
Narrow-Band Topology Optimization on a Sparsely Populated Grid

HAIXIANG LIU∗, University of Wisconsin-Madison

YUANMING HU∗, BO ZHU†, WOJCIECH MATUSIK,MIT CSAIL, †Dartmouth College

EFTYCHIOS SIFAKIS, University of Wisconsin-Madison

A variety of structures in nature exhibit sparse, thin, and intricate features.

It is challenging to investigate these structural characteristics using conven-

tional numerical approaches since such features require highly refined spatial

resolution to capture and therefore they incur a prohibitively high computa-

tional cost. We present a novel computational framework for high-resolution

topology optimization that delivers leaps in simulation capabilities, by two

orders of magnitude, from the state-of-the-art approaches. Our technique

accommodates computational domains with over one billion grid voxels

on a single shared-memory multiprocessor platform, allowing automated

emergence of structures with both rich geometric features and exceptional

mechanical performance. To achieve this, we track the evolution of thin struc-

tures and simulate its elastic deformation in a dynamic narrow-band region

around high-density sites to avoid wasted computational effort on large void

regions. We have also designed a mixed-precision multigrid-preconditioned

iterative solver that keeps the memory footprint of the simulation to a

compact size while maintaining double-precision accuracy. We have demon-

strated the efficacy of the algorithm through optimizing a variety of complex

structures from both natural and engineering systems.

CCS Concepts: • Computing methodologies→Massively parallel and
high-performance simulations;

Additional Key Words and Phrases: topology optimization, sparsely popu-

lated grid, multigrid solver

ACM Reference Format:

Haixiang Liu
∗
, Yuanming Hu

∗
, Bo Zhu

†
, Wojciech Matusik, and Eftychios

Sifakis. 2018. Narrow-Band Topology Optimization on a Sparsely Populated

Grid. ACM Trans. Graph. 37, 6, Article 251 (November 2018), 14 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Mechanical structures in nature exhibit a broad spectrum of thin fea-

tures. Such examples include interior structures supporting insect

∗ Indicates equal contribution.

Authors’ addresses: Haixiang Liu
∗
, University of Wisconsin-Madison, hliu253@wisc.

edu; Yuanming Hu
∗
, Bo Zhu

†
, Wojciech Matusik, MIT CSAIL,

†
Dartmouth Col-

lege, [yuanming,boolzhu,wojciech]@csail.mit.edu; Eftychios Sifakis, University of

Wisconsin-Madison, sifakis@cs.wisc.edu.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

© 2018 Association for Computing Machinery.

0730-0301/2018/11-ART251 $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

Fig. 1. The interior structures supporting the shell of a bird beak
generated using our narrow-band topology optimization algorithm
with k1, 040, 875, 347 (1.04 billion) active FEM voxels. The resolution
of the background grid is 3000 × 2400 × 1600. The three figures show
the volumetric rendering of the same structure from different views.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:2 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

wings, animal bones, bird beaks, honeycombs, etc. These codimen-

sional structures have negligible volume compared to the size of

geometries they support. Under the influence of natural selection,

these thin supportive structures enable many light, agile, and ef-

ficient systems with outstanding physical or biological properties.

Computational modeling and investigation of these thin structures

are crucial for understanding the hidden mechanisms and patterns

of natural designs. Further, high-fidelity numerical studies of these

mechanisms enable automated design, optimization, and manufac-

turing of a variety of human-made mechanical systems resembling

their natural analogues. For example, the mathematical modeling

and numerical simulation of dragonfly wings, bird beaks, and animal

bones have enabled the automated design of microrobotic wings

[Dileo andDeng 2009], aircraft wings [Aage et al. 2017], and artificial

bone structures [Wu et al. 2017].

Topology optimization has demonstrated its efficacy in creating

mechanical designs with complex structures and extreme properties

in various engineering problems (see [Rozvany 2009], [Sigmund

and Maute 2013], [Deaton and Grandhi 2014] for surveys). Starting

from a volumetric domain that is uniformly filled with material, a

standard topology optimization algorithm iteratively removes and

redistributes material to develop a structure that minimizes a design

objective (e.g., structural compliance), given the prescribed target

volume and boundary conditions. However, due to the limitations

of the previous computational frameworks, it is challenging to per-

form a standard topology optimization algorithm to emerge and

evolve these thin and sparse features. For example, to model the

evolution of a thin sheet at the length scale of ten micrometers

within a centimeter cube, it requires an FEM solver discretized on a

1000
3
Cartesian grid. This grid resolution amounts to the order of

magnitude of one billion active elements.

Recent advances in supercomputing provide some solutions that

overcome this challenge. For example, Aage et al. [2017] ran a par-

allel topology optimization program on a cluster with 8000 cores

for days and obtained the structure of an airplane wing with the

computational domain filled with 1.1 billion voxels. A variety of

novel, intricate, and multi-scale structures naturally emerge from

the super-resolution computations. This result is impressive, yet

the limited accessibility and high cost of the supercomputing re-

sources impede the use of such numerical approaches in a broader

range of research and engineering applications. New computational

tools, which are easy to access, efficient to run, and able to solve

super-resolution systems, are needed in the scientific community.

To this end, we propose a new computation framework that com-

bines a sparse representation in conjunction with a highly optimized

elastic multigrid solver for topology optimization, which delivers

a significant leap in solving super-resolution problems from the

prior state-of-the-art results. Our framework has enabled the simu-

lation of a sparsely populated computational domain on the level

of billion active grid voxels on a single workstation. By examining

the simulation results at such scale, we identify and analyze new

challenges that have not been addressed, or even observed, in the

previous research on elastic deformation simulation and topology

optimization, such as poor asymptotic convergence of standard

Galerkin-coarsened multigrid algorithm and the algorithmic limits

of floating-point precision.

To address these scale-dependent challenges, we combined design

practices and algorithmic interventions on data structures, numeri-

cal methods, and parallel solver implementations. First, our frame-

work is centered around a sparsely populated grid data structure,

which allows the dynamic allocation of the degrees of freedom

within a narrow band around the structure. This data structure

combines the benefits of sparse storage, implicit topology represen-

tation, and the performance potential of high-throughput stream

processing. We have observed and demonstrated numerically that

the elements with high structural sensitivities, which are essential

for developing the structure towards its optimal topology, tend to

bundle within a narrow band around the structure during evolution.

In contrast, the vast bulk of void regions far from the structure

contribute little to the total structural compliance, but they are the

primary source of the computational cost in a dense discretization.

Therefore, the computation can be dramatically reduced by using

a dynamically allocated sparse discretization, i.e the narrow-band

representation.

In addition to the narrow-band representation, we developed a novel

mixed-precision multigrid solver that is capable of solving FEM dis-

cretized linear elasticity in the order of billion elements on a single

workstation. By proposing an SPGrid-optimized matrix-free formu-

lation for data storage and a novel mixed-precision computation,

the solver can meet the memory storage and bandwidth demands

of a multiprocessor workstation while maintaining high accuracy.

Also, our vectorized multigrid solver takes advantage of the AVX512

instruction set on the Intel Skylake-X/SP architecture in order to

further enhance performance.

We summarize the main contributions of our work as follows:

• We demonstrate an ensemble of data structures, numerical

schemes, and implementation best practices to perform topol-

ogy optimization with the highest resolution (over one billion

voxels) on a single shared-memory multiprocessor.

• We propose a sparse, adaptive topology optimization framework

where simulation of elastic deformation is restricted to a narrow

band surrounding the high-density region.

• We demonstrate the capacity of our framework to obtain a

variety of complex thin and codimensional features, such as

thin films and beams, that previous approaches might suppress.

2 RELATED WORK

Uniform and adaptive grids. Among the various kinds of data struc-

tures that have been developed by researchers in computational

science and computer graphics, uniform grids play a central role in

the vast majority of topology optimization applications for their mul-

tiple advantages in computation. These advantages include cache-

coherent memory access, regular subdivisions for parallelization,

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid • 251:3

Fig. 2. Structures with codimensional thin features are obtained by running the narrow-band algorithm on a thin hemispherical shell. The
boundary conditions include a fixed boundary on the top and an external load applied on the cross surface on the bottom. As the grid resolution
increases from to 5123 (left) to 20483 (right), thin-shell structures are observed to dominate, matching the tendency studied in [Sigmund et al. 2016].

simple data layout, and, in particular, the existence of efficient nu-

merical PDE solvers. A multigrid FEM solver discretized on a uni-

form grid has been established as one of the standard solutions

for elastic solids [Zhu et al. 2010], character skinning [McAdams

et al. 2011], and topology optimization (e.g. [Sigmund and Torquato

1999]). One of the main challenges of uniform grids lies in their lack

of adaptivity. Due to their uniformly distributed and axis-aligned

grid lines, it is difficult to dynamically allocate fine grid cells around

the regions of interest while still preserving all the computational

advantages. To overcome this limitation, researchers have been de-

voting efforts to create multiple levels of resolutions by dynamically

refining grid cells, which lead to the invention of a variety of hierar-

chical data structures, e.g., the octree grid [Losasso et al. 2004] and

the AMR grid [Donea et al. 1982]. These adaptive data structures

have been integrated with high-performance solvers for computing

large-scale systems. For example, Ferstl et al. [2014] combined an

octree grid with a multigrid-preconditioned conjugate gradients

(MGPCG) solver for Poisson problems in large-scale liquid simu-

lation. In addition, new dynamic structures have been proposed to

obtain adaptivity without breaking the topology of a uniform grid,

e.g., by overlapping grids with different resolutions [English et al.

2013] or anisotropically stretching grid cells [Zhu et al. 2013].

Lagrangian approaches. An unstructured Lagrangian mesh inher-

ently exhibits adaptivity. It is natural to allocate degrees of free-

dom on a Lagrangian mesh adaptively, according to some local

meshing criteria, e.g., the distance to structures of interest. Fur-

ther, Lagrangian approaches are capable of tracking the structure

interface by explicitly maintaining the boundary mesh. These two

main advantages allow Lagrangian meshes to be widely used in

topology optimization (see [Eschenauer et al. 1994], [Sokolowski

and Zochowski 1999], [Christiansen et al. 2014], [Christiansen et al.

2015] for examples). The main limitation of Lagrangian approaches

lies in their inefficiency in solving large-scale linear systems. The

unstructured nature of a Lagrangian mesh makes it difficult to build

an efficient preconditioner for iterative solvers.

Sparse representations. In contrast to uniform grids, sparse data

structures reduce the computational cost of a volumetric discretiza-

tion by maintaining active elements selectively. The key idea for

sparse data structures is to establish a mapping from a grid cell

index in the real, sparse space to an index in the virtual, compact

storage, enabling the allocation of computational resources only

to grid cells occupied by or near the real structures. This mapping

can be implemented by a standard hash table (e.g., local level set

[Brun et al. 2012]), an octree (e.g., adaptive distance field [Frisken

et al. 2000], OpenVDB [Museth 2013]), or via a Virtual Memory

Page Table and the Translation Lookaside Buffer (TLB) (e.g., SPGrid

[Setaluri et al. 2014]) for fast access to grid cells. In addition to us-

ing a single type of discretization, researchers have also invented

a variety of hybrid data structures to model thin phenomena em-

bedded in a high-dimensional space. One example is the particle

level set [Enright et al. 2002], which maintains a narrow band of

particles around an implicit interface discretized on a background

grid. The coupling of the two representations enables an accurate

computation for the signed distance function. Similar concepts can

be seen in the narrow-band FLIP method [Ferstl et al. 2016] and the

hybrid grid-mesh approach [Zheng et al. 2015], where a thin layer of

Lagrangian elements are hybridized with a Eulerian discretization

to efficiently capture the features around the interface.

Hardware acceleration. At the heart of a high-resolution topology

optimization algorithm is a highly efficient numerical solver for FEM

discretized linear elasticity. Hardware acceleration is essential to

boost the performance of these solvers. GPU-based approaches have

been widely used in speeding up topology optimization algorithms.

For example, Wu et al. [2016a] have proposed a high-performance

multigrid FEM solver with deep integration of GPU hardware to

achieve good convergence, low memory consumption, and reduced

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:4 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

Fig. 3. An optimized bridge structure is obtained on a 271 × 540 × 1081 grid (157 M voxels) with mirror boundary conditions applied on the X and
Z axes. The left figure shows a solid render, and the right three figures show the visualization of the density field from different camera views. The
middle sub-image illustrates the boundary conditions, including fixed boundaries on the sides and a load applied on the bottom plane.

bandwidth requirements. More relatedwork onGPU-based topology

optimization can be seen in [Wadbro and Berggren 2009] [Schmidt

and Schulz 2011] [Challis et al. 2014] [Yadav and Suresh 2014]. The

power of supercomputing has also been explored. In [Aage et al.

2015], a parallel topology optimization framework was proposed

using the Portable and Extendable Toolkit for Scientific Computing

(PETSc). A variety of mechanical designs with intricate thin fea-

tures was obtained by running high-resolution simulations (with

up to 83 million elements) on a supercomputer. This computational

framework was further used in [Aage et al. 2017] to explore the

optimal design of airplane wings at the level of one billion voxels.

Besides GPU and supercomputer, multi-accelerator heterogeneous

computing has also been explored. For example, a scalable parallel

solver on a workstation fitted with GPUs or many-core accelerators

has been proposed in [Liu et al. 2016] to solve systems in the order

of a billion degrees of freedom. The proposed Schur-complement

numerical technique allows to benefit from the high memory and

compute bandwidth of GPUs for large-scale problems.

3 METHOD OVERVIEW

Our sparse topology optimization framework consists of three key

components: a sparse grid structure, a high-resolution multigrid

FEM solver, and a narrow-band and unbounded structure optimizer.

First, we briefly introduce the sparse paged structure (SPGrid) [Se-

taluri et al. 2014] as the base data structure to track the optimizing

structures (Section 4). Next, we discuss our multigrid FEM solver

for computing large-scale elastic systems on SPGrid in Section 5.

We then discuss our topology optimization algorithms to obtain

structures with thin features based on the sparse representation in

Section 6. In Section 7, we provide method validations with respect

to both the multigrid solver and the topology optimizer, with a par-

ticular focus on the comparison with [Wu et al. 2016a] to highlight

the capability of our solver in handling large-scale systems. In addi-

tion, we demonstrate a variety of examples to optimize structures

that exhibit complex thin features.

4 SPARSELY POPULATED GRID STRUCTURE

The Sparsely Populated Grid (SPGrid) data structure [Setaluri et al.

2014], in comparison to other sparse data structures, leverages the

virtual memory system to allocate a very large virtual memory ad-

dress span, corresponding to a sparsely populated background grid,

while only materializing in physical memory the parts of this grid

that are active. The allocation unit in SPGrid is a block, a rectangular
region of the Cartesian grid that is made contiguous in memory

address space by virtue of a space-filling traversal scheme; The size

of SPGrid blocks is chosen to be a multiple of a 4KB, i.e. the size of

a physical memory page. SPGrid stores a number of data channels,

which have similar sparsity pattern and corresponding indexing,

in the same allocation block. Using the SPGrid data structure en-

ables us to compute effectively on a sparsely populated domain

with effective bandwidth comparable to a cache-optimized, dense

uniform grid. In our multigrid FEM solver, we utilized the flexibility

of SPGrid’s block size, and chose a block size of 4 × 4 × 8, tailored
for vectorization as described in Section 5.

5 MULTIGRID SOLVER

Our topology optimization framework utilizes a numerical solver for

a lattice-based Finite Element Method (FEM) discretization of linear

elasticity, with spatially varying material parameters. In order to ac-

commodate the large resolutions targeted by ourmethod, we employ

a solver based on the Multigrid-Preconditioned Conjugate Gradients

(MGPCG) algorithm. Algebraically, our methodology is similar to

prior formulations of multigrid-preconditioned solvers [Dick et al.

2011; Wu et al. 2016b], in employing a hexahedral discretization

of the linear elasticity operator, leveraging Galerkin coarsening to

generate coarse level operators, and using a symmetric V-cycle as a

preconditioner for Conjugate Gradients. We deviate from standard

practices as documented in prior work by way of design choices,

data structures, and parallelization practices including:

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid • 251:5

• A matrix-free implementation of the finest-level elasticity oper-

ator tailored for the SPGrid sparse storage structure.

• A bandwidth-saving construction of the Galerkin coarsened op-

erator at each level, which avoids streaming through explicitly-

built matrices as input any only relies on material properties at

the finest level.

• Storage of the explicitly formed coarse grid operators in a novel,

SPGrid-specific banded sparse matrix format.

• A modified eight-color Gauss-Seidel smoother designed to opti-

mize memory bandwidth utilization and SIMD efficiency.

• Amixed-precision implementation of MGPCG, which combines

the accuracy of double-precision arithmetic with the storage

saving of single-precision representations.

Matrix-free design of finest level operator. Due to the size of the

simulation domains we target, economy in memory footprint is

essential to our approach. An explicit matrix storage at any level

of the discretization would necessitate 243 scalar coefficients per

lattice node, consisting of 27 spokes of 3 × 3 matrices. This number

excludes any compaction afforded by storing only the symmetric

half of the operator, but also does not account for any additional

storage of matrix indices (e.g. in compressed sparse row format), or

explicit topology storage of the computational domain (e.g. explicit

hexahedral mesh).

The SPGrid data structure provides the abstraction of a sparsely

populated grid, without the need to explicitly encode the connec-

tivity of hexahedral simulation elements (e.g. as in an explicit mesh

structure), as it is implied by the background uniform grid topology.

Although our computational domain is embedded in a large back-

ground regular grid (up to the resolution of 3000 × 2400 × 1600), its
active cells in our simulation are only a sparse subset (up to 1.04

billion active cells, in our tests). The SPGrid structure allows us to

directly store these active cells, their material parameters as well as

their nodal forces and displacements in a sparsely populated grid.

At the finest level, we implemented a numerical kernel that com-

putes the elastic forces resulting from the elasticity operator, for all

nodes of a given 4 × 4 × 8 block of the SPGrid structure; this kernel

is designed to be free of write-dependencies, hence all blocks can

be processed in parallel on different threads.

Consider a single grid cell with nodal displacements {ui }8i=1. We

denote by {fi }8i=1 the nodal forces produced by the elastic response

of the same cell, which can be expressed as fi =
∑
8

j=1 Ki j · uj . Each
Ki j in this expression is a 3×3matrix; we store these coefficients in a

8×8×3×3 tensorK , whose elements are given byKi jvw = [Ki j]vw .

This tensor is given as a linear combination of two canonical tensors

Kµ
and Kλ

based on the Lamé coefficients, corresponding to the

stiffness matrices computed for (µ, λ) = (1, 0) and (µ, λ) = (0, 1)
respectively. They can be computed either by analytic integration

of the linear elastic trilinear element, or an eight-point Gauss quad-

rature rule. Ultimately, the elemental stiffness tensor is expressed

as K = µKµ + λKλ
. We use the notation C(i) for the set of eight

cells incident to node i , whileV(c) denotes the eight vertices at the

corners of cell c . We can then express the total force on node i as:

fi =
∑

c ∈C(i)

∑
j ∈V(c)

(µ(c) · Kµ + λ(c) · Kλ)i (c) j (c) · uj

where µ(c), λ(c) are the parameters of cell c , and 1 ≤ i(c), j(c) ≤ 8 are

the local indices of nodes i, j as vertices of cell c . This operation can

be trivially vectorized; let f := (f(p,q,r), f(p,q,r+1), . . . , f(p,q,r+7)) be
a SIMD vector of eight forces on nodes that are sequential along

the z-axis, while µ(c), λ(c) are the parameters of a cell neighbor for

each of the eight sequential grid indices, and finally, uj the set of
eight sequential nodal neighbors at a specific offset direction. The

previous operation is then expressed as:

f =
∑

c ∈C(i)

∑
j ∈V(c)

(µ(c) · Kµ + λ(c) · Kλ)i (c) j (c) · uj . (1)

We note that a SIMD line need not be structured strictly along a

sequence of nodes aligned along the z-axis (or any other single

axis); a rectangular arrangement, e.g. eight nodes straddling a 2 × 4
rectangle along the y- and z-axes would work in exactly the same

fashion. From a programming standpoint, equation (1) indicates that

SIMD vectors of each Lamé parameter are scaled with a constant co-

efficient (a single multiply instruction, with embedded broadcast, in

the AVX2 and AVX512 instruction sets), and multiply the respective

neighboring displacements uj (a fused multiply-add operation) to

compute a term contributing to the nodal force f . With the increased

number (32) of available registers in AVX512, we have verified that

the entire stencil application can be executed with 2 × 242 multiply

and 2 × 24
2
fused multiply-add instructions (FMA) without any

register spilling, and enough distance between operation depen-

dencies to allow the full throughput of two FMA instructions per

cycle in Skylake-X/SP
†
(approximately 1200 cycles for the stencil

application on one 16-wide SIMD line).

Modifications to the SPGrid structure. In order to accommodate the

SIMD-heavy stencil computations in our elasticity operator, we

enacted two crucial modifications/enhancements of the baseline

implementation (http://www.cs.wisc.edu/~sifakis/SPGrid.html) of
the SPGrid structure of Setaluri et al. [2014]. The first of those, is a

vectorized load routine, with a compile-time stencil offset, as in:

template <int di,int dj,int dk,class SPG_array>
__m512 VectorGet<di,dj,dk>(SPG_Array a,int64_t offset)

where a 16-entry SIMD width in single-precision has been used,

as an AVX512 example. The offset given as argument is presumed

aligned at SIMD-width granularity, while a stencil offset (di,dj,dk)
is given as a compile-time argument. Using these semantics, grid

data at a given stencil “spoke” (from an aligned baseline vector

address) can be loaded for an entire SIMD line, as illustrated in

Figure4. Even though the stencil shift might cause data to originate

from different SPGrid blocks, the fact that such shift is known at

compile time allows significant optimizations that avoid expensive

gather operations and minimize address translations.

†
Intel Xeon Gold 6140 processor (18 cores at 2.30 GHz) with 192 GB memory.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:6 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

Fig. 4. The offset passed to VectorGet points to an sequence of
SPGrid entries with SIMD-width alignment (light blue box). Using
a stencil offset, e.g., shifts the region to be loaded by VectorGet, as
shown in the dark blue box. The data of this shifted box may originate
in several distinct SPGrid blocks (indicated by different node colors).

The second SPGrid modification was the relaxation of the design

restriction in Setaluri et al. [2014] that each SPGrid block be sized to

exactly 4KB (the size of a virtual memory page). Our solver used a

total of 128 bytes for all variables stored at each grid index, leaving

the block size to just 2×4×4when a 4KB block size is used.We found

it more effective to be able to use a larger block size, namely 4×4×8
in order to (a) minimize the number of SIMD stencil accesses that

straddle multiple blocks, and simplify implementation of VectorGet,
and (b) allow an adequate number of nodes to be present per-block,

to ensure that even after eight-coloring (as required by our smoother,

described later in this section), the nodes on each color are a multiple

of the SIMD width, even on AVX512 systems. We include source

code for both proposed SPGrid modifications, as a supplement to

our paper. As an indication of performance, we have achieved an

effective bandwidth of 17.45 GB/s for our multiply kernel.

Efficient Galerkin Coarsening. In the construction of the multigrid

hierarchy, we used the Galerkin coarsening method, computing the

coarse grid operator as Kc = PT ·Kf ·P, where P is the prolongation

matrix and Kf the fine grid operator. At all but the two finest levels,

we can afford to store the coarsened operator explicitly, as the

reduced dimensionality of the coarse grid allows us to do so at

one-eighth of the memory footprint that such matrix would have

occupied at the finer level. Our construction of Kc is tailored around
the following implementation objectives:

• Neither Kf or P are presumed available in matrix form.

• The rows of Kc should be coumpted independently, to avoid

write hazards.

• We seek the flexibility to compute Kc at any coarse level di-

rectly from the material parameters at the finest level, without

depending on operators at intermediate levels.

Let us consider the specific example of constructing the operator

K4h
at two levels coarser from the finest grid :

K4h = PT
4h→2hP

T
2h→hK

hP
2h→hP4h→2h (2)

The coefficients of the i-th row of this matrix (or equivalently, the

i-th column, due to symmetry) are given by the action K4hei of this
operator on the basis vector ei . Equation (2) suggests that this action

1 0

0

1 1/2 0

0

01/41/2

1 1/23/4 1/4 0

3/4 3/89/16 3/16 0

1/2 1/43/8 1/8 0

1/4 1/81/16 1/16 0

0 00 0 0

Fig. 5. Two successive prolongation operations on a Kronecker delta
function during Galerkin coarsening of a coarse cell, illustrated in 2D.

can be computed by successively prolongating ei to the finest level,

applying the fine-grid operator Kh , and restricting the result back to
the coarse grid. We perform this operation separately on each of the

eight cells (at level 4h) incident on node i , as illustrated in Figure 5.

The input to this process is a discrete Kronecker delta, shown as

the input coefficients to the coarsest level. We can use an eight-

wide SIMD register to store all eight nodal values of this coarse cell.

We have implemented a routine ProlongateCell() that interpolates
this eight-value SIMD register into eight more eight-wide registers

corresponding to the nodal values of the child cells at the immediate

finer level. This routine is called recursively to prolongate all the

way to the finest level. At that point, a routine CellMultiply() is used
to compute the force response of each individual fine cell to these

prolongated nodal displacements (using the material properties at

the finest level). A routine RestrictCell() implements the adjoint of

the prolongation operation by collecting force contributions from

fine child cells to their coarser parent. Since these routines are

called recursively, all SIMD vectors are stack-allocated and can be

effectivly cached. As an indicator of performance, the construction

of the entire operator hierarchy in our 1.04 billion-voxel example

(Figure 1) requires 113.9 seconds using AVX512 instructions, which

is a very small fraction of the MGPCG cost at this resolution.

Sparse Matrix Storage. The storage of the Galerkin-coarsened matrix

needs to be handled as to exploit sparsity, facilitate the application

of the smoother routine, and allow a direct solver (in our case, Intel

MKL PARDISO) to be used for solving the problem at the coarsest

level of the hierarchy. Given that the topology of the background is

a regular Cartesian lattice, we use a band-storage approach, where

the 243 nonzero coefficients associated with the stencil each node

(a 3 × 3 matrix for every spoke of a 27-connected 3 × 3 × 3 stencil)
are stored into a secondary SPGrid structure. We supplement these

243 scalars with a bit field, indicating whether each stencil spoke is

structurally present in our discretization. This representation allows

straightforward implementation of the smoother routine, and can be

easily converted to compressed sparse row (CSR) format for usage

in direct solvers like PARDISO. In this conversion, the only serial

operation is the calculation of linearized indices, and the necessary

allocated length of each compressed row; the data transfer into the

CSR coefficient buffer is performed in parallel over SPGrid blocks.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid • 251:7

Fig. 6. Left: a SPGrid block of 4x8 in which the nodes are ordered
lexicographically, Right: the transposed colored storage enables effi-
cient vectorization for Gauss-Seidel iteration. Bottom: Transposition
operation of a SPGrid block illustrated in a linear memory layout.

Optimization of the relaxation routine. In order to balance conver-

gence efficiency with parallelization potential, we employ an eight-

color Gauss-Seidel (GS) routine, as other authors have similarly

adopted in prior work [Wu et al. 2016b], with the slight modifi-

cation that we collectively update all three collocated degrees of

freedom at each grid node, by inverting the 3 × 3 diagonal block
of the stiffness matrix corresponding to that node. A drawback of

combining the eight-color GS smoother with a SIMD implementa-

tion is the suboptimal utilization of memory bandwidth, as each

SIMD vector will require data that is consistently discontinuous in

memory (Figure 6, left). Such scattered memory assess is particu-

larly wasteful for modern hardware which always performs load

operation from memory at cache-line granularity. In order to cir-

cumvent the need for such scattered data access, we preemptively

transpose the data in each SPGrid block as to reorder the indices

of each color to be consecutive in memory (Figure 6, right/bottom).

We observe that applying the same stencil offset to the nodes of one

color always leads to nodes of a different yet consistent color (e.g.,

in Figure 6, applying a (+1,+1) offset to a yellow node always leads

to a red node). As a consequence, after the described transposition,

applying the colored GS smoother on each individual color can

be performed by a straightforward application of the VectorGet
routine to the transposed data. Each SPGrid block is transposed

back to the original ordering at the end of the application of the

relaxation routine. We have observed an effective bandwidth of up

to 68 GB/s (out of maximum 128 GB/s) on a Skylake-SP platform

for the eight-color GS routine.

A mixed-precision MGPCG solver. The linear systems arising from

the equations of elasticity in our large-scale topology optimization

tasks impose a unique set of challenges to the numerical algorithms

used. Due to both the sheer size of the computational domains we

seek to accommodate, and the large contrast of material stiffness

values used in different regions of the simulated domain, we often

encounter situations where anMGPCG solver using single-precision

(32-bit) floating-point arithmetic cannot sustain satisfactory conver-

gence, or even instances where the solver will plainly diverge. There

are also scenarios where single precision will have catastrophic con-

sequences on our solver, when Galerkin-coarsened matrices will be

reported as effectively “singular” by direct solvers (i.e. MKL PAR-

DISO) if constructed to single precision. We note that the frequency

of incidence of such issues was dramatically increased, in our expe-

rience, when dealing with domains in excess of 10
8
voxels, while

lower-resolution problems would be significantly more resilient.

An MGPCG solver implemented natively in double precision was

fully effective for all the examples in our paper. However, using

double precision would double our memory footprint, which was

a significant concession given our pursuit of exceptionally high-

resolution domains. We thus designed a variant of such solver that

used a carefully crafted mix of single- and double-precision arith-

metic, whichwe have found to produce results of effectively identical

accuracy as a native double-precision solver. Consider the main loop

of a preconditioned conjugate gradients algorithm, as captured in

the following pseudocode:

for k = 1 : N

qk ← Apk (3)

αk ← rk
T zk/pkT qk

xk+1 ← xk+αkpk (4)

rk+1 ← rk−αkqk
zk ← M−1rk (5)

βk ← zk+1
T rk+1/zkT rk

pk+1 ← zk+1+βkpk

Our modifications which yield a mixed-precision implementation

are summarized as follows:

• Vectors r, q, z and p (colored blue, above) are persistently stored

in single-precision floating-point variables.

• The solution x is stored in double precision. The accumulation

operation in (4) is also performed in double precision.

• The operator application in line (3) is performed in double

precision (the single-precision input p is up-cast to double pre-

cision prior to the multiplication). The result of the operator

application is then truncated to single precision and stored into

q.

• The multigrid V-cycle used as the preconditioner M−1 in line

(5) is modified as follows: The smoother at the finest level uses

double precision for the application of the operator, just as

in line (3), although inputs and outputs are stored in single-

precision. Every level of the V-Cycle other than the finest uses

double-precision arithmetic entirely.

Using this mixed-precision approach, the memory footprint of our

solver is further reduced, providing a significant boost in the maxi-

mum resolution we can accommodate for a given amount of physical

memory (128 bytes/node suffice to store all variables necessary for

the MGPCG solver as well as the minimum compliance optimizer).

Our results and validation section provides experimental evidence

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:8 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

a) b)

c)d)

Fig. 7. The evolution of SPGrid block activation for a single topology
optimization iteration. a) The thin page map consists of blocks that are
“hard” (i.e., with maximum voxel density above the threshold). b) The
filtered thin page map excludes small disconnected blocks to avoid FEM
solve singularity. c) The fat page map, where FEM solve and topology
evolution happens, is an expanded version of the thin page map. d)
The new thin page map is an eroded version of the fat page map with
only hard blocks considered. Following this cycle, active (gray) blocks
and narrow-band blocks (green) are updated in each iteration along
with structure evolution (red lines).

indicating that this mixed-precision approach yields almost identical

accuracy of final results in all our tests.

6 NARROW-BAND TOPOLOGY OPTIMIZATION

We discretize the design domain using a density field ρ on cell

centers. For each cell, ρ can take value from 0 to 1 to represent

materials ranging from void to solid. The sparsity of the domain is

specified on the granularity of SPGrid blocks: a block is marked as

void if all of its cells have density smaller than a threshold (1 × 10−6
in our case); otherwise, the block is marked as active (see Figure 7).
We then define the narrow band of a structure as the group of all the

void blocks within the one-ring neighborhoods (26-neighbours) of

the active blocks, including both the interface (narrow band) and the

interior. All the blocks in the domain are marked as active initially

and then updated according to the new cell densities throughout the

topology optimization iterations. Only the grid cells in active blocks

and the narrow band are used by the FEM solver. The information

on grid cells in other blocks is not maintained on SPGrid.

The full-domain initialization allows structures to emerge every-

where in the design space. Though such strategy requires more stor-

age initially, numerical convergence is rapid due to the uniformity of

stiffness at the beginning. The true performance bottleneck emerges

in later optimization iterations, when the irregular, thinned-out do-

main requires more solver iterations for convergence. Restricting

the cost of these later iterations to the narrow-band is a key source

of the runtime savings, by omitting blocks that are away from the

stiff region.

Fig. 8. Unbounded topology optimization for a quadpod structure. A
thin membrane is initialized (a), evolved upwards (b), and converge
to a clear structure (c and d), guided by a combined objective of both
minimum compliance and maximum height.

Topology optimization. We solve a classic topology optimization

problem by evolving the density field on the SPGrid and updating

the active blocks and the narrow band accordingly. The objective is

to minimize the elastic energy of the structure constrained by the

linear elastic FEM equation and the target volume V̂ . The topology

optimization problem can be formulated as:

min : S(ρ, u) = uTK(ρ)u

s .t . : F(ρ, u) = K(ρ)u − f = 0

: V (ρ) − V̂ ≤ 0,

(6)

where K is the global stiffness matrix of the entire system, f is

the vector of external forces, and V (ρ) represents the sum of ρ
of all grid cells weighted by the volume of each cell. In order to

avoid singularity of the stiffness matrix, we define the relationship

between ρ and the stiffness matrix of each element as: Ke (ρ) =
[ρk (1 − ϵ) + ϵ]K0, where k = 3, ϵ = 10

−6
or 10

−9
, and K0 is the

stiffness matrix of an element fully filled with materials. The global

stiffness matrix is assembled by summing the stiffness matrices of

all the grid cells.

We follow the standard optimality criterion scheme (e.g., see [Sig-

mund 2001] [Bendsøe and Sigmund 2009]) to iteratively evolve the

density field on the grid. In each iteration, we first solve the FEM

equation to update the nodal displacements given the current den-

sity distribution. Next, we compute the sensitivity of each active cell

as Ce = −ueT (∂Ke/∂ρe)ue with the updated nodal displacements.

A heuristic scheme is then applied to each cell to update its density

according to the new sensitivity. Notice that all the updates are per-

formed in the active and the narrow band blocks. We refer readers

to [Sigmund 2001] for more implementation details for each step.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid • 251:9

Narrow band evolution. We use page maps to track the SPGrid block

activation. Each page map is implemented as a bitmap, using one bit

for each block for economical storage and fast query. For each block,

either void or active, we store one bit in the page map at the cost of

32 KB per GB ambient grid storage. We maintain two page maps:

a thin page map that tracks only active blocks and a secondary fat
page map to track the blocks that are either active or in the narrow

band. Notice that the fat page map is an expanded version of the

thin page map. The two page maps are updated in an intertwined

fashion in each topology optimization iteration (see Figure 7). First,

the thin page map is re-populated from the fat page map by deacti-

vating blocks with only low density. We then perform a connectivity

filtering operation on the thin page map to eliminate small isolated

active blocks. A connected component is considered to be isolated

if its volume is less than 30% of the total active volume. This step is

crucial in avoiding singularity in the FEM stiffness matrix. After the

connectivity filtering step, the fat page map is passively updated ac-

cording to the new densities at the end of the topology optimization

iteration (or active blocks). This allows inactive blocks to become

active again, similar to [Bruns and Tortorelli 2003]. The complete

algorithm coupling the steps of FEM solve and page map update

are summarized in Algorithm 1. Most of the topology optimization

algorithms require a fixed boundary for the computation domain.

Our narrow-band evolution approach enables unbounded topology

optimization to bypass this fixed boundary restriction. Thanks to

the dynamic and sparse peculiarity of our grid structure, we can

initialize active voxels within a small region and then update the

computation domain following the evolving structure. The objective

gradients in the active blocks within the narrow band guides the

evolution of the structure. This dynamic-tracking capability opens

up possibilities for many applications where the design domain is

not known as a priori. As in Figure 8, we optimize the evolution

of a thin membrane under a combined objective of both minimum

compliance and maximum height. We assume no prior knowledge of

the computation grid. All the voxels are activated automatically as

the membrane grows upwards, and the structure naturally emerges

from the background.

Algorithm 1 The narrow-band topology optimization algorithm.

1: function NarrowBandTopologyOptimization()

2: Initialize density field and boundary conditions.

3: while not converged do
4: NarrowBandEvolution (Section 6)

5: for each objective do
6: FEM Solve (Section 5)

7: Sensitivity analysis

8: end for
9: Update density field using OC

10: end while
11: end function

Fig. 9. (Left) Convergence comparison of the bird beak example of
different resolutions at the last topology optimization iteration.† (Right)
Convergence comparison of the one-billion-voxel bird beak example
at different topology optimization iterations.

7 VALIDATIONS AND EXAMPLES

7.1 Multigrid Solver Validation

Algorithmically, our implementation of the solver is a standard

multi-linearly interpolated Garlerkin-coarsened Multigrid precondi-

tioned conjugate gradient method. At early topology optimization

iterations or small domains, such method proves to have fast as-

ymptotic convergence. But in our examples, especially the bird beak

Figure 1 and the wing Figure 15, the high variation of material spatial

distribution has challenged the convergence of the multigrid solver

as shown by Figure 9 (left). Thiner features resulted from Higher

resolution, can significantly impact the convergence of multigrid as

indicated in Figure 9 (right).

Besides convergence, the high resolution has also pushed the nu-

merical limited of floating point. To validate our mixed precision

scheme, we have conducted the following tests, both on analytical

structures and the structures naturally emerged from topology op-

timization: 1. The last iteration of the bird beak example; 2. The

last iteration of the wing example; 3-8. Homogeneous and isotropic

cantilever beams of different length with one side fixed and the

other side loaded with a uniform downward force.

Table 1 shows the final residual of five different precision schemes: 1.

Full double precision; 2. Only solution vector and computation are in

double precision, the mix precision scheme we used in our topology

optimization; 3. Only solution vector is in double precision; 4. Only

computation is in double precision; 5. All in float precision. The

results shows that under all examples our proposed mix precision

scheme(column 2) can reduce the residual to an order of magnitude

close to the double precision. Due to the fact that at high resolutions,

cells that are far from Dirichlet boundaries have large displacements

but yet only small strains. This loss of precision leaves it insufficient

to use single precision for the solution vector. As shown in (column

4 and 5), using single precision for solution can result in inaccurate

computation of strain and final residual. Similarly, using single-

precision multiply will not be able to compute search direction to

sufficient accuracy, conjugate gradient, in this case, will halt due to

a detected singularity (column 3 and 5).

†
All residuals reported in this work are L∞ norm across all active cells, normalized

relative to the L∞ norm of the load.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:10 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

0 20 40 60
#Iterations

107

108

109

1010

Co
m

pl
ia

nc
e

Compliance Evolution
narrow-band
dense

0 20 40 60
Iterations

0

2

4

6

8

Ac
tiv

e
Bl

oc
ks

1e5 Block Activation

narrow-band
dense

0 10 20 30 40
#Iterations

102

103

104

Co
m

pl
ia

nc
e

Compliance Evolution
narrow-band
dense

0 20 40
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

e
Bl

oc
ks

1e6 Block Activation

narrow-band
dense

Fig. 10. Comparison of the compliance evolution (left column) and
the number of active blocks (right column) for the narrow-band and
the standard dense topology optimization algorithms on the bridge
(top row) and the hemispherical thin shell (bottom row). Note that
the increase of the compliance in the first few iterations of the bridge
example is due to progressively decreasing volume fraction to accelerate
convergence.

Fig. 11. Comparison of the active blocks (top) and the optimized
voxels (bottom) using the narrow-band scheme and the dense scheme.
We observe negligible difference between the two optimized structures
optimized by the narrow-band and dense-grid schemes.

7.2 Topology Optimization Validations

Narrow Band v.s. Full Grid. We validate our narrow-band scheme
†

by comparing it to the standard dense scheme concerning both

accuracy and efficiency. We reuse the simulation parameters for the

bridge (Figure 3) and the thin hemispherical shell (Figure 2) to set up

†
Implemented based on the Taichi computer graphics library [Hu 2018].

Fig. 12. Relation between the grid resolution, the optimized structural
compliance, and the level of details (measured by the sum of L2 norm
of the density’s Laplacian). The plot shows that the high-resolution
simulation enables detailed structures with low compliance.

our experiments. For each example, we run topology optimization

with both schemes, and then we record the evolution of objectives

as well as the number of active blocks during the optimization

iterations. As shown in Figure 10 left, the compliance curves for the

two schemes closely match each other. As shown in Figure 10 right,

the narrow-band scheme uses significantly fewer active blocks than

the dense one. For the bridge, the number of active blocks converges

within 20 iterations to 21.64% of the total number of blocks; for

the thin shell, this ratio converges to 23.46% within 25 iterations.

This block reduction leads to a 2.5× and a 3.1× acceleration in

computation respectively. Initially, the advantage of narrow-band is

less significant comparedwith later topology optimization iterations,

yet the FEM solver converges relatively fast on these iterations

thanks to the almost uniform density field (Figure 9 right).

Figure 11 visualizes the distributions of the active blocks as well

as the optimized voxels for the hemispherical shell optimization

using both schemes. The difference between the two structures

is imperceptible (Figure 11 bottom), though complicated filament

and thin shell structures are developed based on very different

computational discretizations (Figure 11 top). It is noteworthy that

the distribution of active blocks gets not only sparser but also thinner

(see the region pointed by the yellow arrow in the top middle image

of Figure 11) to tightly bound the voxel evolution in all directions.

In summary, the narrow-band scheme not only delivers almost

identical results to the full-grid scheme, but also runsmore efficiently

thanks to accelerated narrow-band FEM solves, especially in later

optimization iterations.

Compliance and Feature Evaluation. We explore the relationship

between the complex features emerged on a high-resolution grid

and the mechanical performance of the optimized structure. We

start from a 20 × 20 × 80 coarse grid and progressively refine it

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid • 251:11

Table 1. The final residuals of different precision scheme after the same number of iterations. Test cases include bird beak, plane wing, and
cantilever beam (CB) with different resolutions. The final residuals are recomputed based on solution vectors. All tests are scaled to initial residual
infinity norm of 1. From the left to right, the 5 schemes are: 1. Full double precision; 2. Only solution vector and computation are in double precision;
3. Only solution vector is in double precision; 4. Only computation is in double precision; 5. All in float precision. SINGULAR indicates conjugate
gradients have halted due to detected singularity.

Example Double Precision Mix Precision

(double multiply)

Mix Precision

(single multiply)

Single Precision

(double multiply)

Single Precision

(single multiply)

Bird beak 9.192e-5 9.063e-5 1.969e-4 6.846e+0 7.611e+0

Wing 8.968e-5 1.815e-4 SINGULAR 1.850e+1 SINGULAR

CB (32x32x32) 7.942e-6 7.942e-6 5.827e-5 2.259e-5 5.827e-5

CB (32x32x64) 8.217e-6 8.218e-6 5.773e-5 4.905e-5 6.019e-5

CB (32x32x128) 8.207e-6 8.208e-6 1.041e-3 1.018e-4 1.041e-3

CB (32x32x256) 9.322e-6 9.321e-6 6.295e-3 1.934e-4 6.295e-3

CB (32x32x512) 4.506e-6 4.508e-6 SINGULAR 3.990e-4 SINGULAR

CB (32x32x1024) 5.237e-6 5.242e-6 SINGULAR 7.043e-4 SINGULAR

Table 2. Statistics of the topology optimization examples. We report the volume fraction, the number of active voxels, the total number of iterations,
and the average time spent for each topology optimization iteration. Notice that the active voxels include both voxels occupied by materials and
voxels in the narrow band. We run all examples on a workstation equipped with four Intel E7-4830v4 processors (14 cores each at 2.0 GHz) and
512GB of memory. Though highly optimized, FEM solve is still the computation bottleneck, taking over 90% run time in all examples.

Example Ambient Grid Volume Fraction Max Voxels (M) Min Voxels (M) Iterations Time

(Fig. 1) Bird beak 2737 × 1484 × 910 10% 1040.88 296.41 49 2.31h
(Fig. 2) Hemisphere 2048 × 2048 × 2048 4% 518.99 71.21 36 0.40h
(Fig. 15) Plane wing 1696 × 342 × 1971 20% 401.53 155.82 43 0.83h
(Fig. 3) Bridge 271 × 540 × 1081 8% 158.19 32.71 63 128.0s
(Fig. 14) Bicycle wheels 984 × 984 × 204 1% 53.56 9.56 65 659.0s
(Fig. 13) Shear plate 640 × 640 × 640 8% 262.14 71.21 30 0.70h
(Fig. 8) Quadpod 300 ×∞ × 300 − 11.11 0.98 96 17.4s

by a factor of two in all axes. We run topology optimization for a

bridge on each grid and measure the compliance of the optimized

structure. To this end, we first up-sample the density fields on dif-

ferent grids to the same finest grid (160 × 160 × 640). Then, each
voxel in the density field is discretized to 0 or 1, and a FEM simu-

lation is performed taking the discretized density as the input to

measure the compliance of structure. For each up-sampled density

field, we also compute the sum of L2 norm of the density’s Lapla-

cian to approximate the complexity of the structure’s fine-scale

features. As shown in Figure 12, we observe from the two curves

that the structures obtained from higher resolution computation

exhibit finer-scale features and lower compliance. This observation

is consistent with the conclusions made in a line of previous work

such as [Wu et al. 2016a] and [Aage et al. 2017], necessitating the

use of high-resolution computational domain to obtain designs with

extraordinary mechanical properties.

7.3 Examples

Mechanical Designs. We demonstrate the efficiency of our approach

by solving large-scale topology optimization problems targeting at

different applications, ranging from classical mechanical designs

to engineering structural optimizations and biomimetic structure

explorations. These problems all exhibit sparse characteristics, with

the active volume fraction ranging from 1% to 20% of the entire

volume. The statistics for these examples are reported in Table 2.

We first demonstrate the capability of our approach in generating

codimensional structures mixing filaments and thin films by opti-

mizing a thin hemispherical shell with a target volume fraction of

4% (see Figure 2 and Figure 11). We observe that structures char-

acterized by the thin film, instead of filament, are dominating the

entire design domain as the grid gets refined. This observation is

consistent with the recent discovery made in [Sigmund et al. 2016]

that a twisted Michell sphere tends to converge to a vanishingly

thin shell instead of a wire-frame when the computation resolution

is high enough.

We then optimize a bridge structure to minimize its compliance

under a uniformly distributed load at the bottom (see Figure 3 and

12). After 63 iterations, a rich diversity of multi-scale structures

emerge, exhibiting very different characteristics from a standard

bridge structure on a coarse grid. We then push the resolution to

262 million elements, by optimizing the supporting structures of a

flat platform resisting horizontal shear forces (see Figure 13). Bunch

of complicated filamentary structures emerges in the volume after

30 iterations, demonstrating the efficacy of our approach in gener-

ating structural features that were infeasible for a low-resolution

algorithm.

We next optimize a wheel structure to demonstrate multi-objective

optimization. Different boundary conditions are enforced to obtain

sparse inner supporting structures under in-plane and out-of-plane

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:12 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

Fig. 13. Optimized structures supporting a plate to resist horizontal
shear forces are generated at a resolution of 640 × 640 × 640. The left
figure is a cross-section of the structure exhibiting various filamentary
features. The right picture shows the volumetric rendering. The sub-
image in the middle shows the boundary conditions, including a fixed
boundary and a shear force on the bottom and top plane in separate.

external loads (see Figure 14 a, b). We then combine the two ob-

jectives to optimize structure exhibiting outstanding mechanical

properties in both cases (see Figure 14 c).

Natural Structures and Biomimetic Designs. We show the optimiza-

tion of the interior supporting structure for a bird beak as in Figure

1. The dominating pressure forces are applied on both the upper and

lower layer of the beak, and the fixed boundary condition is used on

the left side. The target volume fraction is set to be 10% of the entire

computation domain. We push the resolution to 1, 040, 875, 347 (1.04

billion) voxels, enabling the emergence of a collection of web-like

codimensional thin structures supporting the shell of the beak while

maintaining a low weight. The structural complexity of this result

qualitatively resembles that of a real Hornbill bird beak as shown

in [Aage et al. 2017], opening up further possibilities in exploring

such natural systems using numerical topology optimization.

We further apply our approach to reproduce the design of a wing

structure similar to [Aage et al. 2017]. As shown in Figure 15, the in-

ternal structures supporting the wing is optimized using the similar

boundary conditions to the bird beak example, i.e., the pressure force

on the wing surface along the local normal direction of the wing

geometry. After 40 iterations, a variety of design details, such as the

curved spars and multi-scale truss, have automatically emerged on

the grid. We show the 3D prints for both the bird beak and the wing

structures in Figure 16.

8 LIMITATIONS AND FUTURE WORK

Limitations. One of themain limitations of our approach is the dense

representation of the domain in the first few iterations. Though the

number of active blocks decreases after clear structures emerge

in the domain, which significantly speeds up the solver, the full-

space computation at the beginning of the optimization limits the

capability of our algorithm in handling larger-scale examples. One

possible solution is to initialize the domain with some narrow-band

structures or coarsened discretization, which will guarantee a small

number of active elements throughout the process.

For the numerical solver, increasing the resolution worsens the con-

ditioning of the global stiffness matrix. We have observed that with

higher resolution, both convergence rate and convergence limit are

significantly reduced. The high-resolution filamentary structures

can substantially impair the convergence of a multi-linear inter-

polated Galerkin-coarsened multigrid solver. One of the possible

solutions for restoring the multigrid convergence is to investigate

using a stencil-aware coarsening technique to better represent the

high contrast stiffness ratio at the coarse levels. Finally, due to in-

trinsic limitations on the virtual memory subsystem, as exploited by

SPGrid, we are restricted to a maximum background grid resolution

of 8196
3
voxels (such resolution would require reserving a 64 TB

virtual memory span at 128 bytes/node, independent of the sparsity

of the computational domain; 128 TB is the total virtual memory

available to user-space processes).

Future Work. There are many exciting avenues for future work

combining our high-resolution numerical approach to investigate

complex natural systems. Most of the real-world structures we are

aiming to investigate have received little attention in the topology

optimization community due to their inherent complexities and

prohibitively high computational cost. Aage et al. [2017] have per-

formed some pioneering study on supercomputers to unveil the

connection between the structure of bird beaks and the design of

airplane wings using topology optimization. The computational tool

we have proposed can run on a single workstation, which makes

the high-resolution numerical study of these structures accessible

to a broader range of research teams and individuals. It might prove

fruitful to collaborate with those researchers as the capability of

modeling and developing these thin structures numerically enables

a wide variety of computational studies that may be challenging or

even infeasible before.

9 CONCLUSION

We presented a novel approach for topology optimization of struc-

tures exhibiting sparse and thin features at extremely high resolu-

tion. In particular, our computational framework makes it possible,

for the first time, to computationally synthesize thin structures at

the level of billion active elements on a single workstation. We have

shown a variety of complex structures generated by our computa-

tional framework that share similarities with structures in nature.

These intricate and multi-scale features can be seamlessly transi-

tioned to the design of engineering systems within the same com-

putational setting. Surveying the literature, it appears that some of

these complex structures are only vaguely understood, due to the

lack of computational tools for both simulation and optimization,

in contrast to those thoroughly investigated engineering structures

where volumetric simulation approaches are applicable. Our com-

putational tool opens up new possibilities for scientists, engineers,

and designers to explore the limits of these complex structures to

develop a better understanding of their underpinning mechanisms.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

Narrow-Band Topology Optimization on a Sparsely Populated Grid • 251:13

Fig. 14. Optimized wheel structures are generated using our algorithm. Structure (a) and (b) are obtained with in-plane tangential force boundary
and out-of-plane normal force boundary. Structure (c) is optimized with a linear combination of objectives in both (a) and (b).

Fig. 15. An optimized interior supporting structure of part of a wing is generated using our algorithm on a 1696 × 342 × 1971 grid (402 M active
voxels).

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their valuable sug-

gestions and comments. Yuanming Hu is supported by the Edwin S.

Webster graduate fellowship. This work was supported in part by

NSF grants CMMI-1644558, CCF-1533753, CCF-1533885, IIS-1763638,

CCF-1812944.

REFERENCES

Niels Aage, Erik Andreassen, and Boyan Stefanov Lazarov. 2015. Topology optimization

using PETSc: An easy-to-use, fully parallel, open source topology optimization

framework. Structural and Multidisciplinary Optimization 51, 3 (2015), 565–572.

Niels Aage, Erik Andreassen, Boyan S. Lazarov, and Ole Sigmund. 2017. Giga-voxel

computational morphogenesis for structural design. Nature 550 7674 (2017), 84–86.
Martin P Bendsøe and Ole Sigmund. 2009. Topology Optimization. (2009).

Emmanuel Brun, Arthur Guittet, and Frédéric Gibou. 2012. A local level-set method

using a hash table data structure. J. Comput. Phys. 231, 6 (2012), 2528–2536.
Tyler E Bruns and Daniel A Tortorelli. 2003. An element removal and reintroduction

strategy for the topology optimization of structures and compliant mechanisms.

International journal for numerical methods in engineering 57, 10 (2003), 1413–1430.

Vivien J Challis, Anthony P Roberts, and Joseph F Grotowski. 2014. High resolution

topology optimization using graphics processing units (GPUs). Structural and
Multidisciplinary Optimization 49, 2 (2014), 315–325.

Asger Nyman Christiansen, J Andreas Bærentzen, Morten Nobel-Jørgensen, Niels Aage,

and Ole Sigmund. 2015. Combined shape and topology optimization of 3D structures.

Computers & Graphics 46 (2015), 25–35.
Asger Nyman Christiansen, Morten Nobel-Jørgensen, Niels Aage, Ole Sigmund, and

Jakob Andreas Bærentzen. 2014. Topology optimization using an explicit interface

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

251:14 • Haixiang Liu∗, Yuanming Hu∗, Bo Zhu†, Wojciech Matusik, and Eftychios Sifakis

Fig. 16. 3D prints of the slices of the bird beak and the wing structures.

representation. Structural and Multidisciplinary Optimization 49, 3 (2014), 387–399.

Joshua D Deaton and Ramana V Grandhi. 2014. A survey of structural and multidisci-

plinary continuum topology optimization: post 2000. Structural andMultidisciplinary
Optimization 49, 1 (2014), 1–38.

Christian Dick, Joachim Georgii, and Rüdiger Westermann. 2011. A real-time multigrid

finite hexahedra method for elasticity simulation using CUDA. Simulation Modelling
Practice and Theory 19, 2 (2011).

Christopher Dileo and Xinyan Deng. 2009. Design of and experiments on a dragonfly-

inspired robot. Advanced Robotics 23, 7-8 (2009), 1003–1021.
Jean Donea, S Giuliani, and Jean-Pierre Halleux. 1982. An arbitrary Lagrangian-Eulerian

finite element method for transient dynamic fluid-structure interactions. Computer
methods in applied mechanics and engineering 33, 1-3 (1982), 689–723.

R Elliot English, Linhai Qiu, Yue Yu, and Ronald Fedkiw. 2013. Chimera grids for water

simulation. In Proceedings of the 12th ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. ACM, 85–94.

Douglas Enright, Ronald Fedkiw, Joel Ferziger, and Ian Mitchell. 2002. A hybrid particle

level set method for improved interface capturing. J. Comput. Phys. 183, 1 (2002),
83–116.

H. A. Eschenauer, V. V. Kobelev, and A. Schumacher. 1994. Bubble method for topology

and shape optimization of structures. Structural optimization 8, 1 (1994).

Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey.

2016. Narrow band FLIP for liquid simulations. In Computer Graphics Forum, Vol. 35.

Wiley Online Library, 225–232.

Florian Ferstl, Rüdiger Westermann, and Christian Dick. 2014. Large-scale liquid

simulation on adaptive hexahedral grids. IEEE transactions on visualization and
computer graphics 20, 10 (2014), 1405–1417.

Sarah F. Frisken, Ronald N. Perry, Alyn P. Rockwood, and Thouis R. Jones. 2000. Adap-

tively Sampled Distance Fields: A General Representation of Shape for Computer

Graphics. In Proceedings of the 27th Annual Conference on Computer Graphics and
Interactive Techniques (SIGGRAPH ’00). 249–254.

Yuanming Hu. 2018. Taichi: An Open-Source Computer Graphics Library. arXiv preprint
arXiv:1804.09293 (2018).

Haixiang Liu, Nathan Mitchell, Mridul Aanjaneya, and Eftychios Sifakis. 2016. A

scalable schur-complement fluids solver for heterogeneous compute platforms.

ACM Transactions on Graphics (TOG) 35, 6 (2016), 201.
Frank Losasso, Frédéric Gibou, and Ron Fedkiw. 2004. Simulating water and smoke

with an octree data structure. In ACM Transactions on Graphics (TOG), Vol. 23. ACM,

457–462.

Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph

Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with

contact and collisions. ACM Transactions on Graphics (TOG) 30, 4 (2011), 37.
Ken Museth. 2013. VDB: High-resolution sparse volumes with dynamic topology. ACM

Transactions on Graphics (TOG) 32, 3 (2013), 27.
George IN Rozvany. 2009. A critical review of establishedmethods of structural topology

optimization. Structural and multidisciplinary optimization 37, 3 (2009), 217–237.

Stephan Schmidt and Volker Schulz. 2011. A 2589 line topology optimization code

written for the graphics card. Computing and Visualization in Science (2011), 1–8.
Rajsekhar Setaluri, Mridul Aanjaneya, Sean Bauer, and Eftychios Sifakis. 2014. SPGrid: A

sparse paged grid structure applied to adaptive smoke simulation. ACM Transactions
on Graphics (TOG) 33, 6 (2014), 205.

Ole Sigmund. 2001. A 99 line topology optimization code written in Matlab. Structural
and Multidisciplinary Optimization 21, 2 (2001), 120–127.

Ole Sigmund, Niels Aage, and Erik Andreassen. 2016. On the (non-) optimality ofMichell

structures. Structural and Multidisciplinary Optimization 54, 2 (2016), 361–373.

Ole Sigmund and Kurt Maute. 2013. Topology optimization approaches. Structural and
Multidisciplinary Optimization 48, 6 (2013), 1031–1055.

Ole Sigmund and S Torquato. 1999. Design of smart composite materials using topology

optimization. Smart Materials and Structures 8, 3 (1999), 365.
J. Sokolowski and A. Zochowski. 1999. On the Topological Derivative in Shape Opti-

mization. SIAM Journal on Control and Optimization 37, 4 (1999).

Eddie Wadbro and Martin Berggren. 2009. Megapixel topology optimization on a

graphics processing unit. SIAM review 51, 4 (2009), 707–721.

Jun Wu, Niels Aage, Ruediger Westermann, and Ole Sigmund. 2017. Infill Optimiza-

tion for Additive Manufacturing–Approaching Bone-like Porous Structures. IEEE
Transactions on Visualization and Computer Graphics (2017).

Jun Wu, Christian Dick, and Rüdiger Westermann. 2016a. A system for high-resolution

topology optimization. IEEE transactions on visualization and computer graphics 22,
3 (2016), 1195–1208.

JunWu, Christian Dick, and RüdigerWestermann. 2016b. A System for High-Resolution

Topology Optimization. IEEE Trans. on Visualization and Computer Graphics 22, 3
(2016).

Praveen Yadav and Krishnan Suresh. 2014. Large scale finite element analysis via

assembly-free deflated conjugate gradient. Journal of Computing and Information
Science in Engineering 14, 4 (2014), 041008.

Wen Zheng, Bo Zhu, Byungmoon Kim, and Ronald Fedkiw. 2015. A new incompress-

ibility discretization for a hybrid particle MAC grid representation with surface

tension. J. Comput. Phys. 280 (2015), 96–142.
Bo Zhu, Wenlong Lu, Matthew Cong, Byungmoon Kim, and Ronald Fedkiw. 2013. A

new grid structure for domain extension. ACM Transactions on Graphics (TOG) 32,
4 (2013), 63.

Y Zhu, E Sifakis, J Teran, and A Brandt. 2010. An efficient and parallelizable multigrid

framework for the simulation of elastic solids. ACM Trans. Graph 29, 16 (2010),

1–16.

ACM Trans. Graph., Vol. 37, No. 6, Article 251. Publication date: November 2018.

