Narrow-Band Topology Optimization on a Sparsely Populated Grid

HAIXIANG LIU*, University of Wisconsin-Madison

YUANMING HU*, BO ZH UT, WOJCIECH MATUSIK, MIT CSAIL, TDartmouth College

EFTYCHIOS SIFAKIS, University of Wisconsin-Madison

A variety of structures in nature exhibit sparse, thin, and intricate features.
It is challenging to investigate these structural characteristics using conven-
tional numerical approaches since such features require highly refined spatial
resolution to capture and therefore they incur a prohibitively high computa-
tional cost. We present a novel computational framework for high-resolution
topology optimization that delivers leaps in simulation capabilities, by two
orders of magnitude, from the state-of-the-art approaches. Our technique
accommodates computational domains with over one billion grid voxels
on a single shared-memory multiprocessor platform, allowing automated
emergence of structures with both rich geometric features and exceptional
mechanical performance. To achieve this, we track the evolution of thin struc-
tures and simulate its elastic deformation in a dynamic narrow-band region
around high-density sites to avoid wasted computational effort on large void
regions. We have also designed a mixed-precision multigrid-preconditioned
iterative solver that keeps the memory footprint of the simulation to a
compact size while maintaining double-precision accuracy. We have demon-
strated the efficacy of the algorithm through optimizing a variety of complex
structures from both natural and engineering systems.

CCS Concepts: « Computing methodologies — Massively parallel and
high-performance simulations;

Additional Key Words and Phrases: topology optimization, sparsely popu-
lated grid, multigrid solver

ACM Reference Format:

Haixiang Liu*, Yuanming Hu*, Bo Zhu', Wojciech Matusik, and Eftychios
Sifakis. 2018. Narrow-Band Topology Optimization on a Sparsely Populated
Grid. ACM Trans. Graph. 37, 6, Article 251 (November 2018), 14 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Mechanical structures in nature exhibit a broad spectrum of thin fea-
tures. Such examples include interior structures supporting insect

* Indicates equal contribution.

Authors’ addresses: Haixiang Liu*, University of Wisconsin-Madison, hliu253@wisc.
edu; Yuanming Hu", Bo Zhu', Wojciech Matusik, MIT CSAIL, TDartmouth Col-
lege, [yuanming,boolzhu, wojciech]@csail. mit.edu; Eftychios Sifakis, University of
Wisconsin-Madison, sifakis@cs.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART251 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Side View

Back View

Fig. 1. The interior structures supporting the shell of a bird beak
generated using our narrow-band topology optimization algorithm
with k1, 040, 875, 347 (1.04 billion) active FEM voxels. The resolution
of the background grid is 3000 X 2400 X 1600. The three figures show
the volumetric rendering of the same structure from different views.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:2 « Haixiang Liu*, Yuanming Hu*, Bo Zhu'r, Wojciech Matusik, and Eftychios Sifakis

wings, animal bones, bird beaks, honeycombs, etc. These codimen-
sional structures have negligible volume compared to the size of
geometries they support. Under the influence of natural selection,
these thin supportive structures enable many light, agile, and ef-
ficient systems with outstanding physical or biological properties.
Computational modeling and investigation of these thin structures
are crucial for understanding the hidden mechanisms and patterns
of natural designs. Further, high-fidelity numerical studies of these
mechanisms enable automated design, optimization, and manufac-
turing of a variety of human-made mechanical systems resembling
their natural analogues. For example, the mathematical modeling
and numerical simulation of dragonfly wings, bird beaks, and animal
bones have enabled the automated design of microrobotic wings
[Dileo and Deng 2009], aircraft wings [Aage et al. 2017], and artificial
bone structures [Wu et al. 2017].

Topology optimization has demonstrated its efficacy in creating
mechanical designs with complex structures and extreme properties
in various engineering problems (see [Rozvany 2009], [Sigmund
and Maute 2013], [Deaton and Grandhi 2014] for surveys). Starting
from a volumetric domain that is uniformly filled with material, a
standard topology optimization algorithm iteratively removes and
redistributes material to develop a structure that minimizes a design
objective (e.g., structural compliance), given the prescribed target
volume and boundary conditions. However, due to the limitations
of the previous computational frameworks, it is challenging to per-
form a standard topology optimization algorithm to emerge and
evolve these thin and sparse features. For example, to model the
evolution of a thin sheet at the length scale of ten micrometers
within a centimeter cube, it requires an FEM solver discretized on a
1000° Cartesian grid. This grid resolution amounts to the order of
magnitude of one billion active elements.

Recent advances in supercomputing provide some solutions that
overcome this challenge. For example, Aage et al. [2017] ran a par-
allel topology optimization program on a cluster with 8000 cores
for days and obtained the structure of an airplane wing with the
computational domain filled with 1.1 billion voxels. A variety of
novel, intricate, and multi-scale structures naturally emerge from
the super-resolution computations. This result is impressive, yet
the limited accessibility and high cost of the supercomputing re-
sources impede the use of such numerical approaches in a broader
range of research and engineering applications. New computational
tools, which are easy to access, efficient to run, and able to solve
super-resolution systems, are needed in the scientific community.

To this end, we propose a new computation framework that com-
bines a sparse representation in conjunction with a highly optimized
elastic multigrid solver for topology optimization, which delivers
a significant leap in solving super-resolution problems from the
prior state-of-the-art results. Our framework has enabled the simu-
lation of a sparsely populated computational domain on the level
of billion active grid voxels on a single workstation. By examining
the simulation results at such scale, we identify and analyze new
challenges that have not been addressed, or even observed, in the
previous research on elastic deformation simulation and topology
optimization, such as poor asymptotic convergence of standard

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Galerkin-coarsened multigrid algorithm and the algorithmic limits
of floating-point precision.

To address these scale-dependent challenges, we combined design
practices and algorithmic interventions on data structures, numeri-
cal methods, and parallel solver implementations. First, our frame-
work is centered around a sparsely populated grid data structure,
which allows the dynamic allocation of the degrees of freedom
within a narrow band around the structure. This data structure
combines the benefits of sparse storage, implicit topology represen-
tation, and the performance potential of high-throughput stream
processing. We have observed and demonstrated numerically that
the elements with high structural sensitivities, which are essential
for developing the structure towards its optimal topology, tend to
bundle within a narrow band around the structure during evolution.
In contrast, the vast bulk of void regions far from the structure
contribute little to the total structural compliance, but they are the
primary source of the computational cost in a dense discretization.
Therefore, the computation can be dramatically reduced by using
a dynamically allocated sparse discretization, i.e the narrow-band
representation.

In addition to the narrow-band representation, we developed a novel
mixed-precision multigrid solver that is capable of solving FEM dis-
cretized linear elasticity in the order of billion elements on a single
workstation. By proposing an SPGrid-optimized matrix-free formu-
lation for data storage and a novel mixed-precision computation,
the solver can meet the memory storage and bandwidth demands
of a multiprocessor workstation while maintaining high accuracy.
Also, our vectorized multigrid solver takes advantage of the AVX512
instruction set on the Intel Skylake-X/SP architecture in order to
further enhance performance.

We summarize the main contributions of our work as follows:

e We demonstrate an ensemble of data structures, numerical
schemes, and implementation best practices to perform topol-
ogy optimization with the highest resolution (over one billion
voxels) on a single shared-memory multiprocessor.

e We propose a sparse, adaptive topology optimization framework
where simulation of elastic deformation is restricted to a narrow
band surrounding the high-density region.

e We demonstrate the capacity of our framework to obtain a
variety of complex thin and codimensional features, such as
thin films and beams, that previous approaches might suppress.

2 RELATED WORK

Uniform and adaptive grids. Among the various kinds of data struc-
tures that have been developed by researchers in computational
science and computer graphics, uniform grids play a central role in
the vast majority of topology optimization applications for their mul-
tiple advantages in computation. These advantages include cache-
coherent memory access, regular subdivisions for parallelization,

Narrow-Band Topology Optimization on a Sparsely Populated Grid « 251:3

Fig. 2. Structures with codimensional thin features are obtained by running the narrow-band algorithm on a thin hemispherical shell. The
boundary conditions include a fixed boundary on the top and an external load applied on the cross surface on the bottom. As the grid resolution
increases from to 512 (left) to 2048° (right), thin-shell structures are observed to dominate, matching the tendency studied in [Sigmund et al. 2016].

simple data layout, and, in particular, the existence of efficient nu-
merical PDE solvers. A multigrid FEM solver discretized on a uni-
form grid has been established as one of the standard solutions
for elastic solids [Zhu et al. 2010], character skinning [McAdams
et al. 2011], and topology optimization (e.g. [Sigmund and Torquato
1999]). One of the main challenges of uniform grids lies in their lack
of adaptivity. Due to their uniformly distributed and axis-aligned
grid lines, it is difficult to dynamically allocate fine grid cells around
the regions of interest while still preserving all the computational
advantages. To overcome this limitation, researchers have been de-
voting efforts to create multiple levels of resolutions by dynamically
refining grid cells, which lead to the invention of a variety of hierar-
chical data structures, e.g., the octree grid [Losasso et al. 2004] and
the AMR grid [Donea et al. 1982]. These adaptive data structures
have been integrated with high-performance solvers for computing
large-scale systems. For example, Ferstl et al. [2014] combined an
octree grid with a multigrid-preconditioned conjugate gradients
(MGPCG) solver for Poisson problems in large-scale liquid simu-
lation. In addition, new dynamic structures have been proposed to
obtain adaptivity without breaking the topology of a uniform grid,
e.g., by overlapping grids with different resolutions [English et al.
2013] or anisotropically stretching grid cells [Zhu et al. 2013].

Lagrangian approaches. An unstructured Lagrangian mesh inher-
ently exhibits adaptivity. It is natural to allocate degrees of free-
dom on a Lagrangian mesh adaptively, according to some local
meshing criteria, e.g., the distance to structures of interest. Fur-
ther, Lagrangian approaches are capable of tracking the structure
interface by explicitly maintaining the boundary mesh. These two
main advantages allow Lagrangian meshes to be widely used in
topology optimization (see [Eschenauer et al. 1994], [Sokolowski
and Zochowski 1999], [Christiansen et al. 2014], [Christiansen et al.
2015] for examples). The main limitation of Lagrangian approaches
lies in their inefficiency in solving large-scale linear systems. The

unstructured nature of a Lagrangian mesh makes it difficult to build
an efficient preconditioner for iterative solvers.

Sparse representations. In contrast to uniform grids, sparse data
structures reduce the computational cost of a volumetric discretiza-
tion by maintaining active elements selectively. The key idea for
sparse data structures is to establish a mapping from a grid cell
index in the real, sparse space to an index in the virtual, compact
storage, enabling the allocation of computational resources only
to grid cells occupied by or near the real structures. This mapping
can be implemented by a standard hash table (e.g., local level set
[Brun et al. 2012]), an octree (e.g., adaptive distance field [Frisken
et al. 2000], OpenVDB [Museth 2013]), or via a Virtual Memory
Page Table and the Translation Lookaside Buffer (TLB) (e.g., SPGrid
[Setaluri et al. 2014]) for fast access to grid cells. In addition to us-
ing a single type of discretization, researchers have also invented
a variety of hybrid data structures to model thin phenomena em-
bedded in a high-dimensional space. One example is the particle
level set [Enright et al. 2002], which maintains a narrow band of
particles around an implicit interface discretized on a background
grid. The coupling of the two representations enables an accurate
computation for the signed distance function. Similar concepts can
be seen in the narrow-band FLIP method [Ferstl et al. 2016] and the
hybrid grid-mesh approach [Zheng et al. 2015], where a thin layer of
Lagrangian elements are hybridized with a Eulerian discretization
to efficiently capture the features around the interface.

Hardware acceleration. At the heart of a high-resolution topology
optimization algorithm is a highly efficient numerical solver for FEM
discretized linear elasticity. Hardware acceleration is essential to
boost the performance of these solvers. GPU-based approaches have
been widely used in speeding up topology optimization algorithms.
For example, Wu et al. [2016a] have proposed a high-performance
multigrid FEM solver with deep integration of GPU hardware to
achieve good convergence, low memory consumption, and reduced

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:4 « Haixiang Liu*, Yuanming Hu*, Bo ZhuT, Wojciech Matusik, and Eftychios Sifakis

4 Plane force

Fig. 3. An optimized bridge structure is obtained on a 271 X 540 X 1081 grid (157 M voxels) with mirror boundary conditions applied on the X and
Z axes. The left figure shows a solid render, and the right three figures show the visualization of the density field from different camera views. The
middle sub-image illustrates the boundary conditions, including fixed boundaries on the sides and a load applied on the bottom plane.

bandwidth requirements. More related work on GPU-based topology
optimization can be seen in [Wadbro and Berggren 2009] [Schmidt
and Schulz 2011] [Challis et al. 2014] [Yadav and Suresh 2014]. The
power of supercomputing has also been explored. In [Aage et al.
2015], a parallel topology optimization framework was proposed
using the Portable and Extendable Toolkit for Scientific Computing
(PETSc). A variety of mechanical designs with intricate thin fea-
tures was obtained by running high-resolution simulations (with
up to 83 million elements) on a supercomputer. This computational
framework was further used in [Aage et al. 2017] to explore the
optimal design of airplane wings at the level of one billion voxels.
Besides GPU and supercomputer, multi-accelerator heterogeneous
computing has also been explored. For example, a scalable parallel
solver on a workstation fitted with GPUs or many-core accelerators
has been proposed in [Liu et al. 2016] to solve systems in the order
of a billion degrees of freedom. The proposed Schur-complement
numerical technique allows to benefit from the high memory and
compute bandwidth of GPUs for large-scale problems.

3 METHOD OVERVIEW

Our sparse topology optimization framework consists of three key
components: a sparse grid structure, a high-resolution multigrid
FEM solver, and a narrow-band and unbounded structure optimizer.
First, we briefly introduce the sparse paged structure (SPGrid) [Se-
taluri et al. 2014] as the base data structure to track the optimizing
structures (Section 4). Next, we discuss our multigrid FEM solver
for computing large-scale elastic systems on SPGrid in Section 5.
We then discuss our topology optimization algorithms to obtain
structures with thin features based on the sparse representation in
Section 6. In Section 7, we provide method validations with respect
to both the multigrid solver and the topology optimizer, with a par-
ticular focus on the comparison with [Wu et al. 2016a] to highlight
the capability of our solver in handling large-scale systems. In addi-
tion, we demonstrate a variety of examples to optimize structures
that exhibit complex thin features.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

4 SPARSELY POPULATED GRID STRUCTURE

The Sparsely Populated Grid (SPGrid) data structure [Setaluri et al.
2014], in comparison to other sparse data structures, leverages the
virtual memory system to allocate a very large virtual memory ad-
dress span, corresponding to a sparsely populated background grid,
while only materializing in physical memory the parts of this grid
that are active. The allocation unit in SPGrid is a block, a rectangular
region of the Cartesian grid that is made contiguous in memory
address space by virtue of a space-filling traversal scheme; The size
of SPGrid blocks is chosen to be a multiple of a 4KB, i.e. the size of
a physical memory page. SPGrid stores a number of data channels,
which have similar sparsity pattern and corresponding indexing,
in the same allocation block. Using the SPGrid data structure en-
ables us to compute effectively on a sparsely populated domain
with effective bandwidth comparable to a cache-optimized, dense
uniform grid. In our multigrid FEM solver, we utilized the flexibility
of SPGrid’s block size, and chose a block size of 4 X 4 X 8, tailored
for vectorization as described in Section 5.

5 MULTIGRID SOLVER

Our topology optimization framework utilizes a numerical solver for
a lattice-based Finite Element Method (FEM) discretization of linear
elasticity, with spatially varying material parameters. In order to ac-
commodate the large resolutions targeted by our method, we employ
a solver based on the Multigrid-Preconditioned Conjugate Gradients
(MGPCG) algorithm. Algebraically, our methodology is similar to
prior formulations of multigrid-preconditioned solvers [Dick et al.
2011; Wu et al. 2016b], in employing a hexahedral discretization
of the linear elasticity operator, leveraging Galerkin coarsening to
generate coarse level operators, and using a symmetric V-cycle as a
preconditioner for Conjugate Gradients. We deviate from standard
practices as documented in prior work by way of design choices,
data structures, and parallelization practices including:

Narrow-Band Topology Optimization on a Sparsely Populated Grid « 251:5

o A matrix-free implementation of the finest-level elasticity oper-
ator tailored for the SPGrid sparse storage structure.

o A bandwidth-saving construction of the Galerkin coarsened op-
erator at each level, which avoids streaming through explicitly-
built matrices as input any only relies on material properties at
the finest level.

o Storage of the explicitly formed coarse grid operators in a novel,
SPGrid-specific banded sparse matrix format.

o A modified eight-color Gauss-Seidel smoother designed to opti-
mize memory bandwidth utilization and SIMD efficiency.

e A mixed-precision implementation of MGPCG, which combines
the accuracy of double-precision arithmetic with the storage
saving of single-precision representations.

Matrix-free design of finest level operator. Due to the size of the
simulation domains we target, economy in memory footprint is
essential to our approach. An explicit matrix storage at any level
of the discretization would necessitate 243 scalar coefficients per
lattice node, consisting of 27 spokes of 3 X 3 matrices. This number
excludes any compaction afforded by storing only the symmetric
half of the operator, but also does not account for any additional
storage of matrix indices (e.g. in compressed sparse row format), or
explicit topology storage of the computational domain (e.g. explicit
hexahedral mesh).

The SPGrid data structure provides the abstraction of a sparsely
populated grid, without the need to explicitly encode the connec-
tivity of hexahedral simulation elements (e.g. as in an explicit mesh
structure), as it is implied by the background uniform grid topology.
Although our computational domain is embedded in a large back-
ground regular grid (up to the resolution of 3000 x 2400 X 1600), its
active cells in our simulation are only a sparse subset (up to 1.04
billion active cells, in our tests). The SPGrid structure allows us to
directly store these active cells, their material parameters as well as
their nodal forces and displacements in a sparsely populated grid.

At the finest level, we implemented a numerical kernel that com-
putes the elastic forces resulting from the elasticity operator, for all
nodes of a given 4 X 4 X 8 block of the SPGrid structure; this kernel
is designed to be free of write-dependencies, hence all blocks can
be processed in parallel on different threads.

Consider a single grid cell with nodal displacements {ui}§:1. We
denote by {f; le the nodal forces produced by the elastic response
of the same cell, which can be expressed as f; = Z§=1 K;j - uj. Each
K;j in this expression is a 3X 3 matrix; we store these coefficients in a
8x8x3x3 tensor K, whose elements are given by Kjjow = [Kijlow-
This tensor is given as a linear combination of two canonical tensors
%K* and K based on the Lamé coefficients, corresponding to the
stiffness matrices computed for (g, 4) = (1,0) and (g, 1) = (0,1)
respectively. They can be computed either by analytic integration
of the linear elastic trilinear element, or an eight-point Gauss quad-
rature rule. Ultimately, the elemental stiffness tensor is expressed
as K = pK*H + AK*. We use the notation C(i) for the set of eight
cells incident to node i, while V(c) denotes the eight vertices at the

corners of cell c. We can then express the total force on node i as:

f; = Z Z (y(C) CKE 4+ 2© 'Kl)i(c)j(c) “uj
ceC(i)jeV(c)

where 11(¢), 1(¢) are the parameters of cell ¢, and 1 < i(©), j(¢) < 8 are
the local indices of nodes i, j as vertices of cell c. This operation can
be trivially vectorized; let f := (f(;,, ¢, 1) f(p,q,r+1)> - - -+ fip, q,r+7)) DE
a SIMD vector of eight forces on nodes that are sequential along
the z-axis, while ,u(c), /_l(c) are the parameters of a cell neighbor for
each of the eight_sequential grid indices, and finally, u ; the set of
eight sequential nodal neighbors at a specific offset direction. The
previous operation is then expressed as:

£= > > @K 2 K0 1)
ceC(i) jeV(c)

We note that a SIMD line need not be structured strictly along a
sequence of nodes aligned along the z-axis (or any other single
axis); a rectangular arrangement, e.g. eight nodes straddling a 2 X 4
rectangle along the y- and z-axes would work in exactly the same
fashion. From a programming standpoint, equation (1) indicates that
SIMD vectors of each Lamé parameter are scaled with a constant co-
efficient (a single multiply instruction, with embedded broadcast, in
the AVX2 and AVX512 instruction sets), and multiply the respective
neighboring displacements u; (a fused multiply-add operation) to
compute a term contributing to the nodal force f. With the increased
number (32) of available registers in AVX512, we have verified that
the entire stencil application can be executed with 2 x 242 multiply
and 2 x 24? fused multiply-add instructions (FMA) without any
register spilling, and enough distance between operation depen-
dencies to allow the full throughput of two FMA instructions per
cycle in Skylake-X/SPT (approximately 1200 cycles for the stencil
application on one 16-wide SIMD line).

Modifications to the SPGrid structure. In order to accommodate the
SIMD-heavy stencil computations in our elasticity operator, we
enacted two crucial modifications/enhancements of the baseline
implementation (http://www.cs.wisc.edu/~sifakis/SPGrid.html) of
the SPGrid structure of Setaluri et al. [2014]. The first of those, is a
vectorized load routine, with a compile-time stencil offset, as in:

template <int di,int dj,int dk,class SPG_array>
__m512 VectorGet<di,dj,dk>(SPG_Array a,int64_t offset)

where a 16-entry SIMD width in single-precision has been used,
as an AVX512 example. The offset given as argument is presumed
aligned at SIMD-width granularity, while a stencil offset (di, dj, dk)
is given as a compile-time argument. Using these semantics, grid
data at a given stencil “spoke” (from an aligned baseline vector
address) can be loaded for an entire SIMD line, as illustrated in
Figure4. Even though the stencil shift might cause data to originate
from different SPGrid blocks, the fact that such shift is known at
compile time allows significant optimizations that avoid expensive
gather operations and minimize address translations.

T Intel Xeon Gold 6140 processor (18 cores at 2.30 GHz) with 192 GB memory.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:6 « Haixiang Liu*, Yuanming Hu*, Bo Zhu'r, Wojciech Matusik, and Eftychios Sifakis

Fig. 4. The offset passed to VectorGet points to an sequence of
SPGrid entries with SIMD-width alignment (light blue box). Using
a stencil offset, e.g., shifts the region to be loaded by VectorGet, as
shown in the dark blue box. The data of this shifted box may originate
in several distinct SPGrid blocks (indicated by different node colors).

The second SPGrid modification was the relaxation of the design
restriction in Setaluri et al. [2014] that each SPGrid block be sized to
exactly 4KB (the size of a virtual memory page). Our solver used a
total of 128 bytes for all variables stored at each grid index, leaving
the block size to just 2x4x4 when a 4KB block size is used. We found
it more effective to be able to use a larger block size, namely 4 x4 x 8
in order to (a) minimize the number of SIMD stencil accesses that
straddle multiple blocks, and simplify implementation of VectorGet,
and (b) allow an adequate number of nodes to be present per-block,
to ensure that even after eight-coloring (as required by our smoother,
described later in this section), the nodes on each color are a multiple
of the SIMD width, even on AVX512 systems. We include source
code for both proposed SPGrid modifications, as a supplement to
our paper. As an indication of performance, we have achieved an
effective bandwidth of 17.45 GB/s for our multiply kernel.

Efficient Galerkin Coarsening. In the construction of the multigrid
hierarchy, we used the Galerkin coarsening method, computing the
coarse grid operator as K¢ = PT K/ -P, where P is the prolongation
matrix and K/ the fine grid operator. At all but the two finest levels,
we can afford to store the coarsened operator explicitly, as the
reduced dimensionality of the coarse grid allows us to do so at
one-eighth of the memory footprint that such matrix would have
occupied at the finer level. Our construction of K¢ is tailored around
the following implementation objectives:

o Neither K/ or P are presumed available in matrix form.

e The rows of K¢ should be coumpted independently, to avoid
write hazards.

e We seek the flexibility to compute K¢ at any coarse level di-
rectly from the material parameters at the finest level, without
depending on operators at intermediate levels.

Let us consider the specific example of constructing the operator
K*" at two levels coarser from the finest grid :

4h T T h
K™ = P4h—>2hP2h—>hK Pon—nPan—2n ()
The coefficients of the i-th row of this matrix (or equivalently, the
i-th column, due to symmetry) are given by the action K*"e; of this

operator on the basis vector e;. Equation (2) suggests that this action

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

@l el ol el Y
o &7 @ wf

112} {114)

P

Fig. 5. Two successive prolongation operations on a Kronecker delta
function during Galerkin coarsening of a coarse cell, illustrated in 2D.

0

can be computed by successively prolongating e; to the finest level,
applying the fine-grid operator K”, and restricting the result back to
the coarse grid. We perform this operation separately on each of the
eight cells (at level 4h) incident on node i, as illustrated in Figure 5.
The input to this process is a discrete Kronecker delta, shown as
the input coefficients to the coarsest level. We can use an eight-
wide SIMD register to store all eight nodal values of this coarse cell.
We have implemented a routine ProlongateCell() that interpolates
this eight-value SIMD register into eight more eight-wide registers
corresponding to the nodal values of the child cells at the immediate
finer level. This routine is called recursively to prolongate all the
way to the finest level. At that point, a routine CellMultiply() is used
to compute the force response of each individual fine cell to these
prolongated nodal displacements (using the material properties at
the finest level). A routine RestrictCell() implements the adjoint of
the prolongation operation by collecting force contributions from
fine child cells to their coarser parent. Since these routines are
called recursively, all SIMD vectors are stack-allocated and can be
effectivly cached. As an indicator of performance, the construction
of the entire operator hierarchy in our 1.04 billion-voxel example
(Figure 1) requires 113.9 seconds using AVX512 instructions, which
is a very small fraction of the MGPCG cost at this resolution.

Sparse Matrix Storage. The storage of the Galerkin-coarsened matrix
needs to be handled as to exploit sparsity, facilitate the application
of the smoother routine, and allow a direct solver (in our case, Intel
MKL PARDISO) to be used for solving the problem at the coarsest
level of the hierarchy. Given that the topology of the background is
a regular Cartesian lattice, we use a band-storage approach, where
the 243 nonzero coefficients associated with the stencil each node
(a 3 X 3 matrix for every spoke of a 27-connected 3 X 3 X 3 stencil)
are stored into a secondary SPGrid structure. We supplement these
243 scalars with a bit field, indicating whether each stencil spoke is
structurally present in our discretization. This representation allows
straightforward implementation of the smoother routine, and can be
easily converted to compressed sparse row (CSR) format for usage
in direct solvers like PARDISO. In this conversion, the only serial
operation is the calculation of linearized indices, and the necessary
allocated length of each compressed row; the data transfer into the
CSR coefficient buffer is performed in parallel over SPGrid blocks.

Narrow-Band Topology Optimization on a Sparsely Populated Grid « 251:7

8888 8388
3838 8363

0000000000000 00000000000Ce000000O

{

0000000000000 0O0OCe000000000000000

Fig. 6. Left: a SPGrid block of 4x8 in which the nodes are ordered
lexicographically, Right: the transposed colored storage enables effi-
cient vectorization for Gauss-Seidel iteration. Bottom: Transposition
operation of a SPGrid block illustrated in a linear memory layout.

Optimization of the relaxation routine. In order to balance conver-
gence efficiency with parallelization potential, we employ an eight-
color Gauss-Seidel (GS) routine, as other authors have similarly
adopted in prior work [Wu et al. 2016b], with the slight modifi-
cation that we collectively update all three collocated degrees of
freedom at each grid node, by inverting the 3 X 3 diagonal block
of the stiffness matrix corresponding to that node. A drawback of
combining the eight-color GS smoother with a SIMD implementa-
tion is the suboptimal utilization of memory bandwidth, as each
SIMD vector will require data that is consistently discontinuous in
memory (Figure 6, left). Such scattered memory assess is particu-
larly wasteful for modern hardware which always performs load
operation from memory at cache-line granularity. In order to cir-
cumvent the need for such scattered data access, we preemptively
transpose the data in each SPGrid block as to reorder the indices
of each color to be consecutive in memory (Figure 6, right/bottom).
We observe that applying the same stencil offset to the nodes of one
color always leads to nodes of a different yet consistent color (e.g.,
in Figure 6, applying a (+1,+1) offset to a yellow node always leads
to a red node). As a consequence, after the described transposition,
applying the colored GS smoother on each individual color can
be performed by a straightforward application of the VectorGet
routine to the transposed data. Each SPGrid block is transposed
back to the original ordering at the end of the application of the
relaxation routine. We have observed an effective bandwidth of up
to 68 GB/s (out of maximum 128 GB/s) on a Skylake-SP platform
for the eight-color GS routine.

A mixed-precision MGPCG solver. The linear systems arising from
the equations of elasticity in our large-scale topology optimization
tasks impose a unique set of challenges to the numerical algorithms
used. Due to both the sheer size of the computational domains we
seek to accommodate, and the large contrast of material stiffness
values used in different regions of the simulated domain, we often
encounter situations where an MGPCG solver using single-precision
(32-bit) floating-point arithmetic cannot sustain satisfactory conver-
gence, or even instances where the solver will plainly diverge. There

are also scenarios where single precision will have catastrophic con-
sequences on our solver, when Galerkin-coarsened matrices will be
reported as effectively “singular” by direct solvers (i.e. MKL PAR-
DISO) if constructed to single precision. We note that the frequency
of incidence of such issues was dramatically increased, in our expe-
rience, when dealing with domains in excess of 108 voxels, while
lower-resolution problems would be significantly more resilient.

An MGPCG solver implemented natively in double precision was
fully effective for all the examples in our paper. However, using
double precision would double our memory footprint, which was
a significant concession given our pursuit of exceptionally high-
resolution domains. We thus designed a variant of such solver that
used a carefully crafted mix of single- and double-precision arith-
metic, which we have found to produce results of effectively identical
accuracy as a native double-precision solver. Consider the main loop
of a preconditioned conjugate gradients algorithm, as captured in
the following pseudocode:

for k=1:N
qr < Apg ®3)
a — 1z o’ g
Xft1 < X+ Pk 4
g4l < Tp—0kqk
zj — M7 ry (5)
Bre — zis1 Trar /2 1
Pk+1 < Zk+1+PkPk

Our modifications which yield a mixed-precision implementation
are summarized as follows:

e Vectorsr, q, z and p (colored blue, above) are persistently stored
in single-precision floating-point variables.

e The solution x is stored in double precision. The accumulation
operation in (4) is also performed in double precision.

e The operator application in line (3) is performed in double
precision (the single-precision input p is up-cast to double pre-
cision prior to the multiplication). The result of the operator
application is then truncated to single precision and stored into

q.

e The multigrid V-cycle used as the preconditioner M~! in line
(5) is modified as follows: The smoother at the finest level uses
double precision for the application of the operator, just as
in line (3), although inputs and outputs are stored in single-
precision. Every level of the V-Cycle other than the finest uses
double-precision arithmetic entirely.

Using this mixed-precision approach, the memory footprint of our
solver is further reduced, providing a significant boost in the maxi-
mum resolution we can accommodate for a given amount of physical
memory (128 bytes/node suffice to store all variables necessary for
the MGPCG solver as well as the minimum compliance optimizer).
Our results and validation section provides experimental evidence

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:8 « Haixiang Liu*, Yuanming Hu*, Bo Zhu‘h, Wojciech Matusik, and Eftychios Sifakis

L3 2) b)
- e
L S s
N HER NI

i & iR

d) <)

Fig. 7. The evolution of SPGrid block activation for a single topology
optimization iteration. a) The thin page map consists of blocks that are
“hard” (i.e., with maximum voxel density above the threshold). b) The
filtered thin page map excludes small disconnected blocks to avoid FEM
solve singularity. c) The fat page map, where FEM solve and topology
evolution happens, is an expanded version of the thin page map. d)
The new thin page map is an eroded version of the fat page map with
only hard blocks considered. Following this cycle, active (gray) blocks
and narrow-band blocks (green) are updated in each iteration along
with structure evolution (red lines).

indicating that this mixed-precision approach yields almost identical
accuracy of final results in all our tests.

6 NARROW-BAND TOPOLOGY OPTIMIZATION

We discretize the design domain using a density field p on cell
centers. For each cell, p can take value from 0 to 1 to represent
materials ranging from void to solid. The sparsity of the domain is
specified on the granularity of SPGrid blocks: a block is marked as
void if all of its cells have density smaller than a threshold (1 x 10~°
in our case); otherwise, the block is marked as active (see Figure 7).
We then define the narrow band of a structure as the group of all the
void blocks within the one-ring neighborhoods (26-neighbours) of
the active blocks, including both the interface (narrow band) and the
interior. All the blocks in the domain are marked as active initially
and then updated according to the new cell densities throughout the
topology optimization iterations. Only the grid cells in active blocks
and the narrow band are used by the FEM solver. The information
on grid cells in other blocks is not maintained on SPGrid.

The full-domain initialization allows structures to emerge every-
where in the design space. Though such strategy requires more stor-
age initially, numerical convergence is rapid due to the uniformity of
stiffness at the beginning. The true performance bottleneck emerges
in later optimization iterations, when the irregular, thinned-out do-
main requires more solver iterations for convergence. Restricting
the cost of these later iterations to the narrow-band is a key source
of the runtime savings, by omitting blocks that are away from the
stiff region.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Obj 1: Min Compliance

“3 Heig_

Fixed Boundary
Iteration 0

-

Iteration 60 Iteration 90

Force

Iteration 30

Fig. 8. Unbounded topology optimization for a quadpod structure. A
thin membrane is initialized (a), evolved upwards (b), and converge
to a clear structure (c and d), guided by a combined objective of both
minimum compliance and maximum height.

Topology optimization. We solve a classic topology optimization
problem by evolving the density field on the SPGrid and updating
the active blocks and the narrow band accordingly. The objective is
to minimize the elastic energy of the structure constrained by the
linear elastic FEM equation and the target volume V. The topology
optimization problem can be formulated as:

min: S(p,u) = uTK(p)u
sit.: Flp,u)=K(plu—-f=0 (6)
Vip)-V <o,

where K is the global stiffness matrix of the entire system, f is
the vector of external forces, and V(p) represents the sum of p
of all grid cells weighted by the volume of each cell. In order to
avoid singularity of the stiffness matrix, we define the relationship
between p and the stiffness matrix of each element as: K(p) =
[pk(l —€) + €]Ko, where k = 3, ¢ = 107 or 107%, and K is the
stiffness matrix of an element fully filled with materials. The global
stiffness matrix is assembled by summing the stiffness matrices of
all the grid cells.

We follow the standard optimality criterion scheme (e.g., see [Sig-
mund 2001] [Bendsge and Sigmund 2009]) to iteratively evolve the
density field on the grid. In each iteration, we first solve the FEM
equation to update the nodal displacements given the current den-
sity distribution. Next, we compute the sensitivity of each active cell
as Co = —ue! (0Ke/ 0pe)ue with the updated nodal displacements.
A heuristic scheme is then applied to each cell to update its density
according to the new sensitivity. Notice that all the updates are per-
formed in the active and the narrow band blocks. We refer readers
to [Sigmund 2001] for more implementation details for each step.

Narrow-Band Topology Optimization on a Sparsely Populated Grid « 251:9

Narrow band evolution. We use page maps to track the SPGrid block
activation. Each page map is implemented as a bitmap, using one bit
for each block for economical storage and fast query. For each block,
either void or active, we store one bit in the page map at the cost of
32 KB per GB ambient grid storage. We maintain two page maps:
a thin page map that tracks only active blocks and a secondary fat
page map to track the blocks that are either active or in the narrow
band. Notice that the fat page map is an expanded version of the
thin page map. The two page maps are updated in an intertwined
fashion in each topology optimization iteration (see Figure 7). First,
the thin page map is re-populated from the fat page map by deacti-
vating blocks with only low density. We then perform a connectivity
filtering operation on the thin page map to eliminate small isolated
active blocks. A connected component is considered to be isolated
if its volume is less than 30% of the total active volume. This step is
crucial in avoiding singularity in the FEM stiffness matrix. After the
connectivity filtering step, the fat page map is passively updated ac-
cording to the new densities at the end of the topology optimization
iteration (or active blocks). This allows inactive blocks to become
active again, similar to [Bruns and Tortorelli 2003]. The complete
algorithm coupling the steps of FEM solve and page map update
are summarized in Algorithm 1. Most of the topology optimization
algorithms require a fixed boundary for the computation domain.
Our narrow-band evolution approach enables unbounded topology
optimization to bypass this fixed boundary restriction. Thanks to
the dynamic and sparse peculiarity of our grid structure, we can
initialize active voxels within a small region and then update the
computation domain following the evolving structure. The objective
gradients in the active blocks within the narrow band guides the
evolution of the structure. This dynamic-tracking capability opens
up possibilities for many applications where the design domain is
not known as a priori. As in Figure 8, we optimize the evolution
of a thin membrane under a combined objective of both minimum
compliance and maximum height. We assume no prior knowledge of
the computation grid. All the voxels are activated automatically as
the membrane grows upwards, and the structure naturally emerges
from the background.

Algorithm 1 The narrow-band topology optimization algorithm.

1: function NARROWBANDTOPOLOGYOPTIMIZATION()
2 Initialize density field and boundary conditions.
3 while not converged do

4 NARROWBANDEVOLUTION (Section 6)

5 for each objective do

6 FEM SoLVE (Section 5)

7 Sensitivity analysis

8 end for

9 Update density field using OC

10: end while

1: end function

—_

= 750 x 600 x 450 = 2200 x 1800 x 1200 3000 x 2400 x 1600 = Iteration 1 = Iteration 64

Residual L infinity Norm
e (=}

8o
222 .3
Residual L infinity Norm
4 (=]

288e .
222 .32

50 100 150 200 250 300 350 50 100 150 200 250 300 350

PCG Iterations PCG Iterations

Fig. 9. (Left) Convergence comparison of the bird beak example of
different resolutions at the last topology optimization iteration.” (Right)
Convergence comparison of the one-billion-voxel bird beak example
at different topology optimization iterations.

7 VALIDATIONS AND EXAMPLES
7.1 Multigrid Solver Validation

Algorithmically, our implementation of the solver is a standard
multi-linearly interpolated Garlerkin-coarsened Multigrid precondi-
tioned conjugate gradient method. At early topology optimization
iterations or small domains, such method proves to have fast as-
ymptotic convergence. But in our examples, especially the bird beak
Figure 1 and the wing Figure 15, the high variation of material spatial
distribution has challenged the convergence of the multigrid solver
as shown by Figure 9 (left). Thiner features resulted from Higher
resolution, can significantly impact the convergence of multigrid as
indicated in Figure 9 (right).

Besides convergence, the high resolution has also pushed the nu-
merical limited of floating point. To validate our mixed precision
scheme, we have conducted the following tests, both on analytical
structures and the structures naturally emerged from topology op-
timization: 1. The last iteration of the bird beak example; 2. The
last iteration of the wing example; 3-8. Homogeneous and isotropic
cantilever beams of different length with one side fixed and the
other side loaded with a uniform downward force.

Table 1 shows the final residual of five different precision schemes: 1.
Full double precision; 2. Only solution vector and computation are in
double precision, the mix precision scheme we used in our topology
optimization; 3. Only solution vector is in double precision; 4. Only
computation is in double precision; 5. All in float precision. The
results shows that under all examples our proposed mix precision
scheme(column 2) can reduce the residual to an order of magnitude
close to the double precision. Due to the fact that at high resolutions,
cells that are far from Dirichlet boundaries have large displacements
but yet only small strains. This loss of precision leaves it insufficient
to use single precision for the solution vector. As shown in (column
4 and 5), using single precision for solution can result in inaccurate
computation of strain and final residual. Similarly, using single-
precision multiply will not be able to compute search direction to
sufficient accuracy, conjugate gradient, in this case, will halt due to
a detected singularity (column 3 and 5).

T All residuals reported in this work are Lo, norm across all active cells, normalized
relative to the Lo, norm of the load.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:10 .« Haixiang Liu*, Yuanming Hu*, Bo ZhuT, Wojciech Matusik, and Eftychios Sifakis

Compliance Evolution

g Les Block Activation

1010 4 * narrow-band
dense 6
Q AVZ
e 3
o o 4 —— narrow-band
g e —— dense
o k=
S 9]
<
2
T T T T 0 - T T T
0 20 40 60 0 20 40 60
#lterations Iterations
. Compliance Evolution 1e6 Block Activation
10
¢ narrow-band 1.0
- dense
g g0
3 |
E 10 206 —— narrow-band
g g - dense
S g 0.4
107 4 0.2
'%"-‘-“*———-.*ﬁ—h_:—_—-:,___
T T T T T 0.0 T T
0 10 20 30 40 0 20 40
#lterations Iterations

Fig. 10. Comparison of the compliance evolution (left column) and
the number of active blocks (right column) for the narrow-band and
the standard dense topology optimization algorithms on the bridge
(top row) and the hemispherical thin shell (bottom row). Note that
the increase of the compliance in the first few iterations of the bridge
example is due to progressively decreasing volume fraction to accelerate
convergence.

Sparse Blocks

Sparse Vosels Dense Vosels

Fig. 11. Comparison of the active blocks (top) and the optimized
voxels (bottom) using the narrow-band scheme and the dense scheme.
We observe negligible difference between the two optimized structures
optimized by the narrow-band and dense-grid schemes.

7.2 Topology Optimization Validations

Narrow Band v.s. Full Grid. We validate our narrow-band scheme’
by comparing it to the standard dense scheme concerning both
accuracy and efficiency. We reuse the simulation parameters for the
bridge (Figure 3) and the thin hemispherical shell (Figure 2) to set up

fImplemented based on the Taichi computer graphics library [Hu 2018].

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

775

oy 2020580

0x40x160
850

/ 80x80x320

7
®
N
&

Compilance
Laplacian Norm

1101 900

d

/ l 160x160x64i 925

100 200 300 400 500 600
Grid Resolution (Longest Axis)

Fig. 12. Relation between the grid resolution, the optimized structural
compliance, and the level of details (measured by the sum of Ly norm
of the density’s Laplacian). The plot shows that the high-resolution
simulation enables detailed structures with low compliance.

our experiments. For each example, we run topology optimization
with both schemes, and then we record the evolution of objectives
as well as the number of active blocks during the optimization
iterations. As shown in Figure 10 left, the compliance curves for the
two schemes closely match each other. As shown in Figure 10 right,
the narrow-band scheme uses significantly fewer active blocks than
the dense one. For the bridge, the number of active blocks converges
within 20 iterations to 21.64% of the total number of blocks; for
the thin shell, this ratio converges to 23.46% within 25 iterations.
This block reduction leads to a 2.5% and a 3.1X acceleration in
computation respectively. Initially, the advantage of narrow-band is
less significant compared with later topology optimization iterations,
yet the FEM solver converges relatively fast on these iterations
thanks to the almost uniform density field (Figure 9 right).

Figure 11 visualizes the distributions of the active blocks as well
as the optimized voxels for the hemispherical shell optimization
using both schemes. The difference between the two structures
is imperceptible (Figure 11 bottom), though complicated filament
and thin shell structures are developed based on very different
computational discretizations (Figure 11 top). It is noteworthy that
the distribution of active blocks gets not only sparser but also thinner
(see the region pointed by the yellow arrow in the top middle image
of Figure 11) to tightly bound the voxel evolution in all directions.
In summary, the narrow-band scheme not only delivers almost
identical results to the full-grid scheme, but also runs more efficiently
thanks to accelerated narrow-band FEM solves, especially in later
optimization iterations.

Compliance and Feature Evaluation. We explore the relationship
between the complex features emerged on a high-resolution grid
and the mechanical performance of the optimized structure. We
start from a 20 X 20 X 80 coarse grid and progressively refine it

Narrow-Band Topology Optimization on a Sparsely Populated Grid « 251:11

Table 1. The final residuals of different precision scheme after the same number of iterations. Test cases include bird beak, plane wing, and
cantilever beam (CB) with different resolutions. The final residuals are recomputed based on solution vectors. All tests are scaled to initial residual
infinity norm of 1. From the left to right, the 5 schemes are: 1. Full double precision; 2. Only solution vector and computation are in double precision;
3. Only solution vector is in double precision; 4. Only computation is in double precision; 5. All in float precision. SINGULAR indicates conjugate

gradients have halted due to detected singularity.

Example Double Precision Mix Precision Mix Precision Single Precision Single Precision
(double multiply) (single multiply) (double multiply) (single multiply)

Bird beak 9.192e-5 9.063e-5 1.96%e-4 6.846e+0 7.611e+0

Wing 8.968e-5 1.815e-4 SINGULAR 1.850e+1 SINGULAR

CB (32x32x32) 7.942e-6 7.942e-6 5.827e-5 2.25%-5 5.827e-5

CB (32x32x64) 8.217e-6 8.218e-6 5.773e-5 4.905e-5 6.019e-5

CB (32x32x128) 8.207e-6 8.208e-6 1.041e-3 1.018e-4 1.041e-3

CB (32x32x256) 9.322e-6 9.321e-6 6.295e-3 1.934e-4 6.295e-3

CB (32x32x512) 4.506e-6 4.508e-6 SINGULAR 3.990e-4 SINGULAR

CB (32x32x1024) 5.237e-6 5.242e-6 SINGULAR 7.043e-4 SINGULAR

Table 2. Statistics of the topology optimization examples. We report the volume fraction, the number of active voxels, the total number of iterations,
and the average time spent for each topology optimization iteration. Notice that the active voxels include both voxels occupied by materials and
voxels in the narrow band. We run all examples on a workstation equipped with four Intel E7-4830v4 processors (14 cores each at 2.0 GHz) and
512GB of memory. Though highly optimized, FEM solve is still the computation bottleneck, taking over 90% run time in all examples.

Min Voxels (M) Iterations Time

Example Ambient Grid Volume Fraction ~ Max Voxels (M)
(Fig. 1) Bird beak 2737 X 1484 X 910 10% 1040.88

(Fig. 2) Hemisphere 2048 X 2048 X 2048 4% 518.99

(Fig. 15) Plane wing 1696 X 342 X 1971 20% 401.53

(Fig. 3) Bridge 271 X 540 X 1081 8% 158.19

(Fig. 14) Bicycle wheels 984 x 984 x 204 1% 53.56

(Fig. 13) Shear plate 640 X 640 X 640 8% 262.14

(Fig. 8) Quadpod 300 X o0 X 300 - 11.11

296.41 49 2.31h
71.21 36 0.40h
155.82 43 0.83h
32.71 63 128.0s
9.56 65 659.0s
71.21 30 0.70h
0.98 96 17.4s

by a factor of two in all axes. We run topology optimization for a
bridge on each grid and measure the compliance of the optimized
structure. To this end, we first up-sample the density fields on dif-
ferent grids to the same finest grid (160 X 160 X 640). Then, each
voxel in the density field is discretized to 0 or 1, and a FEM simu-
lation is performed taking the discretized density as the input to
measure the compliance of structure. For each up-sampled density
field, we also compute the sum of L, norm of the density’s Lapla-
cian to approximate the complexity of the structure’s fine-scale
features. As shown in Figure 12, we observe from the two curves
that the structures obtained from higher resolution computation
exhibit finer-scale features and lower compliance. This observation
is consistent with the conclusions made in a line of previous work
such as [Wu et al. 2016a] and [Aage et al. 2017], necessitating the
use of high-resolution computational domain to obtain designs with
extraordinary mechanical properties.

7.3 Examples

Mechanical Designs. We demonstrate the efficiency of our approach
by solving large-scale topology optimization problems targeting at
different applications, ranging from classical mechanical designs
to engineering structural optimizations and biomimetic structure
explorations. These problems all exhibit sparse characteristics, with
the active volume fraction ranging from 1% to 20% of the entire
volume. The statistics for these examples are reported in Table 2.

We first demonstrate the capability of our approach in generating
codimensional structures mixing filaments and thin films by opti-
mizing a thin hemispherical shell with a target volume fraction of
4% (see Figure 2 and Figure 11). We observe that structures char-
acterized by the thin film, instead of filament, are dominating the
entire design domain as the grid gets refined. This observation is
consistent with the recent discovery made in [Sigmund et al. 2016]
that a twisted Michell sphere tends to converge to a vanishingly
thin shell instead of a wire-frame when the computation resolution
is high enough.

We then optimize a bridge structure to minimize its compliance
under a uniformly distributed load at the bottom (see Figure 3 and
12). After 63 iterations, a rich diversity of multi-scale structures
emerge, exhibiting very different characteristics from a standard
bridge structure on a coarse grid. We then push the resolution to
262 million elements, by optimizing the supporting structures of a
flat platform resisting horizontal shear forces (see Figure 13). Bunch
of complicated filamentary structures emerges in the volume after
30 iterations, demonstrating the efficacy of our approach in gener-
ating structural features that were infeasible for a low-resolution
algorithm.

We next optimize a wheel structure to demonstrate multi-objective
optimization. Different boundary conditions are enforced to obtain
sparse inner supporting structures under in-plane and out-of-plane

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:12 .« Haixiang Liu*, Yuanming Hu*, Bo ZhuT, Wojciech Matusik, and Eftychios Sifakis

Fig. 13. Optimized structures supporting a plate to resist horizontal
shear forces are generated at a resolution of 640 X 640 X 640. The left
figure is a cross-section of the structure exhibiting various filamentary
features. The right picture shows the volumetric rendering. The sub-
image in the middle shows the boundary conditions, including a fixed
boundary and a shear force on the bottom and top plane in separate.

external loads (see Figure 14 a, b). We then combine the two ob-
jectives to optimize structure exhibiting outstanding mechanical
properties in both cases (see Figure 14 c).

Natural Structures and Biomimetic Designs. We show the optimiza-
tion of the interior supporting structure for a bird beak as in Figure
1. The dominating pressure forces are applied on both the upper and
lower layer of the beak, and the fixed boundary condition is used on
the left side. The target volume fraction is set to be 10% of the entire
computation domain. We push the resolution to 1, 040, 875, 347 (1.04
billion) voxels, enabling the emergence of a collection of web-like
codimensional thin structures supporting the shell of the beak while
maintaining a low weight. The structural complexity of this result
qualitatively resembles that of a real Hornbill bird beak as shown
in [Aage et al. 2017], opening up further possibilities in exploring
such natural systems using numerical topology optimization.

We further apply our approach to reproduce the design of a wing
structure similar to [Aage et al. 2017]. As shown in Figure 15, the in-
ternal structures supporting the wing is optimized using the similar
boundary conditions to the bird beak example, i.e., the pressure force
on the wing surface along the local normal direction of the wing
geometry. After 40 iterations, a variety of design details, such as the
curved spars and multi-scale truss, have automatically emerged on
the grid. We show the 3D prints for both the bird beak and the wing
structures in Figure 16.

8 LIMITATIONS AND FUTURE WORK

Limitations. One of the main limitations of our approach is the dense
representation of the domain in the first few iterations. Though the
number of active blocks decreases after clear structures emerge
in the domain, which significantly speeds up the solver, the full-
space computation at the beginning of the optimization limits the
capability of our algorithm in handling larger-scale examples. One
possible solution is to initialize the domain with some narrow-band

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

structures or coarsened discretization, which will guarantee a small
number of active elements throughout the process.

For the numerical solver, increasing the resolution worsens the con-
ditioning of the global stiffness matrix. We have observed that with
higher resolution, both convergence rate and convergence limit are
significantly reduced. The high-resolution filamentary structures
can substantially impair the convergence of a multi-linear inter-
polated Galerkin-coarsened multigrid solver. One of the possible
solutions for restoring the multigrid convergence is to investigate
using a stencil-aware coarsening technique to better represent the
high contrast stiffness ratio at the coarse levels. Finally, due to in-
trinsic limitations on the virtual memory subsystem, as exploited by
SPGrid, we are restricted to a maximum background grid resolution
of 81963 voxels (such resolution would require reserving a 64 TB
virtual memory span at 128 bytes/node, independent of the sparsity
of the computational domain; 128 TB is the total virtual memory
available to user-space processes).

Future Work. There are many exciting avenues for future work
combining our high-resolution numerical approach to investigate
complex natural systems. Most of the real-world structures we are
aiming to investigate have received little attention in the topology
optimization community due to their inherent complexities and
prohibitively high computational cost. Aage et al. [2017] have per-
formed some pioneering study on supercomputers to unveil the
connection between the structure of bird beaks and the design of
airplane wings using topology optimization. The computational tool
we have proposed can run on a single workstation, which makes
the high-resolution numerical study of these structures accessible
to a broader range of research teams and individuals. It might prove
fruitful to collaborate with those researchers as the capability of
modeling and developing these thin structures numerically enables
a wide variety of computational studies that may be challenging or
even infeasible before.

9 CONCLUSION

We presented a novel approach for topology optimization of struc-
tures exhibiting sparse and thin features at extremely high resolu-
tion. In particular, our computational framework makes it possible,
for the first time, to computationally synthesize thin structures at
the level of billion active elements on a single workstation. We have
shown a variety of complex structures generated by our computa-
tional framework that share similarities with structures in nature.
These intricate and multi-scale features can be seamlessly transi-
tioned to the design of engineering systems within the same com-
putational setting. Surveying the literature, it appears that some of
these complex structures are only vaguely understood, due to the
lack of computational tools for both simulation and optimization,
in contrast to those thoroughly investigated engineering structures
where volumetric simulation approaches are applicable. Our com-
putational tool opens up new possibilities for scientists, engineers,
and designers to explore the limits of these complex structures to
develop a better understanding of their underpinning mechanisms.

Narrow-Band Topology Optimization on a Sparsely Populated Grid «

N

AN

e

.

S

251:13

b

Fig. 14. Optimized wheel structures are generated using our algorithm. Structure (a) and (b) are obtained with in-plane tangential force boundary
and out-of-plane normal force boundary. Structure (c) is optimized with a linear combination of objectives in both (a) and (b).

Surface

Plane

Fig. 15. An optimized interior supporting structure of part of a wing is generated using our algorithm on a 1696 x 342 x 1971 grid (402 M active

voxels).

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valuable sug-
gestions and comments. Yuanming Hu is supported by the Edwin S.
Webster graduate fellowship. This work was supported in part by
NSF grants CMMI-1644558, CCF-1533753, CCF-1533885, I1S-1763638,
CCF-1812944.

REFERENCES

Niels Aage, Erik Andreassen, and Boyan Stefanov Lazarov. 2015. Topology optimization
using PETSc: An easy-to-use, fully parallel, open source topology optimization
framework. Structural and Multidisciplinary Optimization 51, 3 (2015), 565-572.

Niels Aage, Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2017. Giga-voxel
computational morphogenesis for structural design. Nature 550 7674 (2017), 84-86.

Martin P Bendsge and Ole Sigmund. 2009. Topology Optimization. (2009).

Emmanuel Brun, Arthur Guittet, and Frédéric Gibou. 2012. A local level-set method
using a hash table data structure. J. Comput. Phys. 231, 6 (2012), 2528-2536.

Tyler E Bruns and Daniel A Tortorelli. 2003. An element removal and reintroduction
strategy for the topology optimization of structures and compliant mechanisms.
International journal for numerical methods in engineering 57, 10 (2003), 1413-1430.

Vivien J Challis, Anthony P Roberts, and Joseph F Grotowski. 2014. High resolution
topology optimization using graphics processing units (GPUs). Structural and
Multidisciplinary Optimization 49, 2 (2014), 315-325.

Asger Nyman Christiansen,] Andreas Baerentzen, Morten Nobel-Jorgensen, Niels Aage,
and Ole Sigmund. 2015. Combined shape and topology optimization of 3D structures.
Computers & Graphics 46 (2015), 25-35.

Asger Nyman Christiansen, Morten Nobel-Jorgensen, Niels Aage, Ole Sigmund, and
Jakob Andreas Beerentzen. 2014. Topology optimization using an explicit interface

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:14 . Haixiang Liu*, Yuanming Hu*, Bo ZhuT, Wojciech Matusik, and Eftychios Sifakis

Fig. 16. 3D prints of the slices of the bird beak and the wing structures.

representation. Structural and Multidisciplinary Optimization 49, 3 (2014), 387-399.

Joshua D Deaton and Ramana V Grandhi. 2014. A survey of structural and multidisci-
plinary continuum topology optimization: post 2000. Structural and Multidisciplinary
Optimization 49, 1 (2014), 1-38.

Christian Dick, Joachim Georgii, and Riidiger Westermann. 2011. A real-time multigrid
finite hexahedra method for elasticity simulation using CUDA. Simulation Modelling
Practice and Theory 19, 2 (2011).

Christopher Dileo and Xinyan Deng. 2009. Design of and experiments on a dragonfly-
inspired robot. Advanced Robotics 23, 7-8 (2009), 1003-1021.

Jean Donea, S Giuliani, and Jean-Pierre Halleux. 1982. An arbitrary Lagrangian-Eulerian
finite element method for transient dynamic fluid-structure interactions. Computer
methods in applied mechanics and engineering 33, 1-3 (1982), 689-723.

R Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera grids for water
simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM, 85-94.

Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002. A hybrid particle
level set method for improved interface capturing. J. Comput. Phys. 183, 1 (2002),
83-116.

H. A. Eschenauer, V. V. Kobelev, and A. Schumacher. 1994. Bubble method for topology
and shape optimization of structures. Structural optimization 8, 1 (1994).

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rudiger Westermann, and Nils Thuerey.
2016. Narrow band FLIP for liquid simulations. In Computer Graphics Forum, Vol. 35.
Wiley Online Library, 225-232.

Florian Ferstl, Ridiger Westermann, and Christian Dick. 2014. Large-scale liquid
simulation on adaptive hexahedral grids. IEEE transactions on visualization and
computer graphics 20, 10 (2014), 1405-1417.

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. 2000. Adap-
tively Sampled Distance Fields: A General Representation of Shape for Computer
Graphics. In Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques (SSGGRAPH "00). 249-254.

Yuanming Hu. 2018. Taichi: An Open-Source Computer Graphics Library. arXiv preprint
arXiv:1804.09293 (2018).

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A
scalable schur-complement fluids solver for heterogeneous compute platforms.
ACM Transactions on Graphics (TOG) 35, 6 (2016), 201.

Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke
with an octree data structure. In ACM Transactions on Graphics (TOG), Vol. 23. ACM,
457-462.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph
Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with
contact and collisions. ACM Transactions on Graphics (TOG) 30, 4 (2011), 37.

Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM
Transactions on Graphics (TOG) 32, 3 (2013), 27.

George IN Rozvany. 2009. A critical review of established methods of structural topology
optimization. Structural and multidisciplinary optimization 37, 3 (2009), 217-237.

Stephan Schmidt and Volker Schulz. 2011. A 2589 line topology optimization code
written for the graphics card. Computing and Visualization in Science (2011), 1-8.

Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A
sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions
on Graphics (TOG) 33, 6 (2014), 205.

Ole Sigmund. 2001. A 99 line topology optimization code written in Matlab. Structural
and Multidisciplinary Optimization 21, 2 (2001), 120-127.

Ole Sigmund, Niels Aage, and Erik Andreassen. 2016. On the (non-) optimality of Michell
structures. Structural and Multidisciplinary Optimization 54, 2 (2016), 361-373.

Ole Sigmund and Kurt Maute. 2013. Topology optimization approaches. Structural and
Multidisciplinary Optimization 48, 6 (2013), 1031-1055.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Ole Sigmund and S Torquato. 1999. Design of smart composite materials using topology
optimization. Smart Materials and Structures 8, 3 (1999), 365.

J. Sokolowski and A. Zochowski. 1999. On the Topological Derivative in Shape Opti-
mization. SIAM Journal on Control and Optimization 37, 4 (1999).

Eddie Wadbro and Martin Berggren. 2009. Megapixel topology optimization on a
graphics processing unit. SIAM review 51, 4 (2009), 707-721.

Jun Wu, Niels Aage, Ruediger Westermann, and Ole Sigmund. 2017. Infill Optimiza-
tion for Additive Manufacturing—Approaching Bone-like Porous Structures. IEEE
Transactions on Visualization and Computer Graphics (2017).

Jun Wu, Christian Dick, and Riidiger Westermann. 2016a. A system for high-resolution
topology optimization. IEEE transactions on visualization and computer graphics 22,
3 (2016), 1195-1208.

Jun Wu, Christian Dick, and Riidiger Westermann. 2016b. A System for High-Resolution
Topology Optimization. IEEE Trans. on Visualization and Computer Graphics 22, 3
(2016).

Praveen Yadav and Krishnan Suresh. 2014. Large scale finite element analysis via
assembly-free deflated conjugate gradient. Journal of Computing and Information
Science in Engineering 14, 4 (2014), 041008.

Wen Zheng, Bo Zhu, Byungmoon Kim, and Ronald Fedkiw. 2015. A new incompress-
ibility discretization for a hybrid particle MAC grid representation with surface
tension. J. Comput. Phys. 280 (2015), 96-142.

Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A
new grid structure for domain extension. ACM Transactions on Graphics (TOG) 32,
4(2013), 63.

Y Zhu, E Sifakis,] Teran, and A Brandt. 2010. An efficient and parallelizable multigrid
framework for the simulation of elastic solids. ACM Trans. Graph 29, 16 (2010),
1-16.

