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Combining Learning and Model Based Control:
Case Study for Single-Input Lotka-Volterra System

W. Steven Gray'

Abstract— A hybrid control architecture for nonlinear dy-
namical systems is described which combines the advantages
of model based control with those of real-time learning. The
basic idea is to generate input-output data from an error system
involving the plant and a proposed model. A discretized Chen-
Fliess functional series is then identified from this data and
used in conjunction with the model for predictive control. This
method builds on the authors’ previous work on model-free
control of a single-input, single-output Lotka-Volterra system.
The problem is revisited here, but now with the introduction
of a model for the dynamics. The single-input, multiple-output
version of the problem is also investigated as a way to enhance
closed-loop performance.

I. INTRODUCTION

Artificial neural networks (ANN) have traditionally been
the backbone of machine learning. A typical feedforward
ANN learning unit (neuron) involves weighted sums of
inputs and a nonlinear thresholding/activation function. If
this function is real analytic, say a sigmoidal function,
then the input-output map of a neuron is mathematically
equivalent to a multivariable Taylor series. Learning in this
case amounts to tuning the coefficients (weights) to fit a
static memoryless map to the input-output data in order to
discriminate between different regions of the decision space.
On the other hand, if the intent is to build an approximation
of a dynamical system for the purpose of control, then so
called recurrent networks are a more natural choice as they
are known to provide universal functional approximations
for specific classes of systems [1], [12]-[14]. While these
biologically inspired approximation schemes certainly have
their strengths and a certain intuitive appeal, they also
have limitations. For example, physics based models often
provide key physical insight into the system to be controlled.
So completely discarding such models in favor of a pure
learning based control system can be counterproductive. This
raises the question of whether there exists other types of
learning systems that are better suited for control as they
accommodate modeling information in some form.

The main goal of this paper is to take an incremental
step in this direction by proposing a hybrid control archi-
tecture for nonlinear dynamical systems which combines the
advantages of model based control with those of real-time
learning and data-driven control. The basic idea is to generate
input-output data from an error system involving the plant
and a proposed model, which can then be learned and used
in conjunction with the model for predictive control. The
approach 1is distinct from model based adaptive control in
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that the plant is not made to track the output of the reference
model, and there is no adaptation of the model. Instead, the
desired output is given and the error dynamics are learned
using a generic input-output representation known as a Chen-
Fliess functional series or Fliess operator. This weighted
sum of iterated integrals of the control input employs a set
of coefficients that completely characterizes the error system.
The coefficients are estimated in real-time using a minimum
mean-square error estimator after truncating the series to
some suitable length based on the desired accuracy. In which
case, the neuron in a conventional ANN is replaced here
by a new type of learning unit to produce an approximate
model of the error system. It has been known since the 1980s
that a nonlinear dynamical system under certain conditions
always has a Fliess operator representation [2], [3], [10]. This
is exactly analogous to representing an analytic function in
terms of its Taylor series, as done implicitly with feedforward
ANNSs, only in this case the power series representing the
input-output functional is noncommutative. The main advan-
tages to this approach are three-fold:

1) Fliess operator representations are known to be univer-
sal and unique;

2) the structural assumptions concerning the error system
are minimal;

3) fewer parameters need to be estimated than, for exam-
ple, with high dimensional state space models.

Up until recently, a major impediment to taking such an
approach has been that Fliess operators are exclusively used
to represent continuous-time systems, but data is generally
collected in discrete-time. However, it was shown in [5]
that Fliess operators can be accurately discretized with a
priori error bounds to produce discrete-time Fliess operators.
This method was employed by the authors in [6] to give a
purely data-driven solution to a tracking problem involving
single-input, single-output (SISO) Lotka-Volterra system.
The problem is revisited here, but now with the introduction
of a model for the dynamics. The single-input, multiple-
output (SIMO) version of the problem is also investigated
as a way to enhance closed-loop performance. The main
goal is to quantify what advantages the introduction of a
reference model provides and to identify directions for future
improvements.

The paper is organized as follows. In the next section,
to keep the paper self-contained, a brief summary of the
key concepts used from [5] and [6] is given. The main
results for the SISO case are given in Section III. The SIMO
case is presented in Section IV. Finally, the conclusions and
directions for future work are given in the last section.



II. PRELIMINARIES

An alphabet X = {xo,x1, ...,x,,} is any nonempty
finite set of noncommuting symbols called letters. A word
n = m; ---x; 1s a finite sequence of letters from X.
The length of 7 is defined to be |n| = k. The word of
length zero is the empty word (). Let X* be the set of
words having length £, and define X* = [J, -, Xk X*
is a monoid under the catenation product. Any mapping
c: X* = R : 5 (c,n) is called a formal power
series. It is often convenient to write ¢ as the formal sum
¢ =>,ex-(c;n)n. The collection of noncommuting formal
power series over X forms an associative R-algebra under
catenation denoted here by R?((X)).

A. Discrete-time Fliess Operators as Universal Approxima-
tors

The goal of this section is to define the class of discrete-
time approximators for analytic input-output systems to be
employed by the learning unit described in the next section.
See [5] for additional details. Inputs in this case are real-
valued sequences from the normed linear space

[P INo] = {a = (@(No), a(No +1),....) : [[alls < 00},

where 4 = [fg Gy -+ )T, |A(N)| =

|G (N)|, and [|i[oo == suppy >, [4(N)]-
Definition 1: Given a generating series ¢ € R*((X)), the

corresponding discrete-time Fliess operator is defined as

Efa)(N) = Y (e;m)Syla](N) (1)
neX*
for any N > 1, where
N
Semlal(N) = it; (k) Sy [i1] (k) 2)
k=1

with z; € X, n € X*, and @ € ["2T'[1]. By assumption,
Spla](N) :=1.

Following [9], select some fixed u € L*[0,T] with T' > 0
finite. Choose an integer L > 1, let A := T'/L and define
the sequence of real numbers

NA
(N-1)A

sm, (3)

where N € [1, L]. Assume ug = 1 so that @o(N) = A. The
operator (1) is next truncated to words of length J, that is,

J
GN) = F[@(N) =) Y (emSyal(y), @

j=0neXi

since numerically only finite sums can be computed. The
main assertion proved in [5] is that the class of trun-
cated, discrete-time Fliess operators acts as a set of univer-
sal approximators with computable error bounds for their
continuous-time counterparts described in [2], [3], [10].
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B. Learning Unit Based on Discrete-Time Fliess Operator

In this section a type of learning unit suitable for dynami-
cal systems is briefly described. See [6] for a more complete
treatment. The focus is on the SISO case. First observe that
(4) can be written in the form

g(N) =¢"(N)bo, N >1, (5)

where
G(N) =[Sy, [A](N) Sy [A)(N) - - Sy, [a](N)]" (6a)
0o = [(c,m) (e,n2) - (c,m)]” (6b)

with [ = 2771 — 1 and assuming a lexicographical ordering
on the words where zq < z;. If some estimate of 6y is
available at time N — 1, say O(N — 1), then (5) gives a
corresponding estimate of §(NV):

Jp(N) = ¢" (N)O(N —1). 7

The coefficients can be updated in real-time from input-
output measurements using a standard least-squares algo-
rithm [4, p. 65]. In practice there is no guarantee that the
estimates §(N), N > 1 will converge to ¢ in any sense,
but this is not an issue as the only objective is to ensure
that the underlying input-output map is well approximated
by Fé] Ny The theory presented in the previous subsection
guarantees that if the underlying system has a Fliess operator
representation then the class of discrete-time approximators
provides at least one possible limit point.

To implement a real-time learning algorithm, a difference
equation is needed to update the data vector ¢(NN) in (6a).
For convenience define t¢(N) = w;, (N) - - - @, (IV) for any
E=uw;, - wy € X*and N > 1. Let 4y(N) := 1. The next
lemma shows that the update equation for the iterated sums
defined in (2) is computed in terms of the Cauchy product of
the formal power series ¢, (N +1) 1=}, . Uy(N + 1)n
and S[A](N) := >, oy Syla](N)n.

Lemma 1: [6] Forany ne€ X* and N > 1

Spla](N +1) = (cu(N +1)S[a](N),n)
=Y (N +1)S,[al(N).

n=&v
Therefore,

O(N+1)=

e (N +1
; V)
V) - ®

In summary, equations (7) and (8) along with the mean-
square estimation algorithm provide a fully inductive algo-
rithm to predict (N + 1) given the next input (N + 1):

Jp(N +1) = ¢" (N +1)0(N)
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Fig. 1: Learning unit
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S Al gléles (N 4+ 1)8, [] (V)i (V)
1 m;=¢v

UT(N +1)S(N)
=: Q(a(N +1)),

where

UT(N +1):=[1 a(N+1) a*(N +1)---a/ (N +1)]

%

B(N)

and S(N) € R+ with entries depending solely on the
sums {S,[a](N) : |n| < J}. So Q(4(N+1)) is a polynomial
in 4(N +1) of at most degree .J. The corresponding learning
unit is shown in Figure 1. Continuous-time input-output data
u and y enters the parameter estimator and is discretized
to produce samples @ and ¢ as in (3)-(4). The parameter
estimate and input are then passed to the discrete-time Fliess
operator block. The iterated sums are updated, and g, is
now available in terms of polynomial Q. A more explicit
implementation of the algorithm in terms of only matrix and
vector type operations can be found in [8]. A straightforward
analysis of this implementation shows that the complexity of
the learning unit is O((m+1)27), which is exponential in .J.
If certain vectors in the implementation called order vectors
are stored as a dictionary, then the computation time can be
reduced, but the complexity still remains exponential in .J.

C. Lotka-Volterra Systems

Population dynamics of n species in competition can be
modeled by the Lotka-Volterra system

n
Z.’i = ﬂzzz + E QijZiZj, 1= 1, ey,
Jj=1

)

where z; is the biomass of the i-th species, [3; denotes the
growth rate of the i-th species, and «y;; describes the influ-
ence of the j-th species on the i-th species. More recently
in [11] it was shown that a power network, where each node
voltage z; is regulated by a quadratic droop controller, has
dynamics governed by a Lotka-Volterra model.

Consider the case where a subset of system parameters
in (9) can be actuated and thus viewed as inputs wu;, ¢ =
1,...,m. Assume some set of output functions is given

yj:hj(z), jZl,...,g. (10)
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Fig. 2: Closed-loop system with SISO predictive controller
and one learning unit
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Fig. 3: Desired orbit transfer given full knowledge of the
plant

Since the inputs enter the dynamics linearly, it is clear that
(9)-(10) constitutes an analytic control affine state space
system. In which case, the input-output system u +— y
must have an underlying Fliess operator representation Fi
with generating series ¢ computable from the Lotka-Volterra
dynamics and a given initial condition [2], [3], [10]. Of
particular interest here will be the special case of a predator-
prey system

Z1 = Prz1 — a122122

2o = —[azg + 12122,

where z; is assumed to be the prey species, and (9) has
been re-parameterized so that j3;,a;; > 0. This positive
system has precisely two equilibria when all the parameters
are fixed, namely, a stable equilibrium at the origin and a
saddle point at z. = (82/a21, 81/a12). The vector fields in
the first quadrant are complete and give concentric periodic
trajectories about z,.

III. PREDICTIVE CONTROLLER BASED ON LEARNING
AND A SISO MODEL

Suppose y, is a desired output known to be in the range
of a given plant with an underlying but unknown Fliess
operator representation F. : u +— y (see [7]). In addition,
assume that some control affine state space model is available
for the plant. In applications it is most likely that y,4 is
selected using this model with perhaps the aid of some expert
knowledge. Already this implies that the model should not



TABLE I: Discretization parameters in (3) and (4)

L |J|T| A
100 | 3 | 6 | 0.06

TABLE II: Control system parameters in (7), (11), and (12)

controller type | 6(0) | @
model free 0 2
with model 0 1.4

be too different from the plant, otherwise y4 may not be in
its range. When both the plant and model are given the same
input as shown in Figure 2, a modeling error e = y — ¢ is
generated. This signal and the applied input are then fed
to a learning unit of the type presented in the previous
section in order to learn the error dynamics, which in this
case must also have a Fliess operator representation. At any
time instant then the output of the plant is approximated by
J+é, = §+ Q(1). A suitable input v for tracking yq can be
approximated by a piecewise constant function taking values
for N € [1, L] equivalent to

a(N) := ‘f{r(%vr)ﬁlir} lya(NA) = [§(NA) + Q(a(N))][I* (11)

for some fixed @ > 0. The MatLab command fmincon is
used here to compute these local minima over a given finite
interval in R.

Consider as an example a plant modeled by a predator-

prey system with u(t) = 1 (¢) so that
—a192122 } N [ } "

[ ] - { —Ba2z2 + 212122

with initial conditions z1(0) = 21,9 and 23(0) = z20. The
output y can be taken to be either z; or zo. Assume the true
plant has all the constant system parameters equal to unity,
and the positivity constraint on u will not be enforced. Ini-
tializing the plant at [21 0, 22,0]7 = [1/6,1/6] and applying
the constant input u(t) = 81 (¢) = 1 yields the orbit shown in
black in Figure 3. Suppose in the biological setting the goal is
to reduce the large population fluctuations which lead to very
low predator and prey populations appearing during certain
portions of this orbit. A new desired orbit can be identified by
setting 31 = 1.5 and [21,0,22.0]7 = [1/2,1/2]T to produce
the red orbit in Figure 3. A desired orbit transfer is the dashed
blue line shown in Figure 3. It was designed using the true
dynamics of the plant and represents the ideal situation. In
the simulations to follow, however, the desired trajectory will
be designed instead using the assumed model, which can be
different from the actual model. This will provide the desired
signal y4 for the chosen output channel. The orbit transfer
maneuver is terminated once the error between the current
state and the desired trajectory is less than 0.05.

The starting point is the model free case. So in effect,
9y = 0, and therefore the learning unit must learn the plant
dynamics not the error dynamics. This case was studied in
[6] when y = 23, but here for comparison a more complete
analysis is provided. The parameters used in the simulations
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0
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Fig. 4: Trajectories using model free control of z;

are summarized in Tables I and II. Figure 4 shows the
output tracking performance when z; is controlled. The
corresponding RMS of the relative errors per time sample are
given in Tables III and IV. The tracking errors for both z; and
zo are quite acceptable for many applications. In contrast, the
system is entirely unable to track the desired trajectory when
79 is used as the output. The source of the problem is that the
input u controls zo indirectly through z; in the state space
model. During the initial part of the orbit, z5 is quite small
and therefore Z- is also small. Hence, the input-output map
u — zo is not sufficiently rich to train the learning unit. Note
the large RMS tracking errors in Table IV. At least for this
specific system, this illustrates the limits of this model free
approach and motivates the introduction of a model into this
learning system.

Consider next the other extreme case where a model is
given that exactly matches the plant. In this situation the error
signal is always zero so that the learning unit always pre-
dicts zero error. Hence, the learning is completely removed

TABLE III: Summary of tracking errors when z; is con-
trolled, i.e., y = 21

model type tracking error z; | tracking error 2z

model free 0.6015 0.3298

exact model 1.5466x 107" 1.1654x 104
-5% B2 error model 0.0100 0.1574
-5% a2 error model 0.0710 0.0030
-5% a1 error model 0.0235 0.1184

TABLE IV: Summary of tracking errors when z3 is con-
trolled, i.e., y = 25

model type tracking error z; | tracking error 2z

model free 1.9695 1.6802

exact model 0.0067 1.932x10°7
-5% B2 error model 0.5435 0.0103
-5% a2 error model 0.2077 0.0052
-5% a1 error model 0.1623 0.0164
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Fig. 5: Trajectories using B2 = 0.95 model for control of z;
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Fig. 6: Trajectories using 32 = 0.95 model for control of z,

from the picture, and the performance of the closed-loop is
determined only by the optimization method used to solve
(11). Interestingly, no matter which output is controlled, the
other output matches its desired trajectory very accurately.
The RMS tracking errors are given in Tables III and IV, but
are not discernable on the trajectory plots.

The more representative case is where a model of the plant
is given, but it has some parametric errors, for example.
Consider the case where [ 0.95, i.e., a -5% error in
one parameter. The corresponding trajectories are shown in
Figures 5 and 6 when z; and z; are controlled, respectively.
The RMS tracking errors are given in Tables III and IV for
this case and when aq2 = 0.95 and a9 = 0.95. When 2z
is controlled, there is an order of magnitude improvement
in tracking performance over the model free case. But the
more interesting case is when 23 is controlled. For example,
with the introduction of the 3> = 0.95 model, z5 can now be
accurately tracked. However, large oscillations appear in the
uncontrolled z; state. The applied input is shown in Figure 7.
This asymmetry between z; control and zo control is again
due to the way the input enters the system. This motivates the
need for a SIMO approach as described in the next section.
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Fig. 8: Closed-loop system with SIMO predictive controller
and two learning units

IV. PREDICTIVE CONTROLLER BASED ON LEARNING
AND A SIMO MODEL

The proposed closed-loop system for a SIMO system in-
volving two outputs is shown in Figure 8. In this architecture,
there is a SISO learning unit for each input-output pair
(u,y:), i =1,2. The predicted error vector e, = [é,1 ép2]T
is then passed to the predictive controller which computes
the next control input by solving the optimization problem

4(N) := argmin yZ(N)Wye(N),
[a(N)|<a

(12)

where
Yei(N) == yai(NA) = [5:(NA) + Qi(a(N))], i=1,2,

and W = [wy wig;wa1 wae] i8S @ symmetric semi-positive
definite weighting matrix. In this context, W = [1 0;0 0]

TABLE V: Summary of tracking errors for the SIMO con-
troller

model type tracking error z; | tracking error zo
-5% B2 error model 0.0705 0.0886
-5% a2 error model 0.0092 0.0016
-5% a1 error model 0.0941 0.1182
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Fig. 9: Trajectories using S2 = 0.95 SIMO model in the case
where W = [0.01 0;0 1]
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Fig. 10: Trajectories using 32 = 0.95 SIMO model in the
case where W = [0.5 0.25;0.25 2]

corresponds to SISO control of z;, and W = [0 0;0 1] is
SISO control of zs.

Reconsider the last case in the previous section. The sys-
tem response is shown in Figure 9 when W = [0.01 0;0 1].
Interestingly, this very small inclusion of z; in the optimiza-
tion problem completely suppresses the oscillations in z;
shown in Figure 6 with only a modest increase in the z
tracking error. If W = [0.5 0.25;0.25 2] then these tracking
results can be further improved as shown in Figure 10. The
tracking error for this case and other parametric errors is
shown in Table V.

V. CONCLUSIONS AND FUTURE WORK

A hybrid control architecture for nonlinear dynamical
systems was described which combines knowledge of the
dynamical system to be controlled and real-time learning
units. Using input-output data generated from an error
system involving the plant and the proposed model, a
truncated discrete-time Fliess operator for each input-output
pair is identified. From this representation of the error system
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and the given model, a nonlinear predictive controller is
implemented. The method was tested on a SISO predator-
prey system and a SIMO version of this system. For this
particular system, SISO control works quite well for one
channel but to the detriment of the other. The introduction
of a second learning unit for the SIMO case significantly
enhanced closed-loop performance for both channels.

Future work will include a full multivariable version of
this new control architecture. Other types of plants should be
employed to see how well the conclusions from this study
generalize. The case where noise is present in the system
should also be investigated.
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