|(1—&x)
By (5.1)and (5.2) T is written as

2¢—B - 0 0 -~ 0
-8 20 - 0 - 0

T=| 0 —B 2« —-B -~ 0 (5.10)
0 0 0 o0 2a — B

We write T = 2ol — $Q where Iis the N x N identity matrix
and Q is given in (5.4). Then the eigenvalues of T are 2o — qi 8,
k=1,2,...,N. We claim that 2o — g/ is never zero. Note that,

withn = |u|é,

2lulcos2n  qlpul _ Iu
sin 27 sin2n  sin2p

20 —qiB = (2 cos2n — qi)-

Say 2cos2n — qr = 0 for gy = 2cos % Then 2n = HU)\TU
T )

mod 27Z or 2n = —% mod 27 Z. In the first case there exist
non-negative integers 1y, ny, ..., ny41 such that, by (4.2),

a(G—1) T(j—1)
N

2{ulé = + 2n,7,

+2mm, (& — &) =
T(j—1)
N

2|pl(1—&n) =
Then

Il = |l + |ml(€2 — &) + [l (63 — &2) + - + [il(En — En—1)
+1pl(1 = &n)

- (S ) o

+ 21y 41

i—1
ﬂUN ) +2n271)
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a(G—1) 7(j—1)
+ +( N +2nym ) + ON
=(m+2np+---+2ny +nyp+j—

+ nN+17T)

acontradiction to (2.13). Similar argument shows that for other q;'s
2a — qrB # 0.Then by (5.9) the eigenvalues of G are

1
AQRa — qiB)’
where the g;’s are given in (5.5). O

k=1,2,...,N, (5.11)

Theorem 5.3. Let (1.8)and (2.13) hold, and H(&¢) be the Hessian of I
at a critical solution u(-, &).

1. IfB > 0, then&, = 2’;—;,1 k=1,2,...,N,and the eigenvalues

of H(E) are
1 —4
( s +2Mtanh(i)),
B+1 (2 coth § — qx csch %) 2N
k=1,2,...,N.

2. IfB < —1, then (4.2) holds and the eigenvalues of H(§ ) are
1 ( 4|pl?
B+1\2a — qk,B
Here «, B, and y are given in (5.1)-(5.3) and they depend on
the partition & of the critical solution u(-, &).

—Zy), k=1,2,...,N.

Proof. In Theorem 4.4 we have already seen that at a critical
solution u(-, £), £ is the equidistant partition {1} if B > 0 and &
satisfies (4.2)if B < —1.

Now we prove the more complicated part 2 of the theorem. As
we know that when v is a critical solution, since v(&;) = 0,

cos(|pel(x — F=4)) (1)
v(x) = (-1 P~ \ul(ék;ékz—l) tog o Xe (Ek—1, &)
(5.12)

Then

_1) _
V() = ( 1; ] £an |M|(§k2 &k—1) (5.13)
By (5.3) we deduce

1k
v/(ék):( }3) r (5.14)

By Lemma 5.1 and (5.14), the Hessian of I at a critical solution
u(-, §)is
-4 ~ 2y

H(E) = BT 112 BB A1)

where § is the matrix whose (j, k) entry is (—1Y*G(&, &). The
matrix G and the matrix G are similar: G = PGP~! where

1 00 0
0 -1 0 0

p=|(0 01 0 (5.15)
0 0 0 -1

and P~ = P. Hence G has the same eigenvalues as G does. Then by
Lemma 5.2, the eigenvalues of H(&) are

—4 2y
AB~1'+ 1220 — qB) B(B-1+1)
from which part 2 of the theorem follows.

(5.16)

Part 1 of the theorem is easier to prove. Note that when B > 0
and u(-, &) is a critical solution, &, = % by Theorem 4.4.1. Define
G and T in the same way, then A is an eigenvalue of G if and only

if ﬁ is an eigenvalue of T. In this case

2 2
T = (2 th —)1 - ( h —) 5.17
pcoth o pesch o Q (5.17)
Hence the eigenvalues of G are
1
,k=1,2,...,N. (5.18)
A(sz coth § — qku csch %)
Moreover
2k — 1
v’( ) :(—1)"“Etanh(i)
2N B 2N
Then
4 ~ 2utanh(£:)
H(E) = —— 2 -1 =
(B-14+1) B(B~'+1)

and, since G and G have the same eigenvalues, part 1 follows from
(5.18) O

Theorem 5.4. Let (1.8) and (2.13) hold, and u(-, &) be at a critical
solution.

1. If B > 0, then u(-, &), where & is necessarily equidistant, is a
maximizing solution.
2. If B < —1, then the following statements hold.

(a) If 2|plér € (w — 5, m) mod 27Z, then u(-, &) is a
minimizing solution.

(b) If 2|u|&1 € (m,m 4+ §) mod 27Z, then u(-, &) is a
maximizing solution.

(c) If2|ulé € (=7 + §, 7w — §) mod 27Z, then u(-, §)
is a saddle solution.

Proof. Part 1. Because —2 < q < 2,

0 < 2cothﬁ —2cschE < 2cothﬁ —chschE < 2cothﬁ
N N N N N

jz 1
2csch — = 2coth — 5.19
+2csc N co 5N ( )

By Theorem 5.3.1 and (5.19), all eigenvalues of H(&) are negative.
Part 2. Let n = |u|&;. By Theorem 5.3.2 and (5.1)-(5.3), the
eigenvalues of H(&) are
+ tan 77)

1 < 4| _zy)z—Zlul( —2
B+ 1\2a —qiB B+ 1 \2cot2n — qxcsc2n

_ (—2|M|>
T \B+1
y (2+ ) — (24 gi) cos 2n
(qx — 2 cos2n)sin2n

(5.20)

Since —2 < gy < 2, the sign of the eigenvalue in (5.20) is the same
as the sign of (qx — 2 cos 27) sin 2.
If2n € (x — §,n) mod 277, then sin2n > 0 and

qk — 2€0s2n > qx — 2 cos(mw — %) >0

since the smallest g is 2 if N = 1,and —2 cos § if N > 2. Therefore
all eigenvalues in (5.20) are positive and u(-, £) is a minimizing
solution.

If2n € (w,w + §) mod 277, thensin2n < 0 and

qk — 2cos2n > qk—2cos(ﬂ+%) >0

as in the last case. Therefore all eigenvalues in (5.20) are negative
and u(-, £) is a maximizing solution.
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If2n € (—n—}—%, n—%) mod 27 Z,then N is atleast 2. Consider
the scenario 25 € (0,7 — §) mod 27 Z. If we take gy to be the

largest, which is gy = 2, then sin2n > 0,
gy —2cos2n=2—2cos2n >0,

and the corresponding eigenvalue in (5.20) is positive; if we take
qi to be the smallest, which is q; = —2 cos ;, thensin2n > 0,

g1 —2cos2n = —2COS% —2cos2n < 0,

and the corresponding eigenvalue in (5.20) is negative. Hence
u(-, &) is a saddle solution. In the other scenario, 25 € (=7 + %, 0)
mod 27Z, qx — 2cos2n > 0if gy = qy and gy — 2cos2n < O if
qr = q; as before. However sin2n < 0. Again u(-, £) is a saddle
solution. O

To apply Theorem 5.3.3, one writes (4.2) as
2|pulér = |pl(&2 — &1) + 27dy,
[l(&2 — &1) = |ul(§3 — &) + 2nd,, .. .,

ll(En — En—1) = 2|ul(1 — én) + 2mdn

for integers dy, d>,...,Critical solutions are parametrized by d1, d5,
., dy under the constraint 0 < & < --- < &y < 1. It follows that

N
FRE DN VIR
j=1

=1 j=1
Other &'s follow from (5.21) iteratively. Below are some special
cases.

(5.21)

2|plér = (5.22)

Corollary 5.5. Let(1.8)and (2.13) hold, and B < —1.

1. When N = 1, the partition & of a critical solution u(-, £) can be

written as
1 d] b/
fr=c+o—
2 2 |ul

for some dy € Zaslongas0 < & < 1. This u(-,&)is
minimizing if |u| + diw € (0,7) mod 27Z, and u(-, &) is
maximizing if || + diw € (7, 27r) mod 27 Z.

2. When N = 2, the partition & of a critical solution u(-, &) can be

written as
1 3di+dy\ 3 di+3dy\ 7
£ = ,+<¥>7, £ = ,+<¥)7
4 4 [l 4 4 [ e

forsomed,d, € Zaslongas0 < & < & < 1. Thisu(-, &)is
minimizing if 2 el 4 (3d, +dy)5 € (5. 7) mod 277, u(-, §)

is maximizing i f W+ (3d; + d)% € (7, %) mod 27Z,
and u(-, &) is a saddle point if X+ (3d, 4+ dp)Z € (-Z, )
mod 27 Z.

3. If & is the equidistant partition, i.e. & = 2’2‘;’1, then u(-, 21;&1})
is minimizing if %l e (x — T, ) mod 277, u(-, {%1}) is
maximizing if & € (7,7 + %) mod 27Z, and u(-, {&3

asaddleif W € (—7 + %, 7 — %) mod 27 Z.

)is

Proof. When N = 1, by (5.22) all the critical &’s are

1 d
& = + 2] T |, dy € Z, under the constraint0 < &; < 1. (5.23)
Here 2|,u|$1 = || + dyr and part 1 follows from Theorem 5.4.2.

When N = 2, by (5.22) and (5.21) all the critical &’s are

1 3dy+dy\ 7 3 dy +3dy\ 7
foly (il 3 (3T
4 4 [ 4 4 [

dq, d; € Z, under the constraint 0 < &; < & < 1.

Here 2|l = ‘zﬂ + (3d; + d3)% and part 2 follows from Theo-
rem 5.4.2.

For the equidistant partition, since £ =
from Theorem 5.4.2. O

] .
5y bart 3 again follows

Note that if N and u are fixed and u satisfies (2.13), we can
take B to be sufficiently negative, so that by Theorem 3.1.2 all pre-
solutions are jump discontinuous solutions. The critical solutions
can be parametrized by integers, like d; when N = 1 and (d1, d3)
when N = 2. Then the locations of the discontinuities &; are
determined by these integer parameters and w as in (5.22).

Fig. 2 shows the discontinuity location &; of each critical solu-
tion versus || when N = 1. A green curve denotes a minimizing
solution and a red curve denotes a maximizing solution according
to Corollary 5.5.1.

Fig. 3 shows pairs of (dq, d;) when N = 2. Some do not yield
critical solutions because they violate the constraint 0 < &; <
& < 1; others do give rise to critical solutions if B is chosen
sufficiently negative. These critical solutions are classified into
minima, maxima and saddle points according to Corollary 5.5.2.

Finally we give the formula of the energy of the equal distance
critical solutions in terms of N, the number of discontinuous points.
The two cases, B > 0 and B < —1, again contrast sharply.

Proposition 5.6. Let (1.8) and (2.13) hold, and u(-, &) be a critical
solution.

1. IfB> 0, then & = %1,

2k—1 N uw
I(u(~, { })) = tanh —.
2N wB+1) 2N
This quantity increases as N increases.
2. IfB < —1, then

k=1,2,...,N,and

I(u(-, §) = tan p|&;.

_N
1l(B+1)

Proof. We compute the energy of u(-, £) by (4.1). If B < —1, using
(4.11) and (4.13), we find

A —— (o an e+
u(- = — —— tan =
T Iy BT R ) AT At
(&2 —&1) | & —&
B 2 T3 )
_ 1 n 1 ( 1 tan |2[&
_<mm) 2B+ D\Ju
|M| &k — &r1)
+ Z 5
o tan (1~ )~ 1)
]
N
1 lel(&r — &r—1)
= _—— (tan + Y 2tan —>—
2mw+n( elé: z; :
+tan |ul(1 - &)
By (4.2) the above is simplified to
N
I(u(-, §)) = ———— tan|u|&, (5.24)
|l(B+ 1) ‘
which proves part 2.
For part 1, since B > 0, we have & = ﬁ > 0,and
N
Iu(-, £)) = —— tanh & (5.25)

w(B+1) 2N’

by a similar computation. This quantity increases as N increases
because the function x — “‘“h" is decreasing. O
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Fig.2. B < —1and N = 1. For each |u| satisfying (2.13) if B is sufficiently negative,
every pre-solution is a jump discontinuous solution. The discontinuity location &; is
plotted against || for all critical solutions parametrized by d;. Minimizing solutions
are plotted in green and maximizing ones in red according to Corollary 5.5.1. The
dotted vertical lines are at |u| = kn, k = 0, 1, 2, ..., which are values excluded by
(2.13). (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)
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Fig. 3. B < —1and N = 2. The lattice of integer pairs (d;, d,) with © = 40i.
A dot denotes an integer pair (dq, dy) that corresponds to no critical solution;
an asterisk represents a pair (dq, dy) that yields a critical solution if B is chosen
sufficiently negative. A green asterisk represents a minimizing solution, a blue
asterisk represents a saddle solution, and a red asterisk represents a maximizing
solution . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In the case B <
solution is

—1, the energy of the equidistant critical

2k — 1 N |ml
I(u(-, [7})) =— " _tan (5.26)
2N lulB+1) 2N’
This quantity is not monotone with respect to N.
6.B=0
Now we consider kernel J given in (1.12). For this J,
Jjx)=0. (6.1)

Let v = J[u]. Then v satisfies

—AV =u—1, v(0)=2'(1)=0, v=0. (6.2)
Here a bar over a function denotes its average: u = fol u(x) dx,
U= fo x)dx. If u is a solution of (2.4), we have

—v+4u—sgn(u)=0
—Av=u—-1u (6.3)
V(0)=2(1)=0
Given a partition £ a pre-solution u of the partition & is now a
solution of

N+1
— I+ u = (=1 x50 =0 (6.4)
k=1
With v = J[u], (6.4) implies
N+1
u=v+ Y (=D x50 (6.5)
k=1
and
N+1 N+1
—AV" — v = (1 x 80 — O (1 E— &),
k=1 k=1
v'(0)='(1)=0. (6.6)
The solution of (6.6) can be written as
1 N+1
v(x,§) = /0 Glx, J’)(Z(—UkX(skq,sw(}')
" k=1
IS 1)) dy (67)

where G is the same as (2.16) with

1
= /-7 lul= \f (6.8)

Again we must assume that

|| #km, k=1,2,3,... (6.9)
Note that
1
/ G(x,y)dy = —1. (6.10)
0
We use A; to denote the average of Zf:ll(—l)" X(Ee1.E0)"
1 N+1 N+1
A= | Y (Koo dx =Y (1 E - &) (6.11)
k=1 k=1

A pre-solution is not necessarily a jump discontinuous solution.
For equidistant pre-solutions we have the following.

Proposition 6.1. Let & be the equidistant partition, & = 2(=1. Then
the pre-solution of { =5~ Zk—1 }k 1 is a jump discontinuous solutlon of (2.4)
if and only if 4 € (O 71)

Proof. For the equidistant partition &, Az = 0. Then the solution v
of (6.6) has the symmetry properties as in Corollary 2.2. One finds
that

v =1— %cosl;ﬂx, xe (0, %) (6.12)
SN
By (6.5)
1 1
u(x) = —m cos |ulx, x € (0, ﬁ) (6.13)

2N
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Fig. 4. Curves of (1 — &;)tan |u|&; and &; tan ||(1 — &;). The horizontal coordinate of each intersection point is &; of a critical solution with N = 1. The equidistant one,
& = % is always a critical solution. There are more critical solutions when |u| becomes larger.

To be a jump discontinuous solution, u cannot change sign on
(0, 2N) Hence |u|x € (0, 7) for all x € (0, 2N) This means “" €
(0, ). Conversely if 'z‘ € (0, ), then (6.13) is negative on [0
and u is a jump discontinuous solution. O

9 2N]
By (6.7) a pre-solution v(-, &) satisfies
v
—17(Glx. &) + 1)

Now suppose that the pre-solution u(-, &) is also a jump discontin-

(6.14)
8&1
uous solution. Write I(&) for I(u(-, &£)). Calculations show

o
% =2(=1)""v(§, §) (6.15)
921 _ 4(—])j+k+](G(§' E)‘i‘]) (6.16)
0§08k ook '
821
e = —4(Glg, &) + 1) + 2 1) '(§, £) (6.17)
]

Then u is a critical solution if and only if v(&;, £) = O for every j.

Theorem 6.2. Let (6.9) hold and the pre-solution u(-, £) is a jump
discontinuous solution. Then u(-, &) is a critical solution if and only if

none of | |1, "”(52 1), '”‘(53 52) ., lt|(1 — &) can be written as
% + nx for some non- negatlve mteger n, and
(1+Ag)tan|ulé = (1 —Ag)tan“”(gzzi_él)

= (14 Ag)tan M = (6.18)
where A; = Y 3 (=16 — &)

Proof. Let u(-, &) be a critical solution. Then v(&, &) = 0, k =
1,2,...,N,by(6.15).0n(0, &) the same argument as in the proof
of Theorem 4.4.3 shows that |¢|£; is not 7 + n for some non-
negative integer n. Then, since v'(0) = v(&;) = 0,

vix)=14+A

cos |ulx, x € (0, &). (6.19)

14 A
" cos|ulé
On (&, &), X ‘2 &) is not £ 4 nzr for some non-negative integer
n, and since v(&1) = v(&) =0,

—1+A;

cos \ﬂl(fz 51)

v(x)

S(Iul(x—&%&)) x € (&1, &)

(6.20)

Continue this on each (&_1, &) and (&y, 1) and use the continuity
of v at & to deduce (6.18).

Conversely, if none of |u|&;, “”(Ez ), ‘”'(53 L l(1 = &n)
can be written as 3 + nm for some non- negatlve 1nteger n, and
(6.18) holds, then one defines v by (6.19) and (6.20), etc. The

—14A: —

resulting function is continuously differentiable on (0, 1) by (6.18),
so it is a solution of (6.6) and therefore a pre-solution. By the
assumption of the theorem, the corresponding u(-, &) from (6.5) is
a jump discontinuous solution. Then, since v(&) = 0, u is also a
critical solution. O

If £ is an equidistant partition: & = 2’2(E1 ,k=1,2,...,N, then

A: = 0 and (6.18) holds. For non-equidistant critical solutions,
(6.18) implies that

-&

Es
(6.21)

2 il

Between adjacent intervals the relationship is more complex. Take
N 1 for example. Then (6.18) means (1 + Ag)tan|ulé;
(1 —Ag)tan|u|(1 — &), which is equivalent to

(1 —&)tan|ul§ = & tan [p|(1 — &). (6.22)

One can plot the left and right sides of (6.22) against & and a
solution of (6.22) corresponds to an intersection point of the two
curves; see Fig. 4. As in the B < —1 case, the larger |u| is the more
critical solutions there are.

Now we proceed to find minimizing solutions. We shall only
consider equidistant pre-solutions. By Proposition 6.1 we only
need to consider ‘;‘,—‘ € (0, r) which is the necessary and sufficient
condition for a pre-solution to be a jump discontinuous solution.

Proposntlon 6.3. Let (6.9) hold, & be the equidistant partition
{Z1WN_ |, and u be the pre-solution of { 1N

1. Let N = 1.If || € (0,
2. LetN > 2.

(a) If In] € (0,  — %), then u is a saddle solution.
(b) If |u| € (m — &, ), then u is a minimizing solution

), then u is a minimizing solution.

Proof. Recall the matrix G and «, 8, and y in (5.1)-(5.3). For
equidistant partitions

el | |
v

|
= cot — = csC—, Yy = tan — 6.23
a=|u| N’ , B=lul N Y 1] (6.23)

The eigenvalues of G are found in Lemma 5.2. However here we
have to consider the matrix G + J where J is the N x N matrix
whose entries are all equal to 1.Letp = (1,1, ..., 1)".Thenpisan
eigenvector of the matrix Q of (5.4) and the associated eigenvalue
is 2. Consequently p is also an eigenvector of T of (5.10), and an
eigenvector of G with the associated eigenvalue equal to TZ;S)
Moreover p is also an eigenvector of ], so it is an eigenvector of G+J
whose corresponding eigenvalue is

1

Aa—28) " N.

(6.24)
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Furthermore if § L p, then J§ = 0. Hence the remaining eigenvec-
tors of G are also eigenvectors of G + J with the same eigenvalues.
As in Theorem 5.3.2 we find

V(g) = (—1y*y
Then the eigenvalues of H(&), the Hessian of I at &, are

(6.25)

4
- —AN42y, —————— 42y, k=1,2,...,N—1
Ao — 2B) AQ2a — qiB)
(6.26)
Recall that gy = 2 is the largest among the gy ’s.
Letn = &4 € (0, 2). By (6.23)
S —4N+2y=¢+2|ultann—41\f
AQa — 28) cot2n — csc2n
2 —2co0s2n
= 2l
(1 — cos2n)sin2n
— 4] 1 1
B sin2n  2n
>0

since sin2n < 2n when 2n € (0, ). So the first eigenvalue in
(6.26) is positive. If N = 1, this is the only eigenvalue, and u is a
minimizing solution.

If N > 2, consider the other eigenvalues

4 2+ qr —(2+qx)cos2n
— >+ 2y =2|u| .
AQ2o — qiB) (qx — 2 cos 2n) sin 27

k=1,2,...,N—1,

as in (5.20). Since 2n € (0, ) the sign of each eigenvalue here is
the same as the sign of q, — 2 cos 2». Take g, to be q; = —2cos §,
the smallest among the g;’s. Then

g1 —2cos2n = —ZCOS% — 2.¢0s 2. (6.27)
If2n € (0,  — ), (6.27) is negative. Then H(&) has one negative
eigenvalue in addition to the positive eigenvalue discussed before,
so the equidistant critical solution is a saddle solution. If 2n €
(r — %, m), then (6.27) is positive, and all g, — 2cos2n > 0
since other g,s are greater than q;. Hence all eigenvalues of H(£)
are positive and the equidistant critical solution is a minimizing
solution 0O

7. Discussion

Here we show a connection between the FitzHugh-Nagumo
system and (1.1) with a sign changing kernel. We also explain
how the fractional Laplacian operator can enter the picture. The
kernel (7.14) that arises in this section changes sign, in this respect
similar to the kernel (1.9) studied in this paper. On the other hand,
(7.14) is much more singular, and hence has a smoothing property.
Solutions to its Euler-Lagrange equation cannot be discontinuous.

The FitzHugh-Nagumo system models excitable systems such
as neuron fields [13,14]. It is one of the best known examples
that include growth and inhibition properties. To see the two
properties we need a more sophisticated version of the FitzHugh-
Nagumo system where both the membrane voltage variable u and
the recovery variable v are allowed to diffuse in space; namely

[ U = dAu—u(u—1/2) u—1)+a—bv
T =

vt Av—v+u (7.1)

where u and v satisfy the zero Neumann boundary condition on the
boundary of the domain. Consider the steady states of the system

which satisfies

dAu —u(u—1/2)u—1)+a—bv =0 inD
Av—v+u=20 ’

S —0 (7.2)

{auz;:o on aD

where D is adomainin R" and 9, denotes outward pointing normal
derivative. By solving the second equation for v, which yields v =
(—A + 1)"'u and inserting it into the first equation one obtains

—dAu+u(u—1/2)u—1)—a+b—A+1)"u=0. (7.3)

Eq.(7.3) has a variational structure. Any solution of (7.3) is a critical
point of the functional

d (1 —u)? b _
E(u) = Z|VuP— — —u(—A+1)""u)dx. (7.4
() /D<2| up+—— au+Ju(~A+1) u) x. (7.4)

Let G be Green’s function of the — A+ 1 operator with Neumann
boundary condition so that

((—A+ 1)-1u)(x): / G(x, y)u(y) dy. (7.5)
D

The last term in (7.4) can be rewritten as

/u(—A—I—])’ludx = —1//G(x,y)(uo<
D 2 DJD

+ f u?(x) dx, (7.6)
D

) — u(y))* dxdy

and (7.4) becomes

E(u) = /quldx—// G(x, y)
(1—u b
+/L;<f—au+2u)dx (7.7)

In applications u is typically a phase field variable and F(u) is
the free energy of the field. The first two terms in (7.7) model two
kinds of self-interaction energy of u and the third term is a bulk
energy. The two interaction energy terms are effective on different
length scales and their preferences are opposite. The first term is
local and favors phase fields that are close to constant. The second
term is nonlocal and, because of the negative sign in front, benefits
from more oscillatory fields, because of the negative sign in front.

Because the two interaction terms are of different mathematical
types; the first is a local gradient term and the second is a nonlocal
integral term, (7.7) is a hybrid model. In this paper we would like to
have a more unified approach where interaction is given by a single
term. For this we re-examine the derivation of the gradient term.
The gradient term often arises as an approximation of a nonlocal
interaction like the second term in (7.7), but with an opposite sign.
Let S(z), z € R" be a non-negative and radially symmetric function
and consider

/ / S(x — y)u(x) — u(y)Y dxdy, (7.8)
R JRN

where we have taken D to be R" for simplicity. If we expand u(y)

— u(y))* dxdy

about x and approximate u(y) ~ u(x) + Vu(x) - (y — x), then
/ / S(x — y)u(x) — u(y))? dxdy ~ f / S(x—y)
R JRM RN

x|Vu(x) - (y — x)|* dxdy

= cr/ [Vu(x)|? dx
Rl’l

where

[ee)
o= wn/ S(ryr™tldr
0
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and wy is the volume of the unit ball in R". This approximation is
more accurate if S has small support.

Thus if we replace the first term in (7.7) by (7.8), then the first
two terms can be combined into a single term and we arrive at
(1.1). In the case that D = R", it is reasonable to assume that |
is a function of |x — y|, unless the self-interaction of the field u has
a preferred direction. If (1.1) is used to replace (7.7), we should let

2d
@) =—

where I" is the fundamental solution of —A + 1 on R". It is known
that

S(z)—bI'(z) (7.9)
o

() 1212 Ky 1 (l21) (7.10)

= (27‘[)"/2
where Ku_yis the § — 1 order modified Bessel’s function of the

second kind.

We must assume that S(z) is more singular than I"(z) when z
is at 0, so J(z) is positive if z is close to 0. When z is away from 0,
J(z) may or may not stay positive. This point is illustrated in the
following example.

Recent years have seen intense efforts to use the fractional
Laplacian operator (—A)* in place of the usual — A in many elliptic
and parabolic problems [15-18]. For s € (0, 1), one defines the
singular integral

(—AFU(X) = o f
rr X — Y|

where ¢, s is a constant depending on n and s. This expression
follows from an interaction energy of the form (7.8) with

S(z) =

_|Z

u(x) — u(y)

o (7.11)

Cn,s
|n+25 .

(7.12)
If we are interested in using a fractional Laplacian, the hybrid
equation (7.3) should be replaced by

d—AYu+b—A+ 1) u+uu—-1/2u—1)—a=0 (7.13)

on R". The integral equation (7.13) is precisely the Euler-Lagrange
equation of (1.1) with D = R",

2 1— 2 b
F(u) = u(fu) —au+ Euz,
and
dc, b
I2) = W - Wllll_"/ng_1(|Z|)~ (7.14)

Note that Kn_4(|z]|) is positive and is of order |z|]‘% (in the case
n > 3)when |z| is small, so as |z] — 0 the first termin (7.14) tends
to oo like |z|~"%) and the second term tends to oo like |z|~("~2).
The first term dominates and the difference J(z) tends to oo like
|z|~("+25) ' When z — oo, Kn_s(|z]) tends to 0 like z~'/?¢~* 50 J(2)

tends to 0 like z~("+2%) but stays positive when z is sufficiently large.
However if b/d is large, ] (z) is negative for some z away from 0 and
Q.
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