
LoCal: A Language for Programs Operating on
Serialized Data

Michael Vollmer
Computer Science
Indiana University

Bloomington, Indiana, United States
vollmerm@indiana.edu

Chaitanya Koparkar
Computer Science
Indiana University

Bloomington, Indiana, United States
ckoparka@indiana.edu

Mike Rainey
Computer Science
Indiana University

Bloomington, Indiana, United States
me@mike-rainey.site

Laith Sakka
Electrical and Computer Engineering

Purdue University
West Lafayette, Indiana, United States

lsakka@purdue.edu

Milind Kulkarni
Electrical and Computer Engineering

Purdue University
West Lafayette, Indiana, United States

milind@purdue.edu

Ryan R. Newton
Computer Science
Indiana University

Bloomington, Indiana, United States
rrnewton@indiana.edu

Abstract

In a typical data-processing program, the representation
of data in memory is distinct from its representation in a
serialized form on disk. The former has pointers and ar-
bitrary, sparse layout, facilitating easy manipulation by a
program, while the latter is packed contiguously, facilitating
easy I/O. We propose a language, LoCal, to unify in-memory
and serialized formats. LoCal extends a region calculus into
a location calculus, employing a type system that tracks the
byte-addressed layout of all heap values. We formalize LoCal
and prove type safety, and show how LoCal programs can
be inferred from unannotated source terms.
We transform the existing Gibbon compiler to use LoCal

as an intermediate language, with the goal of achieving a
balance between code speed and data compactness by intro-
ducing just enough indirection into heap layouts, preserving
the asymptotic complexity of traditional representations, but
working with mostly or completely serialized data. We show
that our approach yields significant performance improve-
ment over prior approaches to operating on packed data,
without abandoning idiomatic programming with recursive
functions.

CCS Concepts · Software and its engineering → For-

mal language definitions; Compilers.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6712-7/19/06. . . $15.00

https://doi.org/10.1145/3314221.3314631

Keywords Region Calculus, Compiler Optimization, Data
Encoding, Tree Traversal

ACM Reference Format:

Michael Vollmer, Chaitanya Koparkar, Mike Rainey, Laith Sakka,
Milind Kulkarni, and Ryan R. Newton. 2019. LoCal: A Language
for Programs Operating on Serialized Data. In Proceedings of the

40th ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’19), June 22ś26, 2019, Phoenix, AZ, USA.

ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3314221.
3314631

1 Introduction

Virtually all programs running today use heap object rep-
resentations fixed by the language runtime system. For in-
stance, the Java or Haskell runtimes dictate an object layout,
and the compiler must stick to it for all programs. And yet
when humans optimize a program, one of their primary
levers on performance is changing data representation. For
example, an HPC programmer knows how to pack a regular
tree into a byte array for more efficient access [8, 13, 15].
Whenever a program receives data from the network or

disk, rigid insistence on a particular heap layout causes an
impedance mismatch we know as deserialization. Yet, the
alternative would seem to be writing low-level code to deal
directly with specialized or serialized data layouts. This is
error-prone, making it a łhackyž way to achieve performance
optimization at the expense of safety and readability.

To ameliorate this tension we propose to reify data layout
as an explicit part of the program. We introduce a language,
LoCal (which stands for location calculus), whose type system
directly encodes a byte-level layout for algebraic datatypes
manipulated by the language. A well-typed program con-
sists of functions, data definitions, and data representation
choices, which can then be tailored to an application. This
means that programs can operate over densely encoded (se-
rialized) data in a type-safe way.
If data resides on disk in a LoCal-compatible format, it

becomes possible to bring the program to the data rather

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

than the traditional approach of bending the data to the
code: deserializing it to match the rigid heap format of the
language runtime. This effort contrasts with earlier work
on persistent languages [2, 12] and object databases [10],
which sought to expand the mutable heap to encompass disk
as well memory, translating (swizzling) between persistent
pointers and in-memory pointers. Instead, the emphasis here
is on processing immutable data, and eschewing pointers
entirely wherever possible.
The layout of a LoCal data constructor by default takes

only one (unaligned) byte in memory and fields may be re-
ferred to either by pointer indirections or unboxed into the
parent object (serialized). We can thus interpolate between
fully serialized and fully pointer-based representations. Lo-
Cal can thus serve as a flexible intermediate representation
for compilers or synthesis tools.
This paper makes four contributions:

• We introduce LoCal, the first formal language where
well-typed terms prescribe the byte-addressed data-
layout of the recursive datatypes they manipulate (§3).
We formalize the core of the language and prove type
safety (progress and preservation).

• We present an implementation strategy and compiler
for LoCal (§4). By judicious use of indirections, it repre-
sents the first technique for compiling recursive func-
tions on (mostly) serialized data which is work efficient,
not compromising asymptotic complexity compared
to a traditional language implementation.

• We present a strategy for synthesizing LoCal programs
from a first-order, purely-functional input language,
HiCal (the front-end for our Gibbon compiler), and
redesign our compiler around LoCal (§5).

• We evaluate our compiler pipeline against approaches
for working with serialized binary data, including
Compact Normal Form [32], Cap’N Proto, and prior
Gibbon [29] (§7). Our pipeline achieves 3.2×, 9.4×, and
202× geomean speedups respectively (Table 2), includ-
ing asymptotic advantages, and substantial speedups
in IO-intensive experiments.

2 Background
Consider a simple tree data structure, written in a language
that supports algebraic datatypes:

data Tree = Leaf Int | Node Tree Tree

In memory, each node in this tree is either a Leaf node, typi-
cally consisting of a header word (denoting that it is a Leaf)
and another word holding the integer data, or an interior
Node, consisting of a header word and two double words (on
a 64-bit system) holding pointers to its children. A tree with
2 internal nodes and 3 leaf nodes, then, occupies 64 bytes
of space (20 bytes per internal node and 8 bytes per leaf
node), even though it contains only 12 bytes of łusefulž data.

int sumPacked (byte * &ptr) {

int ret = 0

if (* ptr == LEAF) {

ptr++; / / skip past tag

ret = * (int*)ptr; / / retrieve integer

ptr += sizeof(int); / / skip past integer

} else { / / tag is INTERNAL

ptr++; / / skip past tag

ret += sumPacked(ptr);

ret += sumPacked(ptr);

}

return ret;

}

Figure 1. A low-level traversal of serialized tree data.

Storing the pointers that maintain the internal structure of
the tree represents a significant storage overhead.
When relying on the usual pointer-based representation,

this data can be readily traversed using standard idioms to
perform computations such as summing all the leaf values:

sum t = case t of

Leaf n → n

Node x y → (sum x) + (sum y)

But when represented on disk or sent over the wire, the
same tree structure would not preserve pointers from a node
to its children. Instead, the tree would be serialized, with
the Nodes and Leafs of the tree laid out in a buffer in some
sequential order. For example, the tree could be linearized
in a left-to-right preorder, containing tags to mark data con-
structors and atomic fields such as integers, but ditching the
pointers. Because it contains no pointers, this serialized rep-
resentation is significantly more compact. But without this
structural information, in most settings the pre-order serial-
ization would be deserialized prior to processing, requiring
more code than the simple sum function above.
However, this deserialization is not necessaryÐit is per-

fectly possible to write code that performs the same sum

operation directly on the serialized representation. All that
is necessary is for the code to visit every node in the tree,
skipping over tags and Node data, and accumulating leaves
into the sum. This traversal can be accomplished in existing
languages, writing low-level buffer-processing code as in the
C++ code shown in Fig. 1.

Essentially, this code operates as follows: ptr scans along
the packed data structure. For each node type it encounters,
it continues scanning through the node, retrieving the data
it needs from the packed representation (in the case of Leafs,
the integer, in the case of Nodes, nothing) and performing
the necessary computation. Because this serialized repre-
sentation is already in left-to-right preorder, no pointer-like
accesses are necessary: scanning sequentially through the
buffer suffices to access all the nodes of the tree. Note that
the sumPacked function is still recursive; the program stack
helps capture the tree structure of the data.

LoCal: A Language for Programs Operating on Serialized Data PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

There are several advantages to working directly on se-
rialized data: the serialized representation can take many
times fewer bytes to represent than a normal pointer-based
representation; data can be traversed faster once in memory
due to predictable memory accesses; and data can be read
from disk without deserialization (e.g. via mmap).
However, working directly with serialized data is not al-

ways easy. First, programs written with typical pointer-based
representations benefit from standard techniques, such as
type checking, to help programmers avoid errors while con-
structing traversals of their data structures (so, e.g., type
checking can prevent a programmer from reading an integer
value out of an interior node of the tree, or from visiting the
children of a leaf node). But operations on serialized repre-
sentations provide no such protection: all of the data in the
tree is packed into a flat buffer that is traversed using cursors
(ptr, in Fig. 1). Cursors need to be manipulated carefully to
visit the necessary portions of the bufferÐskipping over the
sections that are not neededÐand read out the appropriate
data, all without the safety net of a type checker. Hence,
writing code to work directly on the serialized data can be
tedious and error-prone.
We propose instead to write the above example in a lan-

guage, LoCal, expressly designed to use dense serializations
for its values. The LoCal sum function extends the simple
functional one above with region and location annotations:

sum : ∀ l r . Tree @ l r → Int

sum [l r] t = case t of

Leaf (n : Int @ ln
r) → n

Node (a : Tree @ la
r) (b : Tree @ lb

r)

→ (sum [la
r] a) + (sum [lb

r] b)

This code operates on serialized data, taking locations of that
data (input and output) as additional function arguments. It
is a region-polymorphic function that performs a traversal
within region r that contains serialized data. Well-typedness
ensures that it only reads memory in a type-safe way. Lo-
cation variables (lr) have lexical scopes and are introduced
as function arguments and pattern matches. For instance, in
the above program, we cannot access child node locations
(la

r ,lb
r) until we correctly parse the input data at lr and as-

certain that represents an intermediate node. Conversely, as
we will see, to construct data the type system must enforce
that adjacent fields be serialized consecutively.

Efficiency Using a type-safe language for serialized data
manipulation eliminates correctness risks, but efficiency risks
remain. As a simple example, consider taking the rightmost
leaf of the same tree datatype:

rightmost : ∀ l r . Tree @ l r → Int

rightmost [l r] tr =

case tr of

Leaf (n : Int @ ln
r) → n

Node (a : Tree @ la
r) (b : Tree @ lb

r) →

rightmost [lb
r] b

Here, operating on the fully serialized data representation
is more expensive than operating on the pointer-based rep-
resentation (linear instead of logarithmic). The reason is, in
the fully serialized representation, the only way to access a
particular field in a structure is to scan past all of the data
that has been serialized before it.

Indirections andRandom-access: One solution to this prob-
lem is to preserve some amount of indirection information
(such as the size, in bytes, of the left subtree of each inte-
rior node). There has been substantial research in producing
efficient layouts that preserve pointer information to allow
easy traversal of recursive structures but still retain the lo-
cality benefits of linearized representations [5, 6, 11, 26] and
such layouts are common in high-performance computing
settings [8, 13, 15, 20, 21]. Unfortunately keeping pointer or
indirection information in the linearized layout sacrifices
some of the benefits of the serialized representation, and
may not always be necessary. Indeed, it seems that there
are two options in the design space: a fully-packed layout
that eschews pointers entirely, but is specialized to specific
traversal patterns, or a linearized order that pays the over-
head of preserving pointer information in order to support
arbitrary access patterns. But is there a way to interpolate
between the two points in the design space? With LoCal,
the answer is łyesž and random access can be restored on a
per-data-constructor, per-field basis, without incurring any
global cost of fixed representation choices.

3 From a Region- to a Location-Calculus

LoCal follows in the tradition of typed assembly language [17],
region calculi [24], and Cyclone [9] in that it uses types to
both expose and make safe low-level implementation mech-
anisms. The basic idea of LoCal is to first establish what data
share which logical memory regions (essentially, buffers),
and in what order those data reside, abstracting the details
of computing exact addresses. For example, data construc-
tor applications, such as Leaf 3, take an extra location argu-
ment in LoCal, specifying where the data constructor should
place the resulting value in memory: Leaf l 3. This location
becomes part of type of the value: T ree@ l . Every location
resides in a region, and when we want to name that region,
we write lr .

Locations represent information about where values are
in a store, but are less flexible than pointers. They are in-
troduced relative to other locations. A location variable is
either after another variable, or it is at the beginning of a
region, thus specifying a serial order. If location l2 is declared
as l2 = after(T ree@l1

r), then l2 is after every element of the
tree rooted at l1.

Regions in LoCal represent the memory buffers containing
serialized data structures. Unlike some other region calculi,
in LoCal, values in a region may escape the static scope
which binds and allocates that region. In fact, an extension

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

introduced later in §3.4 specifically relies on inter-region
pointers and coarse-grained garbage collection of regions.
LoCal is a first-order, call-by-value functional language

with algebraic datatypes and pattern matching. Programs
consist of a series of datatype definitions, function defini-
tions, and a main expression. LoCal programs can be written
directly by hand, and LoCal also serves as a practical inter-
mediate language for other tools or front-ends that want to
convert computations to run on serialized data (essentially
fusing a consuming recursion with the deserialization loop).
We return to this use-case in §5.

Allocating to output regions Now that we have seen how
data constructor applications are parameterized by locations,
let us look at a more complex example than those of the prior
section. Consider buildtree, which constructs the same trees
consumed by sum and rightmost above. First, in the source
language without locations:

buildtree : Int → Tree

buildtree n = if n == 0

then Leaf 1

else Node (buildtree (n - 1))

(buildtree (n - 1))

Then in LoCal, where the type scheme binds an output rather
than input location:

buildtree : ∀ l r . Int → Tree @ l r

buildtree [l r] n =

if n == 0 then (Leaf l r 1) −− write tag + int to output

else −− skip past tag:

letloc la
r = l r + 1 in

−− build left in place:

let left : Tree @ la
r =

buildtree [la
r] (n - 1) in

−− find start of right:

letloc lb
r = after(Tree @ la

r) in

−− build right in place:

let right : Tree @ lb
r =

buildtree [lb
r] (n - 1) in

−− write datacon tag, connecting things together:

(Node l r left right)

Here, we see that LoCal must represent locations that have
not yet been written, i.e., they are output destinations. Nev-
ertheless, in the recursive calls of buildtree this location
is passed as an argument: a form of destination-passing
style [22]. The type system guarantees that memory will be
initialized and written exactly once. The output location is
threaded through the recursion to build the left subtree, and
then offset to compute the starting location of the right sub-
tree. It might appear that computing after(T ree@la

r) could
be quite expensive, if there is a large tree at that location.
This does not need to be the case. In §4 we will present dif-
ferent techniques for efficiently compiling LoCal programs
without requiring linear walks through serialized data.

One of the goals of LoCal is to support several compilation
strategies. One extreme is compiling programs to work with

K ∈ Data Constructors, τ ∈ Type Constructors,

x ,y, f ∈ Variables, l, lr ∈ Symbolic Locations,

r ∈ Regions, i, j ∈ Region Indices,

⟨r , i⟩l ∈ Concrete Locations

Top-Level Programs top ::=
−⇀
dd ;

−⇀
fd ; e

Datatype Declarations dd ::= data τ =
−−−−⇀
K −⇀τ

Function Declarations fd ::= f : ts; f −⇀x = e

Located Types τ̂ ::= τ@lr

Type Scheme ts ::= ∀−⇀
l r
.
−⇀
τ̂ → τ̂

Values v ::= x | ⟨r , i⟩l

Expressions e ::= v

| f [
−⇀
lr] −⇀v

| K lr −⇀v

| let x : τ̂ = e in e

| letloc lr = le in e

| letregion r in e

| case v of
−−⇀
pat

Pattern pat ::= K (
−−−⇀
x : τ̂) → e

Location Expressions le ::= (start r)

| (lr + 1)

| (after τ̂)

Figure 2. Grammar of LoCal

a representation of data structures that do not include any
pointers or indirections at run-timeÐwithin such a repre-
sentation, the size of a value can be observed by threading
through łend witnessesž while consuming packed values: for
example, buildtree above would return lb

r , rather than com-
puting it with an after operation. (The end-witness strategy
was already at use in Gibbon [29], which previously com-
piled functions on fully serialized data, while not preserving
asymptotic complexity.) Next, we will present a formalized
core subset of LoCal, its type system (§3.2), and operational
semantics (§3.3), before moving on to implementation (§4,
§5) and evaluation (§7).

3.1 Formal Language and Grammar

Fig. 2 gives the grammar for a formalized core of LoCal. We

use the notation −⇀x to denote a vector [x1, . . . ,xn], and
−⇀xi the

item at position i. To simplify presentation, the language sup-
ports algebraic datatypes without any base primitive types,
but could be extended in a straightforward manner to repre-
sent primitives such as an Int type or tuples. The expression
language is based on the first-order lambda calculus, using
A-normal form. The use of A-normal form simplifies our
formalism and proofs without loss of generality.

LoCal: A Language for Programs Operating on Serialized Data PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Typing Env. Γ ::= { x1 7→ τ̂1, . . . ,xn 7→ τ̂n }

Store Typing Σ ::= { lr11 7→ τ1, . . . , l
rn
n 7→ τn }

Constraint Env. C ::= { lr11 7→ le1, . . . , l
rn
n 7→ len }

Allocation Pointers A ::= { r1 7→ ap1, . . . , rn 7→ apn }

where ap = lr | ∅

Nursery N ::= { lr11 , . . . , l
rn
n }

Figure 3. Extended grammar of LoCal for static semantics

Like previous work on region-based memory [25], LoCal
has a special binding form for introducing region variables,
written as letregion. Location variables are similarly in-
troduced by letloc. The pattern-matching form case binds
variables to serialized values, as well as binding the location
for each variable. We require that each bound location in a
source program is unique.

The letloc expression binds locations in only three ways:
a location is either the start of a region (meaning, the loca-
tion corresponds to the very beginning of that region), is
immediately after another location, or it occurs after the last
position occupied by some previously allocated data con-
structor. For the last case, the location is written to exist at
(after τ@lr), where l is already bound in a region, and has
a value written to it.

Values in LoCal are either (non-location) variables or con-
crete locations. In contrast to bound location variables, con-
crete locations do not occur in source programs; rather, they
appear at runtime, created by the application of a data con-
structor, which has the effect of extending the store. Every
application of a data constructor writes a tag to the store, and
concrete locations allow the program to navigate through
it. To distinguish between concrete locations and location
variables in the formalism, we refer to the latter as symbolic

locations. A concrete location is a tuple ⟨r, i⟩l consisting of a
region, an index, and symbolic location corresponding to its
binding site. The first two components are sufficient to fully
describe an address in the store.

3.2 Static Semantics

In Fig. 3, we extend the grammar with some extra details
necessary for describing the type system. The typing rules
for expressions in LoCal are given in Fig. 4, where the rule
form is as follows:

Γ ;Σ;C;A;N ⊢ A′;N ′; e : τ̂

The five letters to the left of the turnstile are different
environments. Γ is a standard typing environment. Σ is a
store-typing environment, which maps all materialized sym-
bolic locations to their types. That is, every location in Σ
has been written and contains a value of type Σ(lr). C is a
constraint environment, which keeps track of how symbolic
locations relate to each other. A maps each region in scope

[T-Var]

Γ(x) = τ@lr Σ(lr) = τ

Γ ;Σ;C;A;N ⊢ A;N ;x : τ@lr

[T-Concrete-Loc]

Σ(lr) = τ

Γ ;Σ;C;A;N ⊢ A;N ; ⟨r , i⟩l : τ@lr

[T-Let]

Γ ;Σ;C;A;N ⊢ A′;N ′; e1 : τ1@l1
r

Γ ′;Σ′;C;A′;N ′ ⊢ A′′;N ′′; e2 : τ̂2

Γ ;Σ;C;A;N ⊢ A′′;N ′′; let x : τ1@l1
r
= e1 in e2 : τ̂2

where Γ ′
= Γ ∪ { x 7→ τ1@l1

r }; Σ′
= Σ ∪ { l1

r 7→ τ1 }

[T-LetRegion]

Γ ;Σ;C;A′;N ⊢ A′′;N ′; e : τ̂

Γ ;Σ;C;A;N ⊢ A′′;N ′; letregion r in e : τ̂

where A′
= A ∪ { r 7→ ∅ }

[T-LetLoc-Start]

A(r) = ∅

lr < N ′′ l′r
′

, lr Γ ;Σ;C ′;A′;N ′ ⊢ A′′;N ′′; e : τ ′@l′r
′

Γ ;Σ;C;A;N ⊢ A′′;N ′′; letloc lr = (start r) in e : τ ′@l′r
′

where C ′
= C ∪ { lr 7→ (start r) }; A′

= A ∪ { r 7→ lr };

N ′
= N ∪ { lr }

[T-LetLoc-Tag]

A(r) = l′r l′r ∈ N lr < N ′′ lr , l′′r
′′

Γ ;Σ;C ′;A′;N ′ ⊢ A′′;N ′′; e : τ ′′@l′′r
′′

Γ ;Σ;C;A;N ⊢ A′′;N ′′; letloc lr = (l′r + 1) in e : τ ′′@l′′r
′′

where C ′
= C ∪ { lr 7→ (l′r + 1) }; A′

= A ∪ { r 7→ lr };

N ′
= N ∪ { lr }

[T-LetLoc-After]

A(r) = l1
r Σ(l1

r) = τ ′ l1
r
< N lr < N ′′ lr , l′r

′

Γ ;Σ;C ′;A′;N ′ ⊢ A′′;N ′′; e : τ ′@l′r
′

Γ ;Σ;C;A;N ⊢ A′′;N ′′; letloc lr = (after τ ′@l1
r) in e : τ ′@l′r

′

where C ′
= C ∪ { lr 7→ (after τ ′@l1

r) }; A′
= A ∪ { r 7→ lr };

N ′
= N ∪ { lr }

[T-DataConstructor]

TypeOfCon(K) = τ TypeOfField(K, i) =
−⇀
τ̂i

lr ∈ N A(r) =
−−⇀
ln

r if n , 0 else lr

C(
−⇀
l1
r) = lr + 1 C(

−−−⇀
lj+1

r) = (after (
−⇀
τ ′j @

−⇀
lj
r
))

Γ ;Σ;C;A;N ⊢ A;N ;−⇀vi :
−−−−−⇀
τ ′i @li

r

Γ ;Σ;C;A;N ⊢ A′;N ′;K lr −⇀v : τ@lr

where n = |−⇀v |; i ∈ I = { 1, . . . , n }; j ∈ I − { n }
A′
= A ∪ { r 7→ lr }; N ′

= N − { lr }

Figure 4. Selected type-system rules for LoCal.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

to a location, and is used to symbolically track the alloca-
tion and incremental construction of data structures; A can
be thought of as representing the focus within a region of
the computation. N is a nursery of all symbolic locations
that have been allocated, but not yet written to. Locations
are removed from N upon being written to, as the purpose
is to prevent multiple writes to a location. Both A and N
are threaded through the typing rules, also occuring in the
output (to the right of the turnstile).
The T-Var rule ensures that the variable is in scope, and

the symbolic location of the variable has been written to.
T-Concrete-Loc is very similar, and also just ensures that
the symbolic location has been written to. T-Let is straight-
forward, but note that along with Γ , it also extends Σ to
signify that the location l has materialized.
In T-LetRegion, extending A with an empty allocation

pointer brings the region r in scope, and also indicates that
a symbolic location has not yet been allocated in this region.

There are three rules for introducing locations (T-LetLoc-
Start, T-LetLoc-Tag and T-LetLoc-After), corresponding
to three ways of allocating a new location in a region. A
new location is either: at the start of a region, one cell after
an existing location, or after the data structure rooted at an
existing location. Introducing locations in this fashion sets
up an ordering on locations, and the typing rules must ensure
that the locations are used in a way that is consistent with
this intended ordering. To this end, each such rule extends
the constraint environment C with a constraint that is based
on how the location was introduced, and N is extended to
indicate that the new location is in scope and unwritten.
Additionally, the location-introduction rules use A to en-

sure that a program must introduce locations in a certain
pattern (corresponding to the left-to-right allocation and
computation of fields, as explained in §3.3). In A, each re-
gion is mapped to either the right-most allocated symbolic
location in that region (if it is unwritten), or to the symbolic
location of the most recently materialized data structure.
This mapping in A is used by the typing rules to ensure that:
(1) T-LetLoc-Start may only introduce a location at the
start of a region once; (2) T-LetLoc-Tag may only introduce
a location if an unwritten location has just been allocated in
that region (to correspond to the tag of some soon-to-be-built
data structure); and (3) T-LetLoc-Aftermay only introduce
a location if a data structure has just been materialized at
the end of the region, and the programmer wants to allocate
after it. To attempt, for example, to allocate the location of
the right sub-tree of a binary tree beforematerializing the left
sub-tree would be a type error. Each location-introduction
rule also ensures that the introduced location must be writ-
ten to at some point, by checking that it’s absent from the
nursery after evaluating the expression.
In order to type an application of a data constructor, T-

DataConstructor starts by ensuring that the tag being
written and all the fields have the correct type. Along with

Store S ::= { r1 7→ h1, . . . , rn 7→ hn }

Heap h ::= { i1 7→ K1, . . . , in 7→ Kn }

Location Map M ::= { lr11 7→ ⟨r1, i1⟩ , . . . , l
rn
n 7→ ⟨rn , in⟩ }

Figure 5. Extended grammar of LoCal for dynamic semantics

that, the locations of all the fields of the constructor must
also match the expected constraints. That is, the location of
the first field should be immediately after the constructor
tag, and there should be appropriate after constraints for
other fields in the location constraint environment. After
the tag has been written, the location l is removed from
the nursery to prevent multiple writes to a location. As
mentioned earlier, LoCal uses destination-passing style. To
guarantee destination-passing style, it suffices to ensure that
a function returns its value in a location passed from its
caller. The LoCal type system enforces this property by using
constraints of the form l ′ , l in the premises of the typing
rules of the operations that introduce new locations
As demonstrated by T-DataConstructor, the type sys-

tem enforces a particular ordering of writes to ensure the
resulting tree is serialized in a certain order. Some inter-
esting patterns are expressible with this restriction (for ex-
ample, writing or reading multiple serialized trees in one
function), and, as wewill address shortly in §3.4, LoCal is flex-
ible enough to admit extensions that soften this restriction
and allow for programmers to make use of more complicated
memory layouts.
A simple demonstration of the type system is shown in

Table 1, which tracks how A, C, and N change after each
line in a simple expression that builds a binary tree with leaf
children. Introducing l at the top establishes that it is at the
beginning of r , A maps r to l, and N contains l. The location
for the left sub-tree, la , is defined to be +1 after it, which
updates r to point to la in A and adds a constraint to C for la .
Actually constructing the Leaf in the next line removes la to
N , because it has been written to. Once la has been written,
the next line can introduce a new location lb after it, which
updates the mapping in A and adds a new constraint to C.
Once lb has been written and removed from N in the next
line, the final Node can be constructed, which expects the
constraints to establish that l is before la , which is before lb .

Additional rules (such as for function application, pattern
matching) are conventional and are available in the Appendix
of the extended version [28]

3.3 Dynamic Semantics

The dynamic semantics for expressions in LoCal are given
in Fig. 6, where the transition rule is as follows.

S;M; e ⇒ S′;M ′; e′

To model the behavior of reading and writing from an in-
dexed memory, we introduce the store, S. The store is a map

LoCal: A Language for Programs Operating on Serialized Data PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Table 1. Step-by-step example of type checking a simple
expression.

Code A C N

letloc l r =

start(r)
{r 7→ lr } ∅ {lr }

letloc la
r = l r + 1 {r 7→ la

r } {la
r 7→ lr + 1} {lr , la

r }

let x : T @ la
r =

Leaf la
r 1

{r 7→ la
r } {la 7→ lr + 1} {lr }

letloc lb
r =

after(T @ la
r)

{r 7→ lb
r }

{la
r 7→ lr + 1,

lb
r 7→ after(T@la

r)}
{lr , lb

r }

let y : T @ lb
r =

Leaf lb
r 2

{r 7→ lb
r }

{la
r 7→ l + 1,

lb
r 7→ after(T@la

r)}
{lr }

Node l r x y {r 7→ lr }
{la

r 7→ lr + 1,
lb
r 7→ after(T@la

r)}
∅

[D-DataConstructor]

S;M;K lr −⇀v ⇒ S′;M; ⟨r, i⟩l

where S′ = S ∪ { r 7→ (i 7→ K) }; ⟨r, i⟩ = M(lr)

[D-LetLoc-Start]

S;M; letloc lr = (start r) in e ⇒ S;M ′; e′

where lf
r fresh; e′ = e[lf

r/lr]
M ′
= M ∪ { lf

r 7→ ⟨r, 0⟩ }

[D-LetLoc-Tag]

S;M; letloc lr = l′r + 1 in e ⇒ S;M ′; e′

where lf
r fresh; e′ = e[lf

r/lr]
M ′
= M ∪ { lf

r 7→ ⟨r, i + 1⟩ }; ⟨r, i⟩ = M(l′r)

[D-LetLoc-After]

S;M; letloc lr = (after τ@l1
r) in e ⇒ S;M ′; e′

where lf
r fresh; e′ = e[lf

r/lr]
M ′
= M ∪ { lf

r 7→ ⟨r, j⟩ }; ⟨r, i⟩ = M(l1
r)

τ ; ⟨r, i⟩ ; S ⊢ew ⟨r, j⟩

[D-Case]

S;M; case ⟨r, i⟩l of [. . . ,K (
−−−−−−−⇀
x : τ@lr) → e, . . .] ⇒

S;M ′; e′′

where
−⇀
lf

r fresh; e′′ = e′[
−⇀
lf

r/
−⇀
lr]

M ′
= M ∪ {

−⇀
lrf1 7→ ⟨r, i + 1⟩ , . . . ,

−−⇀
lrfj+1 7→ ⟨r,−−−⇀w j+1⟩ }

e′ = e[⟨r,−⇀w ⟩
−⇀
lr /−⇀x]

−⇀τ1; ⟨r, i + 1⟩ ; S ⊢ew ⟨r,−⇀w1⟩
−−⇀τj+1; ⟨r,

−⇀w j ⟩ ; S ⊢ew ⟨r,−−−⇀w j+1⟩

j ∈ { 1, . . . , n − 1 }; n = |
−−−⇀
x : τ̂ |

K = S(r)(i)

Figure 6. Selected dynamic-semantics rules for LoCal.

from regions to heaps, where each heap consists of an array
of cells, which contain store values (data constructor tags).
To bridge from symbolic to concrete locations, we use the
location map, M , which is a map from symbolic to concrete
locations.
Case expressions are treated by the D-Case rule. The ob-

jective of the rule is to load the tag of the constructor K
located at ⟨r, i⟩ in the store and dispatch the corresponding
case. The expression produced by the right-hand side of the
rule is the body of the pattern, in which all pattern-bound
variables are replaced by the concrete locations of the fields
of the constructor K .
The concrete locations of the fields are obtained by the

following process. If there is at least one field, then its starting
address is the position one cell after the constructor tag. The
starting addresses of subsequent fields depend on the sizes
of the trees stored in previous fields.

A feature of LoCal is the flexibility it provides to pick the
serialization layout. Our formalism uses our end-witness rule
to abstract from different layout decisions. Given a type τ ,
a starting address ⟨r, is ⟩ , and store S, the rule below asserts
that address of the end witness is ⟨r, ie ⟩ .

τ ; ⟨r, is ⟩ ; S ⊢ew ⟨r, ie ⟩

Using this rule, the starting address of the second field is ob-
tained from the end witness of the first, the starting address
of the third from the end witness of the second, and so on.
The allocation and finalization of a new constructor is

achieved by some sequence of transitions, starting with the
D-LetLoc-Tag rule, then involving some number of transi-
tions of the D-LetLoc-After rule, depending on the number
of fields of the constructor, and finally ending with the D-
DataConstructor transition. The D-LetLoc-Tag rule allocates
one cell for the tag of some new constructor of a yet-to-be
determined type, leaving it to later to write to the new loca-
tion. The resulting configuration binds its l to the address
⟨r, i + 1⟩ , that is, the address one cell past given location
l′ at ⟨r, i⟩ . Fields that occur after the first are allocated by
the D-LetLoc-After rule. Here, its l is bound to the address
⟨r, j⟩ one past the last cell of the constructor represented
by its given symbolic location l1. Like the D-Case rule, the
required address is obtained by application of end-witness
rule to the starting address of the given l1 at the type of the
corresponding field τ . The final step in creating a new data
constructor instance is the D-DataConstructor rule. It writes
the specified constructor tag K at the address in the store
represented by the symbolic location l.
The D-LetLoc-Start rule for the letloc with (start r).

expression binds the location to the starting address in the
region and starts running the body.

The remaining rules have conventional behavior, and are
available in the extended version [28]. The extended version
also provides a detailed explanation of the evaluation of a
sample program.

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

3.3.1 Type Safety

The key to proving type safety is our store-typing rule, given
in full in the extended version [28].

Σ;C;A;N ⊢wf M; S

The store typing specifies three categories of invariants. The
first enforces that allocations occur in the sequence specified
by the constraint environment C. In particular, if there is
some location l in the domain of C, then the location map
and store have the expected allocations at the expected types.
For instance, if (l 7→ (after τ@l′r)) ∈ C, then l′ maps to
⟨r, i1⟩ and l to ⟨r, i2⟩ in the location map, and i2 is the end
witness of i1 at type τ in the store, at region r . The second
category enforces that, for each symbolic location such that
(l 7→ τ) ∈ Σ, there is some ⟨r, i1⟩ for l in the location map
and i1 has some end witness i2 at type τ . The final category
enforces that each address in the store is written once. This
property is asserted by insisting that, if l ∈ N , then there is
some ⟨r, i⟩ for l in the location map, but there is no write to
for i at r in the store. To support this property, there are two
additional conditions which require that the most recently
allocated location (tracked by to A,N) is at the end of its
respective region.

The type safety of LoCal follows from the following result.

Theorem 3.1 (Type safety)

If (∅;Σ;C;A;N ⊢ A′;N ′; e : τ̂) ∧ (Σ;C;A;N ⊢wf M; S)

and S;M; e ⇒n S′;M ′; e′

then (e′ value) ∨ (∃S′′,M ′′
, e′′. S′;M ′; e′ ⇒ S′′;M ′′; e′′)

Proof The type safety follows from an induction with the
progress and preservation lemmas, the details of which
are given in the extended version [28].

3.4 Offsets and Indirections

As motivated in §2, it is sometimes desirable to be able to
łjump overž part of a serialized tree. As presented so far, Lo-
Cal makes use of an end witness judgment to determine the
end of a particular data structure in memory. The simplest
computational interpretation of this technique is, however,
a linear scan through the store. Luckily, extending the lan-
guage to account for storing and making use of offset infor-
mation for certain datatypes is straightforward, and does
not add conceptual difficulty to neither the formalism nor
type-safety proof.

Such an extension may use annotations on datatype decla-
rations that identify which fields of a given constructor are
provided offsets and to permit cells in the store to hold offset
values. Because the offsets of a given constructor are known
from its type, the D-LetLoc-Tag rule can allocate space for
offsets when it allocates space for the tag. It is straightfor-
ward to fill the offset fields because D-DataConstructor rule
already has in hand the required offsets, which are provided

in the arguments of the constructor. Finally, the D-Case rule
can use offsets instead of the end-witness rule.
Indirections permit fields of data constructors to point

across regions, and thus require adding an annotation form
(e.g., an annotation on the type of a constructor field to indi-
cate an indirection) and extending the store to hold pointers.
Fortunately, as discussed later, regions in LoCal are never
collected; they are garbage collected in our implementation.
Every time an indirection field is constructed, space for the
pointer is allocated using a transition rule similar to the D-
LetLoc-Tag rule. The D-DataConstructor rule receives the
address of the indirection in the argument list, just like any
other location and writes the indirection pointer to the ad-
dress of the destination field.

To type check, the type system extends with two new typ-
ing rules and a new constraint form to indicate indirections.
To maintain type safety in the presence of offsets and indirec-
tions, the store typing rule needs to be extended to include
them. Because the programmer is not manually managing
the creation or use of offsets or indirections (they are below
the level of abstraction, indicated by annotating the datatype,
but not changing the code), the store-typing rule generalizes
straightforwardly and the changes preserve type safety.

In datatype annotations each field can be marked to store
its offset in the constructor or be represented by an indirec-
tion pointer (currently not both):

data T = K1 T (Ind T) | K2 T (Offset T) | K3 T

Type annotations would also be the place to express permu-
tations on fields that should be serialized in a different order,
(e.g., postorder). But it is equivalent to generating LoCal with
reordered fields in the source program.

4 Compiling the Location Calculus

In this section we present a compiler for the LoCal language,
which consists of the formalized core from §3, extended
with various primitive types, tuples, convenience features,
and a standard library. A well-typed LoCal program guar-
antees correct handling of regions, but the implementation
still has substantial leeway to further modify datatypes and
the functions that use them. By default, the compiler we
present inserts enough indirection in datatypes to preserve
the asymptotic complexity of the source functions (under
the assumption of O(1) field access), but we also provide a
modeÐactivated globally or per-datatypeÐthat leaves the
data types fixed and instead introduces inefficient łdummy
traversalsž and copying code into compiled functions. (In this
mode, our compiler produces a similar result to what Gibbon
produced previously [29]Ðfor comparison, we will distin-
guish between Gibbon2 (with LoCal) and Gibbon1 (without
LoCal) in §7.)

Note that this łinflexiblež modeÐwhich doesn’t allow the
compiler to insert indirectionsÐis also used when reading
in external data. In our LoCal implementation, we provide

LoCal: A Language for Programs Operating on Serialized Data PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

n ∈ Integers

Types τ ::= . . . | Cursor | Int

Pattern spat ::= K (x : Cursor) → e

Expressions e ::= . . .

| switch x of spat

| readInt x | writeInt x n

| readTag x | writeTag x K

| readCursor x

| writeCursor x ⟨r , i⟩l

Figure 7. Grammar of NoCal (an extension of LoCal)

a mechanism for any datatype to be read from a file (via
mmap),whose contents are the pointer-free, full serialization.
We use the same basic encoding as Haskell’s Data.Serialize

module derives by default, but plan to extend it in the future.
Ultimately, because LoCal is meant to be generated by

tools as well as programmers, its goal is to add value in both
safety and performance, but to leave open the design space
of broader optimization questions to a front-end that targets
LoCal. One example of such a front-end tool is in §5.

Compiler Structure We implement LoCalwith amicropass,
whole-program compiler that performs full region/location
type checking between every pair of passes on the LoCal
intermediate representation (IR). After a series of LoCal
→LoCal passes, we lower to a second IR, NoCal. As shown
in Fig. 7, NoCal is not a calculus at all, but a low-level lan-
guage where memory operations are made explicit. NoCal
functions closely resemble the C code shown in Fig. 1. Code
in this form manipulates pointers into regions we call cursors
because of their (largely continuous) motion through regions.
We represent NoCal internally as a distinct AST type, with
high level (non-cursor) operations excluded.

Within this prototype compiler, tuples, and built-in scalar
types like Int, Bool etc. are unboxed (never require indirec-
tions). In the following subsections, we describe the compiler
in four stages. Similar to NoCal, our compiler represents pro-
grams at these stages with AST types that track changes in
the grammar needed by each pass. After these four steps, the
final backend is completely standard. It eliminates tuples in
the unariser, performs simple optimizations, and generates
C code. Because of inter-region indirections, a small LoCal
runtime system is necessary to support the generated code,
as described in Section §4.5.

4.1 Compiler (1/4): Finding Traversals

Pattern matches in LoCal bind all constructor fields, includ-
ing those that occur at non-constant offsets, later in memory.
The compiler must determine which fields are reachable

based on either (1) constant offsets, (2) stored offsets/indirec-
tions present in the datatype, or (3) by leveraging traversals
already present in the code that scan past the relevant data.
The third case corresponds to determining end witnesses in
the formal semantics. Likewise, this compiler pass identifies
data reached by the work the program already performs.
To this end, we use a variation of a technique we previ-

ously proposed [29]. Specifically, we assign traversal effects
to functions. A function is said to traverse it’s input location
if it touches every part of it. In LoCal, a case expression is the
only way to induce a traversal effect. If all clauses of the case
expression in turn traverse the packed elements of the corre-
sponding data constructors, the expression traverses to the
end of the scrutinee. Traversing a location means witness-
ing the size of the value encoded at that location, and thus
computing the address of the next value in memory. After
this pass, the type schemes of top-level function definitions
reflect their traversal effects.

maplike : ∀ l1
r1 l2

r2 . Tree @ l1
r1

{l1,l2}
−−−−−→ Tree @ l2

r2

rightmost : ∀ l r . Tree @ l r
{}
−−→ Int

4.2 Compiler (2/4): Implementing Random Access

Once we know what fields are traversed, we can also de-
termine which fields are used but not naturally reachable
by the program: e.g. the right subtree read by rightmost. In
later stages of the compiler, we eliminate all direct references
to pattern-matched fields after the first variable-sized one.
This is where space/time optimization choices must be made:
bytes for offsets v.s. cycles for unnecessary traversals.
To activate random-access for a particular field within a

data constructor, we add additional information following
the tag. Specifically, for a constructor K T1 T2, if we need
immediate access to T2, we include a 4-byte relative-offset
after the constructor.

Back-tracking Unfortunately, when we modify datatypes
to add offsets, we invalidate previously computed location
information. Thus the compiler backtracks, rewinding in
time to before find-traversals (and inserting extra letloc ex-
pressions to skip-over the offset bytes themselves). Adding
random access to one datatype never increases the set of con-
structors needing random-access tomaintainwork-efficiency,
so in fact we only backtrack at most once.
In the default (offset-adding) mode, any function that de-

mands random access to a field will determine the repre-
sentation for all functions using the datatype. Our current
LoCal compiler does not automate choices such as dupli-
cating datatypes to achieve multiple encodings of the same
dataÐthat is left to the programmer or upstream tools.

If the LoCal compiler is passed a flag to not automatically
change datatypes, then it must use the same approach we
previously used in Gibbon [29]: insert dummy traversals
that scan across earlier fields to reach later ones. Regardless

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

of whether the offset or dummy-traversal strategy is used,
at the end of this compiler phase, we blank non-first fields
in each pattern match to ensure they are not referenced
directly. So a pattern match in our tree examples becomes
łNode a _ → · · · ž or łNode offset a _ → · · · ž.

4.3 Compiler (3/4) Routing End Witnesses

Each of the traversal effects previously inferred proves we
logically reach a point in memory, but to realize it in the
program we add an additional return value to the function,
witnessing the end-location for traversed values (as described
in Vollmer et al. [29]). We extend the syntax to allow addi-
tional location-return values, equivalent to returning tuples.
The buildtree example becomes:

buildtree : ∀ l r . Int
{l }
−−→ [after(T ree@l r)] Tree@l r

buildtree [l r] n =

if n == 0 then return [l r + 9] (Leaf l r 1)

else letloc la
r = l r + 1 in

let [lb
r] left = buildtree [la

r] (n - 1) in

let [lc
r] right = buildtree [lb

r] (n - 1) in

return [lc
r] (Node l r left right)

The letloc form for the location of the right subtree is
gone, because the first recursive call to buildtree returned
lb
r as an end-witness, bound here with an extended let form.

Similarly, the final return statement returns the end-witness
of the right subtree, lc

r , using a new return form in the IR.

4.4 Compiler (4/4): Converting to NoCal

In this stage, we convert from LoCal into NoCal, switching
to imperative cursor manipulation. At this stage, location ar-
guments and return values turn into first-class cursor values
(pointers into memory buffers representing regions). The
primitive operations on cursors read or write one atomic
value, and advance the cursor to the next spot. We dropmuch
of the type information at this phase, and rightmost becomes:

rightmost : Cursor → Int

rightmost cin = −− take a pointer as input

switch cin of −− read one byte

Leaf(cin1) →

let (cin2 ,n) = readInt(cin1) in n

Node(cin1) → −− only get a pointer to the 1st field

let (cin2 ,ran) = readCursor(cin1) in

rightmost ran

Here the switch construct is simpler than case, reading a one
byte tag, switching on it, and binding a cursor to the very
next byte in the stream (cin1 == cin + sizeof(tag) == cin+1).
The key takeaway here is that, because the relationship

between location variables and normal variables represent-
ing packed data are made explicit in the types and syntax of
LoCal, this pass does not require any complicated analysis.
Also, in NoCal we can finally reorder writes to more often
be in order in memory, which aids prefetching and caching,
because writes are ordered only by data-dependencies for

computing locations, with no ordering needed on the side-
effects themselves.

4.5 LoCal Runtime System & Allocator

The LoCal runtime system is responsible for region-based
memory management. A detailed description of the mem-
ory management strategy is in the extended version [28]. In
brief, we use region-level reference counts. Each region is
implemented as linked list of contiguous memory chunks,
doubling in size. This memory is write-once, and immutabil-
ity allows us to track reference counts only at the region
level. Exiting a letregion decrements the region’s count, and
it is freed when no other regions point into it.

5 High-Level Programs: HiCal to LoCal

LoCal captures a notion of computation over (mostly) serial-
ized data, exposing choices about representation. It provides
the levers needed by a human or another tool to explore the
design space of optimization trade-offs above this level, i.e.,
for the human or tool to answer the question łhow do we
globally optimize a pipeline of functions on serialized data?ž.

First, if multiple functions use the same datatype, do they
standardize on one representation? Or does that datatype
take different encodings at different points in the pipeline
(implemented by cloning the datatype and presenting it to
LoCal with different annotations)? Second, when up against
the constraint of already-serialized data on disk, the compiler
can’t change the existing representation, if the external data
lacks offsets, is it better to force the first consuming function
to use that representation, or to insert an extra reserialization
step to convert1? Third, can the compiler permute fields to
improve performance or reduce the stored offsets needed?

This large space of future work is beyond the scope of this
paper, but we nevertheless illustrate the process of integrat-
ing LoCal into Gibbon. The front-end language for Gibbon,
HiCal, is a vanilla purely functional language without any
region or location annotations. It hides data-layout from
the programmer (and the low-level control that comes with
it). It also facilitates comparison with mature compilers, as
HiCal runs standard functional programs: for example, the
unannotated examples we’ve seen in this paper.

The syntax for HiCal is a subset of Haskell syntax, support-
ing algebraic data types and top-level function definitions. It
is a monomorphic, strict functional programming language,
and for simplicity it is first order, like LoCal. In future-work,
we plan to add support for a higher-order, polymorphic front-
end language through standard monomorphization and de-
functionalization. (An interesting consequence of this will
be that closures become regular datatypes, such that a list of
closures could be serialized in a dense representation.)

1Still faster than traditional deserialization: no object graph allocation.

LoCal: A Language for Programs Operating on Serialized Data PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

Implementing HiCal The compiler must perform a vari-
ant of region inference [24, 25], but differs from previous
approaches in some key ways. The inference procedure uses
a combination of standard techniques from the literature
and specialized approach for satisfying LoCal’s particular
needs2. Because the inference must determine not only what
region a value belongs to, but where in that region it will be,
the inference procedure returns a set of constraints for an
expression similar to the constraint environment used in the
typing rules in Fig. 4, which are used to determine placement
of symbolic location bindings. Additionally, certain locations
are marked as fixed (function parameters, data constructor
arguments), and when two fixed locations attempt to unify
it signals the need for an indirection, and the program must
be transformed accordingly.

Our current implementation adds an extra variant to every
data type3 representing a single indirection (called I). For
example, a binary tree T becomes

data T = Leaf | Node T T | I (Ind T)

The identity function id x = x, when compiled to LoCal,
is id x = I x. Likewise, sharing demands indirections, and
let x = _ in Node x x becomes let x = _ in Node x (I x).

6 Related Work

Many libraries exist for working with serialized data, and a
few make it easier to use serialized data as in-memory data,
or to export the host-language’s pre-existing in-memory for-
mat as external data. Cap’N Proto4, is designed to eliminate
encoding/decoding by standardizing on a new binary format
for use in memory as well on disk/network. Compact Nor-
mal Forms (CNF) [32] is a feature provided by the Glasgow
Haskell Compiler since release 8.2. The idea is that any purely
functional value, once fully evaluated, can be compacted into
its own region of the heap Ð capturing a transitive closure of
its reachable heap. After compaction, the CNF can be stored
externally and loaded back into the heap later. Persistent
languages tackle the problem of automatically moving data
between disk and in-memory representations [1, 2, 12], and
can swizzle pointers as part of this translation to create more
efficient representations. However, like CNF, these repre-
sentations still maintain pointers, so cannot realize the full
advantage of our system.

If we look instead at compiler support for computing with
data in dense or external forms, there are many compilers
for stream processing languages [19, 23]Ðor restricted lan-
guages such as XPath [18]Ðthat generate efficient compu-
tations over data streams. These are somewhat related, but
LoCal differs in targeting general purpose recursive func-
tions over algebraic datatypes. In this category, the main

2The Directed Inference Engine for region Types, if you will.
3These indirections do double-duty in allowing the memory manager to

use non-contiguous memory slabs for a region [28].
4An łinsanely fast data interchange format,ž https://capnproto.org/, [27]

published approach is our prior work on Gibbon [29], which
compiles idiomatic programs to operate on serialized data.
However, the Gibbon approach described previously can
only handle fully serialized data and thus introduces asymp-
totic slowdowns as we’ll see in the next section. (At the time,
we considered adding indirections as future work but they
were not part of the compiler.) Also, the prior Gibbon com-
piler had no analogue to our location calculus: no way for a
type-system to enforce correct handling of regions and loca-
tions within serialized dataÐwhich provides a much stronger
foundation for building such compilers.
The problem of computing without deserializing can be

viewed as a fusion/deforestation problem: to fuse the com-
pute loop with the deserialize loop. But traditional defor-
estation approaches [30], don’t rise to being able to handle
a full deserializer, and popular approaches based on more
restrictive combinator libraries [7] are less expressive than
HiCal and LoCal.
Ornaments are a body of theory regarding connections

between related data structure that differ based on additions
or reorganization [14]. Indeed, LoCal’s addition of offset
fields to data is ornamentation. Practical implementations of
ornaments [31] provide support for lifting functions across
types related by ornaments, transforming the code. However,
the isomorphism between a datatype and its serialized form
is not an ornament, and thus lifting functions across that
isomorphism is not supported.

Finally, LoCal relates to a broader literature on optimizing
tree-traversing programs and heap representations. For the
interested reader, this is detailed in the extended version [28].
LoCal does not allow construction of cyclic values (only
DAGs), so it is less related to graph-processing systems.

7 Evaluation

In this section we evaluate our implementation by looking
both at benchmarks that operate on data already in memory,
as well as programs that process serialized data stored on
disk. One of the main results of this work is categorical rather
than quantitative Ð that a compilation approach based on
LoCal/HiCal can lift functions over (mostly) serialized data
without changing their asymptotic complexity.

We compare performance against prior systems for com-
puting with serialized data. The approach we used previ-
ously in Gibbon (which we denote łGibbon1ž here) pro-
vides one point of comparison; it achieves constant-factor
speedups over pointer-based representations (even discount-
ing [de]serialization time itself) [29], except when it gener-
ates code with an asymptotic slowdown. We also compare
against Cap’N Proto (v0.6.1) and CNF (GHC 8.2.2), described
in §6.

The evaluations in this section are performed on a 2-socket
Intel Xeon E5-2630, with 125GB of memory, running Ubuntu
16.04, GCC 5.4.0. Measurements reported are the median of

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

9 trials, where an individual trial is defined as a separate
run of the program that takes at least one second of real
time, discounting setup time. (For short benchmarks, we
iterate them a sufficient number of times in an inner loop
to reach the 1s threshold, then divide to compute average
per-iteration time.)

7.1 Serialized→Serialized Benchmark Programs

We consider the following set of tree programs, which pro-
vide a panel of litmus tests for which kinds of tree operations
are well-supported by which frameworks: id, buildTree,
rightmost, sumTree, copyTree. These programs have been
either shown before or are self-explanatory, but for reference
we include a description of each in the extended version [28].
This first batch of experiments use the simple binary tree
datatype with integer leaves (first introduced in §2). In each
case the goal is to get from a serialized input in a buffer (as it
would have come from the network or disk) to another seri-
alized output ready to send. In general, we allow appending
to but not destroying the input message.
We additionally consider operations on search-trees in

the below benchmarks. These search trees store integer keys
on all intermediate nodes, where keys on left subtrees are
smaller than the root, and right subtrees are larger. The data
type is: data STr = Null | Leaf Int | Node Int STr STr These
benchmarksÐbuildSearchTree, treeContains, treeInsert,
findMax,propagateConstantÐare described in the extended
version [28], except for one that is not self-explanatory:

repMax: a variant of the łrepminž [4, 16] program, which
returns a new search tree of the same shape, with every
value replaced by the maximum value of the original tree.
It performs two passes over the tree ś a bottom-up pass to
compute the largest element (i.e. findMax), and a top-down
pass to propagate this value in the tree (i.e. propagateConst).

7.2 Discussion of Results

Table 2 shows the results. The column labeled łGibbon2ž
shows performance of HiCal programs (low-level LoCal con-
trol was not needed for any of these) using indirections and
offsets, automatically. łGibbon1ž shows the approach de-
scribed in Vollmer et al. [29]. There are two major sources
of overhead for our new approach versus Gibbon1:

1. Growable regions: In each case, our compiler starts with
smaller, growable regions5, which we require to create
small output regions as in id or treeInsert, but we suf-
fer the overhead of bounds-checking. On the other hand,
Gibbon always stores fully serialized data in huge regions.

2. Likewise, we have found that the backend C compiler is
sensitive to the number of cases in switch statements on
data constructor tags (for instance, triggering the jump
table heuristic). By including the possibility that each tag

5starting at 64K bytes

we read may be a tagged indirection, we increase code size
and increase the number of cases in our switch statements.

However, the benchmarks where indirections and random-
access offsets are important (id, rightmost, treeInsert, find-
Max) show a huge difference between Gibbon1 and Gibbon2,
as we would expect based on Gibbon1 requiring additional
traversals to compile those functions.

Versus pointer-based representations The łNonPackedž
approach is LoCal configured to always insert indirections
and thus emulate a traditional object representation. In this
case, we are being overly friendly to this pointer-based rep-
resentation by allowing it to read its input (for example, the
input tree to treeInsert) in an already-deserialized, pointer-
based form. A full apples-to-apples comparison would force
the pointer-based version to deserialize the input message
and reserialize the output; but we omit that here to focus
only on the cost of the tree traversals themselves.

Versus competing libraries The biggest differences in Ta-
ble 2 are due asymptotic complexity. However, for constant
factor performance, we see the expected relationshipÐthat
our approach and Gibbon are faster than CNF and Cap’N
Proto, sometimes by an order of magnitude, e.g.,add1Leaves.

CNF and Cap’N Proto encode some metadata in their seri-
alization, to support the GHC runtime, and protocol evolu-
tion, respectively. On the other hand, our compiler only uses
offsets and tagged indirections when needed, and the size
ratio of the encodings depends on how much these features
are used. For example, rightmost uses a data-encoding that
includes random-access offsets, and treeInsert creates an
output with a logarithmic number of tagged indirections.
Thus while our size advantage over CNF is 4× smaller on
buildTree, it is only 2.22× for rightmost.

Composing traversals For offset-insertion, we allow the
whole-program compiler to select the data representation
based on what consuming functions are applied to it. In the
presence of multiple functions traversing a single data struc-
ture, any function demanding random access changes the
representation for all of them. repMax is one such example:
repMax t = propagateConst (findMax t) t. Here findMax only
requires a partial scan (random access), but propagating that
value requires a full traversal. In this case, the compiler would
add offsets to the datatype to ensure that ‘findMax’ remains
logarithmic. However, this causes the subsequent traversal
(propagateConst) to slow down, as it now has to unnecessar-
ily skip over some extra bytes. Likewise, if we do not include
findMax in the whole program, the data remains fully se-
rialized, which is why propagateConst and findMax run
separately take less than 440ms, but run together take 480ms.
Yet the latter time is still 6× and 9× faster, respectively, than
CNF and Cap’N Proto!

PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA M. Vollmer, C. Koparkar, M. Rainey, L. Sakka, M. Kulkarni, R. Newton

Table 2. Tree-processing functions operating on serialized
data. Each cell contains time, complexity, and input bytes [1]
or output bytes [2], where appropriate. The fastest variant is
highlighted, as well as any that are an order of magnitude or
more slower than the fastest. We are 202 / 2.6 / 3.2 / 17.9 × ge-
omean faster than Gibbon/NonPacked/CNF/CapNP, and 0.96
/ 2.6 / 3.2 / 9.8 × faster for only apples-to-apples asymptotics.

Benchmark Gibbon2 Gibbon1 NoPacked CNF CapnProto

id 2.1ns

O(1)

0.32s

O(N)

0.93ns

O(1)

2.1ns

O(1)

204ns

O(1)

leftmost [1] 17ns

O(log(N))

335MB

18ns

O(log(N))

335MB

26ns

O(log(N))

335MB

44ns

O(log(N))

1.34GB

420ns

O(log(N))

805MB

rightmost [1] 175ns

O(log(N))

603MB

56ms

O(N)

335MB

19ns

O(log(N))

335MB

47ns

O(log(N))

1.34GB

561ns

O(log(N))

805MB

buildTree [2] 0.27s

O(N)

335MB

0.24s

O(N)

335MB

2.7s

O(N)

1.34GB

4.5s

O(N)

1.34GB

2.66s

O(N)

805MB

add1leaves 0.25s

O(N)

0.24s

O(N)

3.1s

O(N)

2.7s

O(N)

4.88s

O(N)

sumTree 95ms

O(N)

67ms

O(N)

0.81s

O(N)

0.27s

O(N)

1.22s

(ON)

copyTree 0.2s

O(N)

0.24s

O(N)

3.5s

O(N)

1.1s

O(N)

2.53s

O(N)

srchTree [2] 0.5s

O(N)

603MB

0.49s

O(N)

603MB

2.96s

O(N)

1.61GB

4.27s

O(N)

1.61GB

3.94s

O(N)

805MB

treeContains 0.69μs

O(log(N))

0.1s

O(N)

0.92μs

O(log(N))

1μs

O(log(N))

1.25μs

O(log(N)

treeInsert [3] 0.87μs

O(log(N))

677 bytes

0.38s

O(N)

603MB

2.5μs

O(log(N))

856 bytes

3.5μs

O(log(N)

848 bytes

insertDestr NA NA NA NA 1.72μs

O(log(N))

findMax 206ns

O(log(N))

88ms

O(N)

41ns

O(log(N))

75ns

O(log(N))

3.94μs

O(log(N))

propConst 0.43s

O(N)

0.42s

O(N)

3.3s

O(N)

4.2s

O(N)

4.83s

O(N)

repMax 0.48s

O(N)

0.51s

O(N)

3.2s

O(N)

4.3s

O(N)

4.88s

O(N)

2.24s

O(N)

603MB

the already large size of the switch statements produced (36
constructor variants).

8 Conclusions & Future Work

When the purpose of a program is to process external data,
we should consider alternate implementation approaches
that transform the code to bring it closer to the data,
rather than the other way around. This can speed IO by
eschewing parsing/deserialization, speed traversals once in
memory, and, with care, can optimize fast cases without
introducing unpredictably (asymptotically) slow cases.
We believe that this work opens up significant follow-

on possibilities. First, a LoCal implementation can become
more representation-flexible to directly support appropriate
external data formats such as Apache Avro or CBOR.

Second there is plenty of room to grow the size of the
functional language supported by a HiCal → LoCal com-
piler, for example, into a much larger subset of Haskell. Inte-
grating task-parallelism one direction, and the mostly serial-
ized representations supported by LoCal suggest a connec-
tion to parallel- vs sequential-processing in a granularity-
management strategy. Mutation is another frontier, where a
traditional approach to mutable data (as found in imperative
languages or IO monads) would appear to clash with the
needs of dense representations. We plan to employ the Lin-
ear Haskell extensions [3] to introduce a limited capability
for mutable data, exposing a more context-sensitive notion
of where and when mutation may occur within a tree, and
also striving to retain (deterministic) parallelism.

Acknowledgments

This work was supported in part by National Science Foun-
dation awards CCF-1725672 and CCF-1725679, and by De-
partment of Energy award DE-SC0010295. We would like to
thank our shepherd, Ilya Sergey, as well as the anonymous
reviewers for their suggestions and comments.

References
[1] MalcolmAtkinson and RonaldMorrison. 1995. Orthogonally Persistent

Object Systems. The VLDB Journal 4, 3 (July 1995), 319ś402. http:

//dl.acm.org/citation.cfm?id=615224.615226

[2] M. P. Atkinson, L. Daynès, M. J. Jordan, T. Printezis, and S. Spence.

1996. An Orthogonally Persistent Java. SIGMOD Rec. 25, 4 (Dec. 1996),

68ś75. https://doi.org/10.1145/245882.245905

[3] Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon

Peyton Jones, and Arnaud Spiwack. 2017. Linear Haskell: Practi-

cal Linearity in a Higher-order Polymorphic Language. Proc. ACM

Program. Lang. 2, POPL, Article 5 (Dec. 2017), 29 pages. https:

//doi.org/10.1145/3158093

[4] R. S. Bird. 1984. Using Circular Programs to Eliminate Multiple

Traversals of Data. Acta Inf. 21, 3 (Oct. 1984), 239ś250. https:

//doi.org/10.1007/BF00264249

[5] TM Chilimbi, MD Hill, and JR Larus. 1999. Cache-conscious structure

layout. ACM SIGPLAN Notices (1999). http://dl.acm.org/citation.cfm?

id=301633

[6] Trishul M. Chilimbi and James R. Larus. 1999. Using generational

garbage collection to implement cache-conscious data placement. ,

37ś48 pages. https://doi.org/10.1145/301589.286865

[7] Duncan Coutts, Roman Leshchinskiy, and Don Stewart. 2007. Stream

fusion: from lists to streams to nothing at all. In ICFP: International

Conference on Functional Programming. ACM.

[8] Michael Goldfarb, Youngjoon Jo, and Milind Kulkarni. 2013. General

transformations for GPU execution of tree traversals. In Proceedings

of the International Conference on High Performance Computing, Net-

working, Storage and Analysis (Supercomputing) (SC ’13).

[9] Dan Grossman, Greg Morrisett, Trevor Jim, Michael Hicks, Yanling

Wang, and James Cheney. 2002. Region-based memory management

in Cyclone. In PLDI. http://dl.acm.org/citation.cfm?id=512563

[10] Antony L. Hosking and J. Eliot B. Moss. 1993. Object Fault Handling

for Persistent Programming Languages: A Performance Evaluation.

In Proceedings of the Eighth Annual Conference on Object-oriented Pro-

gramming Systems, Languages, and Applications (OOPSLA ’93). ACM,

New York, NY, USA, 288ś303. https://doi.org/10.1145/165854.165907

[11] Chris Lattner and Vikram Adve. 2005. Automatic pool allocation:

improving performance by controlling data structure layout in the

LoCal: A Language for Programs Operating on Serialized Data PLDI ’19, June 22ś26, 2019, Phoenix, AZ, USA

heap. ACM SIGPLAN Notices 40 (2005), 129ś142. https://doi.org/10.

1145/1065010.1065027

[12] B. Liskov, A. Adya, M. Castro, S. Ghemawat, R. Gruber, U. Maheshwari,

A. C. Myers, M. Day, and L. Shrira. 1996. Safe and Efficient Sharing of

Persistent Objects in Thor. In Proceedings of the 1996 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’96). ACM,

New York, NY, USA, 318ś329. https://doi.org/10.1145/233269.233346

[13] JunichiroMakino. 1990. Vectorization of a treecode. J. Comput. Phys. 87

(March 1990), 148ś160. https://doi.org/10.1016/0021-9991(90)90231-O

[14] Conor McBride. 2010. Ornamental algebras, algebraic ornaments.

Journal of functional programming (2010).

[15] Leo A. Meyerovich, Todd Mytkowicz, and Wolfram Schulte. 2011.

Data Parallel Programming for Irregular Tree Computations, In

HotPAR. https://www.microsoft.com/en-us/research/publication/

data-parallel-programming-for-irregular-tree-computations/

[16] Leo A. Meyerovich, Todd Mytkowicz, and Wolfram Schulte. 2011.

Data Parallel Programming for Irregular Tree Computations, In

HotPAR. https://www.microsoft.com/en-us/research/publication/

data-parallel-programming-for-irregular-tree-computations/

[17] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. 1998. From

System F to Typed Assembly Language. In Proceedings of the 25th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL ’98). ACM, New York, NY, USA, 85ś97. https://doi.org/10.1145/

268946.268954

[18] BarzanMozafari, Kai Zeng, and Carlo Zaniolo. 2012. High-performance

Complex Event Processing over XML Streams. In Proceedings of the

2012 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’12). ACM, New York, NY, USA, 253ś264. https://doi.org/10.

1145/2213836.2213866

[19] Ryan R. Newton, Sivan Toledo, Lewis Girod, Hari Balakrishnan, and

Samuel Madden. 2009. Wishbone: Profile-based partitioning for sen-

sornet applications. In Symposium on Networked Systems Design and

Implementation (NSDI’09). USENIX Association, 395ś408.

[20] Bin Ren, Gagan Agrawal, James R. Larus, Todd Mytkowicz, Tomi

Poutanen, and Wolfram Schulte. 2013. SIMD parallelization of applica-

tions that traverse irregular data structures. In Proceedings of the 2013

IEEE/ACM International Symposium on Code Generation and Optimiza-

tion, CGO 2013, Shenzhen, China, February 23-27, 2013. IEEE Computer

Society, 20:1ś20:10. https://doi.org/10.1109/CGO.2013.6494989

[21] Bin Ren, Todd Mytkowicz, and Gagan Agrawal. 2014. A Portable

Optimization Engine for Accelerating Irregular Data-Traversal Ap-

plications on SIMD Architectures. TACO 11, 2 (2014), 16:1ś16:31.

https://doi.org/10.1145/2632215

[22] Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dim-

itrios Vytiniotis. 2017. Destination-passing Style for Efficient Memory

Management. In Proceedings of the 6th ACM SIGPLAN International

Workshop on Functional High-Performance Computing (FHPC 2017).

ACM, New York, NY, USA, 12ś23. https://doi.org/10.1145/3122948.

3122949

[23] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.

StreamIt: A Language for Streaming Applications. In International

Conference on Compiler Construction. Springer-Verlag.

[24] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004.

A Retrospective on Region-Based Memory Management. Higher Order

Symbol. Comput. 17, 3 (Sept. 2004), 245ś265. https://doi.org/10.1023/B:

LISP.0000029446.78563.a4

[25] Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory

Management. Inf. Comput. 132, 2 (Feb. 1997), 109ś176. https:

//doi.org/10.1006/inco.1996.2613

[26] D. N. Truong, F. Bodin, and A. Seznec. 1998. Improving Cache Behav-

ior of Dynamically Allocated Data Structures. In Proceedings of the

1998 International Conference on Parallel Architectures and Compilation

Techniques (PACT ’98). IEEE Computer Society, Washington, DC, USA,

322ś. http://portal.acm.org/citation.cfm?id=522344.825680
[27] Kenton Varda. 2015. Cap’n Proto. https://capnproto.org/

[28] Michael Vollmer, Chaitanya Koparkar, , Mike Rainey, Laith Sakka,

Milind Kulkarni, and Ryan R. Newton. 2019. LoCal: A Language for

Programs Operating on Serialized Data. Technical Report. Indiana

University. https://help.sice.indiana.edu/techreports/TRNNN.cgi?

trnum=TR741.

[29] Michael Vollmer, Sarah Spall, Buddhika Chamith, Laith Sakka, Chai-

tanya Koparkar, Milind Kulkarni, Sam Tobin-Hochstadt, and Ryan R.

Newton. 2017. Compiling Tree Transforms to Operate on Packed

Representations. In 31st European Conference on Object-Oriented Pro-

gramming (ECOOP 2017) (Leibniz International Proceedings in Infor-

matics (LIPIcs)), Peter Müller (Ed.), Vol. 74. Schloss DagstuhlśLeibniz-

Zentrum fuer Informatik, Dagstuhl, Germany, 26:1ś26:29. https:

//doi.org/10.4230/LIPIcs.ECOOP.2017.26

[30] P. Wadler. 1988. Deforestation: Transforming Programs to Elimi-

nate Trees. In European Symposium on Programming. Berlin: Springer-

Verlag, 344ś358. citeseer.ist.psu.edu/wadler90deforestation.html

[31] Thomas Williams and Didier Rémy. 2017. A Principled Approach to

Ornamentation in ML. Proc. ACM Program. Lang. 2, POPL, Article 21

(Dec. 2017), 30 pages. https://doi.org/10.1145/3158109

[32] Edward Z. Yang, Giovanni Campagna, Ömer S. Ağacan, Ahmed El-

Hassany, Abhishek Kulkarni, and Ryan R. Newton. 2015. Efficient

Communication and Collection with Compact Normal Forms. In Pro-

ceedings of the 20th ACM SIGPLAN International Conference on Func-

tional Programming (ICFP 2015). ACM, New York, NY, USA, 362ś374.

https://doi.org/10.1145/2784731.2784735

	Abstract
	1 Introduction
	2 Background
	3 From a Region- to a Location-Calculus
	3.1 Formal Language and Grammar
	3.2 Static Semantics
	3.3 Dynamic Semantics
	3.4 Offsets and Indirections

	4 Compiling the Location Calculus
	4.1 Compiler (1/4): Finding Traversals
	4.2 Compiler (2/4): Implementing Random Access
	4.3 Compiler (3/4) Routing End Witnesses
	4.4 Compiler (4/4): Converting to NoCal
	4.5 LoCal Runtime System & Allocator

	5 High-Level Programs: HiCal to LoCal
	6 Related Work
	7 Evaluation
	7.1 SerializedSerialized Benchmark Programs
	7.2 Discussion of Results
	7.3 IO-intensive Benchmarks
	7.4 IO + large datatype: Traversing Racket ASTs

	8 Conclusions & Future Work
	Acknowledgments
	References

