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Abstract

Electrostatic multipole interactions generate long-range Rydberg—Rydberg macrodimers. We
calculate the adiabatic potentials of cesium (nD;), Rydberg macrodimers for principal quantum
numbers n ranging from 56 to 62, for J = 3/2 and 5/2, and for the allowed values of the
conserved sum of the atomic angular-momentum components along the internuclear axis, M. For
most combinations (n, M, J) exactly one binding potential exists, which should give rise to
Rydberg macrodimer states. We study the dependence of the adiabatic potentials on the size of
the two-body basis sets used in the calculation, and on the maximal order, g.x, of the multipole
terms included in the calculation. We determine the binding energies and lengths of the binding
adiabatic potentials, investigate their scaling behaviors as a function of the effective principal
quantum number, and discuss vibrational-state wave functions. We consider the applicability of
the calculated potentials and excitation rates to an experimental scheme for preparing (nDy ),
Rydberg-atom macrodimers using two-color double-resonant photoassociation.
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1. Introduction

Rydberg atoms, highly excited states with large principal
quantum number n 2 10, have been of interest in recent years
due to their exaggerated properties [1], for example large sizes
and electric-dipole transition matrix elements (~n?), and strong
long-range van der Waals interactions (~n'"). The strong inter-
action between Rydberg atoms results in an excitation blockade
effect [2-6], which has led to a variety of interesting investiga-
tions and applications, including quantum logic gates [7, 8],
single-photon sources [9, 10], single-photon transistor [11] and
many-body systems and entanglement [12—14]. Including a
wider class of electric-multipole interactions in the analysis, one
finds adiabatic potentials with minima that may support bound
Rydberg—Rydberg molecules [15-28]. These molecules are
macrodimers, as their bond lengths scale approximately as n*>

0953-4075/19/135102+-10$33.00

and exceed the LeRoy radius, ~An? (in atomic units), and can
easily exceed 1 um. Rydberg macrodimers have been first pre-
dicted theoretically for Rb (nP), pair molecules [15]. Calculated
potential energy curves for Rb (n — 1)P(n + 1)P molecules
were compared with experiments [16]. Similar work was per-
formed on Rb (n — 1)DnS [19], Rb (nS), and Rb (nP),
[21, 22], and Cs (89D), macrodimers [17, 18] bound by long-
range interaction. Rydberg macrodimers have been observed
experimentally in cold atomic gases with cesium [20, 26-28],
including nD(n + 2)D macrodimer [20], nSn'F and (nP),
molecules for 22 < n < 32 [26], 43P44S [27] molecules, and
(62Dy), Rydberg-atom macrodimers [28]. Certain Rydberg
macrodimers are predicted to possess abundant vibrational states
and exotic adiabatic potentials, which can be used to study
vacuum fluctuations [29, 30], quench ultracold collisions [15],
and measure correlations in quantum gases [20, 31].

© 2019 IOP Publishing Ltd  Printed in the UK
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Figure 1. (a) Two-atom system. Rydberg atoms A and B, separated
by R > Ry, are placed on the z-axis, r, and rp are the relative
positions of the Rydberg electrons in atoms A and B. (b) Level
diagram and sketch of a vibrational wave-function for two-color
double-resonant excitation of Rydberg-atom macrodimers. The pulse
A resonantly excites seed Rydberg atoms (atom A). The frequency of
pulse B is detuned relative to that of pulse A by an amount equal to
the molecular binding energy.

The adiabatic potentials play an important role for the
preparation of Rydberg macrodimers. The Rydberg macro-
dimers are identified by the assignment of photoassociation
resonances to minima of the adiabatic potentials. In the pre-
sent work, we investigate the adiabatic potentials of cesium
Rydberg-atom pairs below the ®D;), (n =56 — 62)
asymptotes, calculated considering the electrostatic multipole
interaction between Rydberg-atom pairs. We explore the
effect of the maximum interaction order on the potentials, for
several basis sizes. We find that avoided crossings between
adiabatic potentials affect the well shape, depending on the
maximum multipole order considered and angular momentum
quantum numbers. We discuss the bonding energies of (nDy),
Rydberg dimers and the corresponding equilibrium inter-
nuclear distances as a function of n. We also calculate exci-
tation rates for the case of a two-color excitation scheme used
in recent experiments [28] and bound vibrational states. It is
noted that the potential energy curves calculated in this work
are not corrected for non-adiabatic effects that arise from the
dependence of the electronic wavefunction on the internuclear
separation.

2. Multipole interaction Hamitonian

For calculating the interaction of a Rydberg-atom pair, we
consider two nD,; Rydberg atoms, denoted A and B, with an
interatomic separation R. To simplify the calculation, the
quantization axis and R are both chosen along the z-axis, see
figure 1(a). The relative positions of the Rydberg electrons are

r, and rp. The interatomic distance R is larger than the LeRoy
radius [32], R;p, i.e. the electronic wave functions do not
overlap, and is small enough that radiation retardation effects
[33] are not important. The Hamiltonian of the Rydberg-atom
pair is written as:

H = Hy+ Hy + Vi, )]
where IfIA(B) is the Hamiltonian of atom A(B), and ‘Zm denotes

the multipole interaction between the Rydberg-atom pair. Vi
is taken as [17, 26, 28, 34]

Dmax 1 1

Drax =

L. o
> f18aQa0Qs

V= > 2
q=2 R Q=-L.
Lp=q—Ly
— 1)L (Ly + Lp)!
Fuso = (=D (La + Lp) 3)

JLa+ DLs — DL + QLg — D!

where Ly, are the multipole orders of atoms A(B), and the
L_ is the lesser of Ly and Lg. The sum over ¢ = L4 + Ly
starts at 2, because the atoms are neutral and have no
monopole moment, and is truncated at a maximal order g,x.
The factor f4p depends on Ly, Lg and the counting index 2
under the third sum. The QA(B) are expressed as:

A dr ~
O = 2L—+17’,§AY3\(TA) 4)
A
A T QA
e e AL ®
B

where the single-atom operators £, and rp are the relative
positions of the Rydberg electrons in atoms A and B, the
operators QA(B) include radial matrix elements, fj’(‘g)’, and
spherical harmonics that depend on the angular parts of the
Rydberg-electron positions, Y, Li;g)(f'A(B))- The radial wave-
functions of the atomic basis states |nfJmy) required to cal-
culate the matrix elements of the QA(B) are obtained using an
algorithm explained in [35] using model potentials from [36].

We diagonalize the Hamiltonian of the Rydberg-atom
pair on a dense grid of the internuclear separation, R. The R
range is 1.5-5.0 um and the number of radial steps is 400. To
improve the quality of the plots of the potential curves at
small R, the radial steps are chosen equidistant in R>.
Because of global azimuthal symmetry, the projection of the
sum of the electronic angular momenta, M = mj, + myp, is
conserved. For the homonuclear diatomic system in this work,
the inversion symmetry is employed to define symmetrized
basis states [37], with p = +1 for even-parity states, |\1/g>, and
p = —1 for odd-parity states, |,), that are not coupled by Vit
In order to obtain the adiabatic potential curves of the Ryd-
berg-atom pair, the Hamiltonian matrix is separately diag-
onalized for even- and odd-parity states using various basis
sizes (section 3) and values for the maximal multipole order,
gmax (section 4), for a range of principal quantum numbers
(section 5).

Other than in perturbative methods (see, for instance,
[4]), in the present work the adiabatic potentials are obtained
by exact diagonalization of the Rydberg-pair Hamiltonian,
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equations (1)—~(5) using large two-body basis sets and
including binary interaction terms up to gnma.x = 6. The adia-
batic potentials, obtained by plotting the adiabatic energy
values versus R, include perturbations due to Vi, up to
arbitrary order. In the case of accidental resonances (Forster
resonances) between Rydberg pair states, V;, causes
first-order contributions in the adiabatic potentials that
asymptotically connect with the Forster-resonant pair states.
The first-order shifts scale as 1/R?"'. For sufficiently non-
degenerate Rydberg pair states, the leading coupling typically
is a van-der-Waals interaction, i.e. a second-order interaction
in Vi, that scales as 1/R7t4'+2, The direct-diagonalization
approach further accounts for Vj,-induced state mixing
between pair states up to arbitrary order (within the utilized
basis set). We also include the modifications of low-angular-
momentum states, described by quantum defects, as well as
fine structure. Due to these features, the direct-diagonalization
approach is considerably more powerful than perturbative
models of Rydberg pair interactions [4] in identifying adia-
batic potentials with wells that lead to bound vibrational
molecular states.

Numerical calculations of potential curves require a sui-
table basis set, which, together with ¢y, determines
the number of (non-zero) interaction matrix elements used.
The single-atom basis states are denoted |nfJmy), and the
corresponding Rydberg-atom pair basis states are denoted
[nalaJamys) ® |nplpJpmyp), with Rydberg atoms A and B. For
the quantum defects of the atomic energies and the fine
structure coupling constants [1, 38—40] in H, and Hg we use
published values. For high-n (n = 56-62 here), the atomic
hyperfine coupling and the molecular rotation energy are
orders of magnitude smaller than the molecular interaction
energy Vin; they are therefore neglected. For the single-atom
basis states, the range of effective principal quantum numbers
is chosen as int(nepn) — A < Regr < int(negro) + A + 1,
where n is the effective quantum number of the Rydberg
state of interest, int(7.r) denotes the integer part of nes, and
A is a parameter for the principal quantum number range.
Further, the single-atom orbital angular momentum space is
restricted to £ < {iax and my < mypax, for both atoms A and
B. The energies of the two-body molecular states are mea-
sured relative to a state of interest, which in our case is of the
type nDynDyr, with J, J' = 3/2 or 5/2. The two-body basis is
then further truncated to two-body states with energy defects
less than an upper limit of 27-37 GHz from the molecular
state of interest, depending on n.

To estimate photo-association rates, we assume the atom
sample is seeded with Rydberg atoms in state nD,;. We then
calculate the photo-association rate for a second atom out of
the state 6P3/, using Fermi’s Golden Rule. The second atom
is located at internuclear distance R. The result is averaged
over all angles, 0, of the internuclear axis relative to the frame
defined by the excitation laser beam, and over all allowed
values of the magnetic quantum numbers of the two atoms.

The calculation of excitation rates, which is presented in
SI units, proceeds as follows. A symmetrized molecular state

X Han et al
after diagonalization is
[Ymot) = D Capmurs (INama Agmyg)
AamyaAp
— p(= D)t X\gmyg A amya)) 6)

where A4 stands for ny, {4, J4 etc, and ¢}, », denotes the (R-
dependent) properly normalized wavefunction coefficients of
the two-body basis states. The quantum numbers m ;4 and m
are magnetic quantum numbers in the molecular frame of
reference, where nmyg = M — my,. The excitation matrix ele-
ment then is

V= (malD () @ DO @ QN owyeguwre) ()

with the (single-atom) seed Rydberg state |A\,wj.) =
|nDy, wy,) and launch state |gwy,) = |6P3/7, wy,). The quantum
numbers wy, and wy, are magnetic quantum numbers in the
frame defined by the excitation laser beams. The rotation
operator DY rotates the seed Rydberg atom from the laser
frame into the molecular frame of reference. The operator
D=0p"? &) pe’? @ D®’? rotates the optically excited
Rydberg state Q|6P3 /2, wyg) from the laser into the molecular
frame.
The laser excitation is described by

Q _ EE()€ . l" (8)

27
where Ey is the laser electric field amplitude and er the
electric dipole operator, and & a spherical laser polarization

unit vector. The molecular excitation rate, &, is then given by

= (Zwep) ©)
4 WresWig,0

where (*).,..,.0 denotes the average over the magnetic
quantum numbers wy,, wy,, and the angle 6. Further, p is the
effective density of states. For a Gaussian laser frequency
spectrum with full width at half maximum (FWHM) of év, it
isp= J%S;éy The values of £ describe the excitation rates,
in s7!, of the two-body state |A,wj, gwye) into Rydberg
molecular states, |t/y,01), averaged over the allowed values of
wye and wy,, and the angle 6 (with angular weighting oc sin
(6)). The rates & depend on R and are different for different
adiabatic potentials.

3. Basis size

We calculate adiabatic potentials of 60Ds /,-atom pairs with
two different basis sizes for M = 0, gn.x = 6 and energy
defect 30 GHz. One case is 54.9 < nq < 60.1 (A = 2.1),
and £, = 4, and J, |my;| < 4.5, which results in a number of
3148 two-body basis states (= 2 x 1574 symmetrized two-
body states), see figure 2(a). The other case is for 53.9 <
negr < 61.1 (A =3.1), and . =5, and J, |my| < 5.5,
corresponding to a number of 7416 two-body basis states
(=2 x 3708 symmetrized two-body states). The calculated
potential curves are shown in figure 2(b). For larger
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Figure 2. Calculations of adiabatic potential curves for cesium Rydberg-atom pairs, (60Ds/),, with M = 0 (black lines), gm.x = 6 and
energy defect 30 GHz for a smaller (a) and a larger two-body basis size (b), with detailed truncation conditions explained in the text. Isotropic

averages of laser excitation rates from the launch state 60Ds/,6P3 /7,

&, explained in the text, are proportional to the areas of the overlaid

circles (red for symmetric, p = +1, and pink for anti-symmetric states, p = —1). The largest circle areas correspond to a rate of about

5 x 10* s7! for a laser electric field of 10* Vm™!.

|M|-values, considered further below, the number of two-body
states drops.

Both in figures 2(a) and (b), most potential curves with
small excitation rates do not exhibit minima that could give
rise to bound macrodimer states, except one binding potential.
In the range R < 2.1 um, in figure 2(b), there are more
potential curves, with some crossings, than in figure 2(a).
However, these are not expected to produce observable
effects, as there are no prominent wells associated with any of
these steep, short-range potentials. In the range R 2> 2.1 um,
the differences between the small- and large-basis calcula-
tions are more subtle. Both cases have one potential curve
with a wide minimum conducive to bound molecular states.
Close inspection of figure 2(a) shows that the potential well
with large oscillator strength exhibits a binding energy of
Viin = 61.9MHz, at a bond length of R.q = 2.13 um.
Increasing the basis size leads to some changes in these para-
meters. In figure 2(b), we find a binding energy that is 29% less
than in figure 2(a), equivalent to a decrease of about 18.2 MHz,
and a bond length that is 7% larger, corresponding to an increase
of about 170 nm. These changes are attributed to level repulsion
from additional levels in figure 2(b), which push the potential
minimum up and out by some amount. The changes are large
enough to become observable in an experiment.

In a third case, we have considered (62Ds /), molecules
with M = 2, for basis truncation parameters up to 54.9 <
Ner < 64.9, and £l = 7, and J, |my| < 7.5, with a max-
imum two-body energy defect 30 GHz (basis size up to
2 x 4857 symmetrized two-body states). We have seen that
the potential minima with large oscillator strengths shift by
amounts up to about 10 MHz, and that the increase in
|my|-range has the largest effect.

In the present work, we cannot make a definite statement
about whether convergence has been reached in figure 2(b),
because at this time it is not practical for us to increase the

two-body basis size far beyond about 10 000 with the codes
(Fortran 77 and LAPACK) and work stations used. Addi-
tional work on convergence could possibly be performed at
lower principal quantum numbers, where basis sizes are
generally smaller, or by implementing the calculations on a
high-performance computing platform. Despite the fact that
the numerical calculations have not converged yet, they are
suitable to demonstrate important features, such as the role of
the maximum interaction order, g¢n.x, and trends of the
potential well depths, Vi, and bond lengths, R.q, versus
principal quantum number n and angular-momentum M. In
the following sections, we use the same quantum-number
range as in figure 2(a), unless noted otherwise.

4. Dependence on multipole order

In equation (2), the electrostatic multipole interactions in ‘7im
scale as 1 /R"+1 (outer sum in equation (2)). The multipole
series proceeds through dipole—dipole (dd), dipole—quadrupole/
quadrupole—dipole (dq/qd), dipole-octupole/octupole—dipole
(do/od), quadrupole—quadrupole (qq), dipole-hexadecupole/
hexadecupole—dipole (dh/hd) interactions, and so on, where the
first (second) letter stands for atom A(B). In our notation, the
interaction series is terminated at the maximum order, g.x. For
example, for gi.x = 2 only the dd interaction is included. The
case ¢max = 3 includes dd, dq and qd interactions, gm.x = 4
includes dd, do, od, dh, qqg, and hd interactions, and so on. Since
our calculation is based on numerical diagonalization of the
Hamiltonian in equation (1), it includes the multipole interac-
tions up to order g, in a non-perturbative fashion, in all orders
perturbation theory. For instance, for g,,x = 2 the second-order
dd interaction, i.e. the usual van der Waals interaction, is
automatically included.
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Figure 3. Adiabatic potential curves of 60Ds,, Rydberg-atom pairs with M = 0, the same quantum-number range as in figure 2(a), energy
defect 30 GHz, and g.x = 2(a), 3(b), 4(c) and 6(d). The higher-order terms push the potential well up and farther out. As gp.x is increased
from 2(a) to 6(d), the depth of the potential well diminishes by 39.0 MHz, and corresponding bond length increases by 0.07 ym. Further
details are provided in table 1. The meaning of the red and pink symbols is analogous to figure 2. The arrows mark the positions of V. and

R.;0ss for the outermost avoided crossing of the potential well.

To show how the value of g, modifies the adiabatic
potentials, in figure 3 we present the calculated adiabatic
potential curves for the same quantum-number range as in
figure 2(a), with gn.x = 2, 3, 4 and 6. Significant effects of
interaction orders higher than dd can be seen near the
potential minima. In figure 3(a), it iS gmax = 2, i.e. only dd-
interactions are included, and the depth of the potential well
that asymptotically approaches W = 0 is 100.9 MHz. As dg-
and qd-interactions are added (figure 3(b)) the well depth
decreases by 29.8 MHz. We also note that a second, inner
well at —210 MHz and 1.8 um, which is present at g.x = 2,
disappears upon inclusion of the ¢ = 3 terms. These terms
substantially increase the couplings of an apparent three-level
avoided crossing near 2 ym. As a result, the inner well at
—210 MHz is pushed down and disappears, and the outer well
at —100.9 MHz is pushed up and reduced in depth. Including
qq-, do- and od-interactions (figure 3(c)) reduces the depth of
that well by an additional 7.9 MHz. The depths remains
almost unchanged when ¢, is increased further to 5 and 6.
Between ¢,.x = 4 and 6 there are no significant changes in
the shapes of the potential energy curves. To compare the
effects of the interaction orders, gy, in table 1 we display the
values Vy,in and R4 for the potential well that asymptotically
approaches W =0, as well as V. and R for the

Table 1. Binding energies, V,;, in MHz, and corresponding
equilibrium internuclear distances, R.q in pm, versus gmay for
Rydberg-atom pairs (60Ds,»), with M = 0. We also show the
energies and positions of the outermost avoided crossing, marked
with arrows, Vs in MHz and R..s in pm, respectively. Data are
extracted from figure 3.

qmax me Req Vcross RC]'OSS
2 —1009 2.06 —463 244
3 —-71.1 210 =395 246
4 —632 213 =352 249
5 —62.1 213 =349 249
6 —619 213 -348 249

outermost avoided crossing of the corresponding adiabatic
potential (marked by arrows in figure 3). From the study
presented in figure 3, we have found that values of gy, of 5
or 6 are sufficient to model the adiabatic potentials.
Asymptotically, the leading term of a given potential curve
depends on the detailed case. If the asymptotic Rydberg-atom
state pair of the potential has a strong resonant coupling to
another state pair via an accidental Forster resonance of multipole
order g < 4, at large distances R the interaction energy scales as



Table 2. The binding energy, Vi in MHz, and corresponding equilibrium internuclear distance, R.q in um, of the adiabatic potentials for Rydberg-atom macrodimers,
(nDy); (n =56 — 62,J =5/2,3/2)and M = 0, 1, 2, 3, 4. The second column shows the energy-defect cutoffs, 7, in GHz.

nD; (nDs/2)s (nD3/2)2
M= 0 1 2 3 4 0 1 2

n n Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req

56 37 —79.2 1.80 —79.3 1.81 —78.2 1.78 —69.4 1.79 —61.3 1.64 —46.4 1.83 —40.1 1.83 —19.8 1.86
57 35 —74.2 1.88 —74.3 1.89 -73.2 1.86 —64.9 1.87 —57.0 1.71 —43.3 1.91 —37.3 1.92 —18.2 1.94
58 34 —70.8 1.96 —70.9 1.97 —70.0 1.94 —62.0 1.95 —55.4 1.78 —41.3 1.99 —35.8 1.99 —-17.6  2.02
59 32 —658  2.05 —65.8 2.05 —64.8  2.03 =574  2.03 —50.3 1.86 —38.1 2.08 =327  2.08 —-156 212
60 30 —619 213 —619 214 —-60.9 2.11 =539 212 —47.0 1.95 =356 217 -30.5 2.17 —-144 221
61 29 =590 222 -59.0 223 —58.1 2.20 =514 221 —45.1 2.02 —34.0 226 -29.1 2.26 —-13.8 230
62 27 —548 231 —54.8 2.32 —-538 229 —47.5 2.30 —40.8  2.11 =312 236 —-26.6 236 -122 241

201sel (6102) 25 "sAud 1dO ol v :g shud

[e Jo ueH X
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Figure 4. Calculations (symbols) of (a) binding energy, Vs, and (b) corresponding bond length, R, of the adiabatic potential for cesium
(nDs /,), Rydberg macrodimers as a function of principal quantum number n. Solid lines show partial allometric fits, see text.

Table 3. The fitting parameters b from equation (6) for the binding energy, by,

and bond length, bg,_,.

‘min®

nD, (nDs/2)2 (nD3/2)2
M DViin bReq Dviin bReq

0 —341 £0.07 235+£001 —-3.6540.10 2.40 £ 0.02
1 —-342 £007 234 +001 —-3.77+0.13 238 £+ 0.03
2 —3.46 £0.09 237 +001 —4384+023 2.44 4+ 0.03
3 —3.50 £0.09 2.36 £ 0.01 — —

4 —3.69 £0.18 2.39 £+ 0.03 — —
average —3.50 £0.11 236 +0.02 —-393+0.39 241 +£0.03

1/R™", due to the R—scaling in equation (2). If there is no low-
order Forster resonance, at large distances the dipolar van der
Waals interaction usually dominates (scaling o< 1 /R6).

5. Dependence on principal quantum number

To determine the scaling behavior of the well depths and
bond lengths with principal quantum number n, we have
performed a series of calculations of the adiabatic potentials
for nD; Rydberg-atom pairs with n = 56 to 62, and J = 3/2
or 5/2. The basis truncation parameters were A = 2.1, ¢ < 4,
and J, |my| < 4.5, and maximal multipole order gy.x = 6.
Further, we have scaled the maximum energy defect ocrggp.
The scaled maximum energy defects, denoted 7 in table 2, are
consistent with the scaling of energy-level spacings between
Rydberg states. With the scaling of the maximum energy
defect, we keep the same types of pair states in all calcula-
tions. From the calculations, for each n we have extracted the
adiabatic potentials below the (nDy), asymptotes that exhibit
a binding potential well, which should give rise to Rydberg
macrodimer states. For most combinations (n, M, J) exactly
one such binding potential exists. For those, we determine the
binding energies, Vpnin, and corresponding bond lengths, Req.
These parameters are relevant to the preparation of Rydberg-
atom macrodimers in experiments.

In figure 4, we present Vy,;, and Req for nDs /»-atom pairs.
It is seen that the binding energy |Vy,| decreases and bond
length R., increases with increasing n. In the following, we
explain the results for M = 3 in detail. The results for all M
are then summarized in tables 2 and 3. We perform allo-
metric-function fits of the well depth,

(10)

where §; = 2.46 is the D-state quantum defect, a and b are the
fitting parameters, with b denoting the power scaling in n.g.
For M = 3, the fit parameters by, = —3.50 £ 0.09, for the
n-range of interest. The respective fit parameter for the bond
length Req, bg,, = 2.36 & 0.01. To compare the fit results for
the various cases, in table 2 we display the parameters Vi,
and R, and in table 3 we list the corresponding fit parameters
b for all combinations (n, M, J). Averaging over M, it is
by, (ave) = —3.50 and bg, (ave) = 2.36. Therefore, the
potential depth V,,;, scales faster than the Kepler frequency
(which scales as n_3), and the bond length faster than the
Rydberg-atom size (which scales as n).

To complete our study of cesium (nD;), Rydberg
molecules, we have performed calculations on (nD3/;),
molecules analogous to results discussed above for J = 5/2.
The data for J = 3/2 are shown in figure 5 and are included
in tables 2 and 3. The potential depths and bond lengths are
similar in the two cases of J. The bond length, R, exhibits
similar scaling in the two cases, see table 3. There is a notable
difference in the power scaling of V,,,;,; averaging over M it is

y=a(m — §)° = a(nem)’,



J. Phys. B: At. Mol. Opt. Phys. 52 (2019) 135102

-161 "D

3/2

(MHz)

min

V

(a)
56 57 58 59 60 61 62

Principal quantum number n

Figure 5. Calculations (symbols) of binding energy, Vi, (a) and corresponding bond length, R

Rydberg macrodimers. The figure is analogous to figure 4.

Table 4. Comparison of n-scalings of binding energies, by, , and
bond lengths, bg. for different types of molecules.

Scaling by.. br,, Ref
Cs (nDs/2)2 ~nby =350 +£0.11 2364002  this
work

~nt  —3.65+0.11 246+ 0.02
Cs (nD3 1), ~nboy =393 +£039 2414003  this
work

~n?  —411 £041 251 +0.03
Rb (181 /2)2 ~n" -3 8/3 [22]
Rb (nP3/2), ~n? -3 8/3 [22]
RbnS, on'Si ;s ~n” -3 2.5 [21]

Vinin X Negro >3, the scaling is faster than for J = 5/2. We
attribute this difference to the J-dependence of level repulsion
effects from nearby adiabatic potentials. In table 4, we list a
comparison of the n-scalings for different types of Rb Ryd-
berg molecules for Vy,;, and Rq. It is seen that for cesium
(nDy), Rydberg molecules V,,;, exhibits a stronger n-scaling
than for rubidium (nS,/2)2, (WP3s2)> [22] and nSn'S [21]
Rydberg molecules, while R4 scales slightly less strong.

In figure 6, we present bound states for the adiabatic
potential of the (56Ds /,), M = 3 molecules in the energy range
—70 to —60 MHz, marked with the a blue square in figure 6(a).
It is visualized that Rydberg-atom molecules have abundant
vibrational states with energy differences of about 1 MHz. The
lowest vibrational energy gap is 822 kHz. Due to the anhar-
monicity of the potential, the gap sizes decrease quickly with
increasing vibrational quantum number (see figure 6(b)).

6. Discussion and conclusion

The results presented in our work exhibit the role of the
maximum interaction order, gn.x, as well as the trends in the
potential well depths and bond lengths versus principal
quantum number n and angular-momentum M. To explore the

X Han et al
2.4
M=0
M=1
M=2
2.2
=
2
& 2.0

g (b)
56 57 58 59 60 61 62

Principal quantum number n

q» (b) and fits (solid lines) for (nDs /),

convergence of the results as a function of basis size further,
we have studied convergence for the case M = 3 in a series of
additional calculations. The results for the well depths and
bond lengths are summarized in table 5. For the case
(60Ds/, ), it is seen that the potential minima keeps shifting
up, as the basis size is increased. In the last round of basis size
increase, from 5388 to 11230 non-symmetrized states, the
minimum shifts up by 9.2 MHz. While this is only about half
of the change between basis sizes 2016 and 5388, one cannot
claim convergence. Convergence of binding energies and
bond lengths will likely require computations with even larger
basis sizes, which may be performed on a HPC platform.

In recent experimental work, we have prepared (nDy),
Rydberg—Rydberg macrodimers using a two-color double-
resonant photoassociation method [28]. There, the level dia-
gram and two-color excitation sketch displayed in figure 1(b)
was applied. The first color (laser pulse A) resonantly excites
Rydberg atom-A (seed atoms) from the ground state, and the
second color (laser pulse B) is detuned relative to pulse A by
an amount equal to the molecular binding energy. In this
sequence, we excite B-Rydberg-atoms close to the A-atoms at
a distance where a metastable Rydberg—Rydberg macrodimer
exists. The calculations of potential energy curves and, in
particular, of the excitation rates in the present work model
this experimental scenario and provide guidance for future
experiments.

In conclusion, we have numerically calculated the adia-
batic potentials of cesium nD; Rydberg-atom pairs generated
by electrostatic multipole interactions between Rydberg
atoms. We have used several basis sizes to obtain some
insight into the basis size dependence of the results, and tested
the dependence on the maximal multipole interaction order.
We have determined the scaling behavior of the potential
depth and bond length as a function of the effective principal
quantum number, 7., and discussed our findings. We have
found that it is important to include relatively far-detuned
dipole-coupled pair states in the basis sets for the shape of the
potential curves to converge. Achievement of overall conv-
ergence of the results as a function of basis size will require
future work. We also note that, apart from convergence
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Figure 6. (a) Adiabatic potentials for (56Ds/,), with M = 3. The truncation parameters are the same as in figure 2(a), and gpm,x = 6. The
meaning of the red and pink symbols is analogous to figure 2. (b) Calculation of the bound states in the range indicated by the blue square

in (a).

Table 5. Binding energies, Vi, in MHz, and corresponding equilibrium internuclear distances, Req in pm, of the adiabatic potentials of
Rydberg-atom macrodimers, (60Ds ,), and (62Ds ), for different basis sizes. The maximum interaction order is gmax = 6, and M = 3. The
first six columns specify the atomic state, the range of the single-atom effective quantum number explained in section 2, A, the angular-
momentum ranges, the cutoffs for the two-body energy defects, 1 in GHz, and the two-body basis sizes (before symmetrization).

State A lpax (U, Imymax W Basissize  Viin Reg
60Ds,, 2.1 4 4.5 30 2016 -539 2.12
3.1 5 5.5 5388 -36.5 2.27
4.1 6 6.5 11230 —-27.3 243
62Ds,, 2.1 4 4.5 25 1712 —35.8 233
27 2000 —47.5 2.29
30 2140 —48.5 2.29
issues, the exact shapes of the potential energy curves are  [4] Singer K, Stanojevic J, Weidemiiller M and C6té R 2005
strongly dependent on the quantum defects. While these are J. Phys. B 38 S295 _ ,
very well known, they vary strongly between different atomic [5] Vogt T, Viteau M, Zhao J, Chotia A, Comparat D and Pillet P
. d Rvdb A i1 the related K 2006 Phys. Rev. Lett. 97 083003
spemes an. y er'g-at.0m sta'tes. s seen 1n the related wor [6] Vogt T, Viteau M, Chotia A, Zhao J, Comparat D and Pillet P
cited (see introduction in section 1), there are other cases that 2007 Phys. Rev. Lett. 99 073002
produce potential energy curves with wells. Generally, every  [7] Yang J, He X, Guo R, Xu P, Wang K, Sheng C, Liu M,
choice of atom and quantum-number combination requires a ﬁ;n]gzlézlgfrwianko A and Zhan M 2016 Phys. Rev. Lett.
Iculation to determine the characteristics of that choice.
new calculation to determine the characteristics of that choice (8] Isenhower L. Urban E, Zhang X L. Gill A T, Henage T,
Johnson T A, Walker T G and Saffman M 2010 Phys. Rev.
Lett. 104 010503
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