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Abstract Clear-sky contamination is a challenging and long-lasting problem for cloud optical thickness
(r) and effective droplet radius (r) retrievals using passive satellite sensors. This study explores the
feasibility of improving both = and r retrievals for partly cloudy (PCL) pixels by using available subpixel
samples in a visible to near-infrared band, which many satellite sensors offer. Data are provided by
high-resolution reflectance (R) observations and cloud property retrievals by the Advanced Spaceborne
Thermal Emission and Reflection Radiometer (ASTER) at horizontal resolutions between 30-960m. For partly
cloudy 960-m observations, the clear-sky component of the pixels induces significant underestimations of
up to 58% for 7, while overestimations in r can exceed 41%. This yields underestimations in the derived
liquid water path and cloud droplet number concentration of up to 68% and 72%, respectively. By means
of three different assumptions it is shown that subpixel R observations in the visible to near-infrared band
can be used to estimate higher-resolution R for the second band in the retrieval scheme, as well as the
subpixel cloud cover. The estimated values compare well to actually observed ASTER results and are used
to retrieve cloud properties, which are unbiased by the clear-sky component of PCL pixels. While the
presented retrieval approach is only evaluated for marine boundary layer clouds, it is computationally
efficient and can be easily applied to observations from different imagers. As an example, the PCL retrieval
scheme is applied to data by the Moderate Resolution Imaging Spectroradiometer, where similar biases for
PCL pixels are observed.

Plain Language Summary Clear-sky contamination is a challenging and long-lasting problem
for cloud optical thickness and effective droplet radius retrievals using passive satellite sensors. This study
explores the feasibility of improving both retrievals for partly cloudy (PCL) pixels by using available subpixel
samples in a visible to near-infrared band, which many satellite sensors offer. For partly cloudy 960-m
observations, the clear-sky component of the pixels induces significant underestimations of up to —58%
for the cloud optical thickness, while overestimations in the effective droplet radius can exceed 41%. This
yields underestimations in the derived liquid water path and cloud droplet number concentration of up to
68% and 72%, respectively. It is shown that subpixel reflectance observations in the visible to near-infrared
band can be used to retrieve cloud properties, which are unbiased by the clear-sky component of the PCL
pixels. While the presented retrieval approach is only evaluated for marine boundary layer clouds, it is
computationally efficient and can be easily applied to observations from different imagers. As an example,
the PCL retrieval scheme is applied to data by the Moderate Resolution Imaging Spectroradiometer, where
similar biases for PCL pixels are observed.

1. Introduction

Marine boundary layer (MBL) clouds cover a majority of the Earth’s surface (King et al., 2013; Wood, 2012). They
are characterized by an overall negative net radiative forcing (solar plus terrestrial), which implies a cooling
effect (Albrecht, 1989; Klein & Hartmann, 1993; Warren et al., 1988). Since these low-level clouds are situated in
the boundary layer, their optical and microphysical properties, as well as the solar radiation reflected by these
cloud layers, are particularly sensitive to aerosol particle properties such as the particle number concentration
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or particle size. Thus, MBL clouds are regularly the focus of aerosol-cloud-interaction studies, including the
first (Ackerman et al., 2000; Twomey, 1977; Werner et al., 2014) and second indirect aerosol effects (Albrecht,
1989; Seifert et al., 2015). Moreover, shallow cumulus convection plays an essential role in the transport of
moisture, momentum, and heat into the free troposphere (Tiedtke, 1989). Global cloud property observations,
such as 7, r, liquid water path (LWP) and cloud droplet number concentration (N), from satellite sensors are
indispensable to quantify the role of MBL clouds in the climate system and improve their representation in
climate models.

Currently, the most widely used satellite-based remote sensing product of cloud properties is provided by
the Moderate Resolution Imaging Spectroradiometer (MODIS) imager aboard the National Aeronautics and
Space Administration’s Terra and Aqua satellites. The MODIS retrieval algorithm uses R from a nonabsorbing
(in the visible to near-infrared, VNIR) and absorbing (in the shortwave-infrared, SWIR) spectral band to retrieve
7 and r via the bispectral solar reflective method (Nakajima & King, 1990; Nakajima et al., 1991; Twomey &
Seton, 1980). While the respective MODIS R are observed at 250 and 500 m, these observations are aggre-
gated and the cloud products are subsequently derived at a horizontal resolution of 1,000 m. Macrophysical
properties of MBL clouds depend on the meteorological regime. Trade wind cumuli, which are ubiquitous
over the tropical and subtropical oceans (Siebert et al., 2013), typically exhibit horizontal scales < 1,000 m
(Norris, 1999; Zhao & Di Girolamo, 2007). Meanwhile, stratocumulus layers, despite their often homogeneous
appearances, are composed of small cellular convective eddies driven by longwave cooling and precipitation
(Feingold et al., 2010; Wood & Hartmann, 2006). In addition, pockets of open cells are often observed within
otherwise overcast cloud decks (Stevens et al., 2005; Wood et al., 2008). As a result, MODIS observations (or
those from similar satellite imagers) over broken cumuli and the edges of cumulus and stratocumulus fields
inevitably sample partially cloudy (PCL) pixels, which are notoriously challenging for cloud remote sensing.
While the operational MODIS collection 6 (C6) product attempts retrievals on the PCL population, the results
are reported in a separate data set, because of their lower expected quality. Apart from a bias in retrieved =
and r, which subsequently impacts the estimates of aerosol indirect effects, the cloud property retrieval is
known to fail regularly. A study of global retrieval failure rates for marine liquid phase clouds by Cho et al.
(2015), using MODIS C6 cloud products for the year 2007, concluded that about 33.81% of retrievals fail (for
SWIR observations centered around a wavelength 4 = 2.1 pm). This is due to the fact that the sampled SWIR
reflectances fall outside the precomputed lookup tables (LUTs) and the sensitivity toward r is lost. How-
ever, that study also reported that PCL pixels account for about 30% of the studied population. Thus, simply
omitting PCL pixels (and thus sub-1,000-m clouds) from the observational data set may lead to a significant
sampling bias.

Approaches to retrieve MBL cloud properties for PCL pixels have been discussed by Arking and Childs (1985)
and Coakley et al. (2005). The proposed methods determine the cloud properties of the cloudy part of PCL
pixels by means of an iterative retrieval scheme, where the average clear-sky R and brightness tempera-
tures of the closest overcast and clear pixels are used to estimate the subpixel cloud fraction. Studies using
this retrieval scheme are very successful in demonstrating the impacts of surface contamination on satellite
retrievals of PCL pixels (Boeke et al., 2016; Coakley et al., 2005; Han et al., 1994; Hayes et al., 2010). However,
they share several important limitations: (i) The retrieval assumes a single cloud layer in the subregion in order
to derive average cloud top altitudes and associated brightness temperatures for each cloudy cluster. This
may induce significant uncertainties in the estimated subpixel cloud fractions. (ii) The approach makes no use
of sampled information at the subpixel scale (e.g., R observations at 250 and 500 m for MODIS). (iii) The itera-
tive estimation of subpixel cloud cover and retrieval of = and r4 is computationally expensive, which makes
an application for a large number of scenes, or a potential semioperational implementation, impractical. (iv)
Most importantly, no ground truth observations are provided to validate and evaluate the results.

This study uses Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) cloud
reflectances, cloud mask information and cloud property retrievals at horizontal scales between 30 and 960 m
to (i) quantify the biases in retrieved cloud products for PCL pixels and (ii) facilitate a retrieval for PCL pixels by
using observed subpixel reflectances in a VNIR band, which mitigates the impacts of clear-sky contamination.
The analysis benefits from the availability of reference retrievals that yield the cloud properties from the over-
cast part of each PCL pixel. The data set explored in this study consists of 48 MBL cloud scenes, which have
been thoroughly characterized and colocated with the operational MODIS C6 cloud products (Werner et al.,
2016). This manuscript is structured as follows: an overview of the ASTER data set, the retrieval algorithm, and
the cloud masking scheme is given in section 2. A statistical analysis of the frequency of PCL observations,
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Table 1

Case Number (C1-C48) and Sample Date of the 48 MBL Scenes, Which Were Sampled Over the Pacific Ocean Off

the Coast of California

# Date # Date # Date

1 03/02/2006/ 19:14:44 21 06/25/2004/ 19:10:45 41 10/06/2003/ 19:04:27

2 03/06/2005/ 19:20:37 22 07/04/2007/ 19:09:35 42 10/21/2006/ 19:09:31

3 03/06/2005/ 19:20:46 23 07/04/2007/ 19:10:19 43 10/25/2005/ 19:14:44

4 03/06/2005/ 19:20:55 24 07/04/2007/ 19:10:46 44 10/25/2006/ 18:45:26

5 03/06/2005/ 19:21:04 25 07/11/2007/ 19:16:06 45 10/25/2006/ 18:45:35

6 03/06/2005/ 19:21:13 26 07/20/2007/ 19:10:07 46 10/30/2006/ 19:03:35

7 03/08/2005/ 19:08:35 27 07/20/2007/19:10:16 47 12/03/2005/ 19:20:56

8 03/08/2005/ 19:08:44 28 07/20/2007/ 19:10:25 48 12/16/2004/ 19:20:41

9 03/08/2005/ 19:08:53 29 08/18/2006/ 19:09:01

10 04/19/2006/ 19:14:55 30 08/18/2006/ 19:09:18

11 04/19/2006/ 19:15:13 31 08/26/2003/ 19:09:37

12 04/19/2006/ 19:15:22 32 08/26/2003/ 19:09:55

13 04/19/2006/ 19:15:31 33 08/26/2003/ 19:10:12

14 05/13/2003/ 19:15:46 34 08/29/2006/ 18:52:02

15 05/30/2006/ 19:08:57 35 08/29/2006/ 18:52:11

16 06/02/2007/ 19:09:29 36 09/02/2003/ 19:15:12

17 06/02/2007/ 19:09:47 37 09/07/2005/ 19:14:31

18 06/03/2005/ 19:14:42 38 09/07/2005/ 19:14:49

19 06/10/2005/ 19:20:47 39 09/10/2006/ 19:15:21

20 06/10/2005/ 19:21:04 40 09/11/2004/ 19:21:08

Note.The date format is MM/DD/YYYY Hour:Minute:Second.
the observed retrieval bias for 7 and r, and the dependence on subpixel horizontal resolution is given in
section 3. Approaches to estimate the subpixel cloud cover and reflectance distribution of the absorbing band
for the bispectral solar reflective method are presented in sections 4.1 and 4.2, respectively. These estimates
facilitate the proposed retrieval scheme for PCL pixels, which is evaluated in section 4.3. Since LWP and N can
be derived from the retrieved r and r¢, the performance of the new retrieval approach is compared to the
standard retrieval for PCL pixels in section 5. The results are validated by means of a much larger ASTER data
set in section 6, which consists of rather complex broken cumulus scenes. To test the application of the pro-
posed PCL retrieval for the MODIS imager, the retrieval scheme is applied to MODIS data in section 7. Finally,
a summary and conclusions are given in section 8.
2. ASTER Data
Datain this study are provided by high-resolution ASTER observations over 48 marine altocumulus and broken
cumulus scenes, which were sampled over the Pacific Ocean off the Coast of California (covering the area
32.051-44.427°N and 125.924-117.038°W) between May 2003 and September 2007. These granules, which
are listed in Table 1, were manually selected and are characterized by sufficient scene cloud covers and cloud
sizes, a large number of colocated ASTER and MODIS pixels with successful cloud property retrievals, and the
absence of overlying cirrus, multiple cloud layers, and ice phase. These cloud fields cover most of the = and
I solution space, as well as varying solar zenith angles and scene cloud covers (C).
The ASTER imaging spectroradiometer aboard the National Aeronautics and Space Administration’s Terra
satellite samples &~ 650 scenes daily (mostly over land), with each scene about 60x60 km? in area. Information
on the ASTER instrument design and technical specifications are reported in Yamaguchi et al. (1993), Yam-
aguchi et al. (1998), and Abrams (2000). The horizontal resolution of ASTER observations in the VNIR, SWIR,
and thermal infrared spectral wavelength range is 15, 30, and 90 m, respectively. From the equations and coef-
ficients in Abrams et al. (2004) ASTER cloud top reflectances (R) can be derived from the raw digital counts,
which are characterized by an absolute radiometric uncertainties of <4% (Yamaguchi et al., 1998).
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Retrieved 7 and r 4 are provided by an ASTER-specific, research level retrieval algorithm (Werner et al., 2016).
This algorithm utilizes the operational MODIS C6 retrieval core (King et al., 1997; Platnick et al., 2003) and
yields reliable cloud top, optical and microphysical variables, which compare well with the operational MODIS
C6 products (Werner et al., 2016). The retrieval is based on the bispectral solar reflective method, where R
at two different wavelengths (1) are used to simultaneously infer = and r (Nakajima & King, 1990; Naka-
jima et al, 1991; Twomey & Seton, 1980). This approach utilizes so-called LUTs from one-dimensional (1-D)
radiative transfer simulations, that are composed of modeled R over a model cloud for varying = and r.g, as
well as different solar and viewing geometries. For the ASTER cloud property retrieval the observations in
the nonabsorbing band are provided by ASTER band 3N (nadir-viewing mode) reflectances centered around
A = 0.86um in the VNIR (R, g¢), While the observations in the absorbing band are from ASTER band 5
reflectances centered around A = 2.1 pm in the SWIR (R, ;). The mean retrieval uncertainties are estimated to
be 15% and 23% for r and r, respectively (Werner et al., 2016). Due to the native resolution of the ASTER SWIR
observations, the highest possible horizontal resolution of retrieved = and r. is 30 m. However, by aggre-
gating R, g and R, ; within increasingly larger pixel footprints both cloud variables are available at arbitrary
horizontal resolutions. In this study both 7 and r4 are derived for horizontal resolutions between 30 and
960 m, which covers the native ASTER and operational MODIS C6 scales. Note that the retrieved 7 is scaled to
the 0.65 pm band (i.e., band 2).

The distinction between clear-sky and overcast pixels in this study is performed with the cloud conservative
cloud masking scheme introduced in Werner et al. (2016). Cloud detection from this algorithm is based on five
spectral tests that compare absolute ASTER reflectances, as well as color ratios and a derived brightness tem-
perature, to predefined thresholds. Those thresholds, which were carefully developed and tested on a number
of different ASTER data sets, flag each ASTER pixel as either confidently cloudy, probably cloudy, probably
clear, or confidently clear (flag values of 0-3, respectively). As illustrated in Werner et al. (2016), the results
from this scheme compare well with the operational MODIS cloud mask product for colocated observations,
as well as the case-by-case ASTER cloud mask reported in Zhao and Di Girolamo (2006). It is important to note
that in this study a binary cloud flag is applied (i.e., cloudy pixels are composed of those with flag values of
0-1, while flag values of 2-3 consequently designate clear pixels).

3. ASTER Observations of Partially Cloudy Pixels

This section provides information about the observed cloud properties of the 48 ASTER scenes. Statistics
about the occurrence of PCL pixels are given in section 3.1. The biases in pixel level retrievals of 7 and rg,
which are induced by clear-sky contamination on the subpixel scale, are assessed in section 3.2. Finally, a scale
analysis with different subpixel horizontal resolutions is presented in section 3.3.

3.1. PCL Statistics

Amap of R, g sampled at a horizontal resolution of 30 m above a small broken cumulus field over the ocean on
3 December 2005 (case 47 in ; Werner et al., 2016) is shown in Figure 1a. This example scene covers an area of
about 10x 10 km? and depicts parts of two convective clouds, as well as some smaller cloudy fragments. At this
scale the highly heterogeneous cloud structure becomes obvious and numerous illuminated and shadowed
areas are visible. In comparison, at 960-m horizontal resolution most of the fine-scale cloud structures are
smoothed out, as illustrated in Figure 1b. Due to the abundance of cloud edges in this scene, there are a
multitude of 960-m pixels that are only partially covered with clouds on the subpixel scale. For each of these
pixels the subpixel cloud cover (C,) is calculated from the observed number of cloudy 30-m subpixels, which
is determined by the extensive cloud masking scheme described in section 2. Note that at this subpixel scale,
there are 32x32 = 1, 024 available subpixels within a 960-m pixel to calculate C, . Cloudy 30-m pixels for this
scene are shown in white color in Figure 1c. Here red boxes indicate cloudy 960-m pixels with a successful =
and r4 retrieval and C,,, < 0.95, while light green boxes show pixels with C,,, = 0.95—1 (i.e,, almost overcast
pixels). Since the applied cloud mask is cloud conservative with respect to clouds very thin clouds might be
missed by the algorithm, which explains some of the missed cloud detections for very low reflectances. Still,
it is obvious that for the example scene in Figure 1 a majority of the cloudy 960-m samples can be considered
to be PCL pixels. Even though all pixel outlines in red have a successful cloud property retrieval at a horizontal
resolution of 960 m there are a number of observations with very few cloudy subpixels.

Similar analysis has been performed for all 48 ASTER scenes. Figure 2a shows the cumulative probability den-
sity function of observed C, ,, for all cloudy 960-m pixels. As before, only pixels with a successful cloud property
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Figure 1. (a) Single band, grayscale image of ASTER band 3N reflectances (R, g5) for a scene observed off the coast of California on 3 December 2005 at 19:20:56
UTC. The horizontal resolution is 30 m. (b) Same as (a) but the R gg sampled at the 30-m scale are aggregated to a horizontal resolution of 960 m. (c) Binary cloud
flag based on 30-m ASTER data; white colors indicate cloudy 30-m pixels, based on the cloud masking algorithm described in section 2. Red and light green
boxes highlight partially cloudy 960-m pixels with a successful cloud property retrieval, where the subpixel cloud cover (Cy,; derived from 30-m data) is in the
range of 0> C,,,, < 0.95 and 0.95> C, < 1.0, respectively. Gray boxes indicate overcast 960-m pixels (i.e., C5,, = 1.00) with a successful cloud property retrieval.

retrieval are considered. Overall, about 28.2% of data points are classified as PCL pixels (i.e., C,, < 0.95;37,164
pixels in total), while 15.7% (20,697), 8.0% (10,463), and 2.4% (3,206) exhibit C,,, < 0.75,0.5, 0.25, respectively.
This means, that close to 30% of observed pixels are either excluded from standard retrieval approaches or
are misrepresented as overcast, which agrees well with the findings of Cho et al. (2015). Figure 2b shows the
probability density function (PDF) of C,, for all PCL observations. Clearly, the largest contribution comes from
observations with C,, > 0.95. These pixels are usually not cloud edge samples, but rather in-cloud observa-
tions with low pixel level 7 retrievals. Note that a less conservative cloud masking algorithm might classify
such pixels as overcast. Apart from C,, < 0.1, there are noticeable contributions from the whole C,, range.

The C,, statistics in Figure 2 are derived from ASTER samples at a horizontal resolution of 30 m. However, the
analysis in this study covers subpixel horizontal resolutions up to 480 m, with a fixed pixel level horizontal
resolution of 960 m. This has a significant impact on C,,,, because for subpixel observations at 240 m (480 m)
only4 x4 = 16 (2 X 2 = 4) subpixels are available to calculate C . As a result, a 960-m pixel can only
exhibit C,,, = 0.00,0.25,0.5,0.75, 1.00 if calculated from 480-m data. Compared to the 30-m cloud mask,
where almost clear and almost overcast pixels are possible (i.e., C,,, close to 0 and 1, respectively), such pixels

30 T T T T T T T T
a) : b) —
25 E 30 4
20 b ©
S ) g 20f -
w 15 * 4
o . [a]
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5F L ]
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Figure 2. (a) Cumulative density function (CDF) of C,, for all cloudy pixels (for visibility reasons the last data point at
100% is not shown). Data are from 48 altocumulus and broken cumulus scenes sampled off the coast of California. The
horizontal resolution at the pixel level is 960 m. (b) Probability density function (PDF) of C,, for all partially cloudy pixels.
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Figure 3. Comparison between subpixel cloud cover (C,,;,; based on the extensive cloud masking scheme described in section 2) derived from Advanced
Spaceborne Thermal Emission and Reflection Radiometer reflectances sampled at a horizontal resolution of 30 m and those from (a) 120-m, (b) 240-m, and

(c) 480-m data. The correlation coefficient r and normalized root-mean-square deviation (nRMSD) between C,;, from 30 m and lower-resolution reflectances is
given. The gray diagonal line indicates the identity line.

will either be classified as clear or fully overcast from 480-m subpixel data. This is illustrated in Figures 3a-3c,
where the subpixel cloud cover at the native ASTER resolution is statistically compared to C,,, based on
120, 240, and 480 — m observations, respectively. The horizontal bars indicate the spread of the 30-m results
for each 120, 240,480 — m C,, bin. For the 120 — m results, the median 30-m cloud mask values (dots) closely
follow the identity line and high values of Pearson’s product-moment correlation coefficient between the
low- and high-resolution C,, are observed (r = 0.994). Moreover, the normalized root-mean-square devia-
tion (NRMSD; defined as the RMSD between the two data sets, normalized by the mean 30-m C,,) is 2.13%.
Increasing the subpixel horizontal resolution to 240 m (480 m) yields a decreased correlation of r = 0.973
(0.894), as well as larger deviations from the 30-m results with nRMSD = 4.58% (nRMSD = 9.10%). Overall, an
increase in subpixel horizontal resolution from 30 m to 120, 240, and 480 m results in an increase in average
Coup Of 0.72%, 1.91%, and 4.34%, respectively.

Note that these statistics are particular to the 48 ASTER scenes in this study. More comprehensive statis-
tics about the scale dependence of cloud fraction estimates are reported by Shenk and Salomonson (1972),
Wielicki and Parker (1992), Krijger et al. (2007), Dey et al. (2008), and Ackerman et al. (2008), where the relation-
ships between domain size, pixel resolution, cloudiness, and cloud macrophysical parameters are analyzed
for a wide range of observational conditions. However, similar to the comparisons in Figure 3, these studies
find a strong dependence of cloud fraction on observational scale, with significant increases in cloud cover
with increasing sensor resolution due to PCL pixels being counted as overcast. Thus, in this study PCL pixels
(i) are characterized by a successful = and r retrieval at 960-m horizontal resolution, (ii) exhibit C,,, < 1 atall
possible subpixel scales between 30 and 480 m, and (iii) include at least one subpixel with a successful cloud
property retrieval. These conditions provide a reliable data set of 10,484 PCL pixels at all scales that avoids
almost clear (i.e., very low 30-m C,,; minimum remaining value is C,, = 0.21) and almost overcast pixels (i.e.,
very high 30-m C,,,;; maximum remaining value is C,,, = 0.88).

3.2. Retrieval Bias for PCL Pixels

A PCL observation at the pixel level scale consists of both clear-sky subpixel reflectances (Rygs. and R, ; ;
indicated by the index c) and overcast subpixel reflectances (R, g5 , and R, ; .; indicated by the index o), which
are sampled above clouds. These reflectances are connected to the total reflectances at the pixel level scale
(the standard R, g5 and R, ; samples at, e.g., 960 m) as follows:

Rose = (1 = Cup) - Rogs.c + Coub * Rossio
R2A1 = (1 - Csub) : R2A1,c + Csub : R2A1,0' (1

Here the horizontal bars above the clear-sky and overcast reflectance indicate the spatial averages of the
respective variable. In the case of an overcast pixel, C,,, = 1and subsequently Ry g, = m (similarly forR, ;).
Conversely, for a PCL pixel C,,,, < 1 and, assuming observations above a dark surface (e.g., over oceans), both
Rogs < m and R,; < Ry, .. As aresult, for PCL pixels there is a difference between the standard 7 and r
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Figure 4. (a) Comparison between retrieved cloud optical thickness based on the average reflectance of the cloudy part of a pixel (z,) and the one retrieved
from the total reflectance (). The pixel level scale is 960 m, while the subpixel data are provided by 30 — m observations. Colors indicate the subpixel cloud cover
(Csupi based on the extensive cloud masking scheme described in section 2); the gray diagonal line indicates the identity line. The number of observations (n),
correlation coefficient (r), and normalized root-mean-square deviation between 7, and = (nRMSD) is given. (b) Probability density functions (PDFs) of 7, (red) and
7 for PCL pixels (blue). Additionally, z = z,, for overcast pixels is illustrated (black). (c) PDF of the difference between = and 7, for all partly cloudy (PCL) pixels. The

1st, 50th, and 99th percentiles are given.

(d)~-(f) Same as (a)~(c), but for the effective droplet radius (reso and reg).

retrievals, which are based on the total reflectances R, ¢¢ and R, ;, and the actual underlying cloud properties
7, and re, (based on Ry g6 , and R, ; ).

A comparison between 7, and 7 for all PCL observations is shown in the scatter plot in Figure 4a. Colors
indicate the value of C,,,, with black (red) colors indicating high (low) C . Because of the reduced VNIR
reflectance for PCL pixels following equation (1), almost all samples are characterized by a strong underesti-
mation of the pixel level r compared to z,. This underestimation becomes more pronounced with decreasing
C,up- Even though the correlation coefficient between 7, and 7 is still high (r = 0.853), the bias between the
two data sets is significant (nRMSD = 30.72%). Rather, similar PDFs of 7, (red) and = (blue) for all PCL pix-
els are illustrated in Figure 4b. There is a shift toward larger values as the 1st, 50th, and 99th percentiles of
7 observations change from 0.61, 2.35 and 4.62 to 1.26, 3.05 and 6.95 for 7, respectively. Compared to the
results for PCL pixels, the cloud optical thickness distribution of all overcast pixels (black), where C,,, = 1 and
T = 1, shows significantly larger values. While the PCL and overcast distributions are not directly comparable
because they are composed of completely different populations, these vastly different z ranges are not sur-
prising. PCL pixels are usually associated with cloud holes and edges, where turbulent mixing and evaporation
processes yield a reduced liquid water amount and geometrical thickness (Schmeissner et al., 2015). A PDF of
the difference between z and ,, for all PCL pixels is illustrated in Figure 4c; however, although a wider range of
—-8.22 < 7—1, < 0.62 is observed, only the 1stand 99th percentiles of the difference (-3.21 < r—7, < —0.19)
are shown for visibility reasons. For all analyzed PCL pixels the median underestimation in cloud optical
thickness due to clear-sky contamination is —0.66.
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Table 2
Comparison Between Pixel Level Retrievals (t and r) and the 30-m Subpixel Cloud Properties (z, and rys),
As Well As Comparisons Between t, and r ., at Different Horizontal Resolutions

1st, 50th, 99th percentiles nRMSD r
T — 17, (30m) —62.98%, —22.30%, —7.68% 30.72% 0.853
7o (240 m) - 7, (30 M) —19.74%, —5.99%, 3.73% 8.79% 0.985
7, (480 m) - 7, (30 M) —36.12%, —10.34%, 10.76% 15.55% 0.941
Feff — leffo (30 M) —34.60%, 3.54%, 38.36% 13.74% 0.967
effo (240M) = rego (30m) —14.24%, —2.53%, 5.51% 4.06% 0.996
Ieffo (480 M) — reg, (30 M) —28.64%, —6.03%, 13.20% 9.26% 0.977

Note. The 1st, 50th, and 99th percentiles of relative biases, the normalized root-mean-square deviations
(nNRMSD), and the correlation coefficients (r) between the respective variables are given.

Similarly, a comparison between r, and ry is shown in Figures 4d-4f. While 7 < 7, for almost all PCL pix-
els, both overestimations and underestimations of r (compared to r.,) are observed and the comparison
exhibits a higher correlation (r = 0.967) and lower nRMSD (13.74%). As before, the deviations between the two
retrievals increase with decreasing C,,,. The PDF of r ¢ for PCL pixels is rather flat, as the 1st, 50th, and 99th per-
centiles of observations are 5.21, 15.36, and 29.31 pm. In particular, a prominent tail in the PDF with retrievals
of ry¢ > 25 pmis observed and about 5.67% of retrievals fail, mostly due to r¢ > 30 pm (i.e., R, ; is too low and
the apparent effective radius becomes larger than the maximum value in the LUT). Conversely, a bimodal dis-
tribution for r. , is apparent and the distribution bears a resemblance to the PDF for overcast pixels. There are
significantly less observations of ry, < 6 pm and r., > 25 um compared to the standard PCL results, while
the 1st, 50th, and 99th percentiles of observations are 6.73, 14.60, and 26.90 um. Overall, differences cover the
range of —7.65 pm < ryg—re, < 12.00 pm, whichis reduced to —3.18 um < reg—reg, < 6.76 pmifonly the 1st
and 99th percentiles are considered. This indicates that while both overestimations and underestimations are
observed for PCL pixels, clear-sky contaminations yield a primarily positive bias in retrieved effective droplet
radius with a median bias of about half a micron. These findings are consistent with the reported findings in
Marshak et al. (2006), where some very small and mostly very large r can occur for PCL pixels.

Note that in this study we do not analyze the impact of three-dimensional (3-D) radiative effects (i.e., ignoring
horizontal photon transport in realistic 3-D cloud structures in the 1-D radiative transfer simulations). Retrieval
biases due to 3-D radiative effects are commonly associated with cloud shadows and illuminated cloud sides,
among others (Barker & Liu, 1995; Chambers et al., 1997; Marshak et al., 2006). Due to increased variability in
cloud top height and an abundance of cloud edges with low 7 these biases can be substantial for heteroge-
neous, broken cumulus fields. As a result, the 7, and r , retrievals, while correcting for the effects of clear-sky
contamination, are not necessarily the true underlying cloud properties.

3.3. Dependence on Subpixel Horizontal Resolution

The scale dependence of C,,, which is illustrated in Figure 3, indicates that a decrease in subpixel horizontal
resolution might induce significant uncertainties, which directly impacts the reliability of Ry gs , and R, ; , and,
subsequently, the cloud property retrieval.

A comparison of 7, using observations from the native horizontal resolution of 30 m, and those based on
240-m reflectances is shown in Figure 5a. A summary of the results is presented in table 2. Even though
lower-resolution subpixel data were used to calculate both FSG,O and m there is overall good agreement
between the two retrievals for the overcast part of PCL pixels with r = 0.985 and nRMSD = 8.79%. A decrease
of subpixel horizontal resolution to 480 m reduces the correlation (r = 0.941) and increases the nRMSD to
15.55%, as shown in Figure 5b. Considering the uncertainty in C,,,, (compared to the 30-m results) this behav-
ior is not surprising. Distributions of the difference between r, from lower-resolution subpixel data and from
30-m observations is shown in Figure 5c. These PDFs can be directly compared to the distribution of 7 — 7,
in Figure 4c. Using 240-m reflectances, the 1st, 50th, and 99th percentiles of the difference are reduced to
—0.94, —0.17, and 0.13, respectively (—1.66, —0.29, and 0.35 for the 480-m results). While the comparison is
worse than for 240-m subpixel observations, retrieved 7, from 480 and 30-m data still agree better than the
standard retrievals from the pixel level reflectances (see Figure 4a).
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Figure 5. Comparison between retrieved cloud optical thickness based on the average 30-m reflectance of the overcast part of a partly cloudy pixel (z,) and z,
based on the average (a) 240- and (b) 480-m subpixel reflectance. The pixel level scale is 960 m. Colors indicate the subpixel cloud cover (Cg,,; from 30-m data
and based on the extensive cloud masking scheme described in section 2); the gray diagonal line represents the identity line. The correlation coefficient (r) and
normalized root-mean-square deviation between z, from 30 m and lower-resolution reflectances (nRMSD) is given. (c) Probability density functions (PDFs) of the
difference between 7, from 30-m data and 240-m (blue), as well as 480-m overcast reflectance (black), respectively. The 1st, 50th, and 99th percentiles are given.
(d-f) Same as (a)-(c) but for the effective droplet radius (ref ).

Retrieved r;, based on 240-m subpixel observations also agree well with the 30-m results, as shown in
Figure 5d. Compared to the standard retrievals shown in Figure 4d, the correlation coefficient is increased
(r = 0.996) and significantly reduced deviations from the identity line yield a much lower nRMSD of = 4.06%.
As before, the retrieval based on 480-m data deviates more from the 30-m results, as illustrated in Figure 5e.
The scatter around the identity line is increased and starts to resemble the behavior of r.4 shown in Figure 4e,
although the correlation coefficient is still higher (r = 0.977) and the nRMSD is lower (9.26%). Figure 5f illus-
trates the PDF of the difference between r.,, from the lower-resolution subpixel data and the 30-m results.
Compared to the standard r retrieval the maximum deviations are significantly reduced, as the 1st, 50th,
and 99th percentiles of the difference of r.¢, from 240 and 30-m observations are —1.77, —0.34,and 1.11 pm,

respectively (—3.92, —0.80, 2.54 pm for the 480-m results). Again, these results are summarized in Table 2.

Considering the good agreement between derived C,,, from 30 and 120-m data, the agreement between the
respective 7, and r,, is even better if higher-resolution subpixel data are available to calculate the average
overcast subpixel reflectance following equation (1). However, at all subpixel scales the results are less biased

than the standard retrieval of = and r, which simply utilizes the pixel level reflectances and assumes C, = 1.

4. Improved PCL Retrieval With Subpixel VNIR Information

The unique ASTER data set in this study provides the necessary subpixel information about C,, R, g5 and
R, . at arbitrary horizontal resolutions (as long as it is > 30 m). However, most satellite-based passive sensors
are characterized by more limited subpixel observations. Imagers that facilitate operational retrievals with a
global coverage (e.g., MODIS and VIIRS) usually sample reflectances at much coarser spatial resolutions. The

WERNER ET AL.

12,261



~u
AGU

ADVANCING EARTH
AND SPACE SCIENCE

Journal of Geophysical Research: Atmospheres 10.1029/2018JD028902

operational MODIS Cé6 retrievals are performed at horizontal scales of 1,000 m and are based on aggregated
VNIR and SWIR reflectances, which are observed at 250 and 500 m, respectively. Meanwhile, the VNIR and SWIR
reflectances from VIIRS are sampled at a horizontal resolution of 375 m and are subsequently aggregated to
750 m for the cloud property retrieval. Other instruments (e.g., SEVIRI) only have a single high-resolution VNIR
band and no high-resolution SWIR reflectances are available.

This section introduces approaches to estimate the subpixel cloud cover (section 4.1) and high-resolution R, ,
(section 4.2) for MBL cloud scenes. These techniques make use of available subpixel VNIR reflectance observa-
tions and thus are applicable for common satellite missions. However, the analysis is geared toward a potential
MODIS application and thus features similar pixel level and subpixel horizontal resolutions of 960 and 240 m.
The estimated subpixel properties provide the input for a retrieval for PCL pixels following equation (1), which
is evaluated in section 4.3.

4.1. Estimation of Subpixel Cloud Cover

Approaches to determine cloud cover in the presence of PCL pixels have been reported by Minnis et al. (1987),
Wielicki and Parker (1992), and Coakley et al. (2005). These techniques are highly scene dependent, include
observations at a thermal band to determine brightness temperatures and consist of comparisons with cloud
albedo climatologies. A simpler approach is employed by the operational MODIS cloud mask product (Acker-
man etal., 1998; Baum et al., 2012), which yields a binary 250-m cloudiness flag from a pair of visible reflectance
thresholds. The proposed estimation of the subpixel cloud cover (C;  ; the superscript * indicates the esti-
mated value) closely follows this MODIS approach and is based on a simpler cloud masking scheme based on
240-m VNIR data. In a first step, the pixel level cloud mask value is assigned to each of the 240-m subpixels.
Note that for this study the four cloudiness flags are already reduced to a binary cloud mask, as described in
section 2. Subsequently, two spectral tests are performed for each subpixel of a cloudy pixel level observation.
The first test is composed of a comparison of the 240-m subpixel VNIR reflectance to the 90th percentile of
clear-sky pixels in the respective scene (py). The second test determines whether the color ratio of R, g5/R ¢5
is within the range of two predefined thresholds (here R, 45 indicates ASTER band 2 reflectances centered
around A = 0.65 pm). This test closely resembles the third cloudiness test of the full ASTER cloud mask algo-
rithm described in Werner et al. (2016) and is used to distinguish clouds from the darker ocean surface, as well
as from measurement over land. Consequently, a subpixel is determined to be cloudy if

Ro.g6 > Pao and

R
0.8 < 28 <175, )
0.65

It is important to emphasize the limitations of this technique, which essentially just accentuates the general
uncertainties of satellite-based cloud fraction estimations. As discussed by Dey et al. (2008), Di Girolamo and
Davies (1997), and Yang and Di Girolamo (2008), cloud detection algorithms should be designed individually
with a particular application in mind. Its performance is affected not only by observational scale and thresh-
olding effects but also by scene characteristics such as cloud type and surface albedo, as well as the presence
of three-dimensional radiative effects and sunglint, among others. The applied cloud masking scheme in this
study was designed for (and validated by) marine cumulus and stratus scenes, with only liquid phase and
low to moderate aerosol turbidity, and which were sampled outside of strong sunglint and large solar zenith
angles (i.e., 8, > 65°). Consequently, the presented results in this section, which evaluate the subpixel cloud
cover estimates based on equation (2), are only valid for similar cloud scenes with a high contrast in the visible
spectral wavelength range between cloudy and clear pixels.

Figure 6a shows a comparison between the actually observed C, (based on 240-m data) and C; ,, derived for
all cloudy 960-m pixels. Dots indicate the median of the C; , distribution within each C, bin (in increments of
0.05), while the vertical bars illustrate the interquartile range (IQR; 75th-25th percentile of data points). There
is a high correlation between C;  and C, with r = 0.948 and nRMSD= 6.40%. Most deviations from the
identity line tend to be overestimations of the estimated subpixel cloud cover, which increase with decreasing
C,up- Since in the standard retrieval of = and r4 the PCL pixel is assumed to exhibit C,,, = 1, a slight over-
estimation indicates that the derived Ry 4, and R, ; , from equation (1) fall between the actually observed
values and the total reflectances at the pixel level scale. This behavior is preferable to an underestimation of

C;,, (compared to the true C,), where the R, g5 and R, ; would be overcorrected.
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Figure 6. (a) Comparison between the actually observed subpixel cloud cover (C,,; based on the extensive cloud
masking scheme described in section 2) derived from 240-m data and the estimated results (Cfub; based on
equation (2)). The pixel level scale is 960 m. The number of observations (n), correlation coefficient r, and normalized
root-mean-square deviation between the C;, and C:ub (NRMSD) is given. (b) Same as (a) but C, is derived from
observations at a horizontal resolution of 30 m.

Comparing C}, to the actually observed values from 30-m data (i.e., calculated from observations at the high-
est possible resolution) instead of C,, at 240 m reveals that the general overestimation of C? becomes more
prominent, as shown in Figure 6b. This is especially true for pixels with large subpixel cloud cover (C, > 0.85),
where the estimated results almost universally exhibit C = 1. However, for these PCL pixels the biases asso-
ciated with pixel level retrievals of 7 and r. are comparatively small (see Figure 3) and the impact of C;
overestimations should be negligible. Overall, the correlation between C:ub and C_,, decreases (r = 0.930)

sub
and the bias (nRMSD = 8.13%) becomes larger when C,, is derived from 30-m observations.

Considering the limitations of the approach, while keeping in mind that the comparisons are performed for
marine liquid water clouds only, it can be concluded that the steps outlined in this section provide reasonable
estimates of the actually observed subpixel cloud cover for the 48 MBL cloud fields in this study. Naturally,
this also indicates that the binary 250-m cloudiness flag provided by MODIS yields good estimates of C? | at
least for MBL cloud scenes in the absence of cirrus, low Sun or sunglint.

4.2. Estimation of High-resolution SWIR Observations

While many sensors provide information about the distribution of subpixel VNIR reflectances within the
remotely sensed pixels, some sensors, like MODIS, even provide subpixel SWIR reflectance data, albeit at lower
spatial scales. In the following paragraphs three methods are discussed, which provide estimations of R, ; for
each subpixel, based on different assumptions and the information about the observed subpixel behavior
of Ry ge-

The first method, which is referred to hereafter as Oversampled SWIR Reflectance Approach and is illustrated in
Figure 7a, assumes that while there is variability in R, g¢ within a pixel, R, ; remains constant on the subpixel
scale. This means that the pixel level R, ; value is simply assigned to each of the available subpixels, which
makes this approach easy to implement and computationally inexpensive. The red triangle in the example LUT
indicates a pixel with average observations of R, g = 0.305 and R, ; = 0.200, while the black dots represent
the position of four subpixels with varying VNIR reflectance (gray lines indicate the values R, g5; and R, ; ; of
the i = 1 — 4 subpixels). Since it is assumed that there is no variability in R, ; ; within the pixel, it follows that
Ry1i = Ry; = 0.200. To test the quality of this assumption, the inhomogeneity index H, , ; is calculated, which
is defined as the ratio of standard deviation (o, ;) to spatial average (i.e., the pixel level value R, ;) of subpixel
SWIR reflectances (Cho et al., 2015; Di Girolamo et al., 2010; Liang et al., 2009; Zhang & Platnick, 2011; Zhang

etal., 2012):

(o3
Ho’,2.1 = % . (3)
21
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Figure 7. (a) Example lookup table to illustrate the Oversampled SWIR Reflectance Approach. The red triangle indicates the mean R g and R, ; of a pixel, while
the black dots illustrate Ry g6 of four subpixels and the respective R, ; based on the Oversampled SWIR Reflectance approach. Gray vertical and horizontal lines
are visual aids. (b and c) Same as (a) but illustrating the Constant Reflectance Ratio Approach and Constant r; Approach, respectively. (d) Probability density
function of the subpixel variability of R, (Hg2.1)- The subpixel and pixel level scale is 240 and 960 m, respectively. () Same as (d) but for the difference of the
ratio of Ry gs t0 Ry 1. (f) Same as (d) but for the subpixel variability of the effective droplet radius (Hy #)-

Figure 7d shows the PDF of observed H, , ; for all cloudy ASTER pixels. The pixel level and subpixel scale is
960 and 240 m, respectively. The peak of the distribution is found around low values of H, , ; = 0.03, which
is representative of rather homogeneous distributions. However, there are a multitude of pixels with signif-
icantly higher values that are associated with inhomogeneous pixels. The 1st, 50th, and 99th percentiles of
H, ,1 observationsis 0.013,0.074, and 0.434. This indicates that for the sampled cloud fields in this study there
is a nonnegligible subpixel variability in R, ; and that a general assumption of H_ , ; = 0 is not appropriate.

A second approach is based on the assumption that the inhomogeneity index of the VNIR reflectance equals
H, »4 (i.e., spectrally consistent subpixel deviations from the spatially averaged reflectance):

HJ,ZJ = Ha,oAss

921 _ %os6
RZ.'l R0.86
1 i= 1 i=
Vi 20 Rory —Ror? /55 T Roses — Rose)?

; (4

R2. 1 ROA86

where the index i = 1,2, ..., n indicates each of the n available subpixels. Additionally, if deviations of indi-
vidual subpixel reflectances from the average (pixel level) values are similar for both bands (i.e., R, ;; — R, ; =
Rogs.i — Ro.gs)s €quation (4) can be simplified to

Ry

R
2 (5)
R0.86,i RO,86
Equation (5) suggests that the ratio of SWIR to VNIR reflectance at the subpixel scale is equal to the ratio of the

pixel level results. Consequently, this method is called Constant Reflectance Ratio Approach and is illustrated
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in Figure 7b. Similar to Figure 7a, the pixel level reflectances of Ry g = 0.305 and R, ; = 0.235 are indicated
by a red triangle in the example LUT. While the individual subpixels have the same R, g4 ; as before, the cor-
responding estimates of R, ;; show some variability. Positive and negative Ry g4; deviations from the pixel
level VNIR reflectance yield positive and negative R, ; ; deviations from R, ;, respectively. To test the viability
of the assumption in equation (5), the PDF of the difference between subpixel and pixel level SWIR to VNIR
reflectance ratio (i.e., f:::i - %) is calculated and shown in Figure 7e. These ratios are derived for all cloudy
960-m ASTER pixels, while the subpixel horizontal resolution is 240 m. The 1st, 50th, and 99th percentiles of the
calculated differences are —0.56, —0.02, and 0.50. However, 50% of observations are in the range —0.13-0.07
(i.e., a difference between subpixel and pixel level reflectance ratio of < 13%) and the median is close to 0. This
indicates that for a majority of observations the assumption of constant reflectance ratios at different scales
is reasonable.

A third approach to estimate R, ;; assumes a constant r; within a pixel. Since the relationship between
retrieved cloud properties and cloud top reflectance is determined by the LUT, each R, ; ; can be derived via
interpolation of the modeled SWIR reflectances at the position of each R 4 ; along the respective r. isoline.
This Constant r.; Approach is illustrated in Figure 7¢, where individual R, ; ; align with the r = 12 pm-isoline.
The appropriate r isoline can be determined in different ways: (i) depending on the retrieved pixel level
cloud properties the interpolation is performed along the isoline corresponding to the closest r that exists
in the LUT simulations. Depending on the r 4 resolution of the applied LUT (i.e., the r 4 values for which simu-
lations exist) this can lead to substantial uncertainties, while the computational costs are low. (ii) Interpolated
LUT values are generated for the retrieved r and r4, which reduces uncertainty and increases computational
costs. To test whether the assumption of constant r. within a pixel is reasonable, the inhomogeneity index
with regard to the effective radius (HU,,eﬁ; defined as the ratio of standard deviation to spatial average of sub-
pixel r.4 at 240 m) is calculated for all cloudy pixels with a horizontal resolution of 960 m. Figure 7f shows the
PDF of H, , ., which is visibly narrower than the PDF of H, , ; in Figure 7d. The 1st, 50th, and 99th percentiles
of observations are 0.00, 0.02, and 0.21, which suggests that a majority of ASTER pixels indeed exhibit little
variability in subpixel r.

Each of the proposed approaches offers advantages and disadvantages. The Oversampled SWIR Reflectance
Approach is simple and computationally inexpensive, but based on the PDF of observed H, , , in Figure 7d
this method might result in significant uncertainties in the estimation of R, ; ;. Meanwhile, ASTER observa-
tions indicate that the assumptions in the Constant Reflectance Ratio Approach seem reasonable. While this
method is computationally inexpensive, it is only valid for thinner clouds, where 7 and r ¢ are strongly corre-
lated (note the almost linear increase of the r. isolines in Figure 7 for = < 8). Conversely, for 7> 17 the R g
sensitivity to 7 is nearly orthogonal to the R, ; sensitivity to r. (i.e., the respective isolines become orthogo-
nal). As a result, large subpixel R, g variability is associated with low R, ; variability for such pixels. Finally, the
Constant r . Approach requires a successful cloud property retrieval, which has been shown to frequently fail
for pixels with very low C,,,. Moreover, the pixel level r can be significantly biased due to clear-sky contam-
ination (see biases in Figure 4), as well as the plane-parallel homogeneous bias (Marshak et al., 2006; Werner
et al,, 2018; Zhang et al,, 2016), which describes the difference between pixel level retrievals and the spa-
tial average of the subpixel results. For such observations the derivation of R, ; ; is performed along a wrong
isoline. Note that if applied to MODIS observations, 250-m SWIR reflectances can be estimated from actually
observed R, ; at 500 m, while the retrieval products are provided at horizontal resolutions of 1,000 m. Thus,
applying this approach for such geometries requires an additional 500-m retrieval of r ¢, which would increase
the computational costs even further.

To evaluate the three techniques with ASTER data, joint PDFs of actually observed R, ; at a horizontal res-
olution of 240 m and the estimated results (R5 ,; the superscript * again indicates the estimated value) are
calculated and shown in Figure 8 for (a) the Oversampled SWIR Reflectance Approach, (b) the Constant
Reflectance Ratio Approach, and (c) the Constant r.; Approach. The first two approaches are facilitated by
pixel level R, ;, which were sampled above all cloudy 960-m pixels. To minimize the influence of clear-sky con-
tamination and the plane-parallel homogeneous bias, the respective r.4 isoline in the Constant r , Approachis

determined from the spatial average of actually observed 240-m retrievals and not from the pixel level result.

The Oversampled SWIR Reflectance Approach yields the lowest correlation (r = 0.980) and largest bias

(NRMSD = 9.36%) between R, ; and R; ., although the majority of observations are concentrated around

the identity line. The comparison improves noticeably for the Constant Reflectance Ratio Approach, where
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Figure 8. (a) Joint probability density function of actually observed 240-m shortwave-infrared (SWIR) reflectance (R, ;) and estimated R, ; based on the
Oversampled SWIR Reflectance Approach. The estimation is facilitated by observed R, ; at a horizontal resolution of 960 m. Only cloudy 960-m pixels are
considered in the analysis. The number of observations (n), correlation coefficient r, and normalized root-mean-square deviation between observed and
estimated R, ; (hnRMSD) are given. (b and c) Same as (a) but the estimation is based on the Constant Reflectance Ratio Approach and Constant r Approach,
respectively. (d-f) Same as (a—c) but the estimation is based on observed R, ; at a horizontal resolution of 480 m.

r = 0.995 and the bias is reduced to nRMSD = 4.40% (i.e., less than half the bias of the first method).
Both approaches yield n = 2,094, 838 high-resolution R} | values. However, due to the extra constraint of
a successful effective radius retrieval, this number is reduced by about 34,000 data points (2%) if the Con-
stant rs Approach is applied. While this method results in the highest correlation (0.998) and lowest bias
(NRMSD = 2.40%; almost half the bias of the Constant Reflectance Ratio Approach, some significant overes-
timation and underestimations of R; | are observed. This is not surprising, because the approach assumes a
successful cloud property retrieval along a fixed r.g isoline. If some of the subpixels deviate substantially from
this line, or are positioned outside the LUT, the error in R} | can become quite large. If the pixel level horizon-
tal resolution is increased to 480 m (i.e., closely resembling the MODIS geometry), the comparisons improve
noticeably. Correlation coefficients increase to r = 0.991,0.998, 0.999 for the three approaches, while the
biases are reduced to NnRMSD = 6.02%, 2.93%, and 1.77%. The number of successful R; | estimations is slightly
increased, which can be explained by the increase in the number of cloudy pixels at 480 m. As before, this
number is lower for the Constant r Approach, where a successful cloud property retrieval is required.

Both the Constant Reflectance Ratio Approach and Constant r, Approach yield reasonable estimates of R; . .
However, depending on the magnitude of the bias in the pixel level r 4 retrieval, employing the Constant r 4
Approach for a PCL observation requires multiple retrieval iterations. During each iteration the new estimate
of rr, provides a more reliable isoline for the R | interpolation. This makes the Constant r.4 Approach com-
putationally less efficient in comparison to the other two approaches. Note that due to the better comparison
with actual ASTER observations for small R, ; ; (which are more common in PCL pixels) the cloud property
retrievals in the following sections have been derived with the Constant Reflectance Ratio Approach.
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Figure 9. (a) Comparison between retrieved cloud optical thickness based on the average 30-m reflectance of the overcast part of a pixel (z,) and the cloud

optical thickness based on estimations for C*

and R

b 51 from the Constant Reflectance Ratio Approach (

T;). Colors indicate the subpixel cloud cover (C,,; based

on the extensive cloud masking scheme described in section 2); the gray diagonal line indicates the identity line. The correlation coefficient r and normalized
root-mean-square deviation between 7z, and r(’;' (nRMSD) is given. (b) Same as Figure 4b but also including a probability density function (PDF) of r(‘j (orange).
(c) PDF of the difference between 7% and z, for all PCL pixels (black), as well as between 7z} and 7, based on the average 240 m reflectance of the overcast part of

a pixel (blue). The respective 1st, 50th, and 99th percentiles are given. (d-f) Same as (a-c) but for the effective droplet radius re¢,

r:ﬁlo, and rgg.

4.3. Evaluation of Estimated PCL Retrieval

Section 4.1 demonstrates that information about the subpixel VNIR distribution can be used to infer rea-
sonable estimates of the subpixel cloud cover, while section 4.2 introduces methods to reliably estimate the
SWIR reflectance for each subpixel. Both provide the means to calculate the average of estimated cloudy
reflectances, thatis, R, 86.0 and R;Lo inequation (1), and subsequently retrieve z; and ’fo,o (as before, the super-
script * indicates the estimated value). Naturally, any uncertainty in the respective estimations will induce an
uncertainty in the derived cloud properties.

Figures 9a and 9d show a comparison between 77 and r’,. and the respective 7, and r,, which are based
on ASTER observations at 30-m horizontal resolutlon The estimated retrievals are based on the Constant
Reflectance Ratio Approach with R, ; samples at 480 m; as before the analysis is performed for all cloudy PCL
pixels with a horizontal resolution of 960 m. This geometry allows not only for a direct comparison to the
results in Figure 4 but also for an evaluation of the estimated retrieval for PCL pixels (based on equation (1)) in
regard to a potential MODIS application. Derived 7 agree well to the actually observed 7, with r = 0.973 and
a reduced bias of NnRMSD = 11.59%, which resembles a significant improvement from the standard retrieval
based on the pixel level reflectance. A similarly improved comparison between r, and r is shown in
Figure 9d, where the correlation is increased (r = 0.989) and the bias is reduced (from nRMSD = 13.74%
to NRMSD = 6.06%). As a result, the PDFs of 7 and I, (orange) in Figures 9b and 9e closely resemble the
respective distributions of 7, and r¢ . The |mprovement from the standard retrieval is particularly obvious for
the effective droplet radius, where the prominent tail of large r ¢ > 25 um is not observed for r’. . Similar to
Figures 4c and 4f, PDFs of the remaining biases between estimated and observed cloudy part retrlevals (black
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Table 3
The 1st, 50th, and 99th Percentiles of the Difference 3 — 7, andr’, — reg,
effo 4

T =Ty r:ff,o — Ieffo
Approach 1st 50th 99th 1st 50th 99th
Standard -3.74 —0.47 —-0.07 —3.27pm 0.84 pm 6.16 pm
Oversampled SWIR Reflectance —-0.66 0.01 0.30 —0.38 um 1.67 pm 9.00 pm
Constant Reflectance Ratio -0.71 —0.01 0.22 —1.64 um —0.06 pm 2.1 pm
Constant ryg —0.53 0.00 0.25 —0.90 pm 0.43 pm 3.20pm

Note. Statistics are given for the Oversampled SWIR Reflectance, Constant Reflectance Ratio, and Constant r . Approaches.
Also, the statistics for the difference between standard partly cloudy retrievals, which are based on the average pixel
level reflectance, and 7, and ¢, are also presented. The pixel level and subpixel horizontal resolutions are 960 and
240 m, respectively. SWIR = shortwave-infrared.

lines) are shown in Figures 9¢ and 9e. The distributions are much narrower, as the 1st, 50th, and 99th per-
centiles of the difference z; — 7, are —1.26, -0.22,and 0.10 (2.42, —0.43, 2.20 ym for the difference r, | — 7).
These statistics are also very similar to the 240-m results from the scale analysis in Figures 5c and 5f. If 7%
andry, are compared to 7, and r, from 240-m subpixel observations (instead of the high-resolution 30-m
results) the differences become even smaller (blue lines). Here the 1st, 50th, and 99th percentiles of the
difference 7; — 7, are —0.71, —0.01, and 0.22 (1.64, —0.06, 2.11 um for the difference r, | — re,).

The remaining biases between 77 and r’ wffo from the three approaches highlighted in section 4.2 and the
actually observed cloud retrlevals at 240 m are summarized in Table 3. To provide the appropriate reference
statistics, the differences 7 — 7, and ry — re,, (i.e., the performance of the standard retrieval approach) are
also listed. Regarding the difference z¥ — 7, the three approaches described in section 4.2 yield considerable
improvements in comparison to the standard retrieval. Statistics for the three methods are very similar and
highlight that the estimated retrieval for PCL pixels can effectively mitigate the bias introduced by clear-sky
contamination (i.e., a median difference close to 0). Larger variability between the three approaches exist for
the differences of rZ = — re,. Considering the uncertainties in R, shown in Figure 8a, the differences for
the Oversampled SWIR Reflectance Approach are characterized by the largest 50th and 99th percentiles that
are even larger than the ones from the standard retrieval. This approach can also not mitigate the extended
tail of re¢ > 25 pm in the PDF (however, it minimizes observations of very small r, < 6 pm). Both the Con-
stant Reflectance Ratio Approach and Constant r,; Approach provide considerable improvements and the
retrievals exhibit substantially reduced biases. Distributions of r.. have no tail of large droplets for either
approach and the PDFs look almost indistinguishable. The Constant Reflectance Ratio Approach yields a min-
imum median difference between re, and r,. (it also has the lowest 99™" percentile). Note that while the
respective deviations become larger, these conclu5|ons do not change when 7, and r, are derived from
30-m data.

The results in Figure 9 and Table 3 illustrate that for the 48 MBL cloud scenes in this study the estimations
presented in sections 4.1 and 4.2 yield retrievals, which correspond to the cloudy part of PCL pixels and agree
well with the actually observed ASTER properties. This approach is directly applicable to MODIS observations
and represents a significant improvement over the standard retrieval, which simply utilizes the pixel level
observations of Ry gs and R, ;.

5. Impact on Liquid Water Path and Droplet Number Concentration

Retrievals of 7 and r are widely used to infer the LWP and the cloud droplet number concentration (N). Both
parameters are key variables for studies of aerosol-cloud interactions (Albrecht, 1989; Twomey, 1974) and the
subsequent radiative forcing (Lohmann et al., 2010; Ramaswamy & Chen, 1993). Therefore, it is essential to
evaluate how these parameters are biased, when they are derived for PCL pixels.

The LWP can be calculated from the product of = and r.4 (Brenguier et al., 2000; Miller et al., 2016):

LIWP=T"p,-Try. ©6)

where p; and I are the density of liquid water and a coefficient, which accounts for the vertical cloud profile.
For vertically homogeneous clouds I" = 2/3. Relating the retrieved cloud variables to N requires a number of
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assumptions and simplifications (Bennartz, 2007; Brenguier et al., 2000; Schiiller et al., 2005):

_ 05 ,-2.5
N=a- 2% 12>, (7)

with « = 1.37 - 107> following Quaas et al. (2006). As before, for PCL pixels both parameters can be derived
from (i) 7 and r ¢, which represent the biased results due to clear-sky contamination; (i) 7, and re,, which

correspond to the parameters from the overcast part of a pixel; and (iii) zJ and r’.. , which are the estimated
results that mitigate the PCL bias. The analysis in section 3.2 reveals an overall negative and positive bias in
retrieved 7 and rg, respectively. This would indicate an overall negative bias for derived N, while the bias in

LWP could be either positive or negative, depending on whether the 7 or r contribution dominates.

Figure 10a shows a comparison between derived LWP,, which is based on 7, and r,, at a horizontal resolution
of 30 m, and the standard results of LWP for all PCL pixels. The relationship looks similar to the one for , which
is illustrated in Figure 43, as there are strong underestimations of LWP with r = 0.937 and nRMSD = 27.48%.
The 1st, 50th, and 99th percentiles of the normalized difference between LWP and LWP,, (defined as the differ-
ence between both parameters, divided by LWP,) are —72%, 18.67%, and 1.40% (corresponding to absolute
differences of —35.1, —5.1, and 0.46g/m?). The respective distribution is almost exclusively comprised of neg-
ative values, as shown in Figure 10b. These biases are drastically reduced, if the liquid water path is derived
from 7% and r:ff,o' Figure 10c shows the normalized difference between LWP? and LWP,. Similar to previous
Figures, LWP? is derived from 240-m subpixel reflectances and compared to LWP, based on both 30 (black)
and 240-m (blue) subpixel data. Naturally, the estimated results compare best to LWP, at 240 m, where the
1st, 50th, and 99th percentiles of the normalized difference are —26.21%, —1.72%, and 10.70%. However, even
compared to the 30-m results of LWP, there is a significant improvement, if the derivation is based on 77 and

r;‘ffo instead of the standard results.

Figures 10d-10f illustrate the relationships between N, N, and N7, which are derived from 7 and r, 7,, and
lestoras Wellas 75 and . |, respectively. The pixel level comparison between N, and N reveals a lot of scatter, a
lower correlation (r = 0.871) and a rather large bias (nRMSD = 51.66%). Besides the expected underestimation
in N a number of samples with large overestimations are apparent, which are associated with small effective
radius retrievals around 5 pm. While these observations, which exhibit a relative difference in droplet number
concentration of >40%, exist for only 3.6% of all PCL pixels, they still have a sizable statistical impact. The 1st,
50th, and 99th percentiles of the relative difference are —68.37%, —18.41% and 104.15% (i.e., absolute differ-
ences of —42.7, —4.3, and 101.2 cm~3). The median biases, as well as the minimum and maximum deviations,
are reduced significantly when N is compared to N,. The median of normalized differences between the two
variables at 240 m is 0.77%, while the 1st and 99th percentiles are —25% and 31.81%, respectively.

The analysis in this section shows that there are significant biases in LWP and N, if both are derived for PCL pix-
els. A derivation based on equation (1) and the approaches detailed in sections 4.1 and 4.2 not only mitigates
the overall biases for the analyzed cloud scenes but also drastically reduces the range of observed deviations
from the actually observed cloud properties.

6. Validation With Extensive ASTER Data Set

The previous analysis in this study is based on the ASTER data set described in Werner et al. (2016) and Werner
etal. (2018), which consists of 48 marine altocumulus and broken cumulus scenes sampled off the coast of Cal-
ifornia. While there are a number of granules with scene cloud covers <25%, most scenes are characterized by
acloud fraction of >75%. Observations from these cloud fields were carefully colocated with the simultaneous
MODIS samples and comparisons of retrieved cloud properties exhibit a good agreement with the operational
MODIS C6 products (Werner et al., 2016). In this section we applied the proposed PCL retrieval approach to
446 ASTER scenes sampled over the tropical western Atlantic Ocean (12-20°N, 55-66°W) between Septem-
ber and December 2004 during the RICO campaign (Rauber et al., 2007), over the Gulf of Mexico (26-30°N,
90-98°W) between July and September 2006 during the GoOMACCS campaign, and over the Indian ocean (5°S
to 12°N, 68-78°E) between November 2006 and April 2007. More information about these scenes is given in
Zhao et al. (2009).

These broken cumulus fields are characterized by small cloud sizes, generally low scene cloud fractions (with
a median scene cloud cover of 7.79%) and the occasional presence of land surfaces (due to the inclusion of
small islands), while a handful of scenes even exhibit noticeable sunglint. Furthermore, these scenes have not
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Figure 10. (a) Comparison between derived liquid water path (LWP) based on the average 30-m reflectance of the overcast part of a pixel (LWP,) and the one
derived from the total reflectance. Colors indicate the subpixel cloud cover (C,,,;,; based on the extensive cloud masking scheme described in section 2); the gray
diagonal line indicates the identity line. The number of observations (n), correlation coefficient r, and normalized root-mean-square deviation between LWP, and
LWP (nRMSD) is given. (b) Probability density function (PDF) of the difference between LWP and LWP,, normalized by LWP,, for all PCL pixels. The 1st, 50th, and
99th percentiles are given. (c) PDF of the difference between derived liquid water path based on R;.Lo at 30 m (black), as well as 240 m (blue), from the Constant
Reflectance Ratio Approach (LWP?) and LWP,, normalized by LWP,, for all PCL pixels. (d—f) Same as (a)-(c) but for the cloud droplet number concentrations N, N,

and Ng.

been colocated with the respective MODIS observations and, as a result, the retrieved cloud properties have
not been compared to the operational MODIS C6 results. However, this comprehensive data set provides the
opportunity to test the viability of the assumptions and estimations in sections 4.1 and 4.2 under more com-
plex observational conditions. While the correlation between C?, and C,, (based on 240-m data) for these
scenes is r = 0.781, the bias is significantly larger with nRMSD = 35.46%. Most of the deviations occur for
Coup < 0.2, where a pixel level cloud property retrieval fails in more than 54% of cases (because reflectances
are too small and fall outside the LUT) and the median of successful = = 1.12. Here, the average overesti-
mation of C? is 32.97%. For pixels with C, > 0.2 there is an average overestimation of C? = of 7.62% and
r = 0.834. Similarly, there are slightly lower correlation coefficients and increased biases between R} . and R,
(at 240-m horizontal resolution) of r = 0.991 and NRMSD = 8.16%, if determined from the Constant Reflectance
Ratio Approach.

Figure 11 illustrates how the increased uncertainties in C; and R} | impact the cloud property retrieval for
PCL pixels. PDFs of 7 (i.e., the standard retrieval approach; black), 7, (i.e., the retrieval based on the observed
Ro 6.0 and m, blue) and 77 (i.e, the retrieval based on the estimated R{ ., and K, red) are shown in
Figure 11a. The distributions are based on n = 54, 328 cloudy PCL pixels at a horizontal resolution 960 m, while
7 is derived from the Constant Reflectance Ratio Approach. The subpixel horizontal resolution is 240 m. While
the distribution of 7 is slightly shifted toward smaller values, it can reliably reproduce the shape and range
of the 7, distribution. The 1st, 50th, and 99th percentiles of the normalized difference between = and 7, are

—79.89%, —37.86%, and 1.37%. In contrast, the comparison between 7 and 7z, becomes significantly better
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Figure 11. (a) Probability density function (PDFs) of the cloud optical thickness derived from the standard retrieval
approach (z; black), only from cloudy subpixel reflectances based on equation (1) (z,; blue), and the estimated overcast
reflectances based on the assumptions detailed in sections 4.1 and 4.2 (z}; red). Data are from cloudy PCL pixels, which
were observed over marine broken cumulus scenes (Zhao et al., 2009). The pixel level and subpixel horizontal
resolutions are 960 and 240 m, respectively. (b—d) Same as (a) but for the effective droplet radius (re, refro, and r:fflo),
liquid water path (LWP, LWP,, and LWP}), and cloud droplet number concentration (N, N, and N}), respectively.

with percentiles of —52.75%, —6.01%, and 9.07%, respectively. Similar improvements are observed for the
effective droplet radius, liquid water path, and droplet number concentration, illustrated in Figures 11b-11d.
The 1st, 50th, and 99th percentiles of the normalized difference between ry and r, are —48.96%, 6.80%,
and 62.13%, which improves to —25.33%, —0.16%, and 24.63% for r’.. . Most importantly, about 36.81% of
all pixel level retrievals with the standard approach fail, predomlnantly because R, ; becomes too low (i.e,
the retrieved r would be larger than the maximum value in the LUT). This finding is similar to the one in
Cho et al. (2015), who reported that for marine liquid water clouds about 33.81% of MODIS 2.1 pm retrievals
fail. Conversely, observations with very large values are almost non-existent for o, and r7,. . Meanwhile,
differences between LWP and LWP, exhibit percentiles of —88.14%, —33.76%, and 4.37%, wh|Ie those between
Nand N, are —84.26%, —32.61%, and 216.83% (as for the California scenes, there is a general underestimation
in N for PCL pixels, but maximum deviations can be very large). Comparing the observed results for the cloudy
part of PCL pixels to LWP? and N? yields much better agreements and the respective percentiles become
—58.88%, —7.72%, and 10.59% (LWP}) and —58.31%, —1.59%, and 91.97% (N).

The complex nature of these scenes seems to have no discernible negative impact on the reliability of the
retrieval of the estimated cloud products 7}, r’. , LWP}, and N and the significant improvements observed
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Figure 12. (a) Comparison between retrieved cloud optical thickness based on estimations for C: and R3 | from the Constant Reflectance Ratio Approach (z7))

and the one retrieved from aggregated reflectance (z). Data are from all (estimated) MODIS partly cloudy pixels, which were observed over the 48 marine
altocumulus and broken cumulus scenes over the Pacific Ocean off the Coast of California (see section 2). Colors indicate the estimated subpixel cloud cover
(C;‘ub; based on equation (2) and 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) visible to near-infrared reflectances); the gray diagonal line
indicates the identity line. The number of observations (n), correlation coefficient r, and normalized root-mean-square deviation between 'r; and 7 (hRMSD) is
given. (b) PDF of the difference between r and r;‘. (c) Same as (b) but for the cloud droplet number concentration (N and Nj;). (d) Same as (a) but for the effective
droplet radius (res and r:ff,o)' (e and f) Same as (b) but for liquid water path (LWP and LWP(’;).

for PCL pixels, which were sampled above MBL clouds off the coast of California, can be reproduced for more
complex broken cumulus fields from different locations.

7. MODIS PCL Data

MODIS VNIR and SWIR reflectances are reported at their native horizontal resolution of 250 and 500 m in
the operational MOD02QKM and MODO2HKM files, respectively (these file names are reserved for the Terra
platform; for Aqua the MYD-designation replaces MOD). Similar to the ASTER application before, in this
section these subpixel observations are used to derive 77, r:fflo, LWP? and N?. Since no MODIS cloud property
retrievals are performed at the 250-m scale, in a first step the ratio of atmospherically corrected to uncorrected
reflectance is determined for the necessary bands and applied to each of the 16 (for VNIR band observa-
tions) and 8 (for SWIR band observations) subpixels. Note, that atmospherically corrected reflectances at the
pixel level scale of 1,000 m are reported in the operational MODO06 level 2 files. Subsequently, the average
cloudy reflectances are determined from Equation (1). Here, the pixel level reflectances R, g5 and R, ; are the
atmospherically corrected values provided by MODIS, while the average clear-sky reflectance is derived from
the subpixel VNIR observations and the estimated C}, and 250-m R ;. Also note, that only the respective
~ 60 x 60 km?> ASTER scene is included in the MODIS analysis, that is, data are only from the respective sub-
scene and not the whole MODIS granule. These subscenes are the colocated MODIS data set reported in
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Werner et al. (2016). While ASTER does offer cross-track pointing capability, our data have all observations
close to nadir, with viewing zenith angles ranging from 0.03° to 13.99°.

Compared to the ASTER analysis in this study, this test with MODIS data exhibits some inherent uncertainties:
(i) The atmospheric correction based on 1,000-m data might be different from a theoretical 250-m result. (ii)
The observational geometry of ASTER 960-m data and the operational MODIS results is different; not only due
to the different pixel sizes but also because of different pixel orientations. This means that the retrieved cloud
properties and calculated PCL biases might be noticeably different. (iii) For MODIS there is no ground truth to
compare the retrieval results to. Consequently, the derived PCL biases are based on the difference between the
retrieved cloud properties from the standard retrieval approach and the estimated results from the methods
described in sections 4.1 and 4.2. Similarly, no operational C,,, is available, aside from the estimated values
based on equation (2). As before, nearly clear or overcast pixels (i.e., very low and high C? ) are excluded
from the analysis. Here, the somewhat arbitrary thresholds of C* = 3/16 and C; = 13/16 are chosen,
respectively, which yield a comparable number of PCL pixels as for the ASTER analysis.

Figure 12a shows a pixel level comparison between z* and 7, while Figure 12d illustrates a similar comparison
between r:ﬁlo and r.4. Even though the reference retrievals are the respective estimated cloud properties,
which are related to the overcast portion of a pixel, clear-sky contamination yields a similar underestimation
of = and general overestimation of r.4 for the MODIS observations (see Figure 4 for the ASTER comparison).
The correlation coefficients are comparable to the ASTER analysis, whereas the nRMSD results are noticeably
higher. Figures 12b and 12e show the respective PDFs of the relative difference between standard retrievals
and the estimated, overcast results. For the cloud optical thickness, the 1st, 50th, and 99th percentiles of the
relative difference 7 — 7 are —65.06%, —25.24%, and —5.63% (absolute values of —3.70, —0.46, and —0.06),
while statistics of —19.09%, 3.62%, and 68.00% (absolute values of —2.38, 0.39, and 8.72 pm) are observed for
the difference r 4 — Ior These differences, as well as the observed distributions, are very similar to the ASTER
biases reported in Table 3 and Figure 4, especially for the cloud optical thickness. Likewise, distributions for
the difference N — N and LWP — LWP? are shown in Figures 12c and 12f, respectively. The 1st, 50th, and 99th
percentiles of each difference are —81.36%, —20.37%, and 39.13% (absolute values of —138.83, —8.39, and
22.78 cm™3) for N and —61.69%, —22.83%, and 15.14% (absolute values of —26.73, —2.89, and 1.74 g/m?) for
LWP. While the maximum differences are rather different for both cloud parameters, the minimum and median
biases are very similar to the ASTER PCL results (see Figure 10). Given the difficulties in comparing the two
data sets and the lack of true reference retrievals, this good agreement confirms the improvements that can
be achieved for PCL retrievals and a possible application for MODIS.

8. Summary and Conclusions

This study uses ASTER observations from MBL cloud scenes at different horizontal resolutions to evaluate
cloud property retrievals for PCL pixels. It subsequently introduces techniques to estimate the subpixel cloud
cover and reflectance distribution in the SWIR band by utilizing available subpixel observations of R g (in
the VNIR). The high-resolution ASTER data provide the means to compare the pixel level results to reference
retrievals, which are representative of the overcast part of a PCL pixel. As a result, this study conclusively illus-
trates that these estimates facilitate an improved cloud property retrieval for PCL pixels, which successfully
mitigates the effects of clear-sky contamination. The approach can easily be adopted to similar MBL cloud
observations from other imagers, such as MODIS, VIIRS, and SEVIRI.

ASTER measurements at a horizontal resolution of 30 m provide high-resolution cloud properties at the sub-
pixel scale, while an aggregation of the observations to a scale of 960 m yields pixel level retrievals of 7 and r ¢,
which are comparable to the operational MODIS resolution. While the total reflectances R, g and R, ; are com-
prised of clear-sky and overcast subpixel reflectances, averages of the subpixel reflectances from the overcast
part yield the actual cloud properties 7, and r,, which are unbiased by the clear-sky component of the PCL
pixels. Naturally, for overcast pixels 7 = 7, and ro¢ = r,, but for PCL observations the pixel level retrievals
of 7 and r4 can be severely biased. For the analyzed ASTER scenes in this study there are significant under-
estimations of = and overestimations of r.4, which can be larger than —58.46%) and 41.05% in magnitude,
respectively. These biases directly impact the derivations of LWP and N, which both exhibit general underes-
timations of up to —68.37% and —72.00%, respectively. Due to the power laws involved in the calculations of
N, biases can become as large as 104%. Note that these quantitative results are specific to the studied data
set and are not necessarily expected for other observations (e.g., global MODIS retrievals).
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To mitigate the impact of clear-sky contamination for PCL pixels, methods to estimate C;;, and R} | at a hor-
izontal subpixel resolution of 240 m are introduced, which are based on the availability of high-resolution
R, 6 Observations. The derivation of 7~ follows the operational MODIS approach and a comparison between
the results and the actually observed C,, reveals a good agreement with a high correlation. Meanwhile,
estimates of R} | are subject to different assumptions about the subpixel cloud characteristics. Of the three
proposed assumptions, the Constant Reflectance Ratio Approach yields a good comparison between R; | and
the observed R, ; for PCL pixels, while remaining independent of a successful pixel level retrieval and compu-
tationally efficient. The described methods provide the necessary estimates of the average cloudy subpixel
reflectance for the retrieval of 7% and r:ff,o’ which agree well with the actually observed cloud properties. The
remaining mean biases for both results are greatly reduced, from —17.01% to —0.45% (for 7 and z7) and from
6% to —0.56% (for rg, and r7,. ). Similar improvements compared to the standard results are achieved for the
derived parameters LWP? and N?, where remaining mean biases are —1.72% (down from —18.67%) and 0.77%
(down from —18.41%), respectively.

The assumptions to estimate C;  and R; ,, as well as the reliability of the improved PCL retrieval, are evaluated
by means of an extended ASTER data set. These additional MBL cloud fields are composed of broken cumu-
lus and are significantly more complex. They are characterized by small horizontal cloud diameters and low
scene cloud covers, as well as the occurrence of sun glint and land surfaces. However, the retrieved 7z, r:fﬁo’
LWP?, and N still agree well with the actually observed cloud properties and the impact of clear-sky contam-
ination can be successfully mitigated. Considering that C? s already provided by the operational MODIS C6
cloud product, implementation of a PCL retrieval following those estimations and equation (1) for all cloudy
MODIS pixels appears to be feasible and would likely result in an improved cloud property retrieval for MBL
cloud scenes.

While for MODIS observations there is neither an operational C,,, nor the necessary reference retrievals for an
evaluation, an application of the proposed PCL retrieval scheme still allows for an analysis of retrieval biases
due to clear-sky contamination, similar to the ASTER analysis. Here the subpixel VNIR and SWIR reflectances are
provided by the MODIS level-1 samples at horizontal resolutions of 250 m and 500 m, respectively. A compari-
son between the operational retrievals results at the native 1,000 m scale and the estimated values 7% and r:ﬁ’o
yields underestimations of > 3.00 and overestimations of > 8 um, respectively. Despite different observational
geometries, the derived bias distributions and median biases are similar to the ASTER results.

It is important to note that the proposed PCL retrieval approach has only been tested and evaluate for MBL
clouds, where there is sufficient contrast between the bright cloud tops and the dark ocean surface. It is rea-
sonable to assume that the reliability of the retrieved cloud products suffers for more complex cloud fields,
primarily due to uncertainties in C; . The simple cloud masking scheme based on high-resolution obser-
vations at VNIR bands will likely yield substantial overestimations of C; if the sampled scenes exhibit an
increased aerosol particle loading, overlying cirrus, sunglint or strong radiative smoothing as a consequence
of 3-D radiative effects (i.e., low solar zenith angles and horizontal photon transport). Similarly, estimates of
C;,, that are only determined by the R, g threshold are subject to possible false cloud classifications on the
subpixel scale for measurements over bright surfaces (e.g., sand and urban landscapes). However, given that
the standard retrieval for PCL pixels assumes that C,;, = 1, a slight overestimation of C; | would still signify
an improvement, while a worst-case scenario (C; | = C,, = 1) would provide identical results (i.e, 77 = ;
similar for the other cloud properties).

b

Not discussed in this study is the possibility of reducing the number of failed PCL retrievals. About 36.81% of
all PCL observations for the data set in section 6 exhibit failed retrievals, predominantly because R, ; becomes
too low. The removal of the clear-sky component yields a successful 7, and r, retrieval for 87.65% for these
pixels. Additionally, equation (1 also helps to identify 14.44% of clear pixel level observations as PCL ones
(i.e., a clear 960 — m pixel includes at least one cloudy 240-m subpixel). Also not discussed are biases due to
the plane-parallel homogeneous bias. While the mathematical framework presented in Zhang et al. (2016)
is shown to successfully mitigate observed retrieval biases, it is only suitable for overcast conditions (Werner
et al, 2018). Since this study provides the means to derive the average cloudy reflectance and respective
cloud properties, a correction of the plane-parallel homogeneous bias can now also be applied to PCL pix-

els, which improves the reliability even further. At last, it is important to note that the retrieved 7, and r,
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might be impacted by 3-D radiative effects. PCL pixels are more susceptible to biases induced by unac-
counted horizontal photon transport, especially for observations with low C . These issues will be studied in
future works.
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