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ABSTRACT: The polynomial chaos expansions (PCE) pro-
vide stochastic representations of quantities of interest (QoI)
in terms of a vector of standardized random variables that
represent all uncertainties influencing the QoI. These uncer-
tainties could reflect statistical scatter in estimated proba-
bilistic model (of which the mean, variance, or PCE coef-
ficients are but examples), or errors in the underlying func-
tional model between input and output (e.g. physics mod-
els). In this paper, we show how PCE permit the evaluation
of sensitivities with respect to all these uncertainties, and
provide a rational paradigm for resource allocation aimed at
model validation. We will demonstrate the methodologies
on examples drawn across science and engineering.

1. INTRODUCTION

Sensitivity analysis aims at investigating the influence
of small changes in independent parameters on system out-
put. It has proven significant for ranking random inputs
[1]. Traditionally, sensitivity approaches can be classified
into three categories: variogram-based, regression-based,
and variance-based methods. For instance, Sobol sensitiv-
ity analysis is a well-known variance-based approach [2].
In critical engineering applications, the sensitivity of proba-
bility density function (PDF) of the output to the additional
information or additional numerical accuracy is relevant for
resource risk assessment and management. These sensitiv-
ities are not readily attainable through standard sensitivity
methods, and are developed in this paper.

PCE is an uncertainty quantification method that has
been widely used in many areas with demonstrated robust-
ness and computational efficiency. PCE has already been
integrated within a Sobol sensitivity framework for un-
certainty ranking and computational cost mitigation [3,4].
These approaches, however, have come short of assessing
the error propagation through the PCE representation to the
output PDF.

In this paper, the sensitivity of PDF using PCE is inves-
tigated and demonstrated on a reduced probabilistic struc-
tural mechanics problem. The proposed approach provides
a rigorous framework to simultaneously analyze the influ-
ence of modeling uncertainties, data uncertainties, and nu-

merical errors, on the PDF of the predicted response. The
object is to find: ∆ fX(x) = ∑

i

∂ fX (x)
∂Pi

∆Pi, where fX(x) and

∆ fX(x) are, respectively, the PDF and change in PDF of the
output, whereas Pi and ∆Pi refer, respectively, to the ith sta-
tistical parameter of a random input and to its increment.

2. PHYSICAL MODEL

To provide insight into the proposed methodology, a sim-
ple structural mechanics problem is studied. The physi-
cal model characterizing the mid-span displacement X of
a simply-supported beam with concentrated load acting in
the middle is expressed as a function of X = χ(K), where
the input K = (k1,k2,k3,k4) is a point of the random inputs
in a four-dimensional vector space that characterize the lin-
ear spring instead of the pinned support, rotational spring
instead of the roller suport, elastic modulus and beam span,
respectively. Fig. 1 depicts the physical setup.

Figure 1: Schematic of the physical setup: Random beam on
random supports.

The four random variables are assumed to be indepen-
dent and to follow a beta distribution. Their statistical infor-
mation is shown in Table 1 where the two shape parameters
and lower and upper bounds in Beta distribution are denoted
by a, b, q, r, respectively.

Table 1: Statistical parameters of Beta random inputs
K a b q r

Linear spring k1 (N*m) 2 2 350 650
Rotational spring k2 (N*m/rad) 2 2 400 600
Bending stiffness k3 (N/m*m) 2 2 80 186.67

Beam span k4 (m) 2 2 0.216 0.264

The d-dimensional vector (d=4) of random parameters K
is expressed as a mapping from a d-dimensional vector of
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standard Gaussian variables ξ = (ξ1,ξ2,ξ3,ξ4). This map-
ping is obtained through the Rosenblatt transformation.

3. REPRESENTATION OF SOLUTION: PCE

The mid-span displacement X depends on ξ ∈ Rd through
the Rosenblatt transform, and can thus be represented in a
PCE decomposition of the form,

X(ξ) = ∑
|α|≤p

Xαψα(ξ) (1)

where Xα and ψα denote the PCE coefficients and PCE
basis, respectively. Further, p denotes the highest order
in the polynomial expansion, and α is a d-dimensional
multi-index. In order to emphasize their dependence on the
PCE representation, we denote realizations of X synthesized
from its PCE using the sample ξ(i) of ξ by,

x(ξ(i),Xα) =
P−1

∑
α=0

Xαψα(ξ
(i)). (2)

The PC coefficients Xα are calculated as quadrature approx-
imations to multidimensional integrals as follows,

Xα = ∑
q∈Q

X(ξq)ψα(ξ
q)wq, |α| ≤ p , (3)

where, Q is the set of sparse quadrature points, q is a
quadrature node in Q and wq is the associated weight. The
number of these coefficients, denoted by P, is given by
P = (d + p)!/(d!p!). Using a level 2 quadrature rule in di-
mension d = 4 reqsults in a set Q with 1,265 quadrature
nodes. In our present example, d = 4 and p = 3 with a re-
sulting valule of P = 35. Evaluating Eq. 3 at all quadrature
nodes and organizing the results into matrix form yields,
Xα = ΨXT wq, where, Ψ, X, wq are 35× 1265, 1× 1265
and 1265×1 matrices, respectively.

4. REPRESENTATION OF PDF: KDE

Kernel Density Estimation (KDE) is used to build the prob-
ability density function (PDF). Let fX(x) denote the PDF
of mid-span displacement computed by KDE using samples
generated by PCE calculated by,

fX(x) =
1

Nh

N

∑
i=1

K

(
x− x(ξ(i),Xα)

h

)
(4)

where N is the number of PCE evaluations and x(ξ(i),Xα) is
a realization evaluated at a sample ξ(i). The Gaussian ker-
nel is used for K with the bandwidth h determined following
Silverman’s rule as h = (4σ5/3N)1/5, where σ is the stan-
dard deviation estimated from the N samples. Clearly, the
centers x(ξ(i),Xα) of the Gaussian mixture representation

given by equation (4) depend on the PCE coefficients of X
and we thus have a functional dependence between these
coefficients and the PDF of X .

Thus, after the PC expansion of X has been evaluated
we proceed as follows. We first generate N = 106 samples
of Gaussian random variables ξ(i), i = 1,2, ...,N. We then
evaluate the polynomial chaos expansion at each of these
points using Eq. 2. We then form the sum in equation (4)
to evaluate the PDF. We will next explore the sensitivity of
the evaluations in this last step to perturbations in the PCE
coefficients that could stem from a number of sources.

5. SENSITIVITY ANALYSIS
5.1 Sensitivity of PDF to PCE coefficients
The sensitivity of PDF to PCE coefficients denoted by
fX ,α(x) is given by,

fX ,α(x) =
∂ fX(x)

∂Xα
, |α| ≤ p. (5)

Taking the partial derivative of fX(x) with respect to Xα and
substituting into Eq. 5, results in,

fX ,α(x) =
1

Nh

N

∑
i=1

1
h

[
K

(
x−X(ξ (i),Xα)

h

)]

×

(
x−X(ξ (i),Xα)

h

)
ψα(ξ (i)), |α| ≤ p. (6)

Figure 2: fX ,α(x), |α|= 1 (or p = 1)

Fig. 2 shows the results computed using Eq. 6 for fX ,α(x),
|α|= 1 as an example. The figure shows that the largest sen-
sitivities in the first order (p = 1) are fX ,α2(x) and fX ,α4(x).
Similarly, although the results are not shown for brevity,
it is found that for p = 2, fX ,α9(x), fX ,α11(x), fX ,α14(x) are
the dominant ones. For p = 3, fX ,α27(x), fX ,α25(x), fX ,α30(x)
are the dominant sensitivities. For p = 0, there is fX ,α0(x)
which is the mean, thus most sensitive among all fX ,α(x).
Moreover, the polynomial chaos of these dominant sensitiv-
ities are associated with either ξ2 or ξ4, as shown in Table 2.
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Therefore, in this problem, the PDF of output is more sen-
sitive to the PCE terms with respect to the inputs ξ2 and ξ4
associated with random rotational spring and random span.

5.2 Sensitivity of change in PDF to change of statistical in-
formation of random variables
When additional information is acquired, the statistics of the
random inputs changes, and the values of the parameters
shown in Table 1 are perturbed. We next investigate how
these changes influence the PDF, in other words, we seek to
evaluate the contributions to ∆ fX(x) = ∑

i

∂ fX (x)
∂Pi

∆Pi.

Table 2: Polynomial chaos of dominant sensitivities
p 0 1 1 2 2
PCE basis ψ0 ψ2 ψ4 ψ9 ψ11
Polynomial
chaos

1 ξ2 ξ4 ξ 2
2 −1 ξ2ξ4

p 2 3 3 3
PCE basis ψ14 ψ27 ψ25 ψ30
Polynomial
chaos

ξ 2
4 −1 ξ 2

2 ξ4 −ξ4 ξ 3
2 −3ξ2 ξ2ξ 2

4 −ξ2

Assume that because of additional data, the values of a and b
are increased respectively by 50% and 10% for k1,k2,k3,k4,
while q and r are unchanged. Let us denote this perturba-
tion of information by ∆P = {∆Pi, i = 1,2...,8} with the
description of each Pi as shown in Table 3;

Table 3: Description of statistical information Pi

Pi P1 P2 P3 P4 P5 P6 P7 P8
Variable k1 k1 k2 k2 k3 k3 k4 k4

Parameter a b a b a b a b
Value 3.0 2.2 3.0 2.2 3.0 2.2 3.0 2.2

5.2.1 Derivation of important sensitivities
In the previous section, we derived and studied the sensitiv-
ity of PDF to PCE coefficient, ∂ fX (x)

∂Xα
. Thus, the change in

PDF can be expressed as

∆ fX(x) = ∑
|α|≤p

fX ,α(x)∆Xα . (7)

It should be noted that perturbations to PCE coefficients are
not only due to changes in Pi’s but are also often associ-
ated with numerical errors inherent in any quadrature rule.
We denote these errors by ∆Xα|L j where L j refers to the jth

quadrature level used in the approximation. We also use the
notation ∆Xα|L j = Xα|L j+1 −Xα|L j . Thus we finally have,

∆Xα =
8

∑
i=1

∂Xα

∂Pi

∣∣∣∣
L j

∆Pi +∆Xα

∣∣∣∣
L j

. (8)

Thus, the sensitivity of a PCE coefficient to a statistical pa-
rameter ∂Xα

∂Pi
|L j using a jth level of quadrature, is given by,

∂Xα

∂Pi

∣∣∣∣
L j

= ∑
q∈Q

(
∂X
∂Pi

∣∣∣∣
L j

(ξ q)

)
ψα(ξ q)wq (9)

and the sensitivity ∂X
∂Pi

|L j(ξ q) using jth level quadrature is
computed as,

∂X
∂Pi

∣∣∣∣
L j

(ξ q) =
X(P ,ξ q,L j)−X(P +∆Pi,ξ q,L j)

∆Pi
, (10)

where X(Pi,ξ q,L j) is the solution evaluated using quadra-
ture L j, at quadrature node ξ q, with statistical parameters
Pi.

5.2.2 Results
According to Eq. 7-10, the results of how the change of sta-
tistical information of k1, k2, k3, k4 influences the change of
PDF of beam mid-span displacement are computed.

Fig. 3a shows the total effect of ∆P on ∆ fX(x) and
Fig. 3b shows the PDF’s with respect to P and P +∆P . Ac-
cording to Eq. 7-8, the contribution of each Pi, i = 1,2...,8
to ∆ fX(x) can be expressed as

∆i fX(x) = ∑
|α|≤p

fX ,α(x)
∂Xα

∂Pi

∣∣∣∣
L j

∆Pi, i = 1,2...,8. (11)

In addition, the change of PDF of output contributed by er-
ror from jth quadrature can be expressed as:

∆L j fX(x) = ∑
|α|≤p

fX ,α(x)∆Xα|L j (12)

Fig. 4 shows the results of ∆i fX(x), i = 1,2...,8. It shows
that: (1) For each random input, a contributes much more
than b; (2) The contributions from a and b to PDF are in
opposite phases; (3) The contribution from the four random
inputs is ranked as: k2 > k4 > k3 > k1.

Fig. 5 shows the result of ∆L2 fX(x) which is the change
in PDF of output induced by second level quadrature. Com-
paring ∆L2 fX(x) and ∆i fX(x) in Fig. 5 and Fig. 4, it shows
that except for P3 and P7, the error from quadrature is quite
significant compared with change of all other statistical in-
formation. In other words, the change of PDF of output
can be not completely from the change of statistics of ran-
dom inputs while the error in quadrature rules also has non-
negligible contribution. The error from quadrature rules,
however, is only significant for low levels of mid-span dis-
placement and is insignificant when larger displacements
are of interest.

6. CONCLUSIONS

Sensitivity analysis based on part of output statistics (e.g.
variance) cannot provide a comprehensive description of the
response in an engineering application. On the other hand,
PCE has shown its efficiency and accuracy in the area of
stochastic computational mechanics. Therefore, sensitivity
of the complete PDF of response with respect to the uncer-
tainties in the inputs data is proposed using PCE. Moreover,
the error induced by quadrature is very significant to take
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into account, especially in complex applications where high
quadrature level is needed. The methodology is demon-
strated in this paper on a reduced model from structural me-
chanics. The perturbation to the model induced by updat-
ing the statistics of input parameters is propagated through
the surrogate model and its influence on the PDF of the re-
sponse is investigated. Error caused by quadrature rules is
quantified. The ranking of importance of random inputs is
obtained and is found to be reflected in the PCE coefficients.
Three important sensitivities: ∂X

∂Pi
|L j(ξ q), ∂Xα

∂Pi
|L j ,

∂ fX (x)
∂Xα

are
derived which jointly can be used to investigate the propa-
gation of uncertainty in inputs statistics to the complete PDF
of output, capturing error from quadrature rules. These sen-
sitivities could also be useful for other general sensitivity
analysis using PCE in the future.

(a) Change in PDF of output resulting from change of statistical
information of inputs

(b) Comparison of PDF of output before and after change of ∆P

Figure 3: Influence of change of statistics of inputs on PDF of
output

The PDF-based sensitivity analysis methodology presented
in this paper will be further demonstrated during the pre-

sentation on a the development of hazard maps for tsunami
run-up and on the design under uncertainty of a scramjet.

Figure 4: ∆i fX (x) contributed from each Pi, i = 1,2...,8

Figure 5: ∆L2 fX (x) contributed from ∆Xα|L2
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