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Abstract

We study the production of photons in a model of three bosonic atomic modes nonlinearly coupled to
a cavity mode. In the absence of external driving and dissipation, the energy levels at different photon
numbers assemble into the steps of an energy staircase which can be employed as guidance for
preparing multi-photon states. We consider adiabatic photon production, driving the system through
asequence of Landau—Zener transitions in the presence of external coherent light pumping. We also
analyse the non-equilibrium dynamics of the system resulting from the competition of the sudden
switch of coherent photon pumping and cavity photon losses, and we find that the system approaches
a plateau with a given number of photons, which becomes metastable upon increasing the rate of
photon pumping. We discuss the sensitivity of the time scales for the onset of this metastable behavior
to system parameters and predict the value of photons attained, solving the driven-dissipative
dynamics including three-body correlations between light and matter degrees of freedom.

1. Introduction

The last ten years have witnessed swift progress in quantum optics platforms where light and matter are strongly
coupled and can be employed to engineer a variety of quantum phenomena: examples range from Bose—Einstein
condensates coupled to optical cavity photons, where the Dicke transition is engineered [ 1, 2], to the recent
demonstration of supersolids [3] and phases with competing order parameters in a condensate trapped at the
intersection of two optical cavities [4—7]. Most of these models realise scenarios where matter and light
collectively interact as in the case of superradiant phase transitions or in ‘Dicke—Hubbard’ systems characterized
by critical points separating a superfluid from a Mott insulating phase [8]. Strong light-matter coupling regimes
have also enabled the preparation of highly squeezed states of atomic ensembles by quantum non-demolition
measurements [9, 10], photon-mediated spin interactions [11, 12] in optical cavities, photon blockade effects
[13—17] or non-classical light in cavity optomechanics platforms [18]. Recent experiments have extended
photon-mediated interactions to optical-clock atoms [19], to spin-1 atoms [20, 21], and to multi-mode cavities
[22], which enable further advances in quantum metrology [23] and quantum simulation.

The control and the preparation of multi-photon states is of paramount importance for a progress towards a
many-body physics of coupled light and matter in these platforms. Single- and multi-photon preparation has a
long history in cavity QED [24-30], including photon generation in high quality cavities [31], the control of
single-photon states emitted by polaritons [32], as well as the conversion of collective atomic excitations into
single photonic states within optical resonators [33], encompassing quantum homodyne tomography [34] and
preparation of photon states in the driven-dissipative dynamics of cavity arrays [35, 36].

In this work we consider a novel cavity-QED platform composed of collective atomic degrees of freedom
strongly nonlinearly coupled to a cavity photon: this system can be employed to engineer multi-photon states
out of an empty cavity via adiabatic as well as with far-from-equilibrium driving protocols. Specifically, we study
an effective model of two bosonic atomic modes interacting with a photon; the model results from a two-photon
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Figure 1. Schematics of the optical transitions considered in this work: a two-photon process transferring two atoms from the level |0)
(with macroscopic occupation N) to thelevels |+) and | —) becomes resonant when the two detunings A ; and A _ compensate each
other: A, = —A_. The transition is assisted by two lasers of frequency w, (red straight lines) and by the two cavity photons (blue
wiggled lines).

resonant process occurring in a cavity hosting an ensemble of spin-1 atoms Rabi-coupled to the cavity mode. In
equilibrium conditions, the eigenstates of this system compose a ‘staircase’ structure: each level, or ‘step’, is
characterized by a different photon number which is a conserved quantity in undriven conditions. In the
presence of weak coherent photonic pumping, an adiabatic variation in time of the energy levels of the atomic
degrees of freedom allows for climbing the staircase, transiting across a sequence of level crossings, and thus
preparing a desired number of photons out of an initially empty cavity. Complementarily, we also consider the
far-from-equilibrium dynamical preparation of photons in the system, suddenly switching the coherent photon
pumping as well as including natural sources of dissipation, such as incoherent cavity photon losses. We
highlight the formation of a metastable steady state in the late time driven-dissipative dynamics of photons, and
discuss the dependence of its life-time on system parameters, solving the dynamics with the inclusion of three-
body correlations between light and atomic degrees of freedom.

2. The model

We consider an optical cavity supporting a photonic mode (b in figure 1) of frequency wy, Rabi coupled via the
interaction coupling g to the atoms. The three ground energy levels, e.g. Zeeman states in an atom of hyperfine
spin F = 1([20, 21, 23]), are denoted with |+), |—), |0), and the first two are detuned upwards and downwards,
A, > 0and A_ < 0with respect to the latter, which is assumed to have a macroscopic occupation, Ny > 1. A
couple of external lasers of frequency w, can assist transitions from the two levels |0) and |+ ) to two auxiliary
levels |r) and |I), respectively, with amplitudes €2, ,. The lasers are far detuned from the transitions to the
auxiliary levels by A/, Single-atom transitions assisted by the laser r (or ) and by a cavity photon, transferring
population from the states |£) to |0) (through levels |r) and |I)) are off-resonant by an amount

0y = wy — wp — A1 However, transitions from the atomic state |0, 0) to |+, —), involving two atoms and
assisted by a virtual photon emitted into the cavity and then rescattered, are resonant if the two detunings
compensate each other, A = —A_ (aschematic of the energy levels and of the transitions is provided in
figure 1). This resonant transition is pivotal for the realization of the photonic staircase at the core of this work,
and the associated effective Hamiltonian reads

H=wny, + 6+ala+ +eala

+ A(b b+ b'b)(ara + alal). (1)

The last term embodies the photon-assisted resonance process changing simultaneously the population of the
two atomic levels |+ ). In equation (1) we have reabsorbed the large occupation, N, of the |0) level in the
coupling \; the mode |0) can therefore be treated classically, while we assume that the occupation of the levels
| ) remains small. The frequency w stands for the cavity mode frequency relative to the frequency of the lasers.
This derivation follows the lines of [37], considering N three-level atoms Rabi coupled to a single mode
optical cavity of frequency wy,. Each atom has an internal structure consisting of the three states [+), |0), | —)
(ordered with decreasing energy), and the two states | +) have a different Rabi coupling constant, g+, with the
photonic cavity mode. With the energies of detunings, A/, and 6, larger than all the other energy scales involved
in the system, one can microscopically derive, via adiabatic elimination, the hamiltonian (1). We find that
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er=DPN/A +q e = BN/A+ g,
A= gﬂfngrM/(zéAlAr): 2
where g = A, + A_ accounts for the quadratic Zeeman shift, and § ~ 8, assuming that the difference
between 0. (controlled by g) is smaller than their average. Following this procedure, one finds thata, and a_ are

collective operators summing over all the single-particle excitations of the N atoms, and they therefore have
bosonic commutation relations.

3. A staircase of photons

The hamiltonian (1) conserves the number of photons in the system, 1, = b'b, allowing for diagonalization in
sectors of the Hilbert space with fixed number of photons, n. We describe, in each of these sectors, the lowest
energy state using the variational ansatz state

ki

[W(3,)) = et helys) = eSfy), 3)

where [1)) is the vacuum state simultaneously annihilated by a.... The unitary map e® transforms the operators a.,
anda_ as

d, = e Sa e5 = cosh(¢,)a, + sinh(¢,)a’,
i = e Sra_eS = sinh(¢,)al + cosh(¢,)a_, 4)
yielding the following expectation values
(U(g,)| ara_|¥(¢,)) = cosh(4,)sinh(¢,),
(W) ala |¥(g,) = sinh’(g,). )

The latter expressions allow to compute the energy of the system, (U(¢,) | A |T(¢,)), on the ground state
variational ansatz, |¥(,)), and accordingly to find the value of the parameter, ¢*, yielding the minimum of the
energy

tanh ZQS:’; = _M. 6)
(e + €)
Using this equation we can, for instance, evaluate the population (and the coherences) of the | +) level on the
ground state |\I/(¢:)>
1—- 1 - 4NQ@n+1?
2
(aiag — sinh? Qf: _ (e-+€) ,
21 — 4X(2n+1)?
(e-+ep)?
{(a,a_) = cosh ¢ sinh ¢ = — AQn+ D . 7)
n n
(e + )1 — 4N (2n+1)?
T & « +e?
From equation (6), it follows that a real solution exists if
2A2n + 1) <1 ®)
(64 + €) ’

for parameters not satisfying this relation, the system exhibits an unstable behavior. The physical interpretation
of equation (8) is that the strength of the photon-mediated interaction must be smaller than the quadratic
Zeeman and AC Stark shifts for the system to be stable.

Indeed, a stability condition akin to (8) was already recognized in the context of coherent dissociation of a
molecular condensate into a multiple-mode atomic one [38—41]; if the molecular mode is highly occupied, one
can linearize the Hamiltonian around the latter, and describe the process of dissociation with an Hamiltonian
formally equivalent to (1) (in our system, the role of the highly occupied mode is taken by the level |0)). As a
result of this, the coupling term o<\ does not conserve the number of particles created (annihilated) by a+ (aj[)
and for couplings violating (8), the eigenvalues of (1) becomes complex [38—41] signalling an unstable character
of the dynamics (see with equation (10) below).

The procedure resulting from equation (3), is equivalent to diagonalize the Hamiltonian (1) through the
Bogolyubov rotation

al - unle,n + VndZ,m ai - undzT)n + Vndl,m (9)

with 4, = cosh qﬁj and v, = sinh (;S:‘; the angle qﬁj is, as usual, determined by requiring that off-diagonal terms
proportional, for instance, to d ,d, , and its hermitian conjugate vanish (the result coincides with equation (8)).
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Figure 2. Photons’ staircase: the ground state energy in each of the sectors with a fixed number of photons, , is one of the steps of an
energy staircase, plotted as a function of . Colors denote different bosonic occupation numbers (A = 1 andw = 2in the plot). The
dotted lines are the energies of the first few excited states in each one of the manifolds with different values of n.

We can therefore write the diagonal form of (1) in a sector with fixed number of photons, n

A=E+> ¥ [(um(e_ — )

m=1,2

2 2
+ E\/l _ W——Fl)]d,’;)nd%n, (10)

62

where the ground state energy of the system reads

Ey=wn + %6(\/1 — M — 1). (11)

62

The energy E, draws (as a function of € = ¢, + ¢_)astaircase in which each step is associated to a different value
of n. This is plotted in figure 2 together with few excited states energies (computed from equation (10)) plotted as
dashed lines.

4.Landau—Zener (LZ) theory of the photons’ staircase

The staircase structure facilitates the preparation of a desired number of photons. In order to illustrate this
aspect, we add to the hamiltonian, H,aterm, V = Q(b + b"), accounting for coherent pumping of photons into
the system at rate (2

H' =H+ Q@ + bh. (12)

Corrections to the spectrum oc(2 are plotted in figure 3, and they can be evaluated exactly diagonalizing H' for
few energy levels, using as basis the eigenstates of the unperturbed Hamiltonian |¢,) = |¥,) |n) (from now on we
have dropped the dependence from ¢ in |¥(¢5")) to lighten the notation). Our goal is to study LZ transitions
among ground state levels with different number of photons, as induced by a time-dependent control parameter,
e(t) = Ft.Itis possible to adiabatically climb the staircase without involving excited states in these transitions, if
the drive e(£) occurs at an intermediate speed F* (see detailed discussion below).

We start writing the Hamiltonian in the basis | ), where it looks tri-diagonal since the perturbation couples states
differing only by one photon; these are represented by off-diagonal terms in the following matrix representation of H'

<§0n| Hll@m> = Z E, + Z(QV” + 1 (W) Oyt

QBT ). (13)
The overlap (¥,| ¥, ;) is calculated following [43] as (see also appendix)
(| W, ) = (e @Guaial+he)e(@p aial —he)y
1
B cosh(¢,,, — (;Sn).

In order to gain intuition for the perturbative corrections induced by a weak photon pumping on the photon
staircase spectrum, we first consider a simple perturbative analysis in the parameters’ regime 2, A < ¢.In this

(14)
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Figure 3. Left panel: energy level repulsion at weak photon pumping 2 = 0.1; different photon numbers are indicated over the energy
curves of the staircase as a function of €. The parameters A = 1,w = 2 are the same as in figure 2. Similar staircase structures are
observed in the current—voltage characteristic of the Coulomb blockade [42]. Inset: zoom of the avoided crossing between the energies
of the states |¥y(¢)) and |¥;(¢)) as a function of e. Right panel: probability (as a function of the ramp speed, F) to remain in the ground
state with zero photons (blue line; P,— g, —0,m,—0), to transit into the ground state with one photon (green line; P, ;u,—0,m,=0)> to
transit into the first excited state of the manifold with one photon (red line; B,—1 sy —1,m,=1), starting from the ground state of the
manifold with zero photons. There exists an intermediate window of ramp speeds, F ~ 107> < F* < 107!, where the transition
occur between ground states, without involving higher excited ones (we have checked that this scenario remains basically unaltered
when we add the next excited state in our analysis, see figure 6 in the appendix). When the drive is too fast (large F), the system remains
instead frozen in the ground state with zero photons, as expected.

limit, the overlap reads <<pﬂ|I; lg,41) = VA (1 — 2)*/€?),and the ground state energies, E, = wn —

X/e(2n + 1)% Let us now consider an energy level E,,, with photon number 1, crossing with a level with energy E,,/
andn’ = n + 1;attheir intersection, occurringat £ ~ ¢ ., astraightforward application of degenerate
perturbation theory in €2, yields an energy splitting

2
AE, v~ 20 Jn + 1(1 1 v ) (15)

32(n + 12 X

Beyond this simple analysis, an exact numerical evaluation of the eigenvalues of the energy matrix (13),asa
function of ¢, provides the energy level structure portrayed in the left panel of figure 3. A small pumping rate, €2,
is sufficient to induce an effective energy level repulsion reshaping the staircase structure into a sequence of
avoided crossings between ground states with different photon numbers. We remark that, although the coherent
photon pumping does not commute with the unperturbed Hamiltonian (1), [V, H] = 0, its effect, for small €2,
is negligible for values of e away from the crossing points &, ,, and in these regions we can still effectively
consider 7, a good quantum number.

According to this structure, an adiabatic climbing of the staircase from a state with zero photons (blue line in
the left panel of figure 3) to a state with a certain photonic population, can be designed as follows: we start from
the ground state with zero photons and given initial ¢y at time f, = 0, and we drive linearly in time the control
parameter €(f) = Ft, with rate F; following the argument presented above, the drive can induce a transition to
the ground state with one photon as e(¥) approaches the crossing point located at € =~ ¢ ; (see the zoom of the
crossing among Ey and E; in theregion 5.5 < € < 7:inset of left panel of figure 3).

For this LZ analysis, transitions involving excited states do not play a significant role. For instance, the
transition from a ground state with # photons into the first excited states of the next photonic manifold, such asa
transition from |¥,) to df)n 41 dzT, w1l Tat1), OF to (df,n )? (di wi 1)W1 1), are assisted by matrix elements of the
perturbation H', which are smaller than the one connecting the two ground states. This is shown in the
appendix: equations (A5) and (A6) display the matrix elements for the transition between the ground state and
these two excited ones, and they should be compared with equation (14), reporting the overlap between ground
states. The overlaps involving excited states are always smaller by a factor proportional to increasing powers of
tanh(¢,,, — ¢,) (a quantity always smaller than one) as higher excited states are considered. In particular, as €
grows large (i.e. (f) increases, while the photonic manifolds of the staircase are explored) these overlaps are
suppressed algrebraically in 1/e. We have numerically explored the specific case of the transition between the
ground states of the first two photonic manifolds (n = 0 and n = 1) in the right panel of figure 3 including the
first excited state, and found that the weaker coupling to excited states discussed above, results into the
possibility to perform adiabatic transitions among ground states. In figure 6 of the appendix we show that the
quantitative features of this adiabatic transition remain unaltered upon inclusion of the next excited state.

The right panel of figure 3 shows that a slow ramp would favor the transition to the first excited state of the
manifold with one photon, but at intermediate ramp speeds, instead, the probability to transit into the ground
state | U) is the dominant one. As (t) increases further, the subsequent transitions will basically occur between
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0+

Figure 4. The number of photons increases by a quantised value, as (t) is driven through an energy level splitting with the optimal
speed F*, which allows direct transitions between ground states of adjacent photonic manifolds.

ground states of manifolds with different photon numbers (if the ramp is moderately slow), since, as discussed in
the paragraph above, for € > 1 the matrix elements of the operator controlling the transition, H', become
parametrically smaller than those connecting ground states |,) and |, , ;) (see also the explicit expressions of
these overlaps in the appendix, equations (A5) and (A6)). Therefore, a sequence of LZ-like transitions allows to
climb the staircase and to achieve a target number of photons.

We observe that the jumps between the steps of the staircase characterized by different integer values of
photons (see figure 4), and explored as e(#) is increased in time, recalls the current—voltage staircase profile
observed in the phenomenon of Coulomb blockade [42]. Although the underlying mechanism is different, the
two cases share the feature that every step of the staircase corresponds to a state with distinctly resolved physical
properties: in our quantum optics set-up, for intervals of e away from avoided crossings, each step of the staircase
is associated to a fixed and quantised number of photons with negligible fluctuations.

Naturally, in the case of LZ photon preparation we expect that dissipation will classicalise the state of light at
late times, but the staircase structure of the photonic response (see figure 4) guarantees that, at intermediate
times, the light degree of freedom will be found in a quantum state with a well defined number of photons and
few fluctuations on the top of them, provided the time tsto implement the LZ ramp satisfies the condition
tr < 1/k. Furthermore, in order to have an adiabatic ramp and to remain in a weak photon pumping regime, we
require also that ¢, > 1/ . Since the coupling strength A depends on the power in the optical drive fields and on
detunings from atomic and cavity resonance, the ultimate limits are set by atomic and cavity parameters.

In particular, climbing the staircase requires large collective cooperativity N, C, where C = 4gi / (kI isthe
single-atom cooperativity given the atomic excited-state linewidth I'. This requirement is derived from the
scaling with ) of the atomic spontaneous emission rate I, ~ A/ (N, Ck) and of Raman scattering into the
cavityatratey ~ A /6. Atan optimal detuning § ~ JNV;C  from Raman resonance, the coupling-to-

dissipation ratio scales as A / (v + ') ~ JN,C. Thus, the requirement A > & for climbing the staircase can be
satisfied for large collective cooperativity NyC >> 1. Collective cooperativities NyC > 10* are routinely
achieved with atomic ensembles in optical cavities, making the staircase accessible to current experiments.

5. Driven-dissipative dynamics

We now consider the competition between coherent pumping and photon losses, occurring at rate « and
described by the jump operator L = b (photon losses occurring during the intermediate processes contributing
to the two-body resonance described in figure 1 are negligible in the far resonance regime § >> 1 as discussed in
[21]). In particular, we will explore dynamics for times ¢ >> 1/, where light becomes Poissonian as result of
decoherence, at variance with the conditions discussed at the end of the previous section (we will still assume
large cooperativity and 6 > 1, though).

We consider a sudden switch of coherent pumping at times ¢ > 0 to counterbalance cavity losses. We
prepare the system in the ground state of (1) with zero photons, [¥(¢})), and we consider the time evolution
ruled by the following set of equations of motion for the expectation values of the ‘molecular’ degrees of

freedom: atomic coherences, C. = alaj =+ a_a,,and populations, P = alg c+ata
idiiCtJ = —€(Cy) = 2AQ2(n) + 2(P) + 2(n)(P) + 1) — 4A(b'P) (b) + (bP) (b)),
d{Cy)
o (),
.d(P)
g = AMEI () + AT () + (b)) (16
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coupled to the dynamics of photons

i 2 — i) - 2ne) 0) - 2 0e, S —iaqe) - () - w(a),
d(j:>c _ _2iw<b2>c — /<;<b2>c — 4iX(Cy) <b2>c — 4\ (D) (bC.)., a7

where we have assumed the atomic and photonic degrees of freedom to be in a Gaussian state, and we have
included terms describing three-body correlations between light and matter degrees of freedom, such as
(bCy). = (bCy) — (b)(Cy). The equation of motion for the latter reads

d <bc+>c
dt

= —(k/2 + i) (bCy) + i€ (bC) — 2NCL)((BCs)e — (b (C.)). (18)

During driven-dissipative dynamics the magnitude of three-body correlations between light and matter in
equations (16) and (17) remains small, with the consequence that the two sectors are almost dynamically
decoupled. This allows the number of photons to relax towards a steady state value, #n*, while the atomic
excitations, (P), are still slowly growing as a consequence of the pumping. The steady-state number of photons
generated is predicted by the formula

o Q K(Q2 + 2ARe(bC.)*) + 4Aw Im(bC,)*
ok (k/2)? + w?

, 19

where (bC., ¥ is the asymptotic steady state value of (bC. ). The time scales separation in the dynamics of light
and matter degrees of freedom is at the origin of the metastability of the plateau reached at long times by (n). In
fact, a slow growth of (P) (occurring while the photons’ steady state is already established), provokes a growth in
(C, ) aswell, which acts as a source in equation (18) ruling the dynamics of (bC, ). Therefore, the combination of
bare photon pumping controlled by €2, and of effective pumping induced by three-body light-matter
correlations, determines at later times an increase of (1), which can drive the system beyond the parameters’
region delimited by the condition in equation (8), where eigenenergies become imaginary (the associated critical
value of the interaction strength A in (8), is renormalised to a lower value after the inclusion of three-body light-
matter correlations).

At the time scales for the departure from the metastable steady state, also the atomic and photonic
correlations, evolving, respectively, under equations (16) and (17), experience a quick, diverging growth. The
characteristic time, #,, for the departure from the metastable photonic steady-state is proportional to €2: in
figure 5 we portrait time-resolved profiles of (n) at increasing pumping rates, §2, and we illustrate the
metastability of the dynamics of (n) as {2 becomes sufficiently large. Fitting the breakdown time #, of the
photonic plateau one finds that #;, oc €%/, which can be controlled both via the quadratic Zeeman and AC Stark
shifts, and the occupation of the mode |0), as it can be realised by inspection of equations (2).

The inset of figure 5, displaying the average number of photons as function of {2, demonstrates instead that
the quantization of n typical of the staircase structure (still present when the photonic pumping is adiabatically
switched and photons generated via slow LZ transitions) is lost when pumping and dissipation are suddenly
turned on, since ground and excited states of the staircase are strongly mixed in this case.

Photon generation using ramps and LZ transitions are indeed more efficient than the sudden switching of
photon pumping: in each one of the plateaux of figure 4 the photonic degree of freedom is in a state with fixed
and quantised number of photons, 1, provided dissipation, &, is weak enough to affect the dynamics of the
system only at late times (see discussion at the end of section 4). On the contrary, suddenly switching the photon
pumping results in a transient dynamics with no quantised photon number (see figure 5), which asymptotes toa
plateau where quantum features have been erased. Specifically, we have resolved the dynamics of our model
combining a Gaussian ansatz for the atoms, as done in equations (16), with a truncated ansatz for the density
matrix of thelight, p = 3°,  p,.In) (ml, withn,m = 1,..Mand M = 11 (see appendix). Although in the
plateaux shown in figure 5 the presence of the atomic degrees of freedom sizeably enhances the asymptotic
expectation value of (n) compared to the decoupled (A = 0) case (and therefore the system is in a state where
light and matter are hybridized), the light generated is classical, as we have checked by calculating the photonic
variance, An* = (n*) — (n)?, from the density matrix ansatz, p, found always very close to (1)—a signature of
the classical nature of the light produced in the cavity. This occurs for times ¢ >> 1/k, when the system has
reached the steady state and at the same time the dissipation has washed out any quantum feature present at
short times (see appendix).
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) 5 10 15 20 25 30 t

Figure 5. Dynamics of the photon number, (), for increasing values of 2. The blue (2 = 1.2), purple (2 = 1.53), orange (2 = 1.83),
curves correspond to the formation of n* ~ 1, 2, 3 photons, respectively (in this figure: ¢ = 10,w = 1, A = 0.1,k = 1). WhenQ ~
2.03 (red curve), the departure from the metastable photonic plateau (with n* =~ 4) occurs on time scales which can be resolved. Inset:
time average, n*, of (n) in the plateau as a function of the photonic pumping, 2. The fit is parabolic, n* = a2, witha = 0.85.

6. Perspectives

As afuture direction, it would be interesting to study a many-body version of the problem analysed in this work,
which can be realised, for instance, considering a one-dimensional lattice of several cavities (modeled as in figure 1),
connected one to each other by next-neighbor photonic hoppings (in the spirit of an Hubbard model; see for similar
ideas in quantum optics the review in [44]). Studying the competition of this kinetic term with the driving and
dissipation discussed in this work, would pave the way to a quantum many-body simulator for the preparation of
multi-photon states, which would benefit of the tunability properties of the photons’ staircase as a leverage for
experimental implementations. It would be, for instance, intriguing to look for driven-dissipative phase transitions
in this many-body version of our system following the directions mentioned in the introduction.
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Appendix A. Matrix elements for the LZ transition

In this section of the appendix we detail the calculation of the matrix elements of the perturbation V connecting
ground and excited states of the staircase, involved in the study of the transitions in figure 3. The squeezed ground
state (3) can be represented in the Fock basis of the occupation numbers of the modes, a, as (see for instance [43])

|\I/n> =
C

1
S Do) 1L, (A1)

n 1

where ¢,, is the squeezing angle for a fixed number of photons, n. We describe the excited states of the system
using the quasiparticle creation operators d,', and d; , introduced in equation (9). We represent these operators
inverting the Bogolyubov rotation (9):

dﬁn = u,,ai — Va_, d;n = —vya, + uya’. (A2)
Any excited state of the system can be represented as
Ik, K, 1) = (d,)*(d3,)"16,), (A3)

withk > Oandk’ > 0.
In equation (12) we introduced a term accounting for coherent pumping of photons into the system at rate
0,V = Q(b" + b). This term introduces mixing between the ground state in the sector with n photons and

8
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Figure 6. Parameters of the plot: A = 1,w = 2, = 0.1. Probability (as a function of the ramp speed, F) to remain in the ground state
with zero photons (blueline; B,—¢,m,—0,m,=0), to transit into the ground state with one photon (green line; P,—, ;u,—0,m,=0), to transit
into the first excited state of the manifold with one photon (red line; P,—1,;;—1,m,—1); to transit into the second excited state of the
manifold with one photon (purple line; B, =2, m,—2) starting from the ground state of the manifold with zero photons. There exists
an intermediate window of ramp speeds, F =~ 107> < F* < 107!, where the transition occur between ground states, without
involving higher excited ones. When the drive is too fast (large F), the system remains instead in the ground state with zero photons, as
expected, while at lower speeds, the system transits always into the state |2, 2, 1).

excited states in the sector with #n + 1 photons. In order to account for this effect, we calculate the overlap of the
excited states in the sector with 1 4 1 photons with the ground state of the manifold with # photons, |¢,).

First of all, we notice that the overlap between the excited states with k quasiparticle excitations of only one
type, and the ground state in the neighboring sector, is equal to zero for any number of excitations (k > 0):

(0, 0, n + 1|(b" + b)|k, 0, n) = Qn + 1(0, 0, n + 1| (d1,,)*]0, 0, n) = 0. (A4)

This is a consequence of the fact that the ground state (A1) can be written as a superposition of states with the

same number of excitations in the (&) sectors of the Fock space of the original degrees of freedom of the model.
The non-zero overlaps with excited states induced by the perturbation operator V'is between the state with

k quasiparticles in both (+) modes, (0, 0, n + 1|(b" + b)|k, k, n). The first non-trivial overlap is

Vi = ©(0, 0, 0]1, 1, 1). We calculate this overlap using the representation (A1)

AT At
‘/1,1’1 - Q<0, 0, Oll, 1, 1> - Q<¢0| dl,(?’lil) d2,(1’l:1)|¢1>

= WZ(tanh ®,) (tanh d)" (U, U(—vpay + unai)(unal — vpa )|l 1)
0 1LY

Q

= S (tanh¢y) (tanh @) (=80 2l + Duiyvy + Syl + Vw2 + 8y yilv?
coshgbocoshgbl%:( ®p) (tanh ¢))" (=0 ( ) i+ 1) ri-1bvy)

I (—cosh ¢y sinh ¢y > (2] + 1)(tanh ¢! (tanh ¢,)" + tanh ¢, (cosh ¢)?
cosh ¢, cosh ¢, =0

X Y (I + 1)(tanh ¢y) (tanh ¢,)’
1

+ tanh ¢ (sinh ¢y)* > (I + 1)(tanh ¢y)'(tanh ¢))') = —Qw. (A5)
] cosh(¢, — ¢,)

Analogously, we calculate the overlap

_ ZQ(tanh(QSO - d)]))z )
cosh(¢y — ¢))

In these expressions one can recognise the overlap between the ground states of adjacent photonic
manifolds, given by equation (14).

These overlaps allow to solve the LZ problem reported in figure 3(b), and to check that adding the next
excited state |2, 2, 1), the feature of an intermediate window of ramp speeds where the transition occurs only
involving ground states, remains substantially unaffected. This is reported in figure 6 of this appendix.

From the expressions (A5) and (A6) and the definition (6), one can realise that, at large ¢, they both become
parametrically small, while the overlap between ground states (14) approaches a constant, as stated in the main text.

At At
Vipn = Q<0> 0, 012, 2, 1) = Q<(/5o| (dl,(nzl))z(dz,(n:1))2|¢1> (A6)

Appendix B. Combined Gutzwiller and Gaussian ansiitze for driven-dissipative dynamics

In this section of the appendix we summarise the calculation of the photon variance Ar?, for which we resort to
the following ansatz for the system density matrix:

9
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Figure 7. Dynamics of the difference An? — (n),for Q2 = 1.53,¢ = 10,w = 1, A = 0.1,k = 0.1, and initial conditions
p(t = 0) = 10)(0] ® [Wo) (Y-

ppt® pg, (BI)

where p(, is a Gaussian ansatz density matrix for the atomic degrees of freedom, while for the photonic degree of
freedom we write a density matrix in a bosonic Hilbert space truncated up to M bosons:

p =3, ) (], (82)

withn, m = 1,... M (weuse M = 11 in the following calculations). This is in spirit similar to the Gutzwiller
ansatz employed in [45] for the dissipative dynamics of bosons. Inserting the ansatz (B1) in the Lindblad
equation

p=—ilH, p] + r(LpL’ = Z(L'L, p)), (B3)

with L = bincoherent photon losses at rate «, we find that the equation of motions for the two-point functions
of the atomic degrees of freedom follow equations (16) (with three-body correlations set to zero), with the
difference that now (n) = Zi\il P,.» while the equations (17) for the one and two-point functions of the photon
are replaced by the M* — 1 linear system of equations of motion for the matrix elements of p;,. As initial
conditions, we consider p(t = 0) = |n) (n| ® |¥,) (¥,|. These equations appear cumbersome for large M, but
they can be readily derived. Here, for illustrative purposes, we write down the equations of motion for the
population of the n = 0 mode, py, and for the first coherence, py;:

dp .

d—:O =P — IQ(P:; = Po)s

d .

% = ’Y(ﬁplz - %) —i(Qp — ﬁonz — (W =+ 2M(C ) py; — Qpgo)- (B4)

As a sanity check we benchmarked our predictions for () in the exactly solvable case, A = 0.
The variance is then straightforwardly written in terms of the matrix elements of p,,

An? = <n2> - <I’l>2 = (anpnn] - [annn) . (B5)

An instance of the dynamics of An? — (n)is reported in figure 7, showing that at late times, An? ~ (n). This
circumstance is independent from the specific choice of parameters adopted.
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