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Abstract

Scheduling transformations reorder a program’s operations
to improve locality and/or parallelism. The polyhedral model
is a general framework for composing and applying instance-
wise scheduling transformations for loop-based programs,
but there is no analogous framework for recursive programs.
This paper presents an approach for composing and apply-
ing scheduling transformations—like inlining, interchange,
and code motion—to nested recursive programs. This paper
describes the phases of the approach—representing dynamic
instances, composing and applying transformations, reason-
ing about correctness—and shows that these techniques can
verify the soundness of composed transformations.
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1 Introduction

There is a large catalog of scheduling transformations for
regular programs—loop-based programs that operate over
arrays and matrices—such as loop tiling, loop interchange,
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loop fusion, and unrolling [18]. In recent years, many anal-
ogous transformations have been developed for irregular
programs that use recursion to manipulate lists, trees and
graphs [14, 15, 25, 26, 29, 34]. As in the regular world, these
transformations restructure and reschedule the operations of
a program to enhance locality by moving computations that
touch the same pieces of data closer together.

Transformations that reschedule the operations of a pro-
gram are not necessarily safe. If, for example, operation y
reads from a location x writes to, then these operations must
be performed in the same order to produce the correct re-
sult, and transformations that make y execute before x are
unsound. Hence, a transformation like tiling that is safe for
one program may not be safe for another. Moreover, while
applying one transformation, like tiling, may be unsound
for a program, composing that transformation with another,
like loop reversal, may render the combination of the two
transformations safe. Hence, finding effective, safe sched-
uling transformations requires a framework for reasoning
about their composition.

In the world of loops and matrices, frameworks such as the
polyhedral model [5, 6] tackle this problem through a unified
representation of the schedule of computations in a program,
the dependences in the program, and transformations of
those schedules, allowing compilers to soundly compose
and apply loop transformations to programs [3]. However,
no such unifying framework exists for analogous transforma-
tions in the irregular world—different optimizations each use
different, ad hoc dependence analysis frameworks to drive
the transformations [25, 29, 37], when dependence analyses
are performed at all, and these disparate frameworks do not
allow transformations to be composed.

Contributions

This paper presents the first approach for reasoning about,
composing, and checking the soundness of transformations
on nested recursive programs'—the first steps towards an
analog of the polyhedral framework for irregular programs.
Our approach, which we call POLYREC, incorporates several
novel components:

INested recursion generalizes nested loops, including recursive functions
nested within loops [14] or vice versa, or even recursion nested within other
recursion [34]. See Section 2.2
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A representation of the iteration space A scheduling
framework needs an instance-wise representation of
a program’s operations, representing the dynamic in-
stances of each operation rather than just the static
code’. PoLYREC uses multitape finite state automata to
represent the instances of statements of a recursive
program—each instance is a tuple generated by the
automaton—with lexicographic order representing the
schedule of computation®. (Section 4)

A representation of transformations PoLYREC repre-
sents scheduling transformations as multitape finite
state transducers, mapping each instance to another in-
stance, with the new lexicographic order representing
the new schedule. Crucially, this representation is com-
positional, allowing complex transformations to be bro-
ken down into a sequence of simple transformations.
To demonstrate the utility of POLYREC, we show how
several specific transformations from the literature—
inlining, interchange [14, 34], code motion [29], and
strip-mining—can be represented using PoLYREC’s mul-
titape transducers. This representation allows these
transformations to be arbitrarily combined and com-
posed, generalizing their prior use. (Section 5)

A representation of dependences A dependence anal-
ysis framework must represent any dependences in
a program in a form that enables a dependence test:
checking whether a particular transformation violates
any dependences. Importantly, this check should apply
to composed transformations—an individual transfor-
mation may actually break dependences, relying on a
later transformation to “fix” them; the dependences
may only be preserved because of the combination
of all transformations. In PoLYREC, dependences are
represented by witness tuples that capture sets of de-
pendent instances. POLYREC’s dependence test applies
the (composed) transformation transducer to these
witness tuples and applies a decision procedure to de-
termine if any dependences are violated—if none are,
the transformation is sound. (Section 6)

We build a prototype implementation of PoLyREc (Sec-
tion 7) that can compose transformation transducers for
nested recursive programs. When presented with witness
tuples that capture the dependences of a source program,
the prototype can then check these composed transforma-
tions for soundness by applying the dependence test. We
also describe a completion procedure: starting with a partial
transformation—an initial transformation that may not be
sound—the prototype can be used to search through the (fi-
nite) space of transformations consistent with that partial

2 Adopting the terminology of Amiranoff et al. [2], we refer to these dynamic
instances simply as “instances.”

3Loops are transformed to tail-recursion to allow PoLYREC to treat them
uniformly with recursion.
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transformation to identify a complete transformation that
is sound. Our prototype ultimately verifies that a sequence
of transformations is sound with respect to a set of depen-
dences. This sequence of transformations can be applied (e.g.,
by a traditional compiler) to generate the transformed code.

To evaluate PoLYREC, and our prototype implementation,
we show that we can automatically create and check fairly
sophisticated composed transformations for nested recur-
sive programs, including transformations that are equivalent
to combinations of point blocking [14] and traversal splic-
ing [15]. (Section 8)

2 Background

This section provides a brief background on the premise of
schedule transformations for iteration constructs (loops and
recursion), describes the space of recursion and iteration that
PoLYREC handles, and gives an overview of recent work on
analysis and transformations for recursive programs as well
as a sketch of other related work.

2.1 Schedule Transformations

Performing scheduling transformations on code is one of the
fundamental ways of improving its performance: changing
when an instruction executes can have deep impacts on local-
ity (changing when a memory location is touched can trans-
form a cache miss into a cache hit) and parallelism (moving
operations around can increase the number of independent
instructions that can be executed simultaneously). Crucially,
not all schedules of computation are legal. If statement s;
accesses a memory location / and statement s, accesses that
same memory location, with one of those accesses being a
write, this dependence constrains the possible legal schedules.
In all legal schedules of computation, s; and s, must appear
in the same order to ensure that they produce the correct
result. The dependence must be preserved.

Consider the code in Figure 1a, which reflects the structure
that arises in many tree-based applications [10]. The function
outer represents a loop that iterates from 0 to N that has
been transformed into tail recursion (allowing a uniform
treatment of loops and recursion), while outer recurses over
some tree structure. The code s; (line 13) executes once for
each combination of i and n (where n represents a node in
the tree). This code has poor locality: while a given element
of A is accessed repeatedly while traversing the tree rooted
at T, the tree is fully traversed once for each element.

Analyses that look for dependences in statements that
access recursive structures (e.g., [8, 12, 20, 28]) will correctly
say that there is a dependence from that statement to itself.
However, an instance-wise analysis of this code reveals more
structure in that dependence: s; executing at (i, n) specifically
has a dependence with (i + 1, n) (the second instance has a
different value for the loop induction variable, but executes at
the same node in the tree). A program with this dependence
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A[N] = /« initialize array «/; 1 outer1(int i, node n, int j)

2 node T =/« initialize tree «/; 2  if (i < N)
3 inner(i, n, j)
4 outer(int i, node n) 4 outer1(i + 4, n, j)
5 if (i>= N) return;
¢ inner(i, n) //t 6 inner(int i, node n, int j)
7 outer(i + 1,n)//r 7 if (n == null) return;

s outer2(i, n, j)

9 inner(int i, node n) 9 if (n.left != null)

10 if (n == null) return; 10 inner(i, n.left.left, j)

1 inner(i, n.left) //ré 1 inner(i, n.left.right, j)

12 inner(i, n.right) //r} 12 if (n.right != null)

13 nx+=A[i] //s1 13 inner(i, n.right.left, j)
14 inner(i, n.right.right, j)

15 main()

16 outer(0, T) 16 outer2(int i, node n, int j)

17 if(j<4&&(i+j)<N)
18 if (n!=null)

19 nx += A[i +j]
20 if (n.left != null)
21 n.left.x += Ali+j]
22 if (n.right != null)
23 n.right.x += A[i+j]
24 outer2(i, n, j + 1)
26 main()
27 outer1(0, T, 0)
(a) Repeatedly traversing a tree. (b) After transforming.

Figure 1. Running example.

structure can be safely transformed using technique akin to
point blocking [14] and traversal splicing [15], to give the
code in Figure 1b. Here, a 4-element block of A traverses the
tree simultaneously. At each node of the tree, this block visits
the node as well as its immediate children before continuing
traversal. In this way, both chunks of A and the tree rooted
at T stay in cache, providing better locality.

2.2 Perfect Nesting

This paper focuses on perfectly-nested programs, where the
control structures are (non-mutual) recursive functions (loops
can be treated as recursive functions through the well-known
correspondence between loops and tail recursion). Such a re-
cursive function can perform a base-case check to terminate
recursion (equivalent to the bounds check in a loop), call
itself one or more times, or call a different recursive function
(we call this a transfer call), “descending” to an inner recur-
sion. The “innermost” recursive function, which only calls
itself, can, in addition, perform work that reads and writes
different data structures. Figure 1a is perfectly nested: outer
simply iterates from 0 to N, while inner performs the actual
tree traversal.
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Following the lead of Sakka et al. [29], we treat the body
of the innermost recursion as a sequence of compound state-
ments and recursive calls. These compound statements can
contain control flow, but for the purposes of analysis and
transformation they are treated as indivisible units*.

Nested recursion generalizes the case of perfectly nested
loops, a frequent target of loop optimization. Moreover, per-
fectly nested recursion (or perfectly-nested combinations of
recursion and loops) arises in a number of domains, as consid-
ered by previous transformation frameworks [14, 15, 34, 37].
Note that this space of programs includes any algorithm that
performs a single recursion, as such a program is perfectly-
nested by default.

2.3 Instance-wise Analysis for Recursive Programs

Instance-wise analysis is common for regular programs that
deal with nested loop structures that operate over dense
arrays [3, 5, 6]. However, when it comes to irregular data
structures like trees and non-loop control structures like
recursion, there has been far less work. Perhaps the most
comprehensive treatment of instance-wise analysis for re-
cursive programs comes from Amiranoff et al. [2] (building
on prior work by Cohen and Collard [4] and Feautrier [7]).

Amiranoff et al. [2] generate a context-free language rep-
resentation of a recursive program that uniquely labels each
dynamic instance of a statement using a trace string called a
control word. Using these control words, they can define a
dependence analysis that determines the set of dependent
(dynamic) instances in a program, using that information
to parallelize the program. This work is general in some
ways, but has several drawbacks when considered for use
in a transformation framework. Their work does not con-
sider how to represent scheduling transformations beyond
parallelization (including simple transformations such as
code motion or inlining), nor do they consider transforming
nested structures.

In recent years, there has been increasing interest in de-
veloping transformation frameworks for recursive programs.
These have ranged from frameworks to support interchange
and blocking of nested loops and recursion [14, 15, 37] to
frameworks that target fusing multiple recursive traversals
together [21, 25, 26, 29] to those that transform multiple
recursive functions nested inside one another [34]. While
some of these only provide informal arguments for correct-
ness, others provide dependence tests that can be used to
automatically determine when these transformations break
dependences [25, 26, 29, 37]. However, these frameworks are
ad hoc: they do not provide general, composable ways for
reasoning about transformation correctness.

“From an AST perspective, we essentially consider only the top level list of
statements in the method body
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2.4 Other Related Work

There are numerous frameworks that reason about nested
loops with affine loop bounds and affine array subscripts [1, 3,
5,6,17,19, 22, 38, 39]. As mentioned above, these approaches
focus on dense loops over dense arrays, so are not applicable
to our domain. There has been work done in the past to
generalize the loop-based model to handle non-affine loop
bounds and subscripts using symbolic expressions [23, 35],
and to handle sparse matrices and arrays [30-32, 36], but
these approaches still only target loops, and hence do not
generalize to the recursive constructs we consider.

3 Overview of PorLYREC

This section gives a quick overview of POLYREC’s representa-
tions and mechanisms. Sections 4 through 5 elaborate upon
and formalize these facets of PoLYREC.

Running Example Let us return to our example from Fig-
ures la and 1b. To break down the transformations a little
more concretely, first, the method outer was strip mined
to break it into two loops, outer1 (at line 1) and outer2 (at
line 16); outer2 performs groups of 4 iterations from outer1.
Second, the method inner was changed from post-order (as
it was in Figure la) to pre-order using code motion. Then
the calls inner(i, n.left, j) and inner(i, n.right, j) were inlined
to operate on the left and right child before continuing re-
cursion (resulting in three statements in inner and four new
recursive calls) and code motion was applied again. Finally,
inner and outer2 were interchanged so that inner iterates
over the nodes in the tree before outer2 iterates over its 4-
element block of A. POLYREC can reason about this complex
series of transformations, and check it for soundness, in a single
representation, as we explain next.

3.1 Iteration Space Representation

The first task in POLYREC is to capture the iteration space
of a piece of code. This means finding a way to name each
dynamic instance of a statement (be it a bounds check or
a statement accessing an array or a tree), and capture the
ordering relationship between them.

PoLYREC uses a regular relation representation (i.e., a tuple
of strings generated by a multitape finite automaton) for its
iteration space. Each statement in a k-deep nest of recursion
is named using a an instance tuple: a k-string (a k-tuple of
strings), with each element in the k-string defining a loca-
tion in the iteration space for that dimension (read: level of
recursion).

Figure 2 shows the multitape automaton that generates
the instances for the (pre-transformation) running example.
The loop boxed in red represents the “iterations” of outer:
each call to outer appends a new r; to the first dimension.
The loop boxed in blue represents the iterations of inner,
two calls, which append either ré or r; to the second element.
Finally, we represent the two non-recursive statements of
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Figure 2. Multitape automaton for Figure 1a.

the two recursions: a transition that adds #; to the first di-
mension, representing switching to the inner recursion, and
a transition that adds s; to the second element, representing
executing the compound statement in inner. Because this
execution is a complete instance, this transition moves to an
accept state (i.e., generates an instance tuple).

The instance tuple can be flattened (by concatenating its
elements), and alphabetical order then provides the itera-
tion order of the dynamic statement instances. While we
could carefully select the alphabets so that alphabetical or-
der would correspond to the correct order, for convenience,
PoryREC instead defines a lexicographic order on the alpha-
bet. In our running example, the ordering is (¢, 1, rzl, ry,s1).
Note that the order of the first two symbols corresponds to
the order of the statements in the outer recursion, and the or-
der of the next three symbols corresponds to the order of the
inner recursion. Hence, we see that instance [rr 1, rérzr s1],
which corresponds to the iteration space position i = 2 in
the outer dimension and node = root.left.right in the inner
dimension, occurs before the instance [ririt;, s;] (which exe-
cutes at the root node of the tree) because the inner recursion
is postorder. Note that PoLYREC does not attempt to bound
the iteration space, but merely to order it. This is because
most “bounds” in recursive applications are input-dependent
and hence not amenable to analysis.

3.2 Transformations

A scheduling transformation preserves which instances exe-
cute but restructures the iteration space so that they execute
in a different order. POLYREC represents a transformation as
a multitape finite state transducer that rewrite instance tuples
(with k elements for k-dimension nests) to other instance tu-
ples (that may have a different number of dimensions). This
transducer allows us to translate any instance in the origi-
nal space to a new instance in the transformed space, and
the ordering in this new space (determined by lexicographic
order) represents the new schedule of computation.

For example, a code motion transformation that changes
the order in the three calls and statements in inner execute,
can be represented as a rewrite that changes the symbols
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ré, r7,and s; to sort in a different order. Note that this reorder-

ing, while seemingly simple, can change a post-order traver-
sal to a pre-order traversal. The new order of (¢, ry, s1, rzl, )
means that [ryr ¢, rérzr s1] now occurs after [ryr111, s1]. More
complicatedly, we can implement interchange, swapping the
inner recursion and the outer recursion by building a trans-
ducer that rewrites the call symbols from one dimension of
the instance tuple to another.

Because POLYREC’s transformations are represented as fi-
nite state transducers, they can naturally be composed (mul-
titape FSTs are closed under composition [11]) to produce
compound transformations.

3.3 Dependences

When transformation transducers are applied to a PoLYREC
iteration space, the schedule of instances change. Not all
schedules are valid however: if two dependent instances
change their order, the new schedule will produce incorrect
results. Thus, POLYREC provides a test for whether depen-
dences are violated by a transformation.

PoLYREC represents pairs of dependent instances as a wit-
ness tuple. This is a 3-tuple of regular relations that captures
pairs of dependent instances in three parts: (i) the common
prefix of a pair of dependent instances; (ii) the suffix(es) of the
first of each pair; and (iii) the suffix(es) of the second of each
pair. This tuple, which we write (R4, (Rg, Ry)), functions as
a generator for instance pairs: each pair can be formed by
choosing an element from R,, then appending an element
from Rg to form the first instance and an element from R,
to form the second instance.

In our running example, there are dependences from any
instance that executes at a particular node n of the tree to
any later instance that executes at the same node n of the
tree (but with a different value of i). Hence, the witness tuple
for this program is:

()", (1) L (s sl [r)* 11, s])).

So, for example, [ryrit;, rérzrsl] is dependent on [rt, rérzrsl].

PoLYREC provides a decision procedure for checking if a
witness tuple is preserved by a transformation (i.e., whether
all pairs generated by the tuple preserve their order under the
transformation), allowing us to check the validity of arbitrary
composed transformations. In our running example, the wit-
ness tuple is preserved by the proposed transformation. Note,
however, that a different transformation that turns outer into
a post-order traversal—the analog of loop reversal—by swap-
ping t; and ry in the symbol ordering would not be sound. It
would reverse dependences generated by the witness tuple
(including the one given above).

4 Representing Recursive Iteration Spaces

The first step in any scheduling framework is designing a
representation to capture the iteration space and schedule.
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While polyhedral frameworks use representations like sys-
tems of linear inequalities to capture the iteration space and
a lexicographic ordering on integer points in that space to
capture a schedule [3, 5, 6], the story is complicated for re-
cursive programs because the iteration spaces are not affine.
Amiranoff et al. [2] use control words, derived from a context-
free language representation of a program, to name instances
of recursive programs. By carefully choosing the alphabet,
ordering on the control words is also lexicographic ordering.
Unfortunately, Amiranoff et al. [2]’s work is not quite suit-
able for our setting. In particular, the control word abstrac-
tion for instances creates a single string for each instance,
without concern for the distinctions between dimensions.
This limitation means that their representation cannot sup-
port transformations, such as interchange and strip mining,
that focus on particular dimensions or the interaction be-
tween dimensions. To overcome this problem, PoLYREC uses a
novel representation, based on regular relations that are gen-
erated by non-deterministic multitape finite automata [24].

4.1 Preliminaries

Intuitively, a non-deterministic, multitape finite automaton
is akin to a regular NFA that reads over multiple input tapes,
rather than one. The transition function, rather than pro-
viding transitions between states when observing a single
symbol from X* (i.e., transitioning when seeing a symbol, or
non-deterministically transitioning on ¢) instead transitions
based on a tuple of symbols drawn from (S Ue)* that matches
symbols from k tapes.

More formally, let ¥ be an alphabet of symbols, with X*
representing the set of words and ¢ denoting the empty word.
For two words wy, wy € X%, wy-ws is their concatenation. A k-
word is a k-tuple from the set (2* U¢)¥. For two k-words, v =
[v1,00,...,0r] and w = [w, Wa, . . ., wi], their elementwise
concatenation, v © w is [v; - W1, U3 - Wa, . .., Uk - Wi].

We can thus define:

Definition 4.1. A non-deterministic, k-tape finite automaton
is a 6-tuple A = (k, %, Q, qo, F, E) where:

e k is the number of tapes

e Y is the finite alphabet

e Q is a finite set of states

e qo € Q is the start state

e F C Qis a set of accept states

e E C Ox(ZUe)* xQis a finite set of labeled transitions

(each labeled with a k-tuple of symbols and/or ¢)

A recognizes the k-word v € (X* U &)X iff there exists a path
q0a191a2q2 - - - Anqn Where qq is the initial state, q,, € F, for
each0 <i<n,{qi-1,ai,¢q;) €EE,andv=a; 0 a; ® - Oay,

The relation R(A) C (3* U ¢)* is the set of k-words rec-
ognized by A, and is a regular relation; all regular relations
have multitape automata that recognize them [16].

The class of regular relations is closed under concatena-
tion, union, and Cartesian product. Regular relations are
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also closed under projection, which drops dimensions from
the relation. Another important closure property for regular
relations is composition [11]:

RioR; = {[Wl, .- -,Wk+l—2] |

s Wisl-2] € Ro}

which allows us to “match up” words from two relations to
form a new relation. Note that composition itself composes:
we can repeat composition to match up arbitrary dimensions
from two regular relations to create a new regular relation.

Aw : [wy, ..., Wk 1, W] € Ry, [w, Wi, . .

4.2 Capturing Instances with a Multitape
Automaton

PoLYREC uniquely names and orders instances of statements
in recursive programs using k-tuples of symbols generated
by a k-tape automaton, where k is the number of recursion
dimensions. Each statement that executes does so at a unique
combination of call stack and static statement location (since
we represent loops with recursion). This information is suf-
ficient to uniquely name each dynamic instance. We can
readily construct a multi-tape finite automaton A that enu-
merates a k-tuple of strings representing every possible call
stack and static statement for a program. Let |S| be the num-
ber of compound statements in the innermost recursion. Let
k be the number of recursive methods in the program. Let
|C;| be the number of recursive calls in recursive function r;.
A is a 6-tuple, (k,Z, Q, qo, F, E), defined as follows:

e k is simply the number of dimensions of the loop nest.

e X is the union of the following set of symbols:

— {s;]0 < i < |S]}. One symbol per compound state-
ment in the program, with the ith compound state-
ment getting the symbol s;

- {ti|0 < i < k}. One symbol per transfer call in the
program (note that there are k — 1 total such calls).

- {rf|0 <i<kAO < j < |Ci|}. One symbol per
recursive call in the program, with the jth recursive
call made by the ith recursive function labeled rl’ .

e Qhask +|[s| states: {qo, g1, - - - qk—1}U{qs,10 < i < |S|}
The first set of states are associated with the recursion
levels, while the second set of states are associated
with the compound statements.

® gy, the start state, is, simply, qo.

e Fis {q;|0 < i < |S|}. In other words, every state
associated with a compound statement is an accept
state.

e E includes the following edges. For notational conve-
nience, we will let the transition label £;[x] be a k-tuple
with ¢ in every dimension except dimension i, which
has the value x.”

- {(qo,fl[rf],qo)|0 <i<kAO< j< |C1|} In other
words, a self loop with the label ¢; [r{ ] for the jth

SFor example, in a two-dimensional nest, £1[r!] = [r}, €], while £;[s1] =
le, s1].
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recursive call from the ith level of recursion. Note
that this label is only non-¢ in dimension i.

- {(qi-1,Cilti], qi)|0 < i < k}. In other words, a se-
quence of edges from qq ... qx—1 labeled with the
transfer calls. Each call only adds a symbol to the
dimension of its recursion level.

= {{qr-1, Ck[si], gs;210 < i < |S|}. In other words, a
transition from gj_; to the state associated with each
compound statement, labeled with that compound
statement’s symbol.

This construction procedure produces an automaton that
produces the regular relation R #. Each dimension of the re-
lation corresponds to one recursion level. The set of strings
generated by each dimension is a sequence of recursive calls
(that stay at that recursion level) followed by a transfer call
that signals the end of that recursion level. The set of strings
generated by the innermost recursion, at the last dimension,
is a sequence of recursive calls followed by a single com-
pound statement. Note that the “flattened” language of R 4,
which we will call L4 corresponds to strings that repre-
sent all possible dynamic statement instances as a call stack
(with the “transfer” recursive call that begins the execution
of a level of recursion distinguished from recursive calls that
stay at that level of recursion) plus the static statement in
the innermost recursion. If the symbols of ¥ are ordered by
the order the calls and statements appear in each recursive
function, it is also clear that the lexicographic ordering of
the strings in L # corresponds to the order in which their
respective instances would execute.

This automaton does not consider bounds checks in any
way: it generates an infinite relation. Nevertheless, any real
execution of the program, which requires that all recur-
sive functions terminate, will generate a finite subset of R #,
whose flattened, ordered set of strings can be embedded in
the (infinite) ordered sequence of the strings of £ #. Hence,
R is a sound overapproximation of the set of dynamic in-
stances of a program (and their order).

Remark. The language L # we can derive from flattening
R is not particularly different from the language of control
words defined by Amiranoff et al. [2]. They note that while
they use context-free languages to generate their control words,
for their programs, the languages are actually regular.

The automata PoLYREC considers share a common struc-
ture: a series of “loops” capturing the recursive calls at state
qo, then a sequence of transfer transitions representing the
end of each recursion dimension, followed by a set of final
states representing the compound statements in the inner-
most recursion.
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5 Representing Scheduling
Transformations

Armed with a representation for the iteration space, de-
scribed in Section 4, the next step for POLYREC is to provide a
representation for scheduling transformations of the iteration
space. A scheduling transformation provides a new order
of execution for instances, and can be used to, for example,
improve locality.

PoLYREC uses multitape finite state transducers [16, 24] to
represent its transformations (Section 5.1). Transducers are
naturally composable, meaning that POLYREC can synthe-
size compound transformations that apply multiple rewrites
to a recursive loop nest (Section 5.2). Finally, we describe
techniques for generating transducers that apply specific
transformations to nested recursion: code motion, inlining,
strip mining, and interchange (Section 5.3).

5.1 Transformations as Multitape Transducers

A scheduling transformation is a bijective function that maps
instances in one iteration space to instances in a different,
transformed iteration space. Of course, not all such functions
are useful to consider as transformations. We would like
scheduling functions to meet the following criteria:

1. The co-domain of the scheduling function should also
be a regular relation of strings. This means that PoLYREC
can keep iteration spaces in the world of regular re-
lations and reason about schedules using flattening
and lexicographic ordering —the universe of PoLYREC
iteration spaces will be closed under scheduling trans-
formations.

2. Scheduling transformations should be easily compos-
able —it should be possible to combine multiple trans-
formation functions to produce a composite function
that transforms an input schedule to an output sched-
ule.

3. Scheduling transformations should preserve perfect
nesting: if an iteration space is perfectly nested, apply-
ing the transformation should result in a new perfectly
nested space.® Note that this means that the transfor-
mation should not alter the general structure of the
iteration space automaton—a series of self loops at
qo representing all the recursive calls in different di-
mensions, a sequence of transfer transitions, and a set
of final states representing the computations of the
innermost recursion.

To satisfy the first two properties, POLYREC uses multi-
tape, non-deterministic, finite-state transducers to represent
scheduling transformations. These multi-tape automata act
as string rewriters, and can rewrite the (multi-dimensional)

®Not all scheduling functions that meet the first two requirements meet
this third one (indeed, well-understood transformations like fission break
this requirement). But POLYREC currently only handles perfect nesting.
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strings representing one iteration space into (multi-dimensional)

strings from another iteration space.

Consider an input iteration space with k dimensions over
symbols (calls and statements) 3, Ry € (2 U ). A transfor-
mation that reschedules it to k dimensions with new symbols,
>’ would be a transducer T € (2 U ¢)f x (3’ U €)¥. We can
use T as a function T : (S U &)* — (2’ U &)k defined in
the obvious way, provided that T’s first k dimensions are a
superset of Ry (making T total) and that each tuple in R s
only “matches” a single tuple in T’s second k dimensions
(making T a function).

Remark. The properties required forT to be used as a function
are, in general, undecidable for multitape finite automata [9].
However, we build our transformations in a constructive man-
ner that makes it straightforward to see that T acts as expected.

We can think of an edge label in a transformation trans-
ducer T as having the following form (we show a 2-dimension
to 2-dimension transformation, but this generalizes in the
obvious way to multiple dimensions):

[i1, 2] = [j1, j2]

This transition rewrites the symbols [ij, iz] from the input
tape into [ji, jo] on the output tape.

Remark. Note that, as with many polyhedral frameworks,
PoLYREC targets rescheduling transformations. In particular,
because T is a bijection, computations are only reordered, not
created or removed. This is in contrast to transformations that
eliminate redundant or unnecessary operations. POLYREC does
not handle such transformations.

To help satisfy the third property of transformation trans-
ducers, and to admit a decidable dependence test (Section 6),
we place an additional structural restriction on transforma-
tions: they should be order-free rewrites. In short, there are
two restrictions: (i) any state in the transducer that has an
input transition accepting a recursive symbol (on any tape)
must also have transitions that accept all other recursive
symbols’; and (ii) any such state must have a transition to
a tail: a sequence of states that accepts the transition call
symbols one after another, followed by states that accept
any of the innermost compound statements. These condi-
tions combined essentially mean that the transformation
should be able to rewrite the recursive calls in any order
it wants; consuming a recursive call off of one input tape
cannot preclude either consuming recursive calls on other
tapes or ending the rewrite by entering the tail. Figure 3a
gives an example of what an order-free rewrite looks like.
Note that both “looping” states have rewrites for [ry, ].

Applying a transformation transducer is straightforward:
we simply project out the output dimensions of the trans-
ducer, and apply ¢ elimination to simplify the resulting mul-
titape automaton. The result is an automaton that produces

"Either directly or through an ¢ transition.
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[ry,€] = [ry,€]

[ty.€] = [t.€

(:)hM*RﬁHGD

[e,r] = [E,1',] (€15 = [E,7,]

e = e, [E.r5] = [.€]

[ty,€] = [ty,€

B&%ﬂmr‘!D

[ry,€] = [rq,€]

(a) Transducer to inline of inner(i, n.left).

[ry,€]

[E.r",]

[e.r'2]
(b) Projected the output tapes of Figure 3a.

Figure 3. Inlining using transducers.

the transformed iteration space. Note, though, that it is impor-
tant that the transformation be implemented as a transducer,
rather than simply giving the transformed iteration space.
We are not just interested in the final schedule of computa-
tion, but how we got there: which specific instances in the
original schedule got mapped to which specific instances
in the transformed schedule. It is this information that al-
lows us to check the soundness of schedules (Section 6).
This also means that any transformation transducer must
not only rewrite one iteration space to another, but do so
faithfully—it should correspond to the way instances in the
original program are mapped to instances in the transformed
program. The transformations we present in Section 5.3 all
do this translation faithfully, although in general there is
no way for us to automatically verify this for an arbitrary
transformation.

Example Figure 3a shows a transformation transducer that
inlines the call inner(i, n.left) from Figure 1a. We can see how,
e.g. [t1, rzlrzrsl] is rewritten to [, rzl’sl], as captured by the
transformed iteration space (Figure 3b).

5.2 Composing Transformations

Our process for composing transformations is straightfor-
ward. To apply one transformation, we take the input au-
tomaton and construct the necessary transducer that applies
the transformation (see Section 5.3 for specific examples of
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these constructions). We project out the output tapes of the
transducer to generate a new iteration space automaton, as
described in the previous section.

Because the transformation transducer preserves perfect
nesting, this new iteration space automaton looks, from the
perspective of PoLYREC, no different than a valid iteration
space automaton generated from a piece of input source code.
So we can simply repeat this process of generating a new
transducer and applying it to compose transformations.

Note that while the transformed iteration space automa-
ton captures the new schedule of computation, by itself, it
loses the mapping of the original iteration space to the trans-
formed space. Without this mapping, it is not possible to
tell if dependences are violated: we cannot tell if any depen-
dences in the original space are “flipped” in the transformed
space. Thus, while the transformations are being applied, the
original sequence of transducers that represent the transfor-
mations are saved, and composed using multitape automa-
ton composition (see Section 4.1). Hence, after a sequence of
transformations are applied PoLYREC has a transducer that
maps the input automaton (the original code) to the output
automaton (the fully transformed code). As we will see in
Section 6, this is sufficient information for POLYREC to test
whether dependences are violated.

5.3 Representing Specific Transformations

We now describe techniques to generate transformation
transducers for four well-defined transformations: code mo-
tion, recursion interchange, inlining, and strip mining. These
component transformations are simple, but their composi-
tion is powerful enough to construct transformations such
as point blocking [14] (a combination of strip mining and
interchange) and traversal splicing [15] (a combination of
all four transformations) when combined in the right way:.
We fully describe the process of constructing transducers
for code motion and recursion interchange, but, for lack of
space, leave the exposition of strip mining and inlining to
the extended version of the paper [33].

Code motion As its name would suggest, code motion sim-
ply reorders the statements in the code around. In non-
innermost recursions, this changes the order of the recursive
calls and the transfer calls, while in the innermost recur-
sion, this changes the order of the recursive calls and leaf
compound statements. Note that because code motion ap-
plies within each dimension, it does not change the recursive
structure of the iteration space. Nevertheless, code motion
reorders the execution schedule, so can break dependences.

The transducer representing code motion looks exactly the
same as the multitape automaton representing the iteration
space with output tuples same as the input ones at every
edge of transition, with one-to-one replacements of symbols
in the input alphabet with symbols in the output alphabet;
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[r1.€l = [e, 1ol

D)Ll = el A lesd = o) @
N

[s,r|2] - [r‘1 €] [a,rrz] - [rr1 €]

Figure 4. Transducer implementing interchange of first and
second dimensions.

the output alphabet merely has a different lexicographical
order than the input one.

Interchange In our example, transition [ry,e] — [e,r2]
switches r; from dimension one to two, and transitions
[e, ré] - [rll,e] and [e,r]] — [r], ] switch r] and ré from
dimension two to one.

Interchange is a seemingly complex transformation —
changing the nesting order of recursion— with a simple
transducer. As a code transformation, interchange is well-
understood for loops [1], while interchange of loops and
more general recursion [14] and general recursive meth-
ods [34] has been studied in the literature. Figure 4 shows
the transducer for interchanging first and second dimensions
of the code in Figure 1a. To interchange dimensions i and j,
the transducer begins with a single state with a set of self-
transitions that (a) rewrite every recursive call in dimension
i to dimension j, and vice versa; and (b) leave recursive calls
in other dimensions in their original dimension. We then
add a tail of transitions that leave all transfer and compound
statements alone. Like code motion, interchange changes the
schedule of computation, so can break dependences.

6 Representing Dependences and
Checking Soundness

Transformations applied by PoLYREC in the manner of the
previous section are not necessarily sound: there is no guar-
antee that the final transformed program produces the same
result as the original program. As an example, consider the
double recursive example from Figure 1a. Changing the outer
recursion from a pre-order traversal to a post-order traversal
can be easily implemented by a code motion transformation
that swaps lines 6 and 7. However, doing so means that the
updates to each tree node’s n.x field in line 13 will occur in
the opposite order of the original program, potentially chang-
ing the result of the program (e.g., if the addition in line 13
were floating point). Just because POLYREC can synthesize a
transformation does not mean that it is legal.

Any transformation must respect all dependences in the
program. Two instances, i and j, where i executes before j
in a schedule have a dependence if j is data dependent on
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i—they both access the same memory location m, and at
least one of i or j writes to m. Give a set of instances I, a
schedule of those instances Sy that totally orders I, and a set
of dependences D C I X I, a transformation that produces
the schedule S; is sound if and only if all pairs in D appear
in the same order in S; as in Sy. So how can we tell whether
a given transformation breaks dependences?

6.1 Witness Tuples to Represent Dependences

The first step in reasoning about dependences is represent-
ing the set of dependences in a program. Recall that we
want to think about dependences as a set of pairs of in-
stances. Because POLYREC does not reason about the bounds
of programs, the set of instances it considers is infinite, as
is, potentially, the set of dependence pairs. This representa-
tion problem arises in other instance-wise analyses. In the
world of loops and matrices, dependences are represented
with abstractions ranging from distance and direction vec-
tors [18] to dependence polytopes [3]. In the world of irregu-
lar programs, Amiranoff et al. [2] uses a series of dependence
transducers to represent and reason about dependences in
irregular programs. POLYREC representation of dependences
is called witness tuples, a rough analog of distance vectors.

Definition 6.1. A witness tuple is a 3-tuple of regular rela-
tions over the alphabet ¥ U ¢ of symbols in a given iteration
space R, written (Ry, (Rg, Ry )) such that:

1. Ry ©Rg S Ra and R, © R, C R (ie., R, generates
prefixes of instances that, when suffixed with members
of Rg or Ry, are instances of the iteration space).

2. R,’s individual elements are either ¢ or of the form
(r}|r?]...)"—asequence of recursive calls from a given
dimension. (Note that the prefix contains no transfer
statements t; or leaf compound statements s;.)

3.1fa € Ry, then Vb € (a©Rp),c € (aORy).b <c.In
other words, for all instances generated by concate-
nating a prefix a from R, with suffixes from Rg and
Ry, the instances generated from a © Ry lexicographi-
cally precede those generated from a ©® Ry —they occur
earlier in the schedule

Essentially, a witness tuple acts as a generator for pairs
of instances with a common prefix that arise in a specific
lexicographic order.

Definition 6.2. A witness tuple (Ry, (Rg, Ry)) capturesa
set of dependences D C Ra X R (pairs of instances from
Ra)if:V(x,y) € D.3a € Ry,b € Rg,c€ERy.x =aObAy=
a © c. In other words, if the witness tuple can generate all
dependence pairs in D.

We can generalize this notion of captures to sets of witness
tuples if, for any dependence pair in D, at least one witness
tuple generates the pair.
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We note two things. First, a given set of static statements
that have dynamic instances that are dependent on one an-
other may require multiple witness tuples to capture the
dependences, since a given witness tuple requires that all
generated pairs have the same lexicographic order. Second,
any set of dependences can be (conservatively) captured by
one or more witness tuples. This is because we can always
generate degenerate witness tuples that capture all pairs of
instances in an iteration space.

Note that generating witness tuples is not the focus of this
paper, as POLYREC is agnostic to where the witness tuples
come from. Section 7 sketches how tree dependence analy-
sis [37] could be adapted to build witness tuples, but many
prior works present other analyses that could be modified
to produce witness tuples [2, 26, 29].

6.2 Checking Soundness

The witness tuples for a program can be used to test transfor-
mation soundness. The basic approach is simple: we generate
a dependence pair, then push each instance tuple through the
transducer representing the composed program (At produc-
ing regular relation Rr). If the transformed instances are still
in the same lexicographic order, the dependence is preserved.
The primary question is to determine how to test a possibly
infinite set of dependences.

Our dependence test process proceeds as follows. For a
given witness tuple (R, (Rg, Ry)), we generate a single k-
string w from R, . Recall that by the definition of the witness
tuple, Vb € w © Rg,c € w © Ry.b < c. If we can determine
whether Vb’ € (w © Rg) o Ry,¢’ € (w©®Ry) o Rr.b" < ¢/,
then we will know that for the prefix w from the witness
tuple, all dependences are preserved by the transformation.
This is decidable as follows.

Dependence test for a given prefix w: We run Ar =<
k,%,Q,qo, F, E > with w as its input (i.e., we trace all paths
through A7 from the start state g, that accept w), arriving
in a set of states Q,, € Q. With Q,,, we construct a derived
automaton ﬂ¥ =<k,%,0’,qy, F',E’ > as follows:

1. k and X are the same as in A7t

2. Q' =QuUgq (ie, Q" is the set of states from Ar plus
a fresh state q;, which is the new start state.)

3. F’ = F (ie., A has the same final states as A7)

4. E' = EU {(q(’],sk,qi)|qi € Qy}. In other words, we
add a null transition from the new start state to all the
states of Ar we arrived at after reading in w.

Intuitively, the automaton A} captures the effect of restart-
ing A7 after executing w through it. In particular, note that
AY accepts some k-string x iff Ar accepts w © x. More-
over, because the transformations all act as functions from
instances to instances, the output of running x through AY
is what Ar generates by running x after running w.
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Remark. Note that these two properties are not generally
true for non-deterministic multitape finite automata. However,
because our transformation transducers have the order-free
structural property (Section 5) and the prefixes w are only
combinations of recursive calls, these properties hold.

We use A} as follows. We derive two new regular rela-
tions, R,, g and R,,,, by composing Rg and R, respectively
with the relation from AY. Note that these relations are the
equivalent of running w©Rs and woR,, through the original
transformation transducer Ar.

For R,, 5, we create the lexicographically latest k-string
by tracing along the first tape. At each state, we trace (keep)
all paths with ¢ transitions on the first tape. From this set
of states, we then trace (keep) the transitions with the lexi-
cographically latest symbol and remove the remaining tran-
sitions. We continue this process until we have visited or
disconnected all the states. This new reduced machine either
reaches a final state, in which case it matches some finite
string « on the first tape, or it loops, in which case it con-
sumes some infinite string « - B~ on the first tape. In this
reduced machine, there may be multiple paths that match the
same string on the first tape. We can repeat this procedure
on the reduced machine using the second tape—this has the
effect of breaking “ties” by considering the behavior of the
second dimension in generating the latest possible k-string.
Repeating this process for all tapes leads to a machine that
generates the latest possible k-string.

For Ry, we create the lexicographically earliest k-string
in a similar fashion, looking for the earliest string on the
first tape, with the added condition that we disconnect all
outgoing transitions from final states (since extending the
string past a final state can only create a lexicographically
later string). Again, this machine will either match some
finite string « on the first tape or loop, consuming some
infinite string « - f~. Repeating the process for all the tapes
to break ties produces the earliest possible k string.

It is straightforward, then, to compare the k-strings gener-
ated in this manner to determine whether the latest k-string
from R,, g precedes the earliest k-string from R,, ,, preserv-
ing the dependences.

Extending to all possible prefixes: Thus far, we have only
shown that the dependence is preserved for one prefix w
from the witness tuple. How can we show that this holds for
all possible w?

First, note that trivially, there are only a finite number
of possible sets of states, Q,,, that can be used to construct
AY (since Ar has a finite number of states). But, more in-
terestingly, we can find all possible Q,,s by enumerating the
possible ws.

After finding Q,, and running the single-prefix depen-
dence test, we can extend w by adding a single symbol to one
of its dimensions (assume, without loss of generality, that
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it is the first tape) and fixing the values of the other dimen-
sions, producing w;. We can then repeat the single-prefix
dependence test for wy, generating Q,,,, Jﬂ¥ !, and so forth. If
wy is sound, we can then extend w; by a single symbol along
the same tape, generating w,, and so on. Note three things: (i)
eventually, by the pigeonhole principle, some wy will gener-
ate a Q,,, that is the same as some previously-generated ij;
(ii) because Q,,, and Q,,, are the same, the dependence test
for wy passes if and only if the dependence test for w; passes,
hence we do not need to test wy; and (ii) once this happens,
any further extension of wy along the same dimension can
only repeat the behavior of previously-tested prefixes. Thus,
we only need to test a finite number of ws to determine that
all ws with the given values in dimensions 2. . . d are sound.

From here, a straightforward diagonalization argument
shows that we can incrementally extend w along all dimen-
sions to eventually discover all the possible Q,, state sets and
test them all for soundness. Hence, testing the soundness of
all prefixes w is decidable.

Proof Sketch of Soundness The soundness of this depen-
dence test is straightforward. First, because each individual
transducer that goes into the composition correctly maps
the input iteration space to the output iteration space for
that transformation, the composition correctly changes the
schedule of the input program to the schedule of the output
program. Hence, given any pair of instances i; and i,, with
i1 < iy, running them through the composed transducer will
reveal if their order is preserved in the transformed schedule.

Second, the decision procedure we provide for witness
tuples determines that for all w, that arrive at Q,, (the
set of states in the composed transducer), Ywg € B,w, €
Y- Wa © Wg < wg © wy. Because there is only a finite set of
Q,, configurations, we can check all these configurations to
determine that Vw, € a, wg € B, wy € y.waOwg < weOwy

As long as the set of witness tuples D covers the set of
dependences D (i.e., there is not a dependence (i1, iz) € D that
cannot be generated by at least one witness tuple in D), we
have that if each witness tuple is preserved, all dependences
must be preserved.

Examples Recall from Section 3 that the witness tuple for
our running example is:

(r)*, (rlry) ], (s sl () s s1D))-

We will use this witness tuple to check whether the inter-
change transformation from Figure 4 is sound. There is only
one possible state in the transformation transducer that a
prefix drawn from [(r;)", (ré |r7)*] can end in, {1}, yielding
a single possible partially-run automaton, A}, that has {1}
as its start state. Note that in other cases such as inlining or
strip-mining, different prefixes can end in different states.
We will later consider an inlining transformation, which has
two possible AY's.
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[t1,8] - [t1,8] N [8531] - [8’31]
‘ 1 : > 2 ) >

(a) Suffix [#1, s1] composed with interchange transducer.

[r1,€] = [€, 1]

[r,€l = [g, 1)) [t,€] = [t1,€] [e,;54] = [e,84]
O—O—0O0—0

(b) Suffix [(r1)*t1, s1] composed with interchange transducer.
Figure 5. Transformed suffixes of the witness tuple.

Next, we compose the two suffixes of the witness tuple
with AY. Figure 5a and Figure 5b show the resulting trans-
ducers for composing the suffixes [#;, s1] and [(r1)*t1, s1],
respectively. Projecting these transducers onto their output
tapes produce automata generating transformed suffixes.

As discussed in Section 6.1, for a given prefix all the strings
generated by the suffix [t;, s1] lexicographically precede
all the strings generated by the suffix [(r1)"¢;, s1]. In other
words, the latest string produced by the suffix [t;, s1] is
lexicographically earlier than the earliest string produced
by the suffix [(r;)*¢;, s1]. In order to check the soundness
of the transformation, we check whether the same property
holds for the transformed suffixes.

The output program obtained by performing interchange
transformation has a new order (¢, rf , 11,51, 12). First we find
the lexicographically latest string generated by the trans-
formed suffix represented as transducer in Figure 5a, [#;, s1].
We refer to this string as latest string. Then we find the lexi-
cographically earliest string generated by the transformed
suffix represented as transducer in Figure 5b, [t1, rps1]. We
refer to this string as earliest string. It is evident that the
latest string [, s1] is lexicographically earlier than the earli-
est string [1, rys1]. Hence we conclude that the interchange
transformation is sound for our running example.

We can also check whether the inlining transformation
from Figure 3a is sound in the presence of the witness tuple.
In this case, there are two possible states in the transforma-
tion transducer that a prefix drawn from [(r;)*, (rzl [r7)*] can
end up in, {1} and {4}, so those are the two configurations
we need to consider when testing soundness.

Configuration {1} The latest string produced by the
suffix [t1, s1] is, simply, [#1, s1], and the earliest string
produced by the suffix [(r1)*t1, s1] is [r1t1, $1], which
preserves the order.

Configuration {4} From here, the analysis is the same,
and the order is preserved.

Because both prefix configurations preserve the dependence
order, the transformation is sound.
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6.3 Discussion

The various restrictions in PoLyREc—the structure of the
dependence representation, and the restrictions on the types
of programs the framework can handle—are all driven by
the demands of this dependence test, and, in particular, pre-
serving its decidability.

First, the dependence representation, with all instances
generated by one witness tuple suffix preceding all instances
generated by the other witness tuple suffix is structured to
yield a sound single-prefix dependence test. In particular,
it lets us reduce the single-prefix dependence test to the
problem of testing whether all the strings generated by one
automaton (the output of the first suffix) precede all the
strings generated by the second automaton (the output of
the second suffix), which we can then, in turn, reduce to
the decidable problem of comparing the latest and earliest
strings generated by those automata.

Second, the peculiar structural restriction on the transfor-
mation transducers—that they be order-free—is necessary
for the overall dependence test to be decidable. Specifically,
it is this order-free property that allows us to split the de-
pendence test into two phases. The first to find the derived
automaton given a prefix w, and the second to compose this
derived automaton with the suffixes to perform the single-
prefix dependence test. This splitting, then, lets us show that
the overall process is decidable. Because we can uniquely
specify the derived automaton AY for a prefix w from the
state set Q,,, we obtain the result that we can enumerate all
possible Q,, by enumerating ws in a diagonalization man-
ner. The restriction of PoLYREC to perfectly-nested loops
and recursion is also related to the restriction to order-free
transformations, as it is easy to construct useful order-free
transformations for perfectly-nested programs.

Notice that our iteration space representation can com-
fortably handle imperfect nesting, and our transformation
representation can capture, and compose, non-order-free
transformations over these imperfectly-nested programs.
The witness tuple representation, likewise, can accommo-
date imperfect nesting. The restrictions in POLYREC seem
necessary to support a sound dependence test. Generaliz-
ing POLYREC to work with a larger set of transformations
and programs thus boils down to designing a more general
dependence test.

7 Prototype Implementation

We built a prototype implementation of the PoLYREc frame-
work® that can combine a sequence of basic transformation
transducers on a nested recursive code to generate a trans-
ducer that represents a complex composed transformation.

8 Available at https://bitbucket.org/plcl/polyrec
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When presented with a witness tuple (or tuples), our proto-
type applies the dependence test to verify that the depen-
dences in that witness tuple are preserved by the composed
transformation.

This section also describes three additional pieces that
build towards a workflow for applying transformations to
nested recursive codes: (i) how code generation can work
alongside our prototype; (ii) a completion procedure that al-
lows our prototype to search a space of transformations to
find a sound transformation consistent with a partial trans-
formation; and (iii) a sketch of a dependence analysis that
could be used to generate witness tuples.

Code Generation The key to code generation in our ap-
proach is that the concrete code can be generated indepen-
dently of the process of composing transformations and
checking that they preserve dependences. Hence, while the
prototype itself does not generate code, it can easily sit
alongside a code generation procedure. Because the trans-
formation transducers are (a) based on well-known compiler
transformations and (b) each preserve perfect nesting, once
PorYREC verifies that the composed transformation is sound,
it is possible to directly apply the (concrete) transformations,
in order, to the code. Note that because PoLYREC avers that
the composed transformation is safe, intermediate states of
the code (i.e., before all the transformations are applied) may
become unsound but will be fixed by later transformations
(For example, interchange can break dependences that are
fixed by subsequent code motion that changes the recursion
order of a function.)

Completion Procedure Finding the right set of transfor-
mations to apply to a program is a challenging problem,
even in the world of regular programs. Our prototype can
be used as part of a completion procedure akin to those in
polyhedral frameworks [3]: given a partial transformation
(e.g., a programmer might know that changing the order of
two statements, or interchanging two loops, will help local-
ity), find a complete, sound transformation that respects that
partial transformation (e.g., by performing additional code
motion or interchange)’.

This completion procedure is driven by the following ob-
servation: of the four basic transformations PoLYREC sup-
ports (Section 5.3), the only two that can break (or fix) de-
pendences are interchange and code motion, and the combi-
nation of possible dimension and statement orders is finite.
Moreover, a single interchange transducer can produce any
order of dimensions and a single code motion transducer can
produce any order of statements. So, given a partial order
of dimensions and statements'’, we can enumerate a (finite)

9We leave the additional challenge of heuristics for finding this first partial
transformation to future work, though Section 9 sketches some ideas for
heuristics to exploit parallelism.

19The order of statements in the innermost recursion encompasses the order
of compound statements and recursive calls.
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set of pairs of transducers (one for interchange and one for
code motion), each of which captures a different total order
consistent with the provided partial order. POLYREC can then
apply the dependence test to each (composed) pair to find a
total order that is sound, if one exists. Any inlining or strip
mining can be safely applied before (or after) this sequence
is identified.

Dependence Analysis Any dependence analysis that can
generate witness tuples can be used with PoLyRec. While our
prototype does not generate witness tuples, here we sketch
how tree dependence analysis [37] could be adapted to iden-
tify witness tuples. Note that tree dependence analysis only
handles recursion nested inside loops, though PoLYREC’s
witness tuple representation can capture dependences from
more complex nesting structures.

Weijiang et al. [37] target programs where recursive func-
tions traverse tree structures; in other words the induction
variables represent nodes in the tree and the compound state-
ments in the innermost recursion access fields of the tree
indexed by the induction variables. Weijiang et al. use a vari-
ant of Larus and Hilfinger [20]’s dependence analysis to find
compound statements where there may be some instantia-
tion of the induction variable (in two different instances)
such that the accesses depend on each other. For example,
statement s; might be n.x = ... while statement s, might be ... =
n.left.x. These two statements depend on each other when s
executes at some node n, and s; executes at n.left—Weijiang
et al. determine this “distance” information by looking at
the common prefixes of node accesses in the two statements.
The sequence of recursive calls that separate an instance at
n from an instance at n.left is straightforward to determine
from the recursive calls in the method. This information can
be directly used to construct a witness tuple: the dependence
occurs between instances separated by left along the dimen-
sion with the induction variable n, and any value for the
other dimensions (i.e., the witness tuple should consider all
possible pairs of values in those other dimensions).

8 Evaluation
Our evaluation of PoLYREC targets two key questions:

1. Can PoLYREC correctly check the validity of complex,
composed transformations of nested recursive spaces?
Do these transformations generalize prior work? Can
PoLYREC check novel transformations? (And, as a sub-
question: are those transformations useful?)

2. Can PoryREc find a valid transformation consistent
with a partial transformation?

Benchmarks We use four test cases, all of which have at
least one general recursion. The first three cases use a recur-
sive traversal over a tree structure nested in a loop (which
is rewritten into tail-recursion prior to transformation); this
is the computation structure examined in several previous
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papers [14, 15, 40]. The last case uses two trees, with a recur-
sion over tree B nested inside a recursion over tree A; this is
the computation structure used in Sundararajah et al. [34].
The loops run for 1000 iterations, and the tree(s) have 1M
nodes. In each of the cases, we vary the dependence struc-
ture through different instantiations of the leaf statements,
such that different transformations will be legal; we pro-
vide witness tuples capturing these dependence structures
to PoLYREC:

Case 1 The recursion nest performs an update of the
form n.x[i] += n.x[i+1], where n is the induction vari-
able of the tree traversal and i is the induction variable
of the loop. Thus, there are dependences across the
loop, but in a given traversal, node updates are inde-
pendent. Here, all basic transformations for the general
recursion are legal.

Case 2 Here, the computation is n.x[i] = n.L.x[i] + n.r.x[i].
There are no dependences across the loop, but each
instance depends on the computation at its parent in
the tree. Some code motion is not legal because it may
cause the tree nodes to be visited in the wrong order.

Case 3 Inthis case, the updates create dependences across
both recursions: n.x[i] += n.l.x[i + 1] + n.rx[i + 1]. The
dependence structure prevents interchange from oc-
curring if the inner recursion is post-order (which it is
in the source), but code motion can change the recur-
sion to pre-order to make interchange legal.

Case 4 In this case, there are two tree induction variables,
n, traversed by the outer recursion, and m, in the inner.
The update is n.x *= m.x, performing a cross product
of the two trees. All transformations are legal.

For each of these cases, after our prototype verifies that
a transformation is sound, we directly apply the (concrete)
transformations to the initial code to produce transformed
versions of the code. The extended version of the paper
contains pseudocode, detailed dependence information, and
examples of transformed code for the various cases [33].

Experimental Platform Our nested recursive traversals
are written in C with annotations to aid our tool. We used ICC
Compiler 16.0.3 to compile our traversals and transformed
traversals. The execution platform for the various perfor-
mance runs is a dual 12-core, Intel Xeon 2.7 GHz Core with
32 KB of L1 cache, 256 KB of L2 cache and 20 MB of L3 cache.

Can PoLYREC analyze composed transformations? On
our four case studies, we evaluated various combinations
of PoLYREC’s four basic transformations, Code Motion (CM),
Inlining (IL), Interchange (IC) and Strip Mining (SM). Table 1
shows, for the four case studies, which compositions of trans-
formations PoLYREC is able to verify as sound.

Applying strip mining and interchange to a recursion
nested within a loop (our first three test cases) produces the
same schedule transformation as point blocking [14] while
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Table 1. Performance Results of the Case Study

Case Transform Runtime(s)
Baseline 79.95
IC 0.96
Case 1 IC-SM-CM 0.59
IC-SM-IL-CM 0.62
Baseline 61.61
IC 1.04
Case 2 IC-SM 2.92
IC-SM-IL 0.77
Baseline 61.48
IC-CM 1.05
Case 3 e svem 3.04
IC-SM-IL-CM 0.56
Baseline 5.89
Case 4 I 552

adding inlining produces the same schedule transformation
as traversal splicing [15], and interchanging two general re-
cursions (our fourth test case) produces the same schedule
transformation as recursion interchange [34], showing that
PoLYREC generalizes prior work '! Case 3 requires applying
code motion to make interchange legal—this represents a
new transformation that requires a compositional frame-
work, as no prior work could capture this transformation.
For completeness, Table 1 also shows the performance
of the transformed code over the untransformed baselines.
There are two key points here. First, these transformations
are able to improve the performance of nested codes. Sec-
ond, different combinations of transformations have different
performance, confirming the value proposition of having a
framework that allows programmers to explore a space of
possible transformations to determine which are sound.

Can PorYREC find valid transformations? We also test
the ability of our completion procedure to find a complete
transformation given a partial transformation using Case 3.
Here, interchange is only legal if composed with code motion
(and vice versa). We start with two partial transformations:
in one, the inner recursion is changed from post-order to
pre-order, requiring the transformation to be completed with
interchange, and in the other, we begin with interchange, re-
quire the transformation to be completed with code motion.
In both cases, given the finite set of possible completions,
PorYREC correctly identifies a sound transformation consis-
tent with the partial transformation.

9 Incorporating Parallelism

PoryREC currently targets transformations of sequential code.
An interesting question is how to incorporate parallelism
transformations into the framework. In some sense, paral-
lelism is simpler than the types of transformations PoLYREc
targets: rather than worrying about the specific structure
Prior work includes transformation-specific code generation optimiza-

tions, which our prototype code generator does not support, but the funda-
mental scheduling transformations are equivalent to ours.

Kirshanthan Sundararajah and Milind Kulkarni

of dependences and whether that structure permits a trans-
formation, parallelizing code requires “simply” showing the
absence of a dependence. POLYREC can identify opportuni-
ties for parallelism by checking if there are no dependences
carried along that dimension. A simple test for a lack of de-
pendences across a dimension is whether all witness tuples
have no recursive call labels in either suffix for a given di-
mension. In this case, all pairs of dependences have the same
“value” in that dimension, and that dimension is parallel.

We can add heuristics to POLYREC to exploit parallelism in
one of several ways. First, mirroring how polyhedral frame-
works can be used to generate coarse-grained parallelism,
parallel dimensions can be moved to the outside through loop
interchange (which will always be safe). The recursive calls
in the outer dimensions will thus produce coarse-grained
tasks that can be parallelized using standard techniques (e.g.,
using Cilk-style spawn calls).

PoryYREC can also be used to move parallel dimensions to
the inner parts of a loop nest, creating fine-grained paral-
lelism. This fine-grained parallelism can be exploited through
standard vectorization techniques if the inner dimension is
a simple loop. Indeed, interchanging coarse-grained paral-
lel loops with (non-parallel) recursive methods to promote
vectorization is essentially Jo and Kulkarni’s approach to
vectorizing tree applications [13]. If, instead, the parallel
dimension is a general (non-loop) recursion, Ren et al’s vec-
torization technique can be applied [27]. While Ren et al’s
specific code generation technique is outside the scope of
PoLYREC, the framework can soundly generate the high level
code structure necessary to then apply Ren et al’s technique.

10 Conclusions

Despite the long history of dependence analysis and trans-
formation frameworks for loop-based programs, there are
no comparable frameworks for programs that use recursion.
PoLYREC is the first comprehensive, compositional frame-
work for recursive programs that provides an end-to-end
strategy for representing schedules, transformations of those
schedules, and dependences, allowing nested recursive pro-
grams (including combinations of recursion and loops) to be
soundly transformed. Our prototype implementation is able
to analyze complex transformations that arise in prior work,
as well as generate and reason about new transformations.
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