
Combining Learning and Model Based Control:

Case Study for Single-Input Lotka-Volterra System

W. Steven Gray† G. S. Venkatesh† Luis A. Duffaut Espinosa‡

Abstract— A hybrid control architecture for nonlinear dy-
namical systems is described which combines the advantages
of model based control with those of real-time learning. The
basic idea is to generate input-output data from an error system
involving the plant and a proposed model. A discretized Chen-
Fliess functional series is then identified from this data and
used in conjunction with the model for predictive control. This
method builds on the authors’ previous work on model-free
control of a single-input, single-output Lotka-Volterra system.
The problem is revisited here, but now with the introduction
of a model for the dynamics. The single-input, multiple-output
version of the problem is also investigated as a way to enhance
closed-loop performance.

I. INTRODUCTION

Artificial neural networks (ANN) have traditionally been

the backbone of machine learning. A typical feedforward

ANN learning unit (neuron) involves weighted sums of

inputs and a nonlinear thresholding/activation function. If

this function is real analytic, say a sigmoidal function,

then the input-output map of a neuron is mathematically

equivalent to a multivariable Taylor series. Learning in this

case amounts to tuning the coefficients (weights) to fit a

static memoryless map to the input-output data in order to

discriminate between different regions of the decision space.

On the other hand, if the intent is to build an approximation

of a dynamical system for the purpose of control, then so

called recurrent networks are a more natural choice as they

are known to provide universal functional approximations

for specific classes of systems [1], [12]–[14]. While these

biologically inspired approximation schemes certainly have

their strengths and a certain intuitive appeal, they also

have limitations. For example, physics based models often

provide key physical insight into the system to be controlled.

So completely discarding such models in favor of a pure

learning based control system can be counterproductive. This

raises the question of whether there exists other types of

learning systems that are better suited for control as they

accommodate modeling information in some form.

The main goal of this paper is to take an incremental

step in this direction by proposing a hybrid control archi-

tecture for nonlinear dynamical systems which combines the

advantages of model based control with those of real-time

learning and data-driven control. The basic idea is to generate

input-output data from an error system involving the plant

and a proposed model, which can then be learned and used

in conjunction with the model for predictive control. The

approach is distinct from model based adaptive control in

†Department of Electrical and Computer Engineering, Old Dominion
University, Norfolk, Virginia 23529 USA

‡Department of Electrical and Biomedical Engineering, University of
Vermont, Burlington, Vermont 05405 USA

that the plant is not made to track the output of the reference

model, and there is no adaptation of the model. Instead, the

desired output is given and the error dynamics are learned

using a generic input-output representation known as a Chen-

Fliess functional series or Fliess operator. This weighted

sum of iterated integrals of the control input employs a set

of coefficients that completely characterizes the error system.

The coefficients are estimated in real-time using a minimum

mean-square error estimator after truncating the series to

some suitable length based on the desired accuracy. In which

case, the neuron in a conventional ANN is replaced here

by a new type of learning unit to produce an approximate

model of the error system. It has been known since the 1980s

that a nonlinear dynamical system under certain conditions

always has a Fliess operator representation [2], [3], [10]. This

is exactly analogous to representing an analytic function in

terms of its Taylor series, as done implicitly with feedforward

ANNs, only in this case the power series representing the

input-output functional is noncommutative. The main advan-

tages to this approach are three-fold:

1) Fliess operator representations are known to be univer-

sal and unique;

2) the structural assumptions concerning the error system

are minimal;

3) fewer parameters need to be estimated than, for exam-

ple, with high dimensional state space models.

Up until recently, a major impediment to taking such an

approach has been that Fliess operators are exclusively used

to represent continuous-time systems, but data is generally

collected in discrete-time. However, it was shown in [5]

that Fliess operators can be accurately discretized with a

priori error bounds to produce discrete-time Fliess operators.

This method was employed by the authors in [6] to give a

purely data-driven solution to a tracking problem involving

single-input, single-output (SISO) Lotka-Volterra system.

The problem is revisited here, but now with the introduction

of a model for the dynamics. The single-input, multiple-

output (SIMO) version of the problem is also investigated

as a way to enhance closed-loop performance. The main

goal is to quantify what advantages the introduction of a

reference model provides and to identify directions for future

improvements.

The paper is organized as follows. In the next section,

to keep the paper self-contained, a brief summary of the

key concepts used from [5] and [6] is given. The main

results for the SISO case are given in Section III. The SIMO

case is presented in Section IV. Finally, the conclusions and

directions for future work are given in the last section.

2019 American Control Conference (ACC)
Philadelphia, PA, USA, July 10-12, 2019

978-1-5386-7928-9/$31.00 ©2019 AACC 928

II. PRELIMINARIES

An alphabet X = {x0, x1, . . . , xm} is any nonempty

finite set of noncommuting symbols called letters. A word

η = xi1 · · ·xik is a finite sequence of letters from X .

The length of η is defined to be |η| = k. The word of

length zero is the empty word ∅. Let Xk be the set of

words having length k, and define X∗ =
⋃

k≥0 X
k. X∗

is a monoid under the catenation product. Any mapping

c : X∗ → R
ℓ : η 7→ (c, η) is called a formal power

series. It is often convenient to write c as the formal sum

c =
∑

η∈X∗(c, η)η. The collection of noncommuting formal

power series over X forms an associative R-algebra under

catenation denoted here by R
ℓ〈〈X〉〉.

A. Discrete-time Fliess Operators as Universal Approxima-

tors

The goal of this section is to define the class of discrete-

time approximators for analytic input-output systems to be

employed by the learning unit described in the next section.

See [5] for additional details. Inputs in this case are real-

valued sequences from the normed linear space

lm+1
∞ [N0] := {û = (û(N0), û(N0 + 1), . . .) : ‖û‖∞ < ∞},

where û := [û0 û1 · · · ûm]T , |û(N)| := maxi∈{0,1,...,m}

|ûi(N)|, and ‖û‖∞ := supN≥N0
|û(N)|.

Definition 1: Given a generating series c ∈ R
ℓ〈〈X〉〉, the

corresponding discrete-time Fliess operator is defined as

F̂c[û](N) =
∑

η∈X∗

(c, η)Sη[û](N) (1)

for any N ≥ 1, where

Sxiη[û](N) =
N
∑

k=1

ûi(k)Sη[û](k) (2)

with xi ∈ X , η ∈ X∗, and û ∈ lm+1
∞ [1]. By assumption,

S∅[û](N) := 1.

Following [9], select some fixed u ∈ Lm
1 [0, T] with T > 0

finite. Choose an integer L ≥ 1, let ∆ := T/L and define

the sequence of real numbers

ûi(N) =

∫ N∆

(N−1)∆

ui(t) dt, i = 0, 1, . . . ,m, (3)

where N ∈ [1, L]. Assume u0 = 1 so that û0(N) = ∆. The

operator (1) is next truncated to words of length J , that is,

ŷ(N) = F̂ J
c [û](N) :=

J
∑

j=0

∑

η∈Xj

(c, η)Sη[û](N), (4)

since numerically only finite sums can be computed. The

main assertion proved in [5] is that the class of trun-

cated, discrete-time Fliess operators acts as a set of univer-

sal approximators with computable error bounds for their

continuous-time counterparts described in [2], [3], [10].

B. Learning Unit Based on Discrete-Time Fliess Operator

In this section a type of learning unit suitable for dynami-

cal systems is briefly described. See [6] for a more complete

treatment. The focus is on the SISO case. First observe that

(4) can be written in the form

ŷ(N) = φT (N)θ0, N ≥ 1, (5)

where

φ(N) = [Sη1
[û](N) Sη2

[û](N) · · ·Sηl
[û](N)]T (6a)

θ0 = [(c, η1) (c, η2) · · · (c, ηl)]
T (6b)

with l = 2J+1 − 1 and assuming a lexicographical ordering

on the words where x0 < x1. If some estimate of θ0 is

available at time N − 1, say θ̂(N − 1), then (5) gives a

corresponding estimate of ŷ(N):

ŷp(N) := φT (N)θ̂(N − 1). (7)

The coefficients can be updated in real-time from input-

output measurements using a standard least-squares algo-

rithm [4, p. 65]. In practice there is no guarantee that the

estimates θ̂(N), N ≥ 1 will converge to c in any sense,

but this is not an issue as the only objective is to ensure

that the underlying input-output map is well approximated

by F̂ J

θ̂(N)
. The theory presented in the previous subsection

guarantees that if the underlying system has a Fliess operator

representation then the class of discrete-time approximators

provides at least one possible limit point.
To implement a real-time learning algorithm, a difference

equation is needed to update the data vector φ(N) in (6a).

For convenience define ûξ(N) = ûik(N) · · · ûi1(N) for any

ξ = xik · · ·xi1 ∈ X∗ and N ≥ 1. Let û∅(N) := 1. The next

lemma shows that the update equation for the iterated sums

defined in (2) is computed in terms of the Cauchy product of

the formal power series cu(N + 1) :=
∑

η∈X∗ ûη(N + 1)η
and S[û](N) :=

∑

η∈X∗ Sη[û](N)η.
Lemma 1: [6] For any η ∈ X∗ and N ≥ 1

Sη[û](N + 1) = (cu(N + 1)S[û](N), η)

=
∑

η=ξν

ûξ(N + 1)Sν [û](N).

Therefore,

φ(N + 1) =






























û∅(N + 1)S∅[û](N)
û∅(N + 1)Sx0

[û](N) + ûx0
(N + 1)S∅[û](N)

û∅(N + 1)Sx1
[û](N) + ûx1

(N + 1)S∅[û](N)
∑

x2

0
=ξν ûξ(N + 1)Sν [û](N)

∑

x0x1=ξν ûξ(N + 1)Sν [û](N)
∑

x1x0=ξν ûξ(N + 1)Sν [û](N)
∑

x2

1
=ξν ûξ(N + 1)Sν [û](N)

...
∑

ηℓ=ξν ûξ(N + 1)Sν [û](N)































. (8)

In summary, equations (7) and (8) along with the mean-

square estimation algorithm provide a fully inductive algo-

rithm to predict ŷ(N + 1) given the next input û(N + 1):

ŷp(N + 1) = φT (N + 1)θ̂(N)

929

 MSE

parameter

estimator

y

discrete-time

 Fliess

 operator

u

y
p

Fig. 1: Learning unit

=

ℓ
∑

i=1





∑

ηi=ξν

ûξ(N + 1)Sν [û](N)



 θ̂i(N)

=

ℓ
∑

i=1

∑

ηi=ξν

∆|ξ|x0 û|ξ|x1 (N + 1)Sν [û](N)θ̂i(N)

= UT (N + 1)S(N)θ̂(N)

=: Q(û(N + 1)),

where

UT (N + 1) := [1 û(N + 1) û2(N + 1) · · · ûJ(N + 1)]

and S(N) ∈ R
(J+1)×ℓ with entries depending solely on the

sums {Sη[û](N) : |η| ≤ J}. So Q(û(N+1)) is a polynomial

in û(N+1) of at most degree J . The corresponding learning

unit is shown in Figure 1. Continuous-time input-output data

u and y enters the parameter estimator and is discretized

to produce samples û and ŷ as in (3)-(4). The parameter

estimate and input are then passed to the discrete-time Fliess

operator block. The iterated sums are updated, and ŷp is

now available in terms of polynomial Q. A more explicit

implementation of the algorithm in terms of only matrix and

vector type operations can be found in [8]. A straightforward

analysis of this implementation shows that the complexity of

the learning unit is O((m+1)2J), which is exponential in J .

If certain vectors in the implementation called order vectors

are stored as a dictionary, then the computation time can be

reduced, but the complexity still remains exponential in J .

C. Lotka-Volterra Systems

Population dynamics of n species in competition can be

modeled by the Lotka-Volterra system

żi = βizi +

n
∑

j=1

αijzizj , i = 1, . . . , n, (9)

where zi is the biomass of the i-th species, βi denotes the

growth rate of the i-th species, and αij describes the influ-

ence of the j-th species on the i-th species. More recently

in [11] it was shown that a power network, where each node

voltage zi is regulated by a quadratic droop controller, has

dynamics governed by a Lotka-Volterra model.

Consider the case where a subset of system parameters

in (9) can be actuated and thus viewed as inputs ui, i =
1, . . . ,m. Assume some set of output functions is given

yj = hj(z), j = 1, . . . , ℓ. (10)

yd
u

y

model
predictive

controller

plante

y

+

-

e
u

learning

 unit

y

e p

Fig. 2: Closed-loop system with SISO predictive controller

and one learning unit

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 z
1

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

 z
2

Fig. 3: Desired orbit transfer given full knowledge of the

plant

Since the inputs enter the dynamics linearly, it is clear that

(9)-(10) constitutes an analytic control affine state space

system. In which case, the input-output system u 7→ y
must have an underlying Fliess operator representation Fc

with generating series c computable from the Lotka-Volterra

dynamics and a given initial condition [2], [3], [10]. Of

particular interest here will be the special case of a predator-

prey system

ż1 = β1z1 − α12z1z2

ż2 = −β2z2 + α21z1z2,

where z1 is assumed to be the prey species, and (9) has

been re-parameterized so that βi, αij > 0. This positive

system has precisely two equilibria when all the parameters

are fixed, namely, a stable equilibrium at the origin and a

saddle point at ze = (β2/α21, β1/α12). The vector fields in

the first quadrant are complete and give concentric periodic

trajectories about ze.

III. PREDICTIVE CONTROLLER BASED ON LEARNING

AND A SISO MODEL

Suppose yd is a desired output known to be in the range

of a given plant with an underlying but unknown Fliess

operator representation Fc : u 7→ y (see [7]). In addition,

assume that some control affine state space model is available

for the plant. In applications it is most likely that yd is

selected using this model with perhaps the aid of some expert

knowledge. Already this implies that the model should not

930

TABLE I: Discretization parameters in (3) and (4)

L J T ∆

100 3 6 0.06

TABLE II: Control system parameters in (7), (11), and (12)

controller type θ̂(0) ū

model free 0 2

with model 0 1.4

be too different from the plant, otherwise yd may not be in

its range. When both the plant and model are given the same

input as shown in Figure 2, a modeling error e = y − ŷ is

generated. This signal and the applied input are then fed

to a learning unit of the type presented in the previous

section in order to learn the error dynamics, which in this

case must also have a Fliess operator representation. At any

time instant then the output of the plant is approximated by

ŷ+ êp = ŷ+Q(û). A suitable input u for tracking yd can be

approximated by a piecewise constant function taking values

for N ∈ [1, L] equivalent to

û(N) := argmin
|û(N)|≤ū

‖yd(N∆)− [ŷ(N∆)+Q(û(N))]‖2 (11)

for some fixed ū > 0. The MatLab command fmincon is

used here to compute these local minima over a given finite

interval in R.

Consider as an example a plant modeled by a predator-

prey system with u(t) = β1(t) so that
[

ż1
ż2

]

=

[

−α12z1z2
−β2z2 + α21z1z2

]

+

[

z1
0

]

u

with initial conditions z1(0) = z1,0 and z2(0) = z2,0. The

output y can be taken to be either z1 or z2. Assume the true

plant has all the constant system parameters equal to unity,

and the positivity constraint on u will not be enforced. Ini-

tializing the plant at [z1,0, z2,0]
T = [1/6, 1/6]T and applying

the constant input u(t) = β1(t) = 1 yields the orbit shown in

black in Figure 3. Suppose in the biological setting the goal is

to reduce the large population fluctuations which lead to very

low predator and prey populations appearing during certain

portions of this orbit. A new desired orbit can be identified by

setting β1 = 1.5 and [z1,0, z2,0]
T = [1/2, 1/2]T to produce

the red orbit in Figure 3. A desired orbit transfer is the dashed

blue line shown in Figure 3. It was designed using the true

dynamics of the plant and represents the ideal situation. In

the simulations to follow, however, the desired trajectory will

be designed instead using the assumed model, which can be

different from the actual model. This will provide the desired

signal yd for the chosen output channel. The orbit transfer

maneuver is terminated once the error between the current

state and the desired trajectory is less than 0.05.

The starting point is the model free case. So in effect,

ŷ = 0, and therefore the learning unit must learn the plant

dynamics not the error dynamics. This case was studied in

[6] when y = z1, but here for comparison a more complete

analysis is provided. The parameters used in the simulations

0 1 2 3 4 5 6

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 4: Trajectories using model free control of z1

are summarized in Tables I and II. Figure 4 shows the

output tracking performance when z1 is controlled. The

corresponding RMS of the relative errors per time sample are

given in Tables III and IV. The tracking errors for both z1 and

z2 are quite acceptable for many applications. In contrast, the

system is entirely unable to track the desired trajectory when

z2 is used as the output. The source of the problem is that the

input u controls z2 indirectly through z1 in the state space

model. During the initial part of the orbit, z2 is quite small

and therefore ż2 is also small. Hence, the input-output map

u 7→ z2 is not sufficiently rich to train the learning unit. Note

the large RMS tracking errors in Table IV. At least for this

specific system, this illustrates the limits of this model free

approach and motivates the introduction of a model into this

learning system.

Consider next the other extreme case where a model is

given that exactly matches the plant. In this situation the error

signal is always zero so that the learning unit always pre-

dicts zero error. Hence, the learning is completely removed

TABLE III: Summary of tracking errors when z1 is con-

trolled, i.e., y = z1

model type tracking error z1 tracking error z2

model free 0.6015 0.3298

exact model 1.5466×10−5 1.1654×10−4

-5% β2 error model 0.0100 0.1574

-5% α12 error model 0.0710 0.0030

-5% α21 error model 0.0235 0.1184

TABLE IV: Summary of tracking errors when z2 is con-

trolled, i.e., y = z2

model type tracking error z1 tracking error z2

model free 1.9695 1.6802

exact model 0.0067 1.932×10−7

-5% β2 error model 0.5435 0.0103

-5% α12 error model 0.2077 0.0052

-5% α21 error model 0.1623 0.0164

931

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 5: Trajectories using β2 = 0.95 model for control of z1

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 t

0

1

2

3

4

5

6

7

Fig. 6: Trajectories using β2 = 0.95 model for control of z2

from the picture, and the performance of the closed-loop is

determined only by the optimization method used to solve

(11). Interestingly, no matter which output is controlled, the

other output matches its desired trajectory very accurately.

The RMS tracking errors are given in Tables III and IV, but

are not discernable on the trajectory plots.

The more representative case is where a model of the plant

is given, but it has some parametric errors, for example.

Consider the case where β2 = 0.95, i.e., a -5% error in

one parameter. The corresponding trajectories are shown in

Figures 5 and 6 when z1 and z2 are controlled, respectively.

The RMS tracking errors are given in Tables III and IV for

this case and when α12 = 0.95 and α21 = 0.95. When z1
is controlled, there is an order of magnitude improvement

in tracking performance over the model free case. But the

more interesting case is when z2 is controlled. For example,

with the introduction of the β2 = 0.95 model, z2 can now be

accurately tracked. However, large oscillations appear in the

uncontrolled z1 state. The applied input is shown in Figure 7.

This asymmetry between z1 control and z2 control is again

due to the way the input enters the system. This motivates the

need for a SIMO approach as described in the next section.

0 1 2 3 4 5

 t

-1

-0.5

0

0.5

1

Fig. 7: Applied input to β2 = 0.95 model for control of z2

yd
u

y

model
predictive

controller

plante1

y

+

-

e

learning

 unit

y

e p,1

u

u
learning

 unit
e2

e p,2

Fig. 8: Closed-loop system with SIMO predictive controller

and two learning units

IV. PREDICTIVE CONTROLLER BASED ON LEARNING

AND A SIMO MODEL

The proposed closed-loop system for a SIMO system in-

volving two outputs is shown in Figure 8. In this architecture,

there is a SISO learning unit for each input-output pair

(u, yi), i = 1, 2. The predicted error vector ep = [êp,1 êp,2]
T

is then passed to the predictive controller which computes

the next control input by solving the optimization problem

û(N) := argmin
|û(N)|≤ū

yTe (N)Wye(N), (12)

where

ye,i(N) := yd,i(N∆)− [ŷi(N∆) +Qi(û(N))], i = 1, 2,

and W = [w11 w12;w21 w22] is a symmetric semi-positive

definite weighting matrix. In this context, W = [1 0; 0 0]

TABLE V: Summary of tracking errors for the SIMO con-

troller

model type tracking error z1 tracking error z2

-5% β2 error model 0.0705 0.0886

-5% α12 error model 0.0092 0.0016

-5% α21 error model 0.0941 0.1182

932

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 9: Trajectories using β2 = 0.95 SIMO model in the case

where W = [0.01 0; 0 1]

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

 t

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Fig. 10: Trajectories using β2 = 0.95 SIMO model in the

case where W = [0.5 0.25; 0.25 2]

corresponds to SISO control of z1, and W = [0 0; 0 1] is

SISO control of z2.
Reconsider the last case in the previous section. The sys-

tem response is shown in Figure 9 when W = [0.01 0; 0 1].
Interestingly, this very small inclusion of z1 in the optimiza-

tion problem completely suppresses the oscillations in z1
shown in Figure 6 with only a modest increase in the z2
tracking error. If W = [0.5 0.25; 0.25 2] then these tracking

results can be further improved as shown in Figure 10. The

tracking error for this case and other parametric errors is

shown in Table V.

V. CONCLUSIONS AND FUTURE WORK

A hybrid control architecture for nonlinear dynamical

systems was described which combines knowledge of the

dynamical system to be controlled and real-time learning

units. Using input-output data generated from an error

system involving the plant and the proposed model, a

truncated discrete-time Fliess operator for each input-output

pair is identified. From this representation of the error system

and the given model, a nonlinear predictive controller is

implemented. The method was tested on a SISO predator-

prey system and a SIMO version of this system. For this

particular system, SISO control works quite well for one

channel but to the detriment of the other. The introduction

of a second learning unit for the SIMO case significantly

enhanced closed-loop performance for both channels.

Future work will include a full multivariable version of

this new control architecture. Other types of plants should be

employed to see how well the conclusions from this study

generalize. The case where noise is present in the system

should also be investigated.

ACKNOWLEDGMENTS

This research was supported by the National Sci-

ence Foundation under grants CMMI-1839378 and CMMI-

1839387.

REFERENCES

[1] P. Baldi and K. Hornik, Universal approximation and learning of
trajectories using oscillators, in Advances in Neural Information Pro-
cessing Systems, D. Touretzky, M. Mozer, and M. Hasselmo, Eds.,
vol. 8, MIT Press, Cambridge, MA, 1996, pp. 451–457.

[2] M. Fliess, Fonctionnelles causales non linéaires et indéterminées non
commutatives, Bull. Soc. Math. France, 109 (1981) 3–40.

[3] M. Fliess, Réalisation locale des systèmes non linéaires, algèbres
de Lie filtrées transitives et séries génératrices non commutatives,
Invent. Math., 71 (1983) 521–537.

[4] G. C. Goodwin and K. S. Sin, Adaptive Filtering Prediciton and
Control, Dover Publications, Inc., Mineola, NY, 2009.

[5] W. S. Gray, L. A. Duffaut Espinosa, and K. Ebrahimi-Fard, Discrete-
time approximations of Fliess operators, Numer. Math., 137 (2017)
35–62.

[6] W. S. Gray, L. A. Duffaut Espinosa, and L. T. Kell, Data-driven
SISO predictive control using adaptive discrete-time Fliess operator
approximations, Proc. 21st Inter. Conf. on System Theory, Control and
Computing, Sinaia, Romania, 2017, pp. 383–388.

[7] W. S. Gray, L. A. Duffaut Espinosa, and M. Thitsa, Left inversion
of analytic nonlinear SISO systems via formal power series methods,
Automatica, 50 (2014) 2381–2388.

[8] W. S. Gray, G. S. Venkatesh, and L. A. Duffaut Espinosa, Discrete-time
Chen series for time discretization and machine learning, Proc. 53rd
Conf. on Information Sciences and Systems, Baltimore, Maryland,
2019.

[9] L. Grüne and P. E. Kloeden, Higher order numerical schemes for
affinely controlled nonlinear systems, Numer. Math., 89 (2001) 669–
690.

[10] A. Isidori, Nonlinear Control Systems, 3rd Ed., Springer–Verlag,
London, 1995.

[11] M. Jafarian, H. Sandberg, and K. H. Johansson, The interconnection
of quadratic droop voltage controllers is a Lotka-Volterra system:
Implications for stability analysis, IEEE Control Sysems Lett., 2 (2018)
pp. 218–223.

[12] L. Jin, P. Nikiforuk, and M. Gupta, Approximation of discrete-time
state-space trajectories using dynamic recurrent neural networks, IEEE
Trans. Automat. Control, 40 (1995) 1266–1270.

[13] C. Kambhampati, F. Garces, and K. Warwick, Approximation of non-
autonomous dynamic systems by continuous time recurrent neural
networks, Proc. International Joint Conference on Neural Networks,
vol. 1, 2000, pp. 64–69.

[14] A. Schäfer and H. Zimmermann, Recurrent neural networks are
universal approximators, in Artificial Neural Networks – ICANN 2006,
S. Kollias, A. Stafylopatis, W. Duch, and E. Oja, Eds., Springer, Berlin,
2006, pp. 632–640.

933

