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ABSTRACT: The polynomial chaos expansions (PCE) pro-
vide stochastic representations of quantities of interest (Qol)
in terms of a vector of standardized random variables that
represent all uncertainties influencing the Qol. These uncer-
tainties could reflect statistical scatter in estimated proba-
bilistic model (of which the mean, variance, or PCE coef-
ficients are but examples), or errors in the underlying func-
tional model between input and output (e.g. physics mod-
els). In this paper, we show how PCE permit the evaluation
of sensitivities with respect to all these uncertainties, and
provide a rational paradigm for resource allocation aimed at
model validation. We will demonstrate the methodologies
on examples drawn across science and engineering.

1. INTRODUCTION

Sensitivity analysis aims at investigating the influence
of small changes in independent parameters on system out-
put. It has proven significant for ranking random inputs
[1]. Traditionally, sensitivity approaches can be classified
into three categories: variogram-based, regression-based,
and variance-based methods. For instance, Sobol sensitiv-
ity analysis is a well-known variance-based approach [2].
In critical engineering applications, the sensitivity of proba-
bility density function (PDF) of the output to the additional
information or additional numerical accuracy is relevant for
resource risk assessment and management. These sensitiv-
ities are not readily attainable through standard sensitivity
methods, and are developed in this paper.

PCE is an uncertainty quantification method that has
been widely used in many areas with demonstrated robust-
ness and computational efficiency. PCE has already been
integrated within a Sobol sensitivity framework for un-
certainty ranking and computational cost mitigation [3,4].
These approaches, however, have come short of assessing
the error propagation through the PCE representation to the
output PDF.

In this paper, the sensitivity of PDF using PCE is inves-
tigated and demonstrated on a reduced probabilistic struc-
tural mechanics problem. The proposed approach provides
a rigorous framework to simultaneously analyze the influ-
ence of modeling uncertainties, data uncertainties, and nu-

merical errors, on the PDF of the predicted response. The
object is to find: Afy(x) = Zagxp(ix) AP;, where fx(x) and

]

Afx(x) are, respectively, the PDF and change in PDF of the
output, whereas P; and AP, refer, respectively, to the /" sta-
tistical parameter of a random input and to its increment.

2. PHYSICAL MODEL

To provide insight into the proposed methodology, a sim-
ple structural mechanics problem is studied. The physi-
cal model characterizing the mid-span displacement X of
a simply-supported beam with concentrated load acting in
the middle is expressed as a function of X = y(K), where
the input K = (ky,k2,k3,k4) is a point of the random inputs
in a four-dimensional vector space that characterize the lin-
ear spring instead of the pinned support, rotational spring
instead of the roller suport, elastic modulus and beam span,
respectively. Fig. 1 depicts the physical setup.

Figure 1: Schematic of the physical setup: Random beam on
random supports.
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The four random variables are assumed to be indepen-
dent and to follow a beta distribution. Their statistical infor-
mation is shown in Table 1 where the two shape parameters
and lower and upper bounds in Beta distribution are denoted

by a, b, g, r, respectively.
Table 1: Statistical parameters of Beta random inputs

K a|b q r
Linear spring k; (N*m) 2 12| 350 650
Rotational spring k» (N*m/rad) | 2 | 2 | 400 600
Bending stiffness k3 (N/m*m) | 2 | 2 80 186.67
Beam span k4 (m) 21210216 | 0.264

The d-dimensional vector (d=4) of random parameters K
is expressed as a mapping from a d-dimensional vector of



standard Gaussian variables &€ = (&;,&,,&3,&4). This map-
ping is obtained through the Rosenblatt transformation.

3. REPRESENTATION OF SOLUTION: PCE

The mid-span displacement X depends on & € R¢ through
the Rosenblatt transform, and can thus be represented in a
PCE decomposition of the form,

X&) =) Xava() (1)

lae<p

where X, and y, denote the PCE coefficients and PCE
basis, respectively. Further, p denotes the highest order
in the polynomial expansion, and « is a d-dimensional
multi-index. In order to emphasize their dependence on the
PCE representation, we denote realizations of X synthesized
from its PCE using the sample £() of £ by,

P—1
x(g(i),Xa) = Z XaWa(g(i))‘

a=0
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The PC coefficients X,, are calculated as quadrature approx-
imations to multidimensional integrals as follows,

Xo = Z X(&")Wa(&T)wy,

q€Q

ol <p, (3)

where, Q is the set of sparse quadrature points, g is a
quadrature node in Q and wy, is the associated weight. The
number of these coefficients, denoted by P, is given by
P = (d+p)!/(d!p!). Using a level 2 quadrature rule in di-
mension d = 4 reqsults in a set Q with 1,265 quadrature
nodes. In our present example, d = 4 and p = 3 with a re-
sulting valule of P = 35. Evaluating Eq. 3 at all quadrature
nodes and organizing the results into matrix form yields,
Xao = \IIXTWq, where, ¥, X, w, are 35 x 1265, 1 x 1265
and 1265 x 1 matrices, respectively.

4. REPRESENTATION OF PDF: KDE

Kernel Density Estimation (KDE) is used to build the prob-
ability density function (PDF). Let fx(x) denote the PDF
of mid-span displacement computed by KDE using samples
generated by PCE calculated by,

1 ¥ X—X (i),Xa
Jx(x) = m;[{ <(£h )>

where N is the number of PCE evaluations and x(£(), X,,) is
a realization evaluated at a sample £(). The Gaussian ker-
nel is used for K with the bandwidth % determined following
Silverman’s rule as i = (46° /3N)'/%, where o is the stan-
dard deviation estimated from the N samples. Clearly, the
centers x(E(i),Xa) of the Gaussian mixture representation

“)

given by equation (4) depend on the PCE coefficients of X
and we thus have a functional dependence between these
coefficients and the PDF of X.

Thus, after the PC expansion of X has been evaluated
we proceed as follows. We first generate N = 10° samples
of Gaussian random variables £, j = 1,2,...,N. We then
evaluate the polynomial chaos expansion at each of these
points using Eq. 2. We then form the sum in equation (4)
to evaluate the PDF. We will next explore the sensitivity of
the evaluations in this last step to perturbations in the PCE
coefficients that could stem from a number of sources.

5. SENSITIVITY ANALYSIS

5.1 Sensitivity of PDF to PCE coefficients

The sensitivity of PDF to PCE coefficients denoted by
fx.a(x) is given by,

d
fX,Oc (x) = af);(fj)7

la] < p. (5)

Taking the partial derivative of fx (x) with respect to X, and
substituting into Eq. 5, results in,

x_X(é(i)>Xa)
()

1 N
fxa(x) :mz
i=1
@) X, .
)> Va(ED), ol <p. (6)
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Figure 2: fx o(x),|a| =1 (or p=1)

Fig. 2 shows the results computed using Eq. 6 for fx o(x),
|a| =1 as an example. The figure shows that the largest sen-
sitivities in the first order (p = 1) are fx o, (x) and fx o, (x).
Similarly, although the results are not shown for brevity,
it is found that for p = 2, fx.ao(X), fx.a), (%), fxa., (%) are
the dominant ones. For p =3, fx a,; (%), fx,cus (%), fx a0 (%)
are the dominant sensitivities. For p = 0, there is fx q,(X)
which is the mean, thus most sensitive among all fx o (x).
Moreover, the polynomial chaos of these dominant sensitiv-
ities are associated with either &, or &4, as shown in Table 2.



Therefore, in this problem, the PDF of output is more sen-
sitive to the PCE terms with respect to the inputs &, and &4
associated with random rotational spring and random span.

5.2 Sensitivity of change in PDF to change of statistical in-
formation of random variables

When additional information is acquired, the statistics of the
random inputs changes, and the values of the parameters
shown in Table 1 are perturbed. We next investigate how

these changes influence the PDF, in other Words we seek to
9fx
Z

evaluate the contributions to Afy (x) =

Table 2: Polynomial chaos of dominant sensitivities

p 0 1 1 2 2
PCE basis Yo 175} Yy Yo Vi1
Polynomial 1 & & 522 -1 &284
chaos

p 2 3 3 3

PCE basis Vg Vo7 Vs

Polynomial éf —1 522 & —& 5; -3& 5254 52

chaos

Assume that because of additional data, the values of a and b
are increased respectively by 50% and 10% for ky, k>, k3, k4,
while g and r are unchanged. Let us denote this perturba-
tion of information by AP = {AP,,i = 1,2...,8} with the
description of each P; as shown in Table 3;

Table 3: Description of statistical information P;

P PP | P | P | P | F| P | K
Variable k 1 k 1 kz k2 k3 k3 k4 k4
Parameter | a b a b a b a b

Value 30122 13.0(22(30(22]30]22

5.2.1 Derivation of important sensitivities

In the previous section, we derived and studied the sensitiv-
ity of PDF to PCE coefficient, afx ( ).
PDF can be expressed as

Thus, the change in

Afx(x) =Y fral )

lee|<p

It should be noted that perturbations to PCE coefficients are
not only due to changes in P;’s but are also often associ-
ated with numerical errors inherent in any quadrature rule.
We denote these errors by AXy | L where L; refers to the j’h
quadrature level used in the approximation. We also use the

notation AXe |1, = Xa|r;,; — Xa|r;- Thus we finally have,
8 00X,
AXo =) —57| AP+AXq ®)
i=1 9L, Lj

Thus, the sensitivity of a PCE coefficient to a statistical pa-
rameter a |1, using a 7" level of quadrature, is given by,

Lj - qgé <8P,

3

0Xa
oP,

©)

. (éq)> Vo (6h)wg

and the sens1t1v1ty | 1,(§7) using 7" level quadrature is

computed as,

X
oF|,,

X(P,éq,Lj) —X(P—l—APi,gq,Lj)

AP, ’

(&) =

(10)

where X (P;,&4,L;) is the solution evaluated using quadra-
ture L;, at quadrature node &9, with statistical parameters
P,

5.2.2 Results

According to Eq. 7-10, the results of how the change of sta-
tistical information of ky, ky, k3, k4 influences the change of
PDF of beam mid-span displacement are computed.

Fig. 3a shows the total effect of AP on Afx(x) and
Fig. 3b shows the PDF’s with respectto P and P+AP. Ac-
cording to Eq. 7-8, the contribution of each P,,i =1,2...,8
to Afx(x) can be expressed as

ZfXa

lee|<p

Aifx(x AP,i=1,2...,8.

aP, . 1D

In addition, the change of PDF of output contributed by er-
ror from j'" quadrature can be expressed as:

ZfXa

lee|<p

Ar, fx (x )AX o |1, (12)

Fig. 4 shows the results of A;fx(x),i = 1,2...,8. It shows
that: (1) For each random input, a contributes much more
than b; (2) The contributions from a and b to PDF are in
opposite phases; (3) The contribution from the four random
inputs is ranked as: ky > kg4 > k3 > k.

Fig. 5 shows the result of Az, fx(x) which is the change
in PDF of output induced by second level quadrature. Com-
paring Az, fx (x) and A;fx(x) in Fig. 5 and Fig. 4, it shows
that except for P; and Py, the error from quadrature is quite
significant compared with change of all other statistical in-
formation. In other words, the change of PDF of output
can be not completely from the change of statistics of ran-
dom inputs while the error in quadrature rules also has non-
negligible contribution. The error from quadrature rules,
however, is only significant for low levels of mid-span dis-
placement and is insignificant when larger displacements
are of interest.

6. CONCLUSIONS

Sensitivity analysis based on part of output statistics (e.g.
variance) cannot provide a comprehensive description of the
response in an engineering application. On the other hand,
PCE has shown its efficiency and accuracy in the area of
stochastic computational mechanics. Therefore, sensitivity
of the complete PDF of response with respect to the uncer-
tainties in the inputs data is proposed using PCE. Moreover,
the error induced by quadrature is very significant to take



into account, especially in complex applications where high
quadrature level is needed. The methodology is demon-
strated in this paper on a reduced model from structural me-
chanics. The perturbation to the model induced by updat-
ing the statistics of input parameters is propagated through
the surrogate model and its influence on the PDF of the re-
sponse is investigated. Error caused by quadrature rules is
quantified. The ranking of importance of random inputs is
obtained and is found to be reflected in the PCE coefficients.

Three important sensitivities: 2% | ;(€7), % Bg);((x) are

P P[ |Lj7
derived which jointly can be used to investigate the propa-

gation of uncertainty in inputs statistics to the complete PDF
of output, capturing error from quadrature rules. These sen-
sitivities could also be useful for other general sensitivity
analysis using PCE in the future.
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Figure 3: Influence of change of statistics of inputs on PDF of

output
The PDF-based sensitivity analysis methodology presented

in this paper will be further demonstrated during the pre-

sentation on a the development of hazard maps for tsunami
run-up and on the design under uncertainty of a scramjet.
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