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• Pattern formation is driven by sign changing interaction kernels.
• A continuous interaction kernel allows discontinuous solutions.
• Presolutions lead to solutions.
• The more important solutions are the critical solutions.
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a b s t r a c t

A nonlocalmodelwith a possibly sign changing kernel is proposed to study pattern formation problems in
physical and biological systems with self-organization properties. One defines pre-solutions of a related
linear problem and gives sufficient conditions for pre-solutions to be jump discontinuous solutions of the
nonlocal model. Among amultitude of solutions a selection criterion is used to single outmore significant
critical solutions. These solutions are further classified into minimizing solutions, maximizing solutions
and saddle solutions. Minimizing solutions are the most relevant for patterned states and they exist if
the kernel changes sign. A non-negative kernel on the other hand behaves in some ways like the gradient
term in the standard local model.
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1. Introduction

Patterned states arise in many physical and biological systems

as orderly outcomes of self-organization principles. Examples in-

clude morphological phases in block copolymers, animal coats,

and skin pigmentation. Common among these pattern-forming

systems is that a deviation from homogeneity has a strong positive

feedback on its further increase. On its own, this would lead

to an unlimited increase and spreading. Consequently, pattern
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formation additionally requires a longer ranging confinement of

the locally self-enhancing process.

In this paper we use a phase field model with a fully nonlocal

self-interaction energy. For a phase field u(x), x ∈ D ⊂ R
n, the free

energy of u is given by

I(u) = 1

4

∫

D

∫

D

J(x, y)(u(x) − u(y))2 dxdy +
∫

D

F (u) dx. (1.1)

The first term in (1.1) is the self-interaction energy of the fieldu and

the second term is the bulk energy of u. The function F is typically

a double well potential, like F (u) = (1/4)u2(1 − u)2 or a linear

perturbation of this. The Euler–Lagrange equation of (1.1) is the

integral equation

−J[u] + j(x)u + f (u) = 0 in D (1.2)

where

J[u](x) =
∫

D

J(x, y)u(y) dy, j(x) =
∫

D

J(x, y) dy, (1.3)

and f is the derivative of F . In (1.2) J[·] is an integral operatorwhich

makes the equation nonlocal. The functional (1.1) is defined in an
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Lp space, 1 ≤ p ≤ ∞, and (1.2) holds almost everywhere with

respect to the Lebesgue measure.

This problem was first studied by Bates, Fife, Ren, and Wang

in [1] where the domain D is taken to be R. Subsequent works

on this problem include [2–6]. In all these papers the kernel J

is assumed to be non-negative. A non-negative kernel penalizes

spacial deviation of the phase field. This effect is analogous to the

gradient term in the standard Allen–Cahn problem [7]:

IAC (u) =
∫

D

(1

2
|∇u|2 + F (u)

)
dx. (1.4)

This is a local problem whose Euler–Lagrange equation is the

partial differential equation

− ∆u + f (u) = 0, x ∈ D; ∂u

∂ν
= 0, x ∈ ∂D. (1.5)

Like the gradient term in (1.4) a non-negative J in (1.1) captures

the growth property in a self-organized system but misses the

inhibition property. We argue that an inhibition property can be

recovered if J changes sign.

In the Discussion section we demonstrate this viewpoint by

showing that the FitzHugh–Nagumo system, an archetypical in-

hibitory system, leads to a functional like (1.1). The interaction

kernel J(x, y) should be positive if x is close to y so that short dis-

tance self-interaction is repulsive, but becomes negative if x is far

from y so that long distance self-interaction can be attractive. We

also explain a connection between our problem and the fractional

Laplace operator that has been studied intensively in recent years.

While the paper [1] was devoted to traveling wave solutions of

the gradient flow of (1.1), they also found critical points of (1.1)

that are discontinuous. Whether or not (1.2) has discontinuous

solutions depends on the nonlinearity f and the singularity of

J(x, y) when x and y are close. If the singularity is mild, then J[u](x)
is a continuous function of x. Then by (1.2), j(x)u(x)+ f (u(x)) should

also be continuous with respect to x. However if j(x)u + f (u) is

not monotone with respect to u, then u(x) does not need to be

continuous in order for j(x)u(x) + f (u(x)) to be continuous with

respect to x.

Admitting discontinuous solutions makes the problem (1.1)

very appealing in applications. Similar ideas have appeared in

peridynamics which uses integral equations instead of partial

differential equations to study damage in continuum mechanics

[8–10]. This paper is concerned with solutions of (1.2) that are

continuous except for a finite number of jump discontinuous

points; see Section 2 for the precise definition of such solutions.

As an early work on discontinuous solutions of (1.2), we do not

seek a theory for a general kernel. Instead we choose some special

J ’s that allow us to carry out a thorough analysis of the problem.

We solve this problem in one dimension, i.e. D = (0, 1) and uses a

piecewise linear function f as the nonlinearity.

Between Sections 2 and 5, J is the Green’s function of the

differential operator

− A
d2

dx2
+ B, A > 0, B ∈ R (1.6)

with the zero Neumann boundary condition; namely for every

y ∈ (0, 1)

−A
∂2J(x, y)

∂x2
+ BJ(x, y) = δ(x − y),

∂ J(0, y)

∂x
= ∂ J(1, y)

∂x
= 0.

(1.7)

Here A and Bmust satisfy

B

A
̸= −k2π2, k = 0, 1, 2, . . . (1.8)

More explicitly

J(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

cosh
(√

B
A
(1 − y)

)
cosh

(√
B
A
x

)

√
AB sinh

√
B
A

, x < y

cosh
(√

B
A
(1 − x)

)
cosh

(√
B
A
y

)

√
AB sinh

√
B
A

, x ≥ y

. (1.9)

Note that B can be positive or negative. If B is negative then

√
B
A
is

imaginary and (1.9) can be alternatively written as

J(x, y) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−
cos

(√
| B
A
|(1 − y)

)
cos

(√
| B
A
|x

)

√|AB| sin
√

| B
A
|

, x < y

−
cos

(√
| B
A
|(1 − x)

)
cos

(√
| B
A
|y

)

√|AB| sin
√

| B
A
|

, x ≥ y

. (1.10)

Fig. 1 shows three cases of J , one with B > 0 and two with B < 0.
Integrating J we find

j(x) = B−1, x ∈ (0, 1). (1.11)

The first notable property of this kernel is the mild singularity at
x = y; J is continuous on [0, 1] × [0, 1] and differentiable except
when x = y. Another property of J is its sign. When B > 0, J is
everywhere positive; when B < 0, J may change sign. Fig. 1 shows
graphs of J for several values of B.

In Section 6 we study another kernel:

J(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

3y2 + 3x2 − 6y + 2

6A
, x < y

3y2 + 3x2 − 6x + 2

6A
, x ≥ y

. (1.12)

This kernel is theGreen’s function of the operator (1.6)whenB = 0.
Since (1.8) does not hold, this Green’s function is the solution of a
different equation:

−A
∂2J(x, y)

∂x2
= δ(x − y) − 1,

∂ J(0, y)

∂x
= ∂ J(1, y)

∂x
= 0,

∫ 1

0

J(x, y) dx = 0.

(1.13)

The graph of this J is plotted in Fig. 1 as well. It has a simple shape
and changes sign.

The starting point of our work is the notion of pre-solutions. A
pre-solution satisfies an inhomogeneous linear differential equa-
tion; see Section 2. Every jump discontinuous solution of (1.2) is
a pre-solution. However a pre-solution is not necessarily a jump
discontinuous solution. In Section 3 we give sufficient conditions
that yield jump discontinuous solutions from pre-solutions; see
Theorems 3.1 and 3.2.

At this point a peculiar phenomenon arises. Often times there
is a multitude of solutions to (1.2). One can almost arbitrarily pre-
scribe the location of discontinuity points and construct solutions.
A selection principle is needed so we can weed out unimportant
solutions. This is accomplished in Section 4wherewe introduce the
notion of critical solutions. The idea is to use the points of discon-
tinuity of a solution, say ξ1, ξ2, . . . , ξN , as parameters and view the
energy I as a function of these parameters. Namely I = I(u(·, ξ ))
where ξ = (ξ1, ξ2, . . . , ξN ) and u(·, ξ ) is the jump discontinuous
solution whose discontinuous points are ξ1, ξ2, . . . , ξN . A critical
solution is characterized by parameters that yield a critical point
of the energy. It turns out that the number of critical solutions
is much smaller. It is proved in Theorem 4.4, that if B > 0 for
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Fig. 1. Graphs of J for different values of B. A = 1 in all cases.

each N ∈ N there is only one critical solution with N jump

discontinuity points, which jumps ‘up’ at the first discontinuous

point. The discontinuous points ξ1, ξ2, . . . , ξN of this critical solution

are equidistant:

2ξ1 = ξ2 − ξ1 = ξ3 − ξ2 = · · · = ξN − ξN−1 = 2(1 − ξN ). (1.14)

There are no critical solutions if −1 < B < 0. And if B < −1 there

may be other critical solutions in addition to the equidistant ones.

In Section 5 we proceed further to classify the critical solutions.

We are particularly interested in the ones that locally minimize

I(u(·, ξ )), because these are stable and robust under perturbation.

Theorem 5.3 shows that when B > 0, all critical solutions (which

are precisely the equidistant ones) are locally maximizing; when

B < −1 a criterion is found that determines the type of each

critical solution. Minimizing solutions do exist in this case. It is

known that the local problem (1.5) does not admit any stable non-

constant solution [11]. In this aspect (1.1) with a non-negative

kernel behaves like a local model.

Our journey from pre-solutions to jump discontinuous solu-

tions, then to critical solutions, and finally to minimizing solutions

is repeated in Section 6 for the kernel of (1.12). This J , because

it changes sign, shares a number of properties with the kernel of

(1.10) where B < −1. There are equidistant and non-equidistant

critical solutions, some of which are minimizing.

2. Pre-solutions

We take f to be a piecewise linear function

f (u) =
{
u + 1 if u < 0
0 if u = 0
u − 1 if u > 0

(2.1)

or

f (u) = u − sgn(u) (2.2)

where sgn is the sign function: sgn(u) = −1 if u < 0, sgn(u) = 1 if
u > 0 and sgn(u) = 0 if u = 0. Note that for this f ,

F (u) = (u − sgn(u))2

2
(2.3)

Consequently, we transform (1.2) into

− J[u] + B−1u + u − sgn(u) = 0 (2.4)

Define

v(x) =
∫ 1

0

J(x, y)u(y)dy, (2.5)

which satisfies

−Av′′ + Bv = u, v′(0) = v′(1) = 0. (2.6)

Then (2.4) can also be written as a system:
⎧
⎨
⎩

−v + B−1u + u − sgn(u) = 0
−Av′′ + Bv = u

v′(0) = v′(1) = 0
(2.7)

A solution u of (2.4) is termed jump discontinuous if there exist
ξ1, ξ2, . . . , ξN , 0 < ξ1 < ξ2 < · · · < ξN < 1, such that

1. u is continuous on each (ξk−1, ξk), k = 1, 2, . . . ,N+1,where
ξ0 = 0 and ξN+1 = 1,

2. u on each (ξk−1, ξk) has a continuous extension to [ξk−1, ξk],
3. u(x) < 0 if x ∈ [ξk−1, ξk] and k is odd, and u(x) > 0 if

x ∈ [ξk−1, ξk] and k is even, where u(ξk−1) = limx→ξ+
k−1

u(x)

and u(ξk) = limx→ξ−
k
u(x).

In this paper, we are only interested in jump discontinuous so-
lutions of (2.4). Note that u(x) < 0 on (0, ξ1) and u(x) > 0 on
(ξ1, ξ2), so u jumps ‘up’ at the first discontinuous point ξ1. One can
certainly consider jump discontinuous solutions that jump ‘down’
at ξ1.We do not consider these ‘jump down’ solutions in this paper.
They may be treated in an equivalent fashion to the jump ‘up’ ones
considered here.



12 X. Ren and J. Trageser / Physica D 393 (2019) 9–23

Having a piecewise linear function f in our problem is not the
primary reason for the existence of jump discontinuous solutions.
If there is a jump discontinuous solution of (2.4), one can always
modify the function f (u) for u near 0 to turn it into a smooth
function. As long as the discontinuous solution jumps past the
region where the modification to f is made, the discontinuous
solution remains to be a solution to the new problem with the
modified, smooth nonlinearity.

If B = −1, then there is no jump discontinuous solution. This is
because (2.4) implies v = − sgn(u) but v is continuous and sgn(u)
has discontinuities at ξk if u is jumpdiscontinuous. Thuswe assume

B ̸= −1 (2.8)

throughout this paper.
We define the notion of pre-solutions at this point. Let 0 =

ξ1 < ξ2 < · · · < ξN < ξN+1 = 1 be a partition of [0, 1] and
ξ = (ξ1, ξ2, . . . , ξN ). A pre-solution u of the partition ξ is a solution
of

− J[u] + B−1u + u −
N+1∑

k=1

(−1)kχ(ξk−1,ξk) = 0 (2.9)

Alternatively, if (2.8) holds, with v = J[u], (2.9) implies

u = v + ∑N+1
k=1 (−1)kχ(ξk−1,ξk)

B−1 + 1
(2.10)

Then −Av′′ + Bv = u yields

− Av′′ + B2

B + 1
v =

∑N+1
k=1 (−1)kχ(ξk−1,ξk)

B−1 + 1
, v′(0) = v′(1) = 0.

(2.11)

Hence when (2.8) and (1.8) hold, we may equivalently call a solu-
tion v of (2.11) a pre-solution of ξ .

For the differential operator

− A
d2

dx2
+ B2

B + 1
, (2.12)

with the zero Neumann boundary condition in (2.11), we impose
the assumption

B2

A(B + 1)
̸= −k2π2, k = 0, 1, 2, . . . (2.13)

so that it is invertible. We set

µ =
√

B2

A(B + 1)
(2.14)

with the convention that µ is positive when B2

A(B+1)
> 0 and µ is

imaginary with a positive imaginary part if B2

A(B+1)
< 0. The Green’s

function of this operator, with the Neumann boundary condition,
is

G(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

cosh(µ(1 − y)) cosh(µx)

Aµ sinhµ
, x < y

cosh(µ(1 − x)) cosh(µy)

Aµ sinhµ
, x ≥ y

. (2.15)

When B < −1, µ is imaginary and the above can be written
alternatively as

G(x, y) =

⎧
⎪⎪⎨
⎪⎪⎩

− cos(|µ|(1 − y)) cos(|µ|x)
A|µ| sin |µ| , x < y

− cos(|µ|(1 − x)) cos(|µ|y)
A|µ| sin |µ| , x ≥ y

. (2.16)

If we have a jump discontinuous solution u to (2.4) with dis-

continuities at ξ1, ξ2, . . . , ξN , then u is also a pre-solution with

the partition ξ = (ξ1, ξ2, . . . , ξN ). However a pre-solution is not

necessarily a jump discontinuous solution. For a pre-solution u to

be a jump discontinuous solution, it must satisfy the condition
{
u(x) < 0 if x ∈ [ξk−1, ξk], k = 1, 3, 5, . . .
u(x) > 0 if x ∈ [ξk−1, ξk], k = 2, 4, 6, . . .

(2.17)

By (2.10) a pre-solution is continuous on each (ξk−1, ξk) and admits

a continuous extension to [ξk−1, ξk]. In (2.17), we take u(ξk−1) =
limx→ξ+

k−1
u(x) and u(ξk) = limx→ξ−

k
u(x) when considering x ∈

[ξk−1, ξk].

Lemma 2.1. Suppose that ξ is a partition and (1.8), (2.8), and (2.13)

hold. Then the pre-solution of ξ is given by

v(x) = 2

B sinhµ

(
cosh(µ(1 − x))

k−1∑

j=1

(−1)j sinh(µξj)

− cosh(µx)

N∑

j=k

(−1)j sinh(µ(1 − ξj))
)

+ (−1)k

B

for x ∈ [ξk−1, ξk].

Proof. Since

v(x) =
∫ 1

0

G(x, y)

∑N+1
j=1 (−1)jχ(ξj−1,ξj)(y)

B−1 + 1
dy,

we deduce that, if x ∈ (ξk−1, ξk),

v(x) =
k−1∑

j=1

∫ ξj

ξj−1

cosh(µ(1 − x)) cosh(µy)

Aµ sinhµ

(−1)j

B−1 + 1
dy

+
∫ x

ξk−1

cosh(µ(1 − x)) cosh(µy)

Aµ sinhµ

(−1)k

B−1 + 1
dy

+
∫ ξk

x

cosh(µ(1 − y)) cosh(µx)

Aµ sinhµ

(−1)k

B−1 + 1
dy

+
N+1∑

j=k+1

∫ ξj

ξj−1

cosh(µ(1 − y)) cosh(µx)

Aµ sinhµ

(−1)j

B−1 + 1
dy

=
k−1∑

j=1

cosh(µ(1 − x))(sinh(µξj) − sinh(µξj−1))(−1)j

A(B−1 + 1)µ2 sinhµ

+ cosh(µ(1 − x))(sinh(µx) − sinh(µξk−1))(−1)k

A(B−1 + 1)µ2 sinhµ

+ cosh(µx)(− sinh(µ(1 − ξk)) + sinh(µ(1 − x)))(−1)k

A(B−1 + 1)µ2 sinhµ

+
N+1∑

j=k+1

cosh(µx)(− sinh(µ(1 − ξj)) + sinh(µ(1 − ξj−1)))(−1)j

A(B−1 + 1)µ2 sinhµ

=
k−1∑

j=1

2 cosh(µ(1 − x)) sinh(µξj)(−1)j

B sinhµ

+
N+1∑

j=k+1

2 cosh(µx) sinh(µ(1 − ξj−1))(−1)j

B sinhµ

+ cosh(µ(1 − x)) sinh(µx)(−1)k

B sinhµ

+ cosh(µx) sinh(µ(1 − x))(−1)k

B sinhµ
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=
k−1∑

j=1

2 cosh(µ(1 − x)) sinh(µξj)(−1)j

B sinhµ

−
N∑

j=k

2 cosh(µx) sinh(µ(1 − ξj))(−1)j

B sinhµ
+ (−1)k

B

proving the lemma. □

Wecall either v given in Lemma2.1 or the corresponding u from
(2.10) a pre-solution. The pre-solution u, or v, of a partition ξ is
oftenwritten as u(x, ξ ), or v(x, ξ ), when its dependence on ξ needs
to be emphasized.

Partitions of special interest are the equidistant ones, where
ξk = 2k−1

2N
, k = 1, 2, . . . ,N . The following follows from Lemma 2.1.

Corollary 2.2. Suppose that ξ is an equidistant partition, ξk = 2k−1
2N

,

k = 1, 2, . . . ,N, and (1.8), (2.8), and (2.13) hold. Then the pre-

solution is

v(x) = (−1)k+1

B cosh
(

µ

2N

) cosh

(
µ

(
x − k − 1

N

))
+ (−1)k

B
,

if x ∈ [ξk−1, ξk]. (2.18)

In particular,

v

(
2k − 1

2N

)
= 0, k = 1, . . . ,N, (2.19)

and the following symmetry properties hold: for all x ∈
[
0, 1

2N

]

v(x) = −v

( 1

N
− x

)
= −v

( 1

N
+ x

)
(2.20)

= v

( 2

N
− x

)
= v

( 2

N
+ x

)

= · · ·
= (−1)N−1v

(N − 1

N
− x

)
= (−1)N−1v

(N − 1

N
+ x

)

= (−1)Nv(1 − x)

3. Jump discontinuous solutions

Here we give sufficient conditions that yield jump discontinu-
ous solutions from pre-solutions.

Theorem 3.1. Let (1.8) and (2.13) hold, ξ be a partition, and u(·, ξ )
be the pre-solution of ξ .

1. If B > 1, then u is a jump discontinuous solution of (2.4).

2. If B < − 2N
|sin(|µ|)| −1, then u is a jump discontinuous solution of

(2.4).

Proof. Let B > 1. First consider the interval [ξk−1, ξk] with an odd
k. We show that u(x) < 0 if x ∈ [ξk−1, ξk] where the value of u
at ξk−1 and ξk are taken to be the continuous extension of u(x) for
x ∈ (ξk−1, ξk) in this proof. Note that, since

k−1∑

j=1

(−1)j sinh(µξj) < sinh(µξk−1),

−
N∑

j=k

(−1)j sinh(µ(1 − ξj)) < sinh(µ(1 − ξk)),

by (2.10) and Lemma 2.1

(B−1 + 1)u(x) = v(x) − 1

<
2

B sinhµ

(
cosh(µ(1 − x)) sinh(µξk−1)

+ cosh(µx) sinh(µ(1 − ξk))
)

− 1

B
− 1

By the convexity of cosh(µ(1 − x)) sinh(µξk−1) + cosh(µx) sinh(µ
(1 − ξk)) with respect to x, the maximum value of this quantity is
attained either at x = ξk−1 or x = ξk. In the first case

cosh(µ(1 − ξk−1)) sinh(µξk−1) + cosh(µξk−1) sinh(µ(1 − ξk))

< cosh(µ(1 − ξk−1)) sinh(µξk−1)

+ cosh(µξk−1) sinh(µ(1 − ξk−1))

= sinhµ;
in the second case

cosh(µ(1 − ξk)) sinh(µξk−1) + cosh(µξk) sinh(µ(1 − ξk))

< cosh(µ(1 − ξk)) sinh(µξk) + cosh(µξk) sinh(µ(1 − ξk))

= sinhµ

as well. Therefore, for x ∈ [ξk−1, ξk] and k is odd,

u(x) <
1

B−1 + 1

( 2

B sinhµ
sinhµ−1

B
−1

)
= 1

B−1 + 1

(1

B
−1

)
< 0,

since B > 1.
Similarly one can show that, for x ∈ [ξk−1, ξk] and k is even,

u(x) > 0. This proves part 1.
Now let B < − 2N

|sin|µ|| − 1. Since µ is imaginary, we use

sinh(i θ ) = i sin θ and cosh(i θ ) = cos θ and Lemma 2.1 to derive
that, for x ∈ [ξk−1, ξk],

(B−1 + 1)u(x) = 2

B sin(|µ|)

⎛
⎝cos(|µ|(1 − x))

k−1∑

j=1

(−1)i sin(|µ|ξj)

+ − cos(|µ|x)
N∑

j=k

(−1)j sin(|µ|(1 − ξj))

⎞
⎠

+ (−1)k

B
+ (−1)k

Suppose that k is odd. Then, for x ∈ [ξk−1, ξk],

(B−1 + 1)u(x) ≤ 2

|B sin(|µ|)|

⎛
⎝

k−1∑

j=1

1 +
N∑

j=k

1

⎞
⎠ − 1

B
− 1

= − 2N

B|sin(|µ|)| − 1

B
− 1

< 0

since B < − 2N
|sin(|µ|)| − 1. Consequently u < 0 on [ξk−1, ξk] when k

is odd, since B−1 + 1 > 0 here. Similarly, when k is even, u > 0 on
[ξk−1, ξk]. Part 2 is proved. □

The bounds in Theorem 3.1 are as good as one can get for
arbitrary partitions. For equidistant partitions the next theorem
gives better sufficient conditions.

Theorem 3.2. Let ξk = (2k−1)

2N
, k = 1, 2, . . . ,N, be an equidistant

partition and (1.8) and (2.13) hold.

1. If B > 0, then the pre-solution of
{
(2k−1)

2N

}N

k=1
is a jump

discontinuous solution of (2.4).

2. If B ∈ (0, −1), then the pre-solution of
{
(2k−1)

2N

}N

k=1
is not a

solution of (2.4).

3. If B < −1 and

B <
cos(|µ|x)
cos

( |µ|
2N

) − 1, for all x ∈
[
0,

1

2N

]
,

then the pre-solution of
{
(2k−1)

2N

}N

k=1
is a jump discontinuous

solution of (2.4).
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Proof. Let u be the pre-solution of
{
(2k−1)

2N

}N

k=1
. By the symmetry of

the pre-solution in Corollary 2.2, u is a jumpdiscontinuous solution

of (2.4) provided that u is negative on the first interval [0, ξ1] =
[0, 1

2N
]. For x ∈ [0, 1

2N
],

(B−1 + 1)u(x) = v(x) − 1 = cosh(µx)

B cosh
(

µ

2N

) − 1

B
− 1

If B > 0, then µ is positive and the right side of the above
equation is negative since 0 <

cosh(µx)

cosh(
µ
2N

)
≤ 1. Hence u(x) < 0 and

part 1 follows.

If B ∈ (−1, 0), µ is positive and on [0, 1
2N

],

(B−1 + 1)u(x) = v(x) − 1 = cosh(µx)

B cosh(µξ )
− 1

B
− 1

Then

u(ξ1−) = lim
x→ 1

2N
−

cosh(µx)

(B + 1) cosh(µξ )
− 1 = 1

B + 1
− 1 > 0

Hence the pre-solution u(x) is positive when x ∈ [0, ξ1] is close to

ξ1. If u were a solution of (2.4), then (2.4) and (2.9) imply

sgn(u) =
N+1∑

k=1

(−1)kχ(ξk−1,ξk)

which does not hold if x ∈ (0, ξ1) and x is close to ξ1. This proves

part 2.

If B < −1, then µ is imaginary and for x ∈ [0, 1
2N

],

(B−1 + 1)u(x) = cos(|µ|x)
B cos

( |µ|
2N

) − 1

B
− 1

Then the right side is negative if B <
cos(|µ|x)
cos

( |µ|
2N

) −1 for all x ∈ [0, 1
2N

],
from which part 3 follows. □

4. Critical solutions

In this section we denote the pre-solution of partition ξ by

u(·, ξ ) where ξ = (ξ1, ξ2, . . . , ξN ). We view ξ as a parameter

and u(·, ξ ) as a family of pre-solutions parametrized by ξ . The

corresponding v = J[u] is denoted v(·, ξ ) as well. The energy of

u(·, ξ ) is I(u(·, ξ )), which is now viewed as a function of ξ . For

simplicity we write I(ξ ) for I(u(·, ξ )).
If the pre-solution u(·, ζ ) is a jump discontinuous solution of

(2.4) where {ζk}Nk=1 is a particular partition, then for any partition

{ξk}Nk=1 that is sufficiently close to {ζk}Nk=1 (namely, each ξk is

sufficiently close to ζk), the pre-solution u(·, ξ ) of partition ξ is also

a jump discontinuous solution of (2.4). Hence the set of ξ ∈ R
N

where u(·, ξ ) is a jump discontinuous solution of (2.4) is open.

We introduce the notion of critical solutions. Let u(·, ξ ) be a pre-
solution family parametrized by partition {ξk}Nk=1 and {ζk}Nk=1 be a

particular partition. Then the pre-solution u(·, ζ ) is called a critical

solution if u(·, ζ ) is a jump discontinuous solution of (2.4) and ζ

is a critical point of the function ξ → I(u(·, ξ )). Depending on the

type of this critical point, u(·, ζ ) is called a minimizing solution (or

maximizing solution, saddle solution, resp.) if ζ is a minimum (or

maximum, saddle, resp.) of ξ → I(u(·, ξ )).

Lemma4.1. Let (1.8), (2.8), and (2.13) hold. If v(·, ξ ) is a pre-solution
parametrized by ξ , then

∂v(x, ξ )

∂ξj
= 2(−1)j

B−1 + 1
G(x, ξj), j = 1, 2, . . . ,N

Proof. Since

v(x, ξ ) =
∫ 1

0

G(x, y)

N+1∑

k=1

(−1)kχ(ξk−1,ξk)(y)

B−1 + 1
dy

differentiating with respect to ξj yields the lemma. □

Lemma 4.2. Let (1.8), (2.8), and (2.13) hold. Suppose that the pre-

solution u(·, ξ ) is a jump discontinuous solution of (2.4) at ξ . Then

∂ I

∂ξj
= 2(−1)j+1

B−1 + 1
v(ξj, ξ ), j = 1, 2, . . . ,N

In particular,
∂ I(ξ )

∂ξj
= 0 if and only if v(ξj, ξ ) = 0.

Proof. Let ξ be in the region where u(·, ξ ) is a jump discontinuous
solution of (2.4). By (2.4) and with v = J[u],

I(ξ ) = I(u(·, ξ )) = 1

4

∫ 1

0

∫ 1

0

J(x, y)(u(x, ξ ) − u(y, ξ ))2 dxdy

+
∫ 1

0

F (u(x, ξ )) dx

= 1

2

∫ 1

0

(
−J[u]u + B−1u2 + (u − sgn(u))2

)
dx

= 1

2

∫ 1

0

(
−(B−1u + u − sgn(u))u + B−1u2

+(u − sgn(u))2
)
dx

= 1

2

∫ 1

0

(1 − sgn(u)u) dx

= 1

2

∫ 1

0

(
1 − sgn(u)

v + sgn(u)

B−1 + 1

)
dx

= 1

2

∫ 1

0

(
1 − 1

B−1 + 1
− sgn(u)v

B−1 + 1

)
dx

= B−1

2(B−1 + 1)
− 1

2(B−1 + 1)

∫ 1

0

(
v

N+1∑

k=1

(−1)kχ(ξk−1,ξk)

)
dx

so we arrive at the formula

I(ξ ) = B−1

2(B−1 + 1)
− 1

2(B−1 + 1)

×
∫ 1

0

(
v(x, ξ )

N+1∑

k=1

(−1)kχ(ξk−1,ξk)(x)
)
dx (4.1)

Differentiation of (4.1) with respect to ξj and Lemma 4.1 imply

∂ I

∂ξj
= − 1

2(B−1 + 1)

∫ 1

0

(∂v(x, ξ )

∂ξj

N+1∑

k=1

(−1)kχ(ξk−1,ξk)(x)
)
dx

− (−1)jv(ξj, ξ )

B−1 + 1

= (−1)j+1

B−1 + 1

∫ 1

0

( G(x, ξj)

B−1 + 1

N+1∑

k=1

(−1)kχ(ξk−1,ξk)(x)
)
dx

− (−1)jv(ξj, ξ )

B−1 + 1

= (−1)j+1v(ξj, ξ )

B−1 + 1
− (−1)jv(ξj, ξ )

B−1 + 1

= 2(−1)j+1v(ξj, ξ )

B−1 + 1

proving the lemma. □
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Remark 4.3. By Corollary 2.2 and Lemma 4.2, if the pre-solution of
an equidistant partition is a jump discontinuous solution, then it is
a critical solution.

Before stating the main theorem in this section we introduce
the notation a ≡ b mod ( π

|µ| )Z, which means that there is an

integer n such that a = b + nπ
|µ| .

Theorem 4.4. Let (1.8) and (2.13) hold, and u(·, ξ ) be the pre-
solution of a partition ξ = (ξ1, ξ2, . . . , ξN ).

1. If B > 0, then u(·, ξ ) is a critical solution if and only if ξk =
2k−1
2N

, i.e. ξ is an equidistant partition.

2. If B ∈ (−1, 0), then no pre-solution is a critical solution.

3. If B < −1 and the pre-solution u(·, ξ ) is a jump discontinuous
solution of (2.4), then u(·, ξ ) is a critical solution if and only if

ξ1 ≡ ξ2 − ξ1

2
≡ ξ3 − ξ2

2
≡ · · · ≡ ξN − ξN−1

2
≡ 1 − ξN

mod
( π

|µ|
)
Z (4.2)

Proof. Part 1. Let u be the pre-solution of an equidistant partition.
Theorem 3.2.1 shows that u is necessarily a jump discontinuous
solution of (2.4). Corollary 2.2 asserts that the corresponding v
satisfies v(ξk) = 0, k = 1, 2, . . . ,N , and then Lemma 4.2 implies
that u is a critical solution.

Conversely, let u(·, ξ ) be a critical solution. Then the corre-
sponding v(·, ξ ) satisfies

−Av′′ + B2

B + 1
v = − 1

B−1 + 1
, v′(0) = 0, v(ξ1) = 0, (4.3)

on the interval (0, ξ1). Because µ > 0 in this case, (4.3) admits a
unique solution

v(x, ξ ) = coshµx

B coshµξ1
− 1

B
, x ∈ (0, ξ1). (4.4)

On the interval (ξ1, ξ2), v satisfies

−Av′′ + B2

B + 1
v = 1

B−1 + 1
, v(ξ1) = 0, v(ξ2) = 0, (4.5)

which admits a unique solution

v(x, ξ ) = − coshµ(x − ξ1+ξ2
2

)

B coshµ(
ξ1−ξ2

2
)

+ 1

B
, x ∈ (ξ1, ξ2). (4.6)

As a solution of (2.11), v is a C1 function on (0, 1). Then the
derivatives of (4.4) and (4.6) must match at ξ1. Hence

µ sinhµξ1

B coshµξ1
= −µ sinhµ(

ξ1−ξ2
2

)

B coshµ(
ξ1−ξ2

2
)

(4.7)

which implies

2ξ1 = ξ2 − ξ1. (4.8)

This argument can be continued to yield

ξ2 − ξ1 = ξ3 − ξ2 = ξ4 − ξ3 = · · · = ξN − ξN−1 = 2(1− ξN ), (4.9)

namely that ξ is the equidistant partition { 2k−1
2N

}Nk=1.

Part 2. Suppose on the contrary that a pre-solution u(·, ξ ) is a
critical solution. Since µ > 0 in this case, the argument in the
proof of part 1 can again be used to show that ξ is an equidistant
partition, i.e. ξk = 2k−1

2N
. However Theorem 3.2.2 asserts that a pre-

solution of an equidistant partition cannot be a solution of (2.4). So
u(·, ξ ) is not a critical solution.

Part 3. Let u(·, ξ ), together with the corresponding v(·, ξ ), be the
pre-solution of a partition ξ and assume that u(·, ξ ) is also a critical

solution. Then v(ξj) = 0, j = 1, 2, . . . ,N by Lemma 4.2. On (0, ξ1),
v satisfies

− Av′′ + B2

B + 1
v = − 1

B−1 + 1
, v′(0) = 0, v(ξ1) = 0. (4.10)

Because µ is imaginary when B < −1, (4.10) may not be solvable.
If |µ|ξ1 = nπ + π

2
for some non-negative integer n, then the

corresponding homogeneous problem of (4.10) has a nontrivial
kernel spanned by cos |µ|x. However by the self-adjointness of the
problem and the fact that
∫ ξ1

0

cos |µ|x
(
− 1

B−1 + 1

)
dx = 1

|µ|
(
sin(nπ + π

2
) − sin 0

)

×
(
− 1

B−1 + 1

)

= ±1

|µ|
(
− 1

B−1 + 1

)
̸= 0,

problem (4.10) has no solution. Therefore |µ|ξ1 = nπ + π
2
cannot

occur. Now that |µ|ξ1 ̸= nπ + π
2

for any non-negative integer
n, (4.10) admits a unique solution, which is the same as the pre-
solution v(·, ξ ), and it takes the form

v(x) = cos |µ|x
B cos |µ|ξ1

− 1

B
, x ∈ (0, ξ1). (4.11)

Next consider v on (ξ1, ξ2). We have

− Av′′ + B2

B + 1
v = 1

B−1 + 1
, v(ξ1) = 0, v(ξ2) = 0. (4.12)

If
|µ|(ξ2−ξ1)

2
= nπ + π

2
for some non-negative integer n, then the

corresponding homogeneous problem of (4.12) has a nontrivial
kernel spanned by sin(|µ|(x − ξ1)). But
∫ ξ2

ξ1

sin(|µ|(x − ξ1))
( 1

B−1 + 1

)
dx = − 1

|µ|
(
cos(2nπ + π )

− cos 0
)( 1

B−1 + 1

)

= 2

|µ|
( 1

B−1 + 1

)
̸= 0,

so by the self-adjointness, problem (4.12) has no solution. Hence
|µ|(ξ2−ξ1)

2
̸= nπ + π

2
for any non-negative integer n. Then (4.12)

admits a unique solution, same as the pre-solution v(·, ξ ), and it
takes the form

v(x) = − cos(|µ|(x − ξ1+ξ2
2

))

B cos
|µ|(ξ1−ξ2)

2

+ 1

B
, x ∈ (ξ1, ξ2) (4.13)

Since v is a C1 function on (0, 1), the derivatives at ξ1 computed
from (4.11) and (4.13) must match, i.e.

− |µ| sin |µ|ξ1
B cos |µ|ξ1

= |µ| sin |µ|(ξ1−ξ2)

2

B cos
|µ|(ξ1−ξ2)

2

(4.14)

This means that

tan |µ|ξ1 = tan
|µ|(ξ2 − ξ1)

2
. (4.15)

Similarly, one can show that

tan
|µ|(ξ2 − ξ1)

2
= tan

|µ|(ξ3 − ξ2)

2
= · · · = tan

|µ|(ξN − ξN−1)

2

= tan |µ|(1 − ξN ) (4.16)

Then (4.2) follows from (4.15) and (4.16).
Conversely, assume that a partition ξ satisfies the condition (4.2)

and the pre-solution of ξ is a jump discontinuous solution of (2.4).

First we claim that none of |µ|ξ1, |µ|(ξ2−ξ1)

2
, . . . ,

|µ|(ξN−ξN−1)

2
,

|µ|(1−ξN ) can bewritten as nπ + π
2
for some non-negative integer
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n. Otherwise if one of them takes this form, then all of them will

have this form by (4.2), namely

|µ|ξ1 = n1π + π

2
,

|µ|(ξ2 − ξ1)

2
= n2π + π

2
, . . . ,

|µ|(ξN − ξN−1)

2
= nNπ + π

2
, |µ|(1 − ξN ) = nN+1π + π

2

(4.17)

for some non-negative integers n1, n2, . . . , nN+1. Then

|µ| = |µ|ξ1 + |µ|(ξ2 − ξ1) + |µ|(ξ3 − ξ2)

+ · · · + |µ|(ξN − ξN−1) + |µ|(1 − ξN )

=
(
n1π + π

2

)
+ 2

(
n2π + π

2

)
+ · · · + 2

(
nNπ + π

2

)

+
(
nN+1π + π

2

)

= (n1 + 2n2 + · · · + 2nN + nN+1 + N)π

a contradiction to (2.13).

Next consider the following N + 1 problems:

−Av′′ + B2

B + 1
v = − 1

B−1 + 1
, v′(0) = v(ξ1) = 0 (4.18)

−Av′′ + B2

B + 1
v = 1

B−1 + 1
, v(ξ1) = v(ξ2) = 0 (4.19)

. . .

−Av′′ + B2

B + 1
v = (−1)N

1

B−1 + 1
, v(ξN−1) = v(ξN ) = 0 (4.20)

−Av′′ + B2

B + 1
v = (−1)N+1 1

B−1 + 1
, v(ξN ) = v′(1) = 0 (4.21)

Each of these problems admits a unique solution because of the

claim above, and they take the forms of (4.11) and (4.13), etc. To-

gether they form a continuous function on (0, 1), which we denote

by v. Moreover (4.2) implies that (4.14) holds, so the derivative

of v is continuous on (0, 1). Consequently, v solves (2.11), i.e. v

is the pre-solution of ξ . The corresponding u(·, ξ ) obtained from

(2.10), is a jump discontinuous solution of (2.4) by the assumption

of part 3. Since v(ξk) = 0, k = 1, 2, . . . ,N , u(·, ξ ) is also a critical

solution. □

5. Minimizing solutions

Lemma 5.1. Let (1.8), (2.8), and (2.13) hold. Suppose that the pre-

solution u(·, ξ ) is a jump discontinuous solution of (2.4) at ξ . Then

∂2I

∂ξj∂ξk
= 4(−1)j+k+1

(B−1 + 1)2
G(ξj, ξk), j ̸= k

∂2I

∂ξj∂ξj
= −4

(B−1 + 1)2
G(ξj, ξj) + 2(−1)j+1

B−1 + 1
v′(ξj, ξ ).

Hence, the Hessian of I is given by

H = 4

(B−1 + 1)2

⎡
⎢⎢⎣

−G(ξ1, ξ1) G(ξ1, ξ2) −G(ξ1, ξ3) · · ·
G(ξ2, ξ1) −G(ξ2, ξ2) G(ξ2, ξ3) · · ·

−G(ξ3, ξ1) G(ξ3, ξ2) −G(ξ3, ξ3) · · ·
...

...
...

...

⎤
⎥⎥⎦

+ 2

B−1 + 1

⎡
⎢⎢⎣

v′(ξ1, ξ ) 0 0 · · ·
0 −v′(ξ2, ξ ) 0 · · ·
0 0 v′(ξ3, ξ ) · · ·
...

...
...

...

⎤
⎥⎥⎦

Here the prime over v denotes the derivative of v(x, ξ ) with respect

to x.

Proof. By Lemmas 4.1 and 4.2, for k ̸= j,

∂2I

∂ξjξk
= 2(−1)j+1

B−1 + 1

∂v(ξj, ξ )

∂ξk

= 2(−1)j+1

B−1 + 1

2(−1)k

B−1 + 1
G(ξj, ξk)

= 4(−1)j+k+1

(B−1 + 1)2
G(ξj, ξk).

When k = j, by Lemmas 4.1 and 4.2,

∂2I

∂ξ 2
j

= 2(−1)j+1

B−1 + 1

∂v(ξj, ξ )

∂ξj

= 2(−1)j+1

B−1 + 1

2(−1)j

B−1 + 1
G(ξj, ξj) + 2(−1)j+1

B−1 + 1
v′(ξj, ξ )

= −4

(B−1 + 1)2
G(ξj, ξj) + 2(−1)j+1

B−1 + 1
v′(ξj, ξ ).

proving the lemma. □

For a partition ξ that satisfies the condition (4.2), define

α = |µ| cot 2|µ|ξ1 = |µ| cot |µ|(ξ2 − ξ1)

= · · · = |µ| cot |µ|(ξN − ξN−1) = |µ| cot 2|µ|(1 − ξN ) (5.1)

β = |µ| csc 2|µ|ξ1 = |µ| csc |µ|(ξ2 − ξ1)

= · · · = |µ| csc |µ|(ξN − ξN−1) = |µ| csc 2|µ|(1 − ξN ) (5.2)

γ = |µ| tan |µ|ξ1 = |µ| tan |µ|(ξ2 − ξ1)

2

= · · · = |µ| tan |µ|(ξN − ξN−1)

2
= |µ| tan |µ|(1 − ξN ) (5.3)

These three numbers depend on the partition ξ and |µ|.We already
know from the proof of Theorem 4.4.3 that none of 2|µ|ξ1, |µ|(ξ2−
ξ1), . . . , |µ|(ξN −ξN−1), and 2|µ|(1−ξN ) can be of the form (2n+1)π
for some integer n. Moreover none of them can be written as 2nπ
either. Otherwise

|µ| = |µ|ξ1 + |µ|(ξ2 − ξ1) + |µ|(ξ3 − ξ2)

+ · · · + |µ|(ξN − ξN−1) + |µ|(1 − ξN )

would be an integer multiple of π , a contradiction to (2.13). Hence
α, β , and γ are all finite numbers.

Let Q be the N × N matrix

Q =

⎡
⎢⎢⎢⎣

1 1 0 0 · · · 0
1 0 1 0 · · · 0
0 1 0 1 · · · 0
· · ·
0 0 0 0 · · · 1

⎤
⎥⎥⎥⎦ (5.4)

for N ≥ 2. Denote the eigenvalues of Q by q1, q2, . . . , qN . It is
known that these qk’s are

2, ±2 cos
π (j − 1)

N
, j = 2, 3, . . . ,

N + 1

2
, if N is odd;

2, 0, ±2 cos
π (j − 1)

N
, j = 2, 3, . . . ,

N

2
, if N is even. (5.5)

See for instance [12, Appendix B] for a proof. If N = 1, our
convention is to set Q to be the 1 × 1 matrix whose entry is 2 and
consequently q1 = 2.

Lemma 5.2. Let (2.13) hold, ξ be a partition that satisfies (4.2), and
G be the N × N symmetric matrix whose (j, k)-entry is G(ξk, ξj). Then
the eigenvalues of G are

1

A(2α − qkβ)
, k = 1, 2, . . . ,N.



X. Ren and J. Trageser / Physica D 393 (2019) 9–23 17

Proof. Let Λ be an eigenvalue of G, namely that there exists a

nonzero vector b = (b1, b2, . . . , bN )
T such that

N∑

j=1

G(ξk, ξj)bj = Λbk, k = 1, 2, . . . ,N.

First consider the simplest case N = 1. Then

Λ = G(ξ1, ξ1) = − cos(|µ|(1 − ξ1)) cos(|µ|ξ1)
A|µ| sin |µ| (5.6)

Since our convention is q1 = 2 when N = 1,

1

A(2α − q1β)
= 1

A(2|µ| cot |µ|2ξ1 − 2|µ| csc |µ|2ξ1)
=

( −1

2A|µ|
)
cot |µ|ξ1

=
( −1

2A|µ|
) cos |µ|ξ1 cos |µ|(1 − ξ1)

sin |µ|ξ1 cos |µ|(1 − ξ1)

=
( −1

A|µ|
) cos |µ|ξ1 cos |µ|(1 − ξ1)

sin |µ| (5.7)

Here to reach the last line, we use sin |µ|(1 − 2ξ1) = 0, which

follows from (4.2) when N = 1. Since (5.6) and (5.7) agree, the

theorem holds when N = 1.

When N ≥ 2, let

ζ (x) =
N∑

j=1

G(x, ξj)bj. (5.8)

Hence

[−ζ ′]ξk = bk

A
, and ζ (ξk) = Λbk.

Then for every k,

[−ζ ′]ξk = 1

AΛ
ζ (ξk).

Let ζ⃗ = (ζ (ξ1), ζ (ξ2), . . . , ζ (ξN ))
T . We proceed to find an N × N

matrix T so that

[−ζ ′]ξk = (T ζ⃗ )k

Then we convert the original eigenvalue problem Gb = Λb to a

new eigenvalue problem:

T ζ⃗ =
( 1

AΛ

)
ζ⃗ . (5.9)

On (ξj−1, ξj), ζ (x) = c1 cos |µ|x + c2 sin |µ|x. From here we write,

in the matrix notation,
[
ζ (ξj−1)
ζ (ξj)

]
=

[
cos |µ|ξj−1 sin |µ|ξj−1

cos |µ|ξj sin |µ|ξj

][
c1
c2

]
.

We denote the 2 by 2 matrix by AL, for the left of ξj. To the right we

have similarly, on (ξj, ξj+1), ζ (x) = c̃1 cos |µ|x + c̃2 sin |µ|x and
[
ζ (ξj)
ζ (ξj+1)

]
=

[
cos |µ|ξj sin |µ|ξj
cos |µ|ξj+1 sin |µ|ξj+1

][
c̃1
c̃2

]

with the 2 by 2 matrix denoted by AR. Hence
[
c1
c2

]
= A−1

L

[
ζ (ξj−1)
ζ (ξj)

]
on (ξj−1, ξj),

[
c̃1
c̃2

]
= A−1

R

[
ζ (ξj)
ζ (ξj+1)

]
on (ξj, ξj+1).

Then

−ζ ′(ξj−) = |µ|
[
sin |µ|ξj, − cos |µ|ξj

]
A−1
L

[
ζ (ξj−1)
ζ (ξj)

]

−ζ ′(ξj+) = |µ|
[
sin |µ|ξj, − cos |µ|ξj

]
A−1
R

[
ζ (ξj)
ζ (ξj+1)

]

and

[−ζ ′]ξj = |µ|
[
− sin |µ|ξj, cos |µ|ξj

]

×
(
A−1
L

[
ζ (ξj−1)
ζ (ξj)

]
− A−1

R

[
ζ (ξj)
ζ (ξj+1)

])
.

We compute

A−1
L = 1

sin |µ|(ξj − ξj−1)

[
sin |µ|ξj − sin |µ|ξj−1

− cos |µ|ξj cos |µ|ξj−1

]

A−1
R = 1

sin |µ|(ξj+1 − ξj)

[
sin |µ|ξj+1 − sin |µ|ξj
− cos |µ|ξj+1 cos |µ|ξj

]
.

So T is a triagonal matrix. For j = 2, 3, . . . ,N − 1, the three
nontrivial entries of the jth row are

−|µ| csc |µ|(ξj − ξj−1),

|µ| cot |µ|(ξj − ξj−1) + |µ| cot |µ|(ξj+1 − ξj),

−|µ| csc |µ|(ξj+1 − ξj).

For the first row of T , since

ζ (x) = ζ (ξ1)

cos |µ|ξ1
cos |µ|x, x ∈ (0, ξ1), and

−ζ ′(ξ1−) = |µ| tan |µ|ξ1ζ (ξ1),
the first two entries are

−|µ| tan |µ|ξ1 + |µ| cot |µ|(ξ2 − ξ1), −|µ| csc |µ|(ξ2 − ξ1)

Similarly the last two entries of the last row of T are

−|µ| csc |µ|(ξN −ξN−1), |µ| cot |µ|(ξN −ξN−1)−|µ| tan |µ|(1−ξN )

By (5.1) and (5.2) T is written as

T =

⎡
⎢⎢⎢⎣

2α − β −β 0 0 · · · 0
−β 2α −β 0 · · · 0
0 −β 2α −β · · · 0
· · ·
0 0 0 0 · · · 2α − β

⎤
⎥⎥⎥⎦ (5.10)

We write T = 2αI − βQ where I is the N × N identity matrix
and Q is given in (5.4). Then the eigenvalues of T are 2α − qkβ ,
k = 1, 2, . . . ,N . We claim that 2α − qkβ is never zero. Note that,
with η = |µ|ξ1,

2α − qkβ = 2|µ| cos 2η
sin 2η

− qk|µ|
sin 2η

= |µ|
sin 2η

(2 cos 2η − qk).

Say 2 cos 2η − qk = 0 for qk = 2 cos π (j−1)

N
. Then 2η ≡ π (j−1)

N

mod 2πZ or 2η ≡ − π (j−1)

N
mod 2πZ. In the first case there exist

non-negative integers n1, n2, . . . , nN+1 such that, by (4.2),

2|µ|ξ1 = π (j − 1)

N
+ 2n1π, |µ|(ξ2 − ξ1) = π (j − 1)

N
+ 2n2π,

2|µ|(1 − ξN ) = π (j − 1)

N
+ 2nN+1

Then

|µ| = |µ|ξ1 + |µ|(ξ2 − ξ1) + |µ|(ξ3 − ξ2) + · · · + |µ|(ξN − ξN−1)

+|µ|(1 − ξN )

=
(π (j − 1)

2N
+ n1π

)
+

(π (j − 1)

N
+ 2n2π

)
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+ · · · +
(π (j − 1)

N
+ 2nNπ

)
+

(π (j − 1)

2N
+ nN+1π

)

= (n1 + 2n2 + · · · + 2nN + nN+1 + j − 1)π

a contradiction to (2.13). Similar argument shows that for other qk’s
2α − qkβ ̸= 0. Then by (5.9) the eigenvalues of G are

1

A(2α − qkβ)
, k = 1, 2, . . . ,N, (5.11)

where the qk’s are given in (5.5). □

Theorem 5.3. Let (1.8) and (2.13) hold, and H(ξ ) be the Hessian of I

at a critical solution u(·, ξ ).
1. If B > 0, then ξk = 2k−1

2N
, k = 1, 2, . . . ,N, and the eigenvalues

of H(ξ ) are

1

B + 1

( −4µ(
2 coth µ

N
− qk csch

µ

N

) + 2µ tanh(
µ

2N
)
)
,

k = 1, 2, . . . ,N.

2. If B < −1, then (4.2) holds and the eigenvalues of H(ξ ) are

1

B + 1

( 4|µ|2
2α − qkβ

− 2γ
)
, k = 1, 2, . . . ,N.

Here α, β , and γ are given in (5.1)–(5.3) and they depend on

the partition ξ of the critical solution u(·, ξ ).

Proof. In Theorem 4.4 we have already seen that at a critical
solution u(·, ξ ), ξ is the equidistant partition { 2k−1

2N
} if B > 0 and ξ

satisfies (4.2) if B < −1.
Now we prove the more complicated part 2 of the theorem. As

we know that when v is a critical solution, since v(ξk) = 0,

v(x) = (−1)k+1
cos(|µ|(x − ξk−1+ξk

2
))

B cos
|µ|(ξk−ξk−1)

2

+ (−1)k

B
, x ∈ (ξk−1, ξk)

(5.12)

Then

v′(ξk) = (−1)k|µ|
B

tan
|µ|(ξk − ξk−1)

2
(5.13)

By (5.3) we deduce

v′(ξk) = (−1)kγ

B
. (5.14)

By Lemma 5.1 and (5.14), the Hessian of I at a critical solution
u(·, ξ ) is

H(ξ ) = −4

(B−1 + 1)2
G̃ − 2γ

B(B−1 + 1)
I

where G̃ is the matrix whose (j, k) entry is (−1)j+kG(ξk, ξj). The

matrix G̃ and the matrix G are similar: G̃ = PGP−1 where

P =

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

. . .

⎤
⎥⎥⎥⎥⎦

(5.15)

and P−1 = P . Hence G̃ has the same eigenvalues as G does. Then by
Lemma 5.2, the eigenvalues of H(ξ ) are

−4

A(B−1 + 1)2(2α − qkβ)
− 2γ

B(B−1 + 1)
(5.16)

from which part 2 of the theorem follows.

Part 1 of the theorem is easier to prove. Note that when B > 0
and u(·, ξ ) is a critical solution, ξk = 2k−1

2N
by Theorem 4.4.1. Define

G and T in the same way, then Λ is an eigenvalue of G if and only
if 1

AΛ
is an eigenvalue of T . In this case

T =
(
2µ coth

µ

N

)
I −

(
µ csch

µ

N

)
Q (5.17)

Hence the eigenvalues of G are

1

A

(
2µ coth µ

N
− qkµ csch µ

N

) , k = 1, 2, . . . ,N. (5.18)

Moreover

v′
(2k − 1

2N

)
= (−1)k+1 µ

B
tanh(

µ

2N
)

Then

H(ξ ) = − 4

(B−1 + 1)2
G̃ + 2µ tanh( µ

2N
)

B(B−1 + 1)
I

and, since G̃ and G have the same eigenvalues, part 1 follows from
(5.18) □

Theorem 5.4. Let (1.8) and (2.13) hold, and u(·, ξ ) be at a critical

solution.

1. If B > 0, then u(·, ξ ), where ξ is necessarily equidistant, is a

maximizing solution.

2. If B < −1, then the following statements hold.

(a) If 2|µ|ξ1 ∈ (π − π
N
, π ) mod 2πZ, then u(·, ξ ) is a

minimizing solution.

(b) If 2|µ|ξ1 ∈ (π, π + π
N
) mod 2πZ, then u(·, ξ ) is a

maximizing solution.

(c) If 2|µ|ξ1 ∈ (−π + π
N
, π − π

N
) mod 2πZ, then u(·, ξ )

is a saddle solution.

Proof. Part 1. Because −2 < qk ≤ 2,

0 < 2 coth
µ

N
− 2 csch

µ

N
≤ 2 coth

µ

N
− qk csch

µ

N
< 2 coth

µ

N

+2 csch
µ

N
= 2 coth

µ

2N
(5.19)

By Theorem 5.3.1 and (5.19), all eigenvalues of H(ξ ) are negative.
Part 2. Let η = |µ|ξ1. By Theorem 5.3.2 and (5.1)–(5.3), the

eigenvalues of H(ξ ) are

1

B + 1

( 4|µ|2
2α − qkβ

− 2γ
)

= −2|µ|
B + 1

( −2

2 cot 2η − qk csc 2η
+ tan η

)

=
(−2|µ|
B + 1

)

× (2 + qk) − (2 + qk) cos 2η

(qk − 2 cos 2η) sin 2η
(5.20)

Since −2 < qk ≤ 2, the sign of the eigenvalue in (5.20) is the same
as the sign of (qk − 2 cos 2η) sin 2η.

If 2η ∈ (π − π
N
, π ) mod 2πZ, then sin 2η > 0 and

qk − 2 cos 2η > qk − 2 cos(π − π

N
) ≥ 0

since the smallest qk is 2 ifN = 1, and−2 cos π
N
ifN ≥ 2. Therefore

all eigenvalues in (5.20) are positive and u(·, ξ ) is a minimizing
solution.

If 2η ∈ (π, π + π
N
) mod 2πZ, then sin 2η < 0 and

qk − 2 cos 2η > qk − 2 cos(π + π

N
) ≥ 0

as in the last case. Therefore all eigenvalues in (5.20) are negative
and u(·, ξ ) is a maximizing solution.
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If 2η ∈ (−π+ π
N
, π− π

N
) mod 2πZ, thenN is at least 2. Consider

the scenario 2η ∈ (0, π − π
N
) mod 2πZ. If we take qk to be the

largest, which is qN = 2, then sin 2η > 0,

qN − 2 cos 2η = 2 − 2 cos 2η > 0,

and the corresponding eigenvalue in (5.20) is positive; if we take
qk to be the smallest, which is q1 = −2 cos π

N
, then sin 2η > 0,

q1 − 2 cos 2η = −2 cos
π

N
− 2 cos 2η < 0,

and the corresponding eigenvalue in (5.20) is negative. Hence
u(·, ξ ) is a saddle solution. In the other scenario, 2η ∈ (−π + π

N
, 0)

mod 2πZ, qk − 2 cos 2η > 0 if qk = qN and qk − 2 cos 2η < 0 if
qk = q1 as before. However sin 2η < 0. Again u(·, ξ ) is a saddle
solution. □

To apply Theorem 5.3.3, one writes (4.2) as

2|µ|ξ1 = |µ|(ξ2 − ξ1) + 2πd1,

|µ|(ξ2 − ξ1) = |µ|(ξ3 − ξ2) + 2πd2, . . . ,

|µ|(ξN − ξN−1) = 2|µ|(1 − ξN ) + 2πdN

(5.21)

for integers d1, d2,. . . ,Critical solutions are parametrized by d1, d2,
. . . , dN under the constraint 0 < ξ1 < · · · < ξN < 1. It follows that

2|µ|ξ1 = |µ|
N

+ 2π

N

N−1∑

k=1

k∑

j=1

dj +
π

N

N∑

j=1

dj. (5.22)

Other ξk’s follow from (5.21) iteratively. Below are some special
cases.

Corollary 5.5. Let (1.8) and (2.13) hold, and B < −1.

1. When N = 1, the partition ξ of a critical solution u(·, ξ ) can be
written as

ξ1 = 1

2
+ d1

2

π

|µ|
for some d1 ∈ Z as long as 0 < ξ1 < 1. This u(·, ξ ) is
minimizing if |µ| + d1π ∈ (0, π ) mod 2πZ, and u(·, ξ ) is
maximizing if |µ| + d1π ∈ (π, 2π ) mod 2πZ.

2. When N = 2, the partition ξ of a critical solution u(·, ξ ) can be
written as

ξ1 = 1

4
+

(3d1 + d2

4

) π

|µ| , ξ2 = 3

4
+

(d1 + 3d2

4

) π

|µ|
for some d1, d2 ∈ Z as long as 0 < ξ1 < ξ2 < 1. This u(·, ξ ) is
minimizing if

|µ|
2

+ (3d1 + d2)
π
2

∈ ( π
2
, π ) mod 2πZ, u(·, ξ )

is maximizing if
|µ|
2

+ (3d1 + d2)
π
2

∈ (π, 3π
2
) mod 2πZ,

and u(·, ξ ) is a saddle point if
|µ|
2

+ (3d1 + d2)
π
2

∈ (− π
2
, π

2
)

mod 2πZ.
3. If ξ is the equidistant partition, i.e. ξk = 2k−1

2N
, then u(·, { 2k−1

2N
})

is minimizing if
|µ|
N

∈ (π − π
N
, π ) mod 2πZ, u(·, { 2k−1

2N
}) is

maximizing if
|µ|
N

∈ (π, π + π
N
) mod 2πZ, and u(·, { 2k−1

2N
}) is

a saddle if
|µ|
N

∈ (−π + π
N
, π − π

N
) mod 2πZ.

Proof. When N = 1, by (5.22) all the critical ξ ’s are

ξ1 = 1

2
+ d1

2

π

|µ| , d1 ∈ Z, under the constraint 0 < ξ1 < 1. (5.23)

Here 2|µ|ξ1 = |µ| + d1π and part 1 follows from Theorem 5.4.2.
When N = 2, by (5.22) and (5.21) all the critical ξ ’s are

ξ1 = 1

4
+

(3d1 + d2

4

) π

|µ| , ξ2 = 3

4
+

(d1 + 3d2

4

) π

|µ| ,
d1, d2 ∈ Z, under the constraint 0 < ξ1 < ξ2 < 1.

Here 2|µ|ξ1 = |µ|
2

+ (3d1 + d2)
π
2
and part 2 follows from Theo-

rem 5.4.2.

For the equidistant partition, since ξ1 = 1
2N

, part 3 again follows
from Theorem 5.4.2. □

Note that if N and µ are fixed and µ satisfies (2.13), we can
take B to be sufficiently negative, so that by Theorem 3.1.2 all pre-
solutions are jump discontinuous solutions. The critical solutions
can be parametrized by integers, like d1 when N = 1 and (d1, d2)
when N = 2. Then the locations of the discontinuities ξj are
determined by these integer parameters and µ as in (5.22).

Fig. 2 shows the discontinuity location ξ1 of each critical solu-
tion versus |µ| when N = 1. A green curve denotes a minimizing
solution and a red curve denotes a maximizing solution according
to Corollary 5.5.1.

Fig. 3 shows pairs of (d1, d2) when N = 2. Some do not yield
critical solutions because they violate the constraint 0 < ξ1 <

ξ2 < 1; others do give rise to critical solutions if B is chosen
sufficiently negative. These critical solutions are classified into
minima, maxima and saddle points according to Corollary 5.5.2.

Finally we give the formula of the energy of the equal distance
critical solutions in terms ofN , the number of discontinuous points.
The two cases, B > 0 and B < −1, again contrast sharply.

Proposition 5.6. Let (1.8) and (2.13) hold, and u(·, ξ ) be a critical

solution.

1. If B > 0, then ξk = 2k−1
2N

, k = 1, 2, . . . ,N, and

I

(
u

(
·,

{2k − 1

2N

}))
= N

µ(B + 1)
tanh

µ

2N
.

This quantity increases as N increases.

2. If B < −1, then

I(u(·, ξ )) = N

|µ|(B + 1)
tan |µ|ξ1.

Proof. We compute the energy of u(·, ξ ) by (4.1). If B < −1, using
(4.11) and (4.13), we find

I(u(·, ξ )) = B−1

2(B−1 + 1)
− 1

2(B−1 + 1)

(
− 1

|µ|B tan |µ|ξ1 + ξ1

B

− 2

|µ|B tan
|µ|(ξ2 − ξ1)

2
+ ξ2 − ξ1

B
− · · ·

)

= 1

2(B + 1)
+ 1

2(B + 1)

( 1

|µ| tan |µ|ξ1

+
N∑

k=2

2

|µ| tan
|µ|(ξk − ξk−1)

2

+ 1

|µ| tan |µ|(1 − ξN ) − 1
)

= 1

2|µ|(B + 1)

(
tan |µ|ξ1 +

N∑

k=2

2 tan
|µ|(ξk − ξk−1)

2

+ tan |µ|(1 − ξN )
)

By (4.2) the above is simplified to

I(u(·, ξ )) = N

|µ|(B + 1)
tan |µ|ξ1, (5.24)

which proves part 2.
For part 1, since B > 0, we have ξ1 = 1

2N
, µ > 0, and

I(u(·, ξ )) = N

µ(B + 1)
tanh

µ

2N
. (5.25)

by a similar computation. This quantity increases as N increases
because the function x → tanh x

x
is decreasing. □
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Fig. 2. B < −1 and N = 1. For each |µ| satisfying (2.13) if B is sufficiently negative,

every pre-solution is a jump discontinuous solution. The discontinuity location ξ1 is

plotted against |µ| for all critical solutions parametrized by d1 .Minimizing solutions

are plotted in green and maximizing ones in red according to Corollary 5.5.1. The

dotted vertical lines are at |µ| = kπ , k = 0, 1, 2, . . ., which are values excluded by

(2.13) . (For interpretation of the references to color in this figure legend, the reader

is referred to the web version of this article.)

Fig. 3. B < −1 and N = 2. The lattice of integer pairs (d1, d2) with µ = 40 i.

A dot denotes an integer pair (d1, d2) that corresponds to no critical solution;

an asterisk represents a pair (d1, d2) that yields a critical solution if B is chosen

sufficiently negative. A green asterisk represents a minimizing solution, a blue

asterisk represents a saddle solution, and a red asterisk represents a maximizing

solution . (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

In the case B < −1, the energy of the equidistant critical
solution is

I

(
u

(
·,

{2k − 1

2N

}))
= N

|µ|(B + 1)
tan

|µ|
2N

. (5.26)

This quantity is not monotone with respect to N .

6. B = 0

Now we consider kernel J given in (1.12). For this J ,

j(x) = 0. (6.1)

Let v = J[u]. Then v satisfies

− Av′′ = u − u, v′(0) = v′(1) = 0, v = 0. (6.2)

Here a bar over a function denotes its average: u =
∫ 1

0
u(x) dx,

v =
∫ 1

0
v(x) dx. If u is a solution of (2.4), we have

{−v + u − sgn(u) = 0
−Av′′ = u − u

v′(0) = v′(1) = 0
(6.3)

Given a partition ξ a pre-solution u of the partition ξ is now a
solution of

− J[u] + u −
N+1∑

k=1

(−1)kχ(ξk−1,ξk) = 0 (6.4)

With v = J[u], (6.4) implies

u = v +
N+1∑

k=1

(−1)kχ(ξk−1,ξk) (6.5)

and

−Av′′ − v =
N+1∑

k=1

(−1)kχ(ξk−1,ξk) −
N+1∑

k=1

(−1)k(ξk − ξk−1),

v′(0) = v′(1) = 0. (6.6)

The solution of (6.6) can be written as

v(x, ξ ) =
∫ 1

0

G(x, y)
(N+1∑

k=1

(−1)kχ(ξk−1,ξk)(y)

−
N+1∑

k=1

(−1)k(ξk − ξk−1)
)
dy (6.7)

where G is the same as (2.16) with

µ =
√

−1

A
, |µ| =

√
1

A
(6.8)

Again we must assume that

|µ| ̸= kπ, k = 1, 2, 3, . . . (6.9)

Note that
∫ 1

0

G(x, y) dy = −1. (6.10)

We use Aξ to denote the average of
∑N+1

k=1 (−1)kχ(ξk−1,ξk):

Aξ =
∫ 1

0

N+1∑

k=1

(−1)kχ(ξk−1,ξk)(x) dx =
N+1∑

k=1

(−1)k(ξk − ξk−1) (6.11)

A pre-solution is not necessarily a jump discontinuous solution.
For equidistant pre-solutions we have the following.

Proposition 6.1. Let ξ be the equidistant partition, ξk = 2k−1
2N

. Then

the pre-solution of { 2k−1
2N

}Nk=1 is a jump discontinuous solution of (2.4)

if and only if
|µ|
N

∈ (0, π ).

Proof. For the equidistant partition ξ , Aξ = 0. Then the solution v
of (6.6) has the symmetry properties as in Corollary 2.2. One finds
that

v(x) = 1 − 1

cos |µ|
2N

cos |µ|x, x ∈
(
0,

1

2N

)
. (6.12)

By (6.5)

u(x) = − 1

cos |µ|
2N

cos |µ|x, x ∈
(
0,

1

2N

)
. (6.13)
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Fig. 4. Curves of (1 − ξ1) tan |µ|ξ1 and ξ1 tan |µ|(1 − ξ1). The horizontal coordinate of each intersection point is ξ1 of a critical solution with N = 1. The equidistant one,

ξ1 = 1
2
, is always a critical solution. There are more critical solutions when |µ| becomes larger.

To be a jump discontinuous solution, u cannot change sign on
(0, 1

2N
). Hence |µ|x ∈ (0, π

2
) for all x ∈ (0, 1

2N
). This means |µ|

N
∈

(0, π ). Conversely if |µ|
N

∈ (0, π ), then (6.13) is negative on [0, 1
2N

]
and u is a jump discontinuous solution. □

By (6.7) a pre-solution v(·, ξ ) satisfies
∂v

∂ξj
= 2(−1)j

(
G(x, ξj) + 1

)
(6.14)

Now suppose that the pre-solution u(·, ξ ) is also a jump discontin-
uous solution. Write I(ξ ) for I(u(·, ξ )). Calculations show

∂ I

∂ξj
= 2(−1)j+1v(ξj, ξ ) (6.15)

∂2I

∂ξj∂ξk
= 4(−1)j+k+1

(
G(ξj, ξk) + 1

)
(6.16)

∂2I

∂ξ 2
j

= −4
(
G(ξj, ξj) + 1

)
+ 2(−1)j+1v′(ξj, ξ ) (6.17)

Then u is a critical solution if and only if v(ξj, ξ ) = 0 for every j.

Theorem 6.2. Let (6.9) hold and the pre-solution u(·, ξ ) is a jump
discontinuous solution. Then u(·, ξ ) is a critical solution if and only if

none of |µ|ξ1, |µ|(ξ2−ξ1)

2
,

|µ|(ξ3−ξ2)

2
, . . . , |µ|(1 − ξN ) can be written as

π
2

+ nπ for some non-negative integer n, and

(1 + Aξ ) tan |µ|ξ1 = (1 − Aξ ) tan
|µ|(ξ2 − ξ1)

2

= (1 + Aξ ) tan
|µ|(ξ3 − ξ2)

2
= · · · (6.18)

where Aξ = ∑N+1
k=1 (−1)k(ξk − ξk−1).

Proof. Let u(·, ξ ) be a critical solution. Then v(ξk, ξ ) = 0, k =
1, 2, . . . ,N , by (6.15). On (0, ξ1) the same argument as in the proof
of Theorem 4.4.3 shows that |µ|ξ1 is not π

2
+ nπ for some non-

negative integer n. Then, since v′(0) = v(ξ1) = 0,

v(x) = 1 + Aξ − 1 + Aξ

cos |µ|ξ1
cos |µ|x, x ∈ (0, ξ1). (6.19)

On (ξ1, ξ2),
|µ|(ξ2−ξ1)

2
is not π

2
+ nπ for some non-negative integer

n, and since v(ξ1) = v(ξ2) = 0,

v(x) = −1+Aξ − −1 + Aξ

cos
|µ|(ξ2−ξ1)

2

cos
(
|µ|(x− ξ1 + ξ2

2
)
)
, x ∈ (ξ1, ξ2).

(6.20)

Continue this on each (ξk−1, ξk) and (ξN , 1) and use the continuity
of v′ at ξk to deduce (6.18).

Conversely, if none of |µ|ξ1, |µ|(ξ2−ξ1)

2
,

|µ|(ξ3−ξ2)

2
, . . . , |µ|(1 − ξN )

can be written as π
2

+ nπ for some non-negative integer n, and
(6.18) holds, then one defines v by (6.19) and (6.20), etc. The

resulting function is continuously differentiable on (0, 1) by (6.18),
so it is a solution of (6.6) and therefore a pre-solution. By the
assumption of the theorem, the corresponding u(·, ξ ) from (6.5) is
a jump discontinuous solution. Then, since v(ξk) = 0, u is also a
critical solution. □

If ξ is an equidistant partition: ξk = 2k−1
2N

, k = 1, 2, . . . ,N , then
Aξ = 0 and (6.18) holds. For non-equidistant critical solutions,
(6.18) implies that

ξ1 ≡ ξ3 − ξ2

2
≡ ξ5 − ξ4

2
≡ · · · mod

( π

|µ|
)
Z,

ξ2 − ξ1

2
≡ ξ4 − ξ3

2
≡ ξ6 − ξ5

2
≡ · · · mod

( π

|µ|
)
Z.

(6.21)

Between adjacent intervals the relationship is more complex. Take
N = 1 for example. Then (6.18) means (1 + Aξ ) tan |µ|ξ1 =
(1 − Aξ ) tan |µ|(1 − ξ1), which is equivalent to

(1 − ξ1) tan |µ|ξ1 = ξ1 tan |µ|(1 − ξ1). (6.22)

One can plot the left and right sides of (6.22) against ξ1 and a
solution of (6.22) corresponds to an intersection point of the two
curves; see Fig. 4. As in the B < −1 case, the larger |µ| is the more
critical solutions there are.

Now we proceed to find minimizing solutions. We shall only
consider equidistant pre-solutions. By Proposition 6.1 we only
need to consider |µ|

N
∈ (0, π ) which is the necessary and sufficient

condition for a pre-solution to be a jump discontinuous solution.

Proposition 6.3. Let (6.9) hold, ξ be the equidistant partition
{ 2k−1

2N
}Nk=1, and u be the pre-solution of { 2k−1

2N
}Nk=1.

1. Let N = 1. If |µ| ∈ (0, π ), then u is a minimizing solution.

2. Let N ≥ 2.

(a) If |µ| ∈ (0, π − π
N
), then u is a saddle solution.

(b) If |µ| ∈ (π − π
N
, π ), then u is a minimizing solution

Proof. Recall the matrix G and α, β , and γ in (5.1)–(5.3). For
equidistant partitions

α = |µ| cot |µ|
N

, β = |µ| csc |µ|
N

, γ = |µ| tan |µ|
2N

. (6.23)

The eigenvalues of G are found in Lemma 5.2. However here we
have to consider the matrix G + J where J is the N × N matrix
whose entries are all equal to 1. Let p⃗ = (1, 1, . . . , 1)T . Then p⃗ is an
eigenvector of the matrix Q of (5.4) and the associated eigenvalue
is 2. Consequently p⃗ is also an eigenvector of T of (5.10), and an
eigenvector of G with the associated eigenvalue equal to 1

A(2α−2β)
.

Moreover p⃗ is also an eigenvector of J, so it is an eigenvector ofG+J
whose corresponding eigenvalue is

1

A(2α − 2β)
+ N. (6.24)
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Furthermore if q⃗ ⊥ p⃗, then Jq⃗ = 0⃗. Hence the remaining eigenvec-

tors of G are also eigenvectors of G + J with the same eigenvalues.

As in Theorem 5.3.2 we find

v′(ξj) = (−1)j+1γ (6.25)

Then the eigenvalues of H(ξ ), the Hessian of I at ξ , are

− 4

A(2α − 2β)
−4N+2γ , − 4

A(2α − qkβ)
+2γ , k = 1, 2, . . . ,N−1

(6.26)

Recall that qN = 2 is the largest among the qk’s.

Let η = |µ|
2N

∈ (0, π
2
). By (6.23)

− 4

A(2α − 2β)
− 4N + 2γ = −2|µ|

cot 2η − csc 2η
+ 2|µ| tan η − 4N

= 2|µ| 2 − 2 cos 2η

(1 − cos 2η) sin 2η
− 4N

= 4|µ|
(

1

sin 2η
− 1

2η

)

> 0

since sin 2η < 2η when 2η ∈ (0, π ). So the first eigenvalue in

(6.26) is positive. If N = 1, this is the only eigenvalue, and u is a

minimizing solution.

If N ≥ 2, consider the other eigenvalues

− 4

A(2α − qkβ)
+ 2γ = 2|µ|

(
2 + qk − (2 + qk) cos 2η

(qk − 2 cos 2η) sin 2η

)
,

k = 1, 2, . . . ,N − 1,

as in (5.20). Since 2η ∈ (0, π ) the sign of each eigenvalue here is

the same as the sign of qk − 2 cos 2η. Take qk to be q1 = −2 cos π
N
,

the smallest among the qk’s. Then

q1 − 2 cos 2η = −2 cos
π

N
− 2 cos 2η. (6.27)

If 2η ∈ (0, π − π
N
), (6.27) is negative. Then H(ξ ) has one negative

eigenvalue in addition to the positive eigenvalue discussed before,

so the equidistant critical solution is a saddle solution. If 2η ∈
(π − π

N
, π ), then (6.27) is positive, and all qk − 2 cos 2η > 0

since other q′
ks are greater than q1. Hence all eigenvalues of H(ξ )

are positive and the equidistant critical solution is a minimizing

solution □

7. Discussion

Here we show a connection between the FitzHugh–Nagumo

system and (1.1) with a sign changing kernel. We also explain

how the fractional Laplacian operator can enter the picture. The

kernel (7.14) that arises in this section changes sign, in this respect

similar to the kernel (1.9) studied in this paper. On the other hand,

(7.14) is muchmore singular, and hence has a smoothing property.

Solutions to its Euler–Lagrange equation cannot be discontinuous.

The FitzHugh–Nagumo system models excitable systems such

as neuron fields [13,14]. It is one of the best known examples

that include growth and inhibition properties. To see the two

properties we need a more sophisticated version of the FitzHugh–

Nagumo system where both the membrane voltage variable u and

the recovery variable v are allowed to diffuse in space; namely
{

ut = d∆u − u(u − 1/2)(u − 1) + a − bv

τvt = ∆v − v + u
(7.1)

where u and v satisfy the zeroNeumann boundary condition on the

boundary of the domain. Consider the steady states of the system

which satisfies{
d∆u − u(u − 1/2)(u − 1) + a − bv = 0

∆v − v + u = 0
in D,

{
∂νu = 0
∂νv = 0

on ∂D

(7.2)

whereD is a domain inR
n and ∂ν denotes outward pointing normal

derivative. By solving the second equation for v, which yields v =
(−∆ + 1)−1u and inserting it into the first equation one obtains

− d∆u + u(u − 1/2)(u − 1) − a + b(−∆ + 1)−1u = 0. (7.3)

Eq. (7.3) has a variational structure. Any solution of (7.3) is a critical
point of the functional

E(u) =
∫

D

(d

2
|∇u|2+ u2(1 − u)2

4
−au+ b

2
u(−∆+1)−1u

)
dx. (7.4)

LetG be Green’s function of the−∆+1 operatorwith Neumann
boundary condition so that
(
(−∆ + 1)−1u

)
(x) =

∫

D

G(x, y)u(y) dy. (7.5)

The last term in (7.4) can be rewritten as
∫

D

u(−∆ + 1)−1u dx = −1

2

∫

D

∫

D

G(x, y)(u(x) − u(y))2 dx dy

+
∫

D

u2(x) dx, (7.6)

and (7.4) becomes

E(u) =
∫

D

d

2
|∇u|2 dx −

∫

D

∫

D

b

4
G(x, y)(u(x) − u(y))2 dx dy

+
∫

D

(u2(1 − u)2

4
− au + b

2
u2

)
dx. (7.7)

In applications u is typically a phase field variable and F(u) is
the free energy of the field. The first two terms in (7.7) model two
kinds of self-interaction energy of u and the third term is a bulk
energy. The two interaction energy terms are effective on different
length scales and their preferences are opposite. The first term is
local and favors phase fields that are close to constant. The second
term is nonlocal and, because of the negative sign in front, benefits
from more oscillatory fields, because of the negative sign in front.

Because the two interaction terms are of differentmathematical
types; the first is a local gradient term and the second is a nonlocal
integral term, (7.7) is a hybridmodel. In this paperwewould like to
have amore unified approachwhere interaction is given by a single
term. For this we re-examine the derivation of the gradient term.
The gradient term often arises as an approximation of a nonlocal
interaction like the second term in (7.7), but with an opposite sign.
Let S(z), z ∈ R

n be a non-negative and radially symmetric function
and consider∫

Rn

∫

Rn

S(x − y)(u(x) − u(y))2 dxdy, (7.8)

where we have taken D to be R
n for simplicity. If we expand u(y)

about x and approximate u(y) ≈ u(x) + ∇u(x) · (y − x), then
∫

Rn

∫

Rn

S(x − y)(u(x) − u(y))2 dxdy ≈
∫

Rn

∫

Rn

S(x − y)

×|∇u(x) · (y − x)|2 dxdy
= σ

∫

Rn

|∇u(x)|2 dx

where

σ = ωn

∫ ∞

0

S(r)rn+1 dr
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and ωn is the volume of the unit ball in R
n. This approximation is

more accurate if S has small support.
Thus if we replace the first term in (7.7) by (7.8), then the first

two terms can be combined into a single term and we arrive at
(1.1). In the case that D = R

n, it is reasonable to assume that J
is a function of |x − y|, unless the self-interaction of the field u has
a preferred direction. If (1.1) is used to replace (7.7), we should let

J(z) = 2d

σ
S(z) − bΓ (z) (7.9)

where Γ is the fundamental solution of −∆ + 1 on R
n. It is known

that

Γ (z) = 1

(2π )n/2
|z|1−n/2K n

2
−1(|z|) (7.10)

where K n
2
−1 is the n

2
− 1 order modified Bessel’s function of the

second kind.
We must assume that S(z) is more singular than Γ (z) when z

is at 0, so J(z) is positive if z is close to 0. When z is away from 0,
J(z) may or may not stay positive. This point is illustrated in the
following example.

Recent years have seen intense efforts to use the fractional
Laplacian operator (−∆)s in place of the usual −∆ in many elliptic
and parabolic problems [15–18]. For s ∈ (0, 1), one defines the
singular integral

(−∆)su(x) = cn,s

∫

Rn

u(x) − u(y)

|x − y|n+2s
dy (7.11)

where cn,s is a constant depending on n and s. This expression
follows from an interaction energy of the form (7.8) with

S(z) = cn,s

|z|n+2s
. (7.12)

If we are interested in using a fractional Laplacian, the hybrid
equation (7.3) should be replaced by

d(−∆)su + b(−∆ + 1)−1u + u(u − 1/2)(u − 1) − a = 0 (7.13)

on R
n. The integral equation (7.13) is precisely the Euler–Lagrange

equation of (1.1) with D = R
n,

F (u) = u2(1 − u)2

4
− au + b

2
u2,

and

J(z) = dcn,s

|z|n+2s
− b

(2π )n/2
|z|1−n/2K n

2
−1(|z|). (7.14)

Note that K n
2
−1(|z|) is positive and is of order |z|1− n

2 (in the case

n ≥ 3) when |z| is small, so as |z| → 0 the first term in (7.14) tends
to ∞ like |z|−(n+2s) and the second term tends to ∞ like |z|−(n−2).
The first term dominates and the difference J(z) tends to ∞ like
|z|−(n+2s). When z → ∞, K n

2
−1(|z|) tends to 0 like z−1/2e−z so J(z)

tends to 0 like z−(n+2s) but stays positivewhen z is sufficiently large.
However if b/d is large, J(z) is negative for some z away from 0 and
∞.
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