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Abstract

Electrostatic multipole interactions generate long-range Rydberg–Rydberg macrodimers. We

calculate the adiabatic potentials of cesium ( )nDJ 2 Rydberg macrodimers for principal quantum

numbers n ranging from 56 to 62, for J=3/2 and 5/2, and for the allowed values of the

conserved sum of the atomic angular-momentum components along the internuclear axis, M. For

most combinations (n, M, J) exactly one binding potential exists, which should give rise to

Rydberg macrodimer states. We study the dependence of the adiabatic potentials on the size of

the two-body basis sets used in the calculation, and on the maximal order, qmax, of the multipole

terms included in the calculation. We determine the binding energies and lengths of the binding

adiabatic potentials, investigate their scaling behaviors as a function of the effective principal

quantum number, and discuss vibrational-state wave functions. We consider the applicability of

the calculated potentials and excitation rates to an experimental scheme for preparing ( )nDJ 2

Rydberg-atom macrodimers using two-color double-resonant photoassociation.
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1. Introduction

Rydberg atoms, highly excited states with large principal

quantum number n10, have been of interest in recent years

due to their exaggerated properties [1], for example large sizes

and electric-dipole transition matrix elements (∼n2), and strong

long-range van der Waals interactions (∼n11). The strong inter-

action between Rydberg atoms results in an excitation blockade

effect [2–6], which has led to a variety of interesting investiga-

tions and applications, including quantum logic gates [7, 8],

single-photon sources [9, 10], single-photon transistor [11] and

many-body systems and entanglement [12–14]. Including a

wider class of electric-multipole interactions in the analysis, one

finds adiabatic potentials with minima that may support bound

Rydberg–Rydberg molecules [15–28]. These molecules are

macrodimers, as their bond lengths scale approximately as n2.5

and exceed the LeRoy radius, ∼4n2 (in atomic units), and can

easily exceed 1μm. Rydberg macrodimers have been first pre-

dicted theoretically for Rb (nP)2 pair molecules [15]. Calculated

potential energy curves for Rb - +( ) ( )n P n P1 1 molecules

were compared with experiments [16]. Similar work was per-

formed on Rb -( )n DnS1 [19], Rb ( )nS 2 and Rb (nP)2
[21, 22], and Cs ( )D89 2 macrodimers [17, 18] bound by long-

range interaction. Rydberg macrodimers have been observed

experimentally in cold atomic gases with cesium [20, 26–28],

including +( )nD n D2 macrodimer [20], ¢nSn F and (nP)2
molecules for 22�n�32 [26], P S43 44 [27] molecules, and

( )D62 J 2 Rydberg-atom macrodimers [28]. Certain Rydberg

macrodimers are predicted to possess abundant vibrational states

and exotic adiabatic potentials, which can be used to study

vacuum fluctuations [29, 30], quench ultracold collisions [15],

and measure correlations in quantum gases [20, 31].
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The adiabatic potentials play an important role for the

preparation of Rydberg macrodimers. The Rydberg macro-

dimers are identified by the assignment of photoassociation

resonances to minima of the adiabatic potentials. In the pre-

sent work, we investigate the adiabatic potentials of cesium

Rydberg-atom pairs below the ( )nDJ 2 (n=56−62)
asymptotes, calculated considering the electrostatic multipole

interaction between Rydberg-atom pairs. We explore the

effect of the maximum interaction order on the potentials, for

several basis sizes. We find that avoided crossings between

adiabatic potentials affect the well shape, depending on the

maximum multipole order considered and angular momentum

quantum numbers. We discuss the bonding energies of ( )nDJ 2

Rydberg dimers and the corresponding equilibrium inter-

nuclear distances as a function of n. We also calculate exci-

tation rates for the case of a two-color excitation scheme used

in recent experiments [28] and bound vibrational states. It is

noted that the potential energy curves calculated in this work

are not corrected for non-adiabatic effects that arise from the

dependence of the electronic wavefunction on the internuclear

separation.

2. Multipole interaction Hamitonian

For calculating the interaction of a Rydberg-atom pair, we

consider two nDJ Rydberg atoms, denoted A and B, with an

interatomic separation R. To simplify the calculation, the

quantization axis and R are both chosen along the z-axis, see

figure 1(a). The relative positions of the Rydberg electrons are

rA and rB. The interatomic distance R is larger than the LeRoy

radius [32], RLR, i.e. the electronic wave functions do not

overlap, and is small enough that radiation retardation effects

[33] are not important. The Hamiltonian of the Rydberg-atom

pair is written as:

= + +ˆ ˆ ˆ ˆ ( )H H H V , 1A B int

where ˆ
( )HA B is the Hamiltonian of atom A(B), and V̂int denotes

the multipole interaction between the Rydberg-atom pair. V̂int
is taken as [17, 26, 28, 34]
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where LA(B) are the multipole orders of atoms A(B), and the

L< is the lesser of LA and LB. The sum over q=LA+LB
starts at 2, because the atoms are neutral and have no

monopole moment, and is truncated at a maximal order qmax.

The factor fABΩ depends on LA, LB and the counting index Ω

under the third sum. The ˆ
( )QA B are expressed as:
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where the single-atom operators r̂A and r̂B are the relative

positions of the Rydberg electrons in atoms A and B, the

operators ˆ
( )QA B include radial matrix elements, ˆ ( )

( )rA B
LA B , and

spherical harmonics that depend on the angular parts of the

Rydberg-electron positions, W (ˆ )( )( )
Y rL A BA B

. The radial wave-

functions of the atomic basis states ñ∣nℓJmJ required to cal-

culate the matrix elements of the ˆ
( )QA B are obtained using an

algorithm explained in [35] using model potentials from [36].

We diagonalize the Hamiltonian of the Rydberg-atom

pair on a dense grid of the internuclear separation, R. The R

range is 1.5–5.0 μm and the number of radial steps is 400. To

improve the quality of the plots of the potential curves at

small R, the radial steps are chosen equidistant in R−3.

Because of global azimuthal symmetry, the projection of the

sum of the electronic angular momenta, M=mJA+mJB, is

conserved. For the homonuclear diatomic system in this work,

the inversion symmetry is employed to define symmetrized

basis states [37], with p=+1 for even-parity states, Y ñ∣ g , and

p=−1 for odd-parity states, Y ñ∣ u , that are not coupled by V̂int.

In order to obtain the adiabatic potential curves of the Ryd-

berg-atom pair, the Hamiltonian matrix is separately diag-

onalized for even- and odd-parity states using various basis

sizes (section 3) and values for the maximal multipole order,

qmax (section 4), for a range of principal quantum numbers

(section 5).

Other than in perturbative methods (see, for instance,

[4]), in the present work the adiabatic potentials are obtained

by exact diagonalization of the Rydberg-pair Hamiltonian,

Figure 1. (a) Two-atom system. Rydberg atoms A and B, separated
by R>RLR, are placed on the z-axis, rA and rB are the relative
positions of the Rydberg electrons in atoms A and B. (b) Level
diagram and sketch of a vibrational wave-function for two-color
double-resonant excitation of Rydberg-atom macrodimers. The pulse
A resonantly excites seed Rydberg atoms (atom A). The frequency of
pulse B is detuned relative to that of pulse A by an amount equal to
the molecular binding energy.
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equations (1)–(5) using large two-body basis sets and

including binary interaction terms up to qmax=6. The adia-

batic potentials, obtained by plotting the adiabatic energy

values versus R, include perturbations due to Vint up to

arbitrary order. In the case of accidental resonances (Förster

resonances) between Rydberg pair states, Vint causes

first-order contributions in the adiabatic potentials that

asymptotically connect with the Förster-resonant pair states.

The first-order shifts scale as 1/R q+1. For sufficiently non-

degenerate Rydberg pair states, the leading coupling typically

is a van-der-Waals interaction, i.e. a second-order interaction

in Vint that scales as + ¢+R1 q q 2. The direct-diagonalization

approach further accounts for Vint-induced state mixing

between pair states up to arbitrary order (within the utilized

basis set). We also include the modifications of low-angular-

momentum states, described by quantum defects, as well as

fine structure. Due to these features, the direct-diagonalization

approach is considerably more powerful than perturbative

models of Rydberg pair interactions [4] in identifying adia-

batic potentials with wells that lead to bound vibrational

molecular states.

Numerical calculations of potential curves require a sui-

table basis set, which, together with qmax, determines

the number of (non-zero) interaction matrix elements used.

The single-atom basis states are denoted ñ∣nℓJmJ , and the

corresponding Rydberg-atom pair basis states are denoted

ñ∣n ℓ J mA A A JA  ⊗ ñ∣n ℓ J mB B B JB , with Rydberg atoms A and B. For

the quantum defects of the atomic energies and the fine

structure coupling constants [1, 38–40] in ĤA and ĤB we use

published values. For high-n (n=56–62 here), the atomic

hyperfine coupling and the molecular rotation energy are

orders of magnitude smaller than the molecular interaction

energy V̂ ;int they are therefore neglected. For the single-atom

basis states, the range of effective principal quantum numbers

is chosen as - D < < + D +( ) ( )n n nint int 1eff0 eff eff0 ,

where neff0 is the effective quantum number of the Rydberg

state of interest, ( )nint eff0 denotes the integer part of neff0, and

Δ is a parameter for the principal quantum number range.

Further, the single-atom orbital angular momentum space is

restricted to ℓ ℓmax and m mJ Jmax, for both atoms A and

B. The energies of the two-body molecular states are mea-

sured relative to a state of interest, which in our case is of the

type ¢nD nDJ J , with ¢ =J J, 3 2 or 5/2. The two-body basis is
then further truncated to two-body states with energy defects

less than an upper limit of 27–37 GHz from the molecular

state of interest, depending on n.

To estimate photo-association rates, we assume the atom

sample is seeded with Rydberg atoms in state nDJ. We then

calculate the photo-association rate for a second atom out of

the state P6 3 2 using Fermi’s Golden Rule. The second atom
is located at internuclear distance R. The result is averaged

over all angles, θ, of the internuclear axis relative to the frame

defined by the excitation laser beam, and over all allowed

values of the magnetic quantum numbers of the two atoms.

The calculation of excitation rates, which is presented in

SI units, proceeds as follows. A symmetrized molecular state

after diagonalization is

åy l l

l l
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where λA stands for n ℓ J, ,A A A etc, and l lc mA JA B
denotes the (R-

dependent) properly normalized wavefunction coefficients of

the two-body basis states. The quantum numbers mJA and mJB

are magnetic quantum numbers in the molecular frame of

reference, where = -m M mJB JA. The excitation matrix ele-

ment then is

y q q l w w= á Ä Ä W ñ∣ ˆ ( ) ˆ ( )∣ˆ ˆ ∣ ( )
( )

V D D gI 7
J

e Je Jgmol
e

with the (single-atom) seed Rydberg state l w ñ =∣ e Je

w ñ∣nD ,J Je and launch state w wñ = ñ∣ ∣g P6 ,Jg Jg3 2 . The quantum

numbers ωJe and ωJg are magnetic quantum numbers in the

frame defined by the excitation laser beams. The rotation

operator ˆ ( )
D

Je rotates the seed Rydberg atom from the laser

frame into the molecular frame of reference. The operator

= Å Åˆ ˆ ˆ ˆ( ) ( ) ( )
D D D D

1 2 3 2 5 2
rotates the optically excited

Rydberg state wW ñˆ ∣ P6 , Jg3 2 from the laser into the molecular

frame.

The laser excitation is described by


e

W =ˆ ˆ · ˆ
( )

eE r

2
, 8

0

where E0 is the laser electric field amplitude and ˆer the

electric dipole operator, and ê a spherical laser polarization

unit vector. The molecular excitation rate, ξ, is then given by


x

p
r=
w w q

∣ ∣ ( )V
2

, 92

, ,Je Jg

where *á ñw w q, ,Je Jg
denotes the average over the magnetic

quantum numbers ωJe, ωJg, and the angle θ. Further, ρ is the

effective density of states. For a Gaussian laser frequency

spectrum with full width at half maximum (FWHM) of δν, it

is r =
p dnh

2.35

2
. The values of ξ describe the excitation rates,

in s−1, of the two-body state l w w ñ∣ ge Je Jg into Rydberg

molecular states, y ñ∣ mol , averaged over the allowed values of

ωJe and ωJg, and the angle θ (with angular weighting ∝ sin

(θ)). The rates ξ depend on R and are different for different

adiabatic potentials.

3. Basis size

We calculate adiabatic potentials of D60 5 2-atom pairs with
two different basis sizes for M=0, qmax=6 and energy

defect 30GHz. One case is 54.9<neff<60.1 (Δ=2.1),
and ℓmax=4, and ∣ ∣J m, 4.5J , which results in a number of

3148 two-body basis states (=2×1574 symmetrized two-

body states), see figure 2(a). The other case is for 53.9<
neff<61.1 (Δ=3.1), and ℓmax=5, and ∣ ∣J m, 5.5J ,

corresponding to a number of 7416 two-body basis states

(=2×3708 symmetrized two-body states). The calculated

potential curves are shown in figure 2(b). For larger

3
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∣ ∣M -values, considered further below, the number of two-body

states drops.

Both in figures 2(a) and (b), most potential curves with

small excitation rates do not exhibit minima that could give

rise to bound macrodimer states, except one binding potential.

In the range R2.1 μm, in figure 2(b), there are more

potential curves, with some crossings, than in figure 2(a).

However, these are not expected to produce observable

effects, as there are no prominent wells associated with any of

these steep, short-range potentials. In the range R2.1 μm,

the differences between the small- and large-basis calcula-

tions are more subtle. Both cases have one potential curve

with a wide minimum conducive to bound molecular states.

Close inspection of figure 2(a) shows that the potential well

with large oscillator strength exhibits a binding energy of

Vmin=61.9MHz, at a bond length of Req=2.13 μm.

Increasing the basis size leads to some changes in these para-

meters. In figure 2(b), we find a binding energy that is 29% less

than in figure 2(a), equivalent to a decrease of about 18.2MHz,

and a bond length that is 7% larger, corresponding to an increase

of about 170nm. These changes are attributed to level repulsion

from additional levels in figure 2(b), which push the potential

minimum up and out by some amount. The changes are large

enough to become observable in an experiment.

In a third case, we have considered ( )D62 5 2 2 molecules

with M=2, for basis truncation parameters up to 54.9

n 64.9eff , and ℓmax=7, and J, ∣ ∣m 7.5J , with a max-

imum two-body energy defect 30GHz (basis size up to

2×4857 symmetrized two-body states). We have seen that

the potential minima with large oscillator strengths shift by

amounts up to about 10MHz, and that the increase in

∣ ∣mJ -range has the largest effect.

In the present work, we cannot make a definite statement

about whether convergence has been reached in figure 2(b),

because at this time it is not practical for us to increase the

two-body basis size far beyond about 10 000 with the codes

(Fortran 77 and LAPACK) and work stations used. Addi-

tional work on convergence could possibly be performed at

lower principal quantum numbers, where basis sizes are

generally smaller, or by implementing the calculations on a

high-performance computing platform. Despite the fact that

the numerical calculations have not converged yet, they are

suitable to demonstrate important features, such as the role of

the maximum interaction order, qmax, and trends of the

potential well depths, Vmin, and bond lengths, Req, versus

principal quantum number n and angular-momentum M. In

the following sections, we use the same quantum-number

range as in figure 2(a), unless noted otherwise.

4. Dependence on multipole order

In equation (2), the electrostatic multipole interactions in V̂int
scale as 1/Rq+1

(outer sum in equation (2)). The multipole

series proceeds through dipole–dipole (dd), dipole–quadrupole/
quadrupole–dipole (dq/qd), dipole-octupole/octupole–dipole
(do/od), quadrupole–quadrupole (qq), dipole–hexadecupole/
hexadecupole–dipole (dh/hd) interactions, and so on, where the

first (second) letter stands for atom A(B). In our notation, the

interaction series is terminated at the maximum order, qmax. For

example, for qmax=2 only the dd interaction is included. The

case qmax=3 includes dd, dq and qd interactions, qmax=4
includes dd, do, od, dh, qq, and hd interactions, and so on. Since

our calculation is based on numerical diagonalization of the

Hamiltonian in equation (1), it includes the multipole interac-

tions up to order qmax in a non-perturbative fashion, in all orders

perturbation theory. For instance, for qmax=2 the second-order

dd interaction, i.e. the usual van der Waals interaction, is

automatically included.

Figure 2. Calculations of adiabatic potential curves for cesium Rydberg-atom pairs, ( )D60 5 2 2, with M=0 (black lines), qmax=6 and

energy defect 30GHz for a smaller (a) and a larger two-body basis size (b), with detailed truncation conditions explained in the text. Isotropic
averages of laser excitation rates from the launch state D P60 65 2 3 2, ξ, explained in the text, are proportional to the areas of the overlaid

circles (red for symmetric, p=+1, and pink for anti-symmetric states, p=−1). The largest circle areas correspond to a rate of about
5×104 s−1 for a laser electric field of 104Vm−1.
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To show how the value of qmax modifies the adiabatic

potentials, in figure 3 we present the calculated adiabatic

potential curves for the same quantum-number range as in

figure 2(a), with qmax=2, 3, 4 and 6. Significant effects of

interaction orders higher than dd can be seen near the

potential minima. In figure 3(a), it is qmax=2, i.e. only dd-

interactions are included, and the depth of the potential well

that asymptotically approaches W=0 is 100.9 MHz. As dq-

and qd-interactions are added (figure 3(b)) the well depth

decreases by 29.8MHz. We also note that a second, inner

well at −210MHz and 1.8 μm, which is present at qmax=2,
disappears upon inclusion of the q=3 terms. These terms

substantially increase the couplings of an apparent three-level

avoided crossing near 2 μm. As a result, the inner well at

−210MHz is pushed down and disappears, and the outer well

at −100.9 MHz is pushed up and reduced in depth. Including

qq-, do- and od-interactions (figure 3(c)) reduces the depth of

that well by an additional 7.9 MHz. The depths remains

almost unchanged when qmax is increased further to 5 and 6.

Between qmax=4 and 6 there are no significant changes in

the shapes of the potential energy curves. To compare the

effects of the interaction orders, qmax, in table 1 we display the

values Vmin and Req for the potential well that asymptotically

approaches W=0, as well as Vcross and Rcross for the

outermost avoided crossing of the corresponding adiabatic

potential (marked by arrows in figure 3). From the study

presented in figure 3, we have found that values of qmax of 5

or 6 are sufficient to model the adiabatic potentials.

Asymptotically, the leading term of a given potential curve

depends on the detailed case. If the asymptotic Rydberg-atom

state pair of the potential has a strong resonant coupling to

another state pair via an accidental Förster resonance of multipole

order q�4, at large distances R the interaction energy scales as

Figure 3. Adiabatic potential curves of D60 5 2 Rydberg-atom pairs with M=0, the same quantum-number range as in figure 2(a), energy

defect 30GHz, and qmax=2(a), 3(b), 4(c) and 6(d). The higher-order terms push the potential well up and farther out. As qmax is increased
from 2(a) to 6(d), the depth of the potential well diminishes by 39.0 MHz, and corresponding bond length increases by 0.07 μm. Further
details are provided in table 1. The meaning of the red and pink symbols is analogous to figure 2. The arrows mark the positions of Vcross and
Rcross for the outermost avoided crossing of the potential well.

Table 1. Binding energies, Vmin in MHz, and corresponding
equilibrium internuclear distances, Req in μm, versus qmax for
Rydberg-atom pairs ( )D60 5 2 2 with M=0. We also show the

energies and positions of the outermost avoided crossing, marked
with arrows, Vcross in MHz and Rcross in μm, respectively. Data are
extracted from figure 3.

qmax Vmin Req Vcross Rcross

2 −100.9 2.06 −46.3 2.44

3 −71.1 2.10 −39.5 2.46

4 −63.2 2.13 −35.2 2.49

5 −62.1 2.13 −34.9 2.49

6 −61.9 2.13 −34.8 2.49

5
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Table 2. The binding energy, Vmin in MHz, and corresponding equilibrium internuclear distance, Req in μm, of the adiabatic potentials for Rydberg-atom macrodimers,

( )nDJ 2 (n=56−62, J=5/2, 3/2) and M=0, 1, 2, 3, 4. The second column shows the energy-defect cutoffs, η, inGHz.

nDJ ( )nD5 2 2 ( )nD3 2 2

M= 0 1 2 3 4 0 1 2

n η Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req Vmin Req

56 37 −79.2 1.80 −79.3 1.81 −78.2 1.78 −69.4 1.79 −61.3 1.64 −46.4 1.83 −40.1 1.83 −19.8 1.86

57 35 −74.2 1.88 −74.3 1.89 −73.2 1.86 −64.9 1.87 −57.0 1.71 −43.3 1.91 −37.3 1.92 −18.2 1.94

58 34 −70.8 1.96 −70.9 1.97 −70.0 1.94 −62.0 1.95 −55.4 1.78 −41.3 1.99 −35.8 1.99 −17.6 2.02

59 32 −65.8 2.05 −65.8 2.05 −64.8 2.03 −57.4 2.03 −50.3 1.86 −38.1 2.08 −32.7 2.08 −15.6 2.12

60 30 −61.9 2.13 −61.9 2.14 −60.9 2.11 −53.9 2.12 −47.0 1.95 −35.6 2.17 −30.5 2.17 −14.4 2.21

61 29 −59.0 2.22 −59.0 2.23 −58.1 2.20 −51.4 2.21 −45.1 2.02 −34.0 2.26 −29.1 2.26 −13.8 2.30

62 27 −54.8 2.31 −54.8 2.32 −53.8 2.29 −47.5 2.30 −40.8 2.11 −31.2 2.36 −26.6 2.36 −12.2 2.41
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1/Rq+1, due to the -R scaling in equation (2). If there is no low-

order Förster resonance, at large distances the dipolar van der

Waals interaction usually dominates (scaling ∝ 1/R6).

5. Dependence on principal quantum number

To determine the scaling behavior of the well depths and

bond lengths with principal quantum number n, we have

performed a series of calculations of the adiabatic potentials

for nDJ Rydberg-atom pairs with n=56 to 62, and J=3/2
or 5/2. The basis truncation parameters were Δ=2.1, ℓ 4,

and ∣ ∣J m, 4.5J , and maximal multipole order qmax=6.

Further, we have scaled the maximum energy defect µ -neff0
3 .

The scaled maximum energy defects, denoted η in table 2, are

consistent with the scaling of energy-level spacings between

Rydberg states. With the scaling of the maximum energy

defect, we keep the same types of pair states in all calcula-

tions. From the calculations, for each n we have extracted the

adiabatic potentials below the ( )nDJ 2 asymptotes that exhibit

a binding potential well, which should give rise to Rydberg

macrodimer states. For most combinations (n, M, J) exactly

one such binding potential exists. For those, we determine the

binding energies, Vmin, and corresponding bond lengths, Req.

These parameters are relevant to the preparation of Rydberg-

atom macrodimers in experiments.

In figure 4, we present Vmin and Req for nD5 2-atom pairs.
It is seen that the binding energy ∣ ∣Vmin decreases and bond

length Req increases with increasing n. In the following, we

explain the results for M=3 in detail. The results for all M

are then summarized in tables 2 and 3. We perform allo-

metric-function fits of the well depth,

d= - =( ) ( ) ( )y a n a n , 10l
b b

eff0

where δl=2.46 is the D-state quantum defect, a and b are the

fitting parameters, with b denoting the power scaling in neff0.

For M=3, the fit parameters = - b 3.50 0.09Vmin
, for the

n-range of interest. The respective fit parameter for the bond

length Req, = b 2.36 0.01Req
. To compare the fit results for

the various cases, in table 2 we display the parameters Vmin

and Req, and in table 3 we list the corresponding fit parameters

b for all combinations (n, M, J). Averaging over M, it is

= -( )b ave 3.50Vmin
and =( )b ave 2.36Req

. Therefore, the

potential depth Vmin scales faster than the Kepler frequency

(which scales as n−3
), and the bond length faster than the

Rydberg-atom size (which scales as n2).

To complete our study of cesium ( )nDJ 2 Rydberg

molecules, we have performed calculations on ( )nD3 2 2

molecules analogous to results discussed above for J=5/2.
The data for J=3/2 are shown in figure 5 and are included

in tables 2 and 3. The potential depths and bond lengths are

similar in the two cases of J. The bond length, Req, exhibits

similar scaling in the two cases, see table 3. There is a notable

difference in the power scaling of Vmin; averaging over M it is

Figure 4. Calculations (symbols) of (a) binding energy, Vmin, and (b) corresponding bond length, Req, of the adiabatic potential for cesium
( )nD5 2 2 Rydberg macrodimers as a function of principal quantum number n. Solid lines show partial allometric fits, see text.

Table 3. The fitting parameters b from equation (6) for the binding energy, bVmin
, and bond length, bReq.

nDJ
( )nD5 2 2 ( )nD3 2 2

M bVmin
bReq bVmin

bReq

0 −3.41±0.07 2.35±0.01 −3.65±0.10 2.40±0.02
1 −3.42±0.07 2.34±0.01 −3.77±0.13 2.38±0.03
2 −3.46±0.09 2.37±0.01 −4.38±0.23 2.44±0.03
3 −3.50±0.09 2.36±0.01 — —

4 −3.69±0.18 2.39±0.03 — —

average −3.50±0.11 2.36±0.02 −3.93±0.39 2.41±0.03
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Vmin∝ -neff0
3.93, the scaling is faster than for J=5/2. We

attribute this difference to the J-dependence of level repulsion

effects from nearby adiabatic potentials. In table 4, we list a

comparison of the n-scalings for different types of Rb Ryd-

berg molecules for Vmin and Req. It is seen that for cesium

( )nDJ 2 Rydberg molecules Vmin exhibits a stronger n-scaling

than for rubidium ( )nS1 2 2, ( )nP3 2 2 [22] and ¢nSn S [21]
Rydberg molecules, while Req scales slightly less strong.

In figure 6, we present bound states for the adiabatic

potential of the ( )D56 5 2 2 M=3 molecules in the energy range
−70 to −60MHz, marked with the a blue square in figure 6(a).

It is visualized that Rydberg-atom molecules have abundant

vibrational states with energy differences of about 1MHz. The

lowest vibrational energy gap is 822kHz. Due to the anhar-

monicity of the potential, the gap sizes decrease quickly with

increasing vibrational quantum number (see figure 6(b)).

6. Discussion and conclusion

The results presented in our work exhibit the role of the

maximum interaction order, qmax, as well as the trends in the

potential well depths and bond lengths versus principal

quantum number n and angular-momentum M. To explore the

convergence of the results as a function of basis size further,

we have studied convergence for the caseM=3 in a series of
additional calculations. The results for the well depths and

bond lengths are summarized in table 5. For the case

( )D60 5 2 2 it is seen that the potential minima keeps shifting
up, as the basis size is increased. In the last round of basis size

increase, from 5388 to 11 230 non-symmetrized states, the

minimum shifts up by 9.2 MHz. While this is only about half

of the change between basis sizes 2016 and 5388, one cannot

claim convergence. Convergence of binding energies and

bond lengths will likely require computations with even larger

basis sizes, which may be performed on a HPC platform.

In recent experimental work, we have prepared ( )nDJ 2

Rydberg–Rydberg macrodimers using a two-color double-

resonant photoassociation method [28]. There, the level dia-

gram and two-color excitation sketch displayed in figure 1(b)

was applied. The first color (laser pulse A) resonantly excites

Rydberg atom-A (seed atoms) from the ground state, and the

second color (laser pulse B) is detuned relative to pulse A by

an amount equal to the molecular binding energy. In this

sequence, we excite B-Rydberg-atoms close to the A-atoms at

a distance where a metastable Rydberg–Rydberg macrodimer

exists. The calculations of potential energy curves and, in

particular, of the excitation rates in the present work model

this experimental scenario and provide guidance for future

experiments.

In conclusion, we have numerically calculated the adia-

batic potentials of cesium nDJ Rydberg-atom pairs generated

by electrostatic multipole interactions between Rydberg

atoms. We have used several basis sizes to obtain some

insight into the basis size dependence of the results, and tested

the dependence on the maximal multipole interaction order.

We have determined the scaling behavior of the potential

depth and bond length as a function of the effective principal

quantum number, neff0, and discussed our findings. We have

found that it is important to include relatively far-detuned

dipole-coupled pair states in the basis sets for the shape of the

potential curves to converge. Achievement of overall conv-

ergence of the results as a function of basis size will require

future work. We also note that, apart from convergence

Figure 5. Calculations (symbols) of binding energy, Vmin, (a) and corresponding bond length, Req, (b) and fits (solid lines) for ( )nD3 2 2

Rydberg macrodimers. The figure is analogous to figure 4.

Table 4. Comparison of n-scalings of binding energies, bVmin
, and

bond lengths, bRe for different types of molecules.

Scaling bVmin
bReq Ref

( )nDCs 5 2 2 ~n beff0 −3.50±0.11 2.36±0.02 this

work

∼n b
−3.65±0.11 2.46±0.02

( )nDCs 3 2 2 ~n beff0 −3.93±0.39 2.41±0.03 this

work

∼n
b

−4.11±0.41 2.51±0.03

( )nSRb 1 2 2 ∼n b
−3 8/3 [22]

( )nPRb 3 2 2 ∼n b
−3 8/3 [22]

¢nS n SRb 1 2 1 2 ∼n b
−3 2.5 [21]
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issues, the exact shapes of the potential energy curves are

strongly dependent on the quantum defects. While these are

very well known, they vary strongly between different atomic

species and Rydberg-atom states. As seen in the related work

cited (see introduction in section 1), there are other cases that

produce potential energy curves with wells. Generally, every

choice of atom and quantum-number combination requires a

new calculation to determine the characteristics of that choice.
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