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Abstract Clear-sky contamination is a challenging and long-lasting problem for cloud optical thickness

(𝜏) and effective droplet radius (reff) retrievals using passive satellite sensors. This study explores the

feasibility of improving both 𝜏 and reff retrievals for partly cloudy (PCL) pixels by using available subpixel

samples in a visible to near-infrared band, which many satellite sensors offer. Data are provided by

high-resolution reflectance (R) observations and cloud property retrievals by the Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER) at horizontal resolutions between 30-960m. For partly

cloudy 960-m observations, the clear-sky component of the pixels induces significant underestimations of

up to 58% for 𝜏 , while overestimations in reff can exceed 41%. This yields underestimations in the derived

liquid water path and cloud droplet number concentration of up to 68% and 72%, respectively. By means

of three different assumptions it is shown that subpixel R observations in the visible to near-infrared band

can be used to estimate higher-resolution R for the second band in the retrieval scheme, as well as the

subpixel cloud cover. The estimated values compare well to actually observed ASTER results and are used

to retrieve cloud properties, which are unbiased by the clear-sky component of PCL pixels. While the

presented retrieval approach is only evaluated for marine boundary layer clouds, it is computationally

efficient and can be easily applied to observations from different imagers. As an example, the PCL retrieval

scheme is applied to data by the Moderate Resolution Imaging Spectroradiometer, where similar biases for

PCL pixels are observed.

Plain Language Summary Clear-sky contamination is a challenging and long-lasting problem

for cloud optical thickness and effective droplet radius retrievals using passive satellite sensors. This study

explores the feasibility of improving both retrievals for partly cloudy (PCL) pixels by using available subpixel

samples in a visible to near-infrared band, which many satellite sensors offer. For partly cloudy 960-m

observations, the clear-sky component of the pixels induces significant underestimations of up to −58%

for the cloud optical thickness, while overestimations in the effective droplet radius can exceed 41%. This

yields underestimations in the derived liquid water path and cloud droplet number concentration of up to

68% and 72%, respectively. It is shown that subpixel reflectance observations in the visible to near-infrared

band can be used to retrieve cloud properties, which are unbiased by the clear-sky component of the PCL

pixels. While the presented retrieval approach is only evaluated for marine boundary layer clouds, it is

computationally efficient and can be easily applied to observations from different imagers. As an example,

the PCL retrieval scheme is applied to data by the Moderate Resolution Imaging Spectroradiometer, where

similar biases for PCL pixels are observed.

1. Introduction

Marineboundary layer (MBL) clouds cover amajority of the Earth’s surface (King et al., 2013;Wood, 2012). They

are characterized by an overall negative net radiative forcing (solar plus terrestrial), which implies a cooling

effect (Albrecht, 1989; Klein &Hartmann, 1993;Warren et al., 1988). Since these low-level clouds are situated in

the boundary layer, their optical andmicrophysical properties, as well as the solar radiation reflected by these

cloud layers, are particularly sensitive to aerosol particle properties such as the particle number concentration

RESEARCH ARTICLE
10.1029/2018JD028902

Key Points:

• Cloud property retrievals for partially

cloudy pixels can be significantly

biased

• Based on simple assumptions, the

average of the overcast subpixel

reflectance can be estimated for MBL

cloud scenes

• The estimations yield retrievals,

which are unbiased by the clear-sky

component of the pixels

Correspondence to:

F. Werner,

frankw@umbc.edu

Citation:

Werner, F., Zhang, Z., Wind, G.,

Miller, D. J., Platnick, S., &

Di Girolamo, L. (2018). Improving

cloud optical property retrievals for

partly cloudy pixels using coincident

higher-resolution single band

measurements: A feasibility study

using ASTER observations.

Journal of Geophysical Research:

Atmospheres, 123, 12,253–12,276.

https://doi.org/10.1029/2018JD028902

Received 26 APR 2018

Accepted 26 SEP 2018

Accepted article online 9 OCT 2018

Published online 9 NOV 2018

©2018. American Geophysical Union.

All Rights Reserved.

WERNER ET AL. 12,253



Journal of Geophysical Research: Atmospheres 10.1029/2018JD028902

or particle size. Thus, MBL clouds are regularly the focus of aerosol-cloud-interaction studies, including the

first (Ackerman et al., 2000; Twomey, 1977; Werner et al., 2014) and second indirect aerosol effects (Albrecht,

1989; Seifert et al., 2015). Moreover, shallow cumulus convection plays an essential role in the transport of

moisture,momentum, andheat into the free troposphere (Tiedtke, 1989). Global cloudproperty observations,

such as 𝜏 , reff, liquid water path (LWP) and cloud droplet number concentration (N), from satellite sensors are

indispensable to quantify the role of MBL clouds in the climate system and improve their representation in

climate models.

Currently, the most widely used satellite-based remote sensing product of cloud properties is provided by

the Moderate Resolution Imaging Spectroradiometer (MODIS) imager aboard the National Aeronautics and

Space Administration’s Terra and Aqua satellites. The MODIS retrieval algorithm uses R from a nonabsorbing

(in the visible to near-infrared, VNIR) and absorbing (in the shortwave-infrared, SWIR) spectral band to retrieve

𝜏 and reff via the bispectral solar reflective method (Nakajima & King, 1990; Nakajima et al., 1991; Twomey &

Seton, 1980). While the respective MODIS R are observed at 250 and 500m, these observations are aggre-

gated and the cloud products are subsequently derived at a horizontal resolution of 1,000m. Macrophysical

properties of MBL clouds depend on the meteorological regime. Trade wind cumuli , which are ubiquitous

over the tropical and subtropical oceans (Siebert et al., 2013), typically exhibit horizontal scales < 1, 000m

(Norris, 1999; Zhao & Di Girolamo, 2007). Meanwhile, stratocumulus layers, despite their often homogeneous

appearances, are composed of small cellular convective eddies driven by longwave cooling and precipitation

(Feingold et al., 2010; Wood & Hartmann, 2006). In addition, pockets of open cells are often observed within

otherwise overcast cloud decks (Stevens et al., 2005; Wood et al., 2008). As a result, MODIS observations (or

those from similar satellite imagers) over broken cumuli and the edges of cumulus and stratocumulus fields

inevitably sample partially cloudy (PCL) pixels, which are notoriously challenging for cloud remote sensing.

While the operational MODIS collection 6 (C6) product attempts retrievals on the PCL population, the results

are reported in a separate data set, because of their lower expected quality. Apart from a bias in retrieved 𝜏

and reff, which subsequently impacts the estimates of aerosol indirect effects, the cloud property retrieval is

known to fail regularly. A study of global retrieval failure rates for marine liquid phase clouds by Cho et al.

(2015), using MODIS C6 cloud products for the year 2007, concluded that about 33.81% of retrievals fail (for

SWIR observations centered around a wavelength 𝜆 = 2.1 μm). This is due to the fact that the sampled SWIR

reflectances fall outside the precomputed lookup tables (LUTs) and the sensitivity toward reff is lost. How-

ever, that study also reported that PCL pixels account for about 30% of the studied population. Thus, simply

omitting PCL pixels (and thus sub-1,000-m clouds) from the observational data set may lead to a significant

sampling bias.

Approaches to retrieve MBL cloud properties for PCL pixels have been discussed by Arking and Childs (1985)

and Coakley et al. (2005). The proposed methods determine the cloud properties of the cloudy part of PCL

pixels by means of an iterative retrieval scheme, where the average clear-sky R and brightness tempera-

tures of the closest overcast and clear pixels are used to estimate the subpixel cloud fraction. Studies using

this retrieval scheme are very successful in demonstrating the impacts of surface contamination on satellite

retrievals of PCL pixels (Boeke et al., 2016; Coakley et al., 2005; Han et al., 1994; Hayes et al., 2010). However,

they share several important limitations: (i) The retrieval assumes a single cloud layer in the subregion in order

to derive average cloud top altitudes and associated brightness temperatures for each cloudy cluster. This

may induce significant uncertainties in the estimated subpixel cloud fractions. (ii) The approachmakes no use

of sampled information at the subpixel scale (e.g., R observations at 250 and 500m for MODIS). (iii) The itera-

tive estimation of subpixel cloud cover and retrieval of 𝜏 and reff is computationally expensive, which makes

an application for a large number of scenes, or a potential semioperational implementation, impractical. (iv)

Most importantly, no ground truth observations are provided to validate and evaluate the results.

This study uses Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) cloud

reflectances, cloudmask information and cloud property retrievals at horizontal scales between 30 and 960m

to (i) quantify the biases in retrieved cloud products for PCL pixels and (ii) facilitate a retrieval for PCL pixels by

using observed subpixel reflectances in a VNIR band, whichmitigates the impacts of clear-sky contamination.

The analysis benefits from the availability of reference retrievals that yield the cloud properties from the over-

cast part of each PCL pixel. The data set explored in this study consists of 48 MBL cloud scenes, which have

been thoroughly characterized and colocated with the operational MODIS C6 cloud products (Werner et al.,

2016). This manuscript is structured as follows: an overview of the ASTER data set, the retrieval algorithm, and

the cloud masking scheme is given in section 2. A statistical analysis of the frequency of PCL observations,

WERNER ET AL. 12,254



Journal of Geophysical Research: Atmospheres 10.1029/2018JD028902

Table 1

Case Number (C1–C48) and Sample Date of the 48MBL Scenes, WhichWere Sampled Over the Pacific Ocean Off

the Coast of California

# Date # Date # Date

1 03/02/2006/ 19:14:44 21 06/25/2004/ 19:10:45 41 10/06/2003/ 19:04:27

2 03/06/2005/ 19:20:37 22 07/04/2007/ 19:09:35 42 10/21/2006/ 19:09:31

3 03/06/2005/ 19:20:46 23 07/04/2007/ 19:10:19 43 10/25/2005/ 19:14:44

4 03/06/2005/ 19:20:55 24 07/04/2007/ 19:10:46 44 10/25/2006/ 18:45:26

5 03/06/2005/ 19:21:04 25 07/11/2007/ 19:16:06 45 10/25/2006/ 18:45:35

6 03/06/2005/ 19:21:13 26 07/20/2007/ 19:10:07 46 10/30/2006/ 19:03:35

7 03/08/2005/ 19:08:35 27 07/20/2007/ 19:10:16 47 12/03/2005/ 19:20:56

8 03/08/2005/ 19:08:44 28 07/20/2007/ 19:10:25 48 12/16/2004/ 19:20:41

9 03/08/2005/ 19:08:53 29 08/18/2006/ 19:09:01

10 04/19/2006/ 19:14:55 30 08/18/2006/ 19:09:18

11 04/19/2006/ 19:15:13 31 08/26/2003/ 19:09:37

12 04/19/2006/ 19:15:22 32 08/26/2003/ 19:09:55

13 04/19/2006/ 19:15:31 33 08/26/2003/ 19:10:12

14 05/13/2003/ 19:15:46 34 08/29/2006/ 18:52:02

15 05/30/2006/ 19:08:57 35 08/29/2006/ 18:52:11

16 06/02/2007/ 19:09:29 36 09/02/2003/ 19:15:12

17 06/02/2007/ 19:09:47 37 09/07/2005/ 19:14:31

18 06/03/2005/ 19:14:42 38 09/07/2005/ 19:14:49

19 06/10/2005/ 19:20:47 39 09/10/2006/ 19:15:21

20 06/10/2005/ 19:21:04 40 09/11/2004/ 19:21:08

Note.The date format is MM/DD/YYYY Hour:Minute:Second.

the observed retrieval bias for 𝜏 and reff, and the dependence on subpixel horizontal resolution is given in

section 3. Approaches to estimate the subpixel cloud cover and reflectancedistributionof the absorbingband

for the bispectral solar reflective method are presented in sections 4.1 and 4.2, respectively. These estimates

facilitate the proposed retrieval scheme for PCL pixels, which is evaluated in section 4.3. Since LWP and N can

be derived from the retrieved 𝜏 and reff, the performance of the new retrieval approach is compared to the

standard retrieval for PCL pixels in section 5. The results are validated by means of a much larger ASTER data

set in section 6, which consists of rather complex broken cumulus scenes. To test the application of the pro-

posed PCL retrieval for the MODIS imager, the retrieval scheme is applied to MODIS data in section 7. Finally,

a summary and conclusions are given in section 8.

2. ASTER Data

Data in this studyareprovidedbyhigh-resolutionASTERobservationsover 48marinealtocumulus andbroken

cumulus scenes, which were sampled over the Pacific Ocean off the Coast of California (covering the area

32.051–44.427∘N and 125.924–117.038∘W) between May 2003 and September 2007. These granules, which

are listed in Table 1, were manually selected and are characterized by sufficient scene cloud covers and cloud

sizes, a large number of colocated ASTER andMODIS pixels with successful cloud property retrievals, and the

absence of overlying cirrus, multiple cloud layers, and ice phase. These cloud fields cover most of the 𝜏 and

reff solution space, as well as varying solar zenith angles and scene cloud covers (C).

The ASTER imaging spectroradiometer aboard the National Aeronautics and Space Administration’s Terra

satellite samples≈ 650 scenes daily (mostly over land), with each scene about 60×60 km2 in area. Information

on the ASTER instrument design and technical specifications are reported in Yamaguchi et al. (1993), Yam-

aguchi et al. (1998), and Abrams (2000). The horizontal resolution of ASTER observations in the VNIR, SWIR,

and thermal infrared spectralwavelength range is 15, 30, and 90m, respectively. From the equations and coef-

ficients in Abrams et al. (2004) ASTER cloud top reflectances (R) can be derived from the raw digital counts,

which are characterized by an absolute radiometric uncertainties of <4% (Yamaguchi et al., 1998).
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Retrieved 𝜏 and reff are provided by an ASTER-specific, research level retrieval algorithm (Werner et al., 2016).

This algorithm utilizes the operational MODIS C6 retrieval core (King et al., 1997; Platnick et al., 2003) and

yields reliable cloud top, optical andmicrophysical variables, which comparewell with the operationalMODIS

C6 products (Werner et al., 2016). The retrieval is based on the bispectral solar reflective method, where R

at two different wavelengths (𝜆) are used to simultaneously infer 𝜏 and reff (Nakajima & King, 1990; Naka-

jima et al., 1991; Twomey & Seton, 1980). This approach utilizes so-called LUTs from one-dimensional (1-D)

radiative transfer simulations, that are composed of modeled R over a model cloud for varying 𝜏 and reff, as

well as different solar and viewing geometries. For the ASTER cloud property retrieval the observations in

the nonabsorbing band are provided by ASTER band 3N (nadir-viewing mode) reflectances centered around

𝜆 = 0.86 μm in the VNIR (R0.86), while the observations in the absorbing band are from ASTER band 5

reflectances centered around 𝜆 = 2.1 μm in the SWIR (R2.1). The mean retrieval uncertainties are estimated to

be 15%and23% for 𝜏 and reff, respectively (Werner et al., 2016). Due to the native resolution of theASTER SWIR

observations, the highest possible horizontal resolution of retrieved 𝜏 and reff is 30m. However, by aggre-

gating R0.86 and R2.1 within increasingly larger pixel footprints both cloud variables are available at arbitrary

horizontal resolutions. In this study both 𝜏 and reff are derived for horizontal resolutions between 30 and

960 m, which covers the native ASTER and operational MODIS C6 scales. Note that the retrieved 𝜏 is scaled to

the 0.65 μm band (i.e., band 2).

The distinction between clear-sky and overcast pixels in this study is performed with the cloud conservative

cloudmasking scheme introduced inWerner et al. (2016). Cloud detection from this algorithm is based on five

spectral tests that compare absolute ASTER reflectances, as well as color ratios and a derived brightness tem-

perature, to predefined thresholds. Those thresholds,whichwere carefully developed and testedon anumber

of different ASTER data sets, flag each ASTER pixel as either confidently cloudy, probably cloudy, probably

clear, or confidently clear (flag values of 0–3, respectively). As illustrated in Werner et al. (2016), the results

from this scheme compare well with the operational MODIS cloud mask product for colocated observations,

as well as the case-by-case ASTER cloudmask reported in Zhao andDi Girolamo (2006). It is important to note

that in this study a binary cloud flag is applied (i.e., cloudy pixels are composed of those with flag values of

0–1, while flag values of 2–3 consequently designate clear pixels).

3. ASTER Observations of Partially Cloudy Pixels

This section provides information about the observed cloud properties of the 48 ASTER scenes. Statistics

about the occurrence of PCL pixels are given in section 3.1. The biases in pixel level retrievals of 𝜏 and reff,

which are induced by clear-sky contamination on the subpixel scale, are assessed in section 3.2. Finally, a scale

analysis with different subpixel horizontal resolutions is presented in section 3.3.

3.1. PCL Statistics

AmapofR0.86 sampled at ahorizontal resolutionof 30mabove a small broken cumulus fieldover theoceanon

3 December 2005 (case 47 in ; Werner et al., 2016) is shown in Figure 1a. This example scene covers an area of

about10×10 km2 anddepicts parts of twoconvective clouds, aswell as some smaller cloudy fragments. At this

scale the highly heterogeneous cloud structure becomes obvious and numerous illuminated and shadowed

areas are visible. In comparison, at 960-m horizontal resolution most of the fine-scale cloud structures are

smoothed out, as illustrated in Figure 1b. Due to the abundance of cloud edges in this scene, there are a

multitude of 960-m pixels that are only partially covered with clouds on the subpixel scale. For each of these

pixels the subpixel cloud cover (Csub) is calculated from the observed number of cloudy 30-m subpixels, which

is determined by the extensive cloudmasking scheme described in section 2. Note that at this subpixel scale,

there are 32×32 = 1, 024 available subpixels within a 960-mpixel to calculate Csub. Cloudy 30-mpixels for this

scene are shown in white color in Figure 1c. Here red boxes indicate cloudy 960-m pixels with a successful 𝜏

and reff retrieval and Csub < 0.95, while light green boxes showpixels with Csub = 0.95−1 (i.e., almost overcast

pixels). Since the applied cloud mask is cloud conservative with respect to clouds very thin clouds might be

missed by the algorithm, which explains some of the missed cloud detections for very low reflectances. Still,

it is obvious that for the example scene in Figure 1 amajority of the cloudy 960-m samples can be considered

to be PCL pixels. Even though all pixel outlines in red have a successful cloud property retrieval at a horizontal

resolution of 960m there are a number of observations with very few cloudy subpixels.

Similar analysis has been performed for all 48 ASTER scenes. Figure 2a shows the cumulative probability den-

sity functionofobservedCsub for all cloudy960-mpixels. Asbefore, onlypixelswith a successful cloudproperty
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Figure 1. (a) Single band, grayscale image of ASTER band 3N reflectances (R0.86) for a scene observed off the coast of California on 3 December 2005 at 19:20:56

UTC. The horizontal resolution is 30m. (b) Same as (a) but the R0.86 sampled at the 30-m scale are aggregated to a horizontal resolution of 960m. (c) Binary cloud

flag based on 30-m ASTER data; white colors indicate cloudy 30-m pixels, based on the cloud masking algorithm described in section 2. Red and light green

boxes highlight partially cloudy 960-m pixels with a successful cloud property retrieval, where the subpixel cloud cover (Csub ; derived from 30-m data) is in the

range of 0>Csub < 0.95 and 0.95>Csub < 1.0, respectively. Gray boxes indicate overcast 960-m pixels (i.e., Csub = 1.00) with a successful cloud property retrieval.

retrieval are considered. Overall, about 28.2%of data points are classified as PCLpixels (i.e.,Csub < 0.95; 37,164

pixels in total), while 15.7% (20,697), 8.0% (10,463), and2.4% (3,206) exhibitCsub < 0.75, 0.5, 0.25, respectively.

This means, that close to 30% of observed pixels are either excluded from standard retrieval approaches or

are misrepresented as overcast, which agrees well with the findings of Cho et al. (2015). Figure 2b shows the

probability density function (PDF) ofCsub for all PCL observations. Clearly, the largest contribution comes from

observations with Csub > 0.95. These pixels are usually not cloud edge samples, but rather in-cloud observa-

tions with low pixel level 𝜏 retrievals. Note that a less conservative cloud masking algorithm might classify

such pixels as overcast. Apart from Csub < 0.1, there are noticeable contributions from the whole Csub range.

The Csub statistics in Figure 2 are derived from ASTER samples at a horizontal resolution of 30m. However, the

analysis in this study covers subpixel horizontal resolutions up to 480m, with a fixed pixel level horizontal

resolution of 960m. This has a significant impact on Csub, because for subpixel observations at 240m (480m)

only 4 × 4 = 16 (2 × 2 = 4) subpixels are available to calculate Csub. As a result, a 960-m pixel can only

exhibit Csub = 0.00, 0.25, 0.5, 0.75, 1.00 if calculated from 480-m data. Compared to the 30-m cloud mask,

where almost clear and almost overcast pixels are possible (i.e., Csub close to 0 and 1, respectively), such pixels

Figure 2. (a) Cumulative density function (CDF) of Csub for all cloudy pixels (for visibility reasons the last data point at

100% is not shown). Data are from 48 altocumulus and broken cumulus scenes sampled off the coast of California. The

horizontal resolution at the pixel level is 960m. (b) Probability density function (PDF) of Csub for all partially cloudy pixels.
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Figure 3. Comparison between subpixel cloud cover (Csub ; based on the extensive cloud masking scheme described in section 2) derived from Advanced

Spaceborne Thermal Emission and Reflection Radiometer reflectances sampled at a horizontal resolution of 30m and those from (a) 120-m, (b) 240-m, and

(c) 480-m data. The correlation coefficient r and normalized root-mean-square deviation (nRMSD) between Csub from 30m and lower-resolution reflectances is

given. The gray diagonal line indicates the identity line.

will either be classified as clear or fully overcast from 480-m subpixel data. This is illustrated in Figures 3a–3c,

where the subpixel cloud cover at the native ASTER resolution is statistically compared to Csub based on

120, 240, and 480 −m observations, respectively. The horizontal bars indicate the spread of the 30-m results

for each 120, 240, 480−m Csub bin. For the 120−m results, themedian 30-m cloudmask values (dots) closely

follow the identity line and high values of Pearson’s product-moment correlation coefficient between the

low- and high-resolution Csub are observed (r = 0.994). Moreover, the normalized root-mean-square devia-

tion (nRMSD; defined as the RMSD between the two data sets, normalized by the mean 30-m Csub) is 2.13%.

Increasing the subpixel horizontal resolution to 240m (480m) yields a decreased correlation of r = 0.973

(0.894), as well as larger deviations from the 30-m results with nRMSD = 4.58% (nRMSD = 9.10%). Overall, an

increase in subpixel horizontal resolution from 30m to 120, 240, and 480m results in an increase in average

Csub of 0.72%, 1.91%, and 4.34%, respectively.

Note that these statistics are particular to the 48 ASTER scenes in this study. More comprehensive statis-

tics about the scale dependence of cloud fraction estimates are reported by Shenk and Salomonson (1972),

Wielicki and Parker (1992), Krijger et al. (2007), Dey et al. (2008), andAckerman et al. (2008), where the relation-

ships between domain size, pixel resolution, cloudiness, and cloud macrophysical parameters are analyzed

for a wide range of observational conditions. However, similar to the comparisons in Figure 3, these studies

find a strong dependence of cloud fraction on observational scale, with significant increases in cloud cover

with increasing sensor resolution due to PCL pixels being counted as overcast. Thus, in this study PCL pixels

(i) are characterized by a successful 𝜏 and reff retrieval at 960-m horizontal resolution, (ii) exhibit Csub < 1 at all

possible subpixel scales between 30 and 480m, and (iii) include at least one subpixel with a successful cloud

property retrieval. These conditions provide a reliable data set of 10,484 PCL pixels at all scales that avoids

almost clear (i.e., very low 30-m Csub; minimum remaining value is Csub = 0.21) and almost overcast pixels (i.e.,

very high 30-m Csub; maximum remaining value is Csub = 0.88).

3.2. Retrieval Bias for PCL Pixels

A PCL observation at the pixel level scale consists of both clear-sky subpixel reflectances (R0.86,c and R2.1,c;

indicated by the index c) and overcast subpixel reflectances (R0.86,o and R2.1,o; indicated by the index o), which

are sampled above clouds. These reflectances are connected to the total reflectances at the pixel level scale

(the standard R0.86 and R2.1 samples at, e.g., 960m) as follows:

R0.86 = (1 − Csub) ⋅ R0.86,c + Csub ⋅ R0.86,o

R2.1 = (1 − Csub) ⋅ R2.1,c + Csub ⋅ R2.1,o. (1)

Here the horizontal bars above the clear-sky and overcast reflectance indicate the spatial averages of the

respective variable. In the case of an overcast pixel, Csub = 1 and subsequently R0.86 = R0.86,o (similarly for R2.1).

Conversely, for a PCL pixel Csub < 1 and, assuming observations above a dark surface (e.g., over oceans), both

R0.86 < R0.86,o and R2.1 < R2.1,o. As a result, for PCL pixels there is a difference between the standard 𝜏 and reff
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Figure 4. (a) Comparison between retrieved cloud optical thickness based on the average reflectance of the cloudy part of a pixel (𝜏o) and the one retrieved

from the total reflectance (𝜏). The pixel level scale is 960m, while the subpixel data are provided by 30 −m observations. Colors indicate the subpixel cloud cover

(Csub ; based on the extensive cloud masking scheme described in section 2); the gray diagonal line indicates the identity line. The number of observations (n),

correlation coefficient (r), and normalized root-mean-square deviation between 𝜏o and 𝜏 (nRMSD) is given. (b) Probability density functions (PDFs) of 𝜏o (red) and

𝜏 for PCL pixels (blue). Additionally, 𝜏 = 𝜏o for overcast pixels is illustrated (black). (c) PDF of the difference between 𝜏 and 𝜏o for all partly cloudy (PCL) pixels. The

1st, 50th, and 99th percentiles are given. (d)–(f ) Same as (a)–(c), but for the effective droplet radius (reff,o and reff).

retrievals, which are based on the total reflectances R0.86 and R2.1, and the actual underlying cloud properties

𝜏o and reff,o (based on R0.86,o and R2.1,o).

A comparison between 𝜏o and 𝜏 for all PCL observations is shown in the scatter plot in Figure 4a. Colors

indicate the value of Csub, with black (red) colors indicating high (low) Csub. Because of the reduced VNIR

reflectance for PCL pixels following equation (1), almost all samples are characterized by a strong underesti-

mation of the pixel level 𝜏 compared to 𝜏o. This underestimation becomesmore pronouncedwith decreasing

Csub. Even though the correlation coefficient between 𝜏o and 𝜏 is still high (r = 0.853), the bias between the

two data sets is significant (nRMSD = 30.72%). Rather, similar PDFs of 𝜏o (red) and 𝜏 (blue) for all PCL pix-

els are illustrated in Figure 4b. There is a shift toward larger values as the 1st, 50th, and 99th percentiles of

𝜏 observations change from 0.61, 2.35 and 4.62 to 1.26, 3.05 and 6.95 for 𝜏o, respectively. Compared to the

results for PCL pixels, the cloud optical thickness distribution of all overcast pixels (black), where Csub = 1 and

𝜏 = 𝜏o, shows significantly larger values. While the PCL and overcast distributions are not directly comparable

because they are composed of completely different populations, these vastly different 𝜏 ranges are not sur-

prising. PCLpixels are usually associatedwith cloudholes andedges,where turbulentmixing andevaporation

processes yield a reduced liquid water amount and geometrical thickness (Schmeissner et al., 2015). A PDF of

the difference between 𝜏 and 𝜏o for all PCL pixels is illustrated in Figure 4c; however, although awider range of

−8.22 < 𝜏−𝜏o < 0.62 is observed, only the 1st and 99th percentiles of the difference (−3.21 < 𝜏−𝜏o < −0.19)

are shown for visibility reasons. For all analyzed PCL pixels the median underestimation in cloud optical

thickness due to clear-sky contamination is −0.66.
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Table 2

Comparison Between Pixel Level Retrievals (𝜏 and reff) and the 30-m Subpixel Cloud Properties (𝜏o and reff,o),

AsWell As Comparisons Between 𝜏o and reff,o at Different Horizontal Resolutions

1st, 50th, 99th percentiles nRMSD r

𝜏 − 𝜏o (30m) −62.98%, −22.30%, −7.68% 30.72% 0.853

𝜏o (240m) – 𝜏o (30m) −19.74%, −5.99%, 3.73% 8.79% 0.985

𝜏o (480m) – 𝜏o (30m) −36.12%, −10.34%, 10.76% 15.55% 0.941

reff − reff,o (30m) −34.60%, 3.54%, 38.36% 13.74% 0.967

reff,o (240m) – reff,o (30m) −14.24%, −2.53%, 5.51% 4.06% 0.996

reff,o (480m) – reff,o (30m) −28.64%, −6.03%, 13.20% 9.26% 0.977

Note. The 1st, 50th, and 99th percentiles of relative biases, the normalized root-mean-square deviations

(nRMSD), and the correlation coefficients (r) between the respective variables are given.

Similarly, a comparison between reff,o and reff is shown in Figures 4d–4f. While 𝜏 < 𝜏o for almost all PCL pix-

els, both overestimations and underestimations of reff (compared to reff,o) are observed and the comparison

exhibits ahigher correlation (r = 0.967) and lowernRMSD (13.74%). Asbefore, thedeviationsbetween the two

retrievals increasewithdecreasingCsub. The PDFof reff for PCLpixels is rather flat, as the1st, 50th, and99th per-

centiles of observations are 5.21, 15.36, and 29.31 μm. In particular, a prominent tail in the PDF with retrievals

of reff > 25 μm is observed and about 5.67% of retrievals fail, mostly due to reff > 30 μm (i.e., R2.1 is too low and

the apparent effective radius becomes larger than themaximum value in the LUT). Conversely, a bimodal dis-

tribution for reff,o is apparent and the distribution bears a resemblance to the PDF for overcast pixels. There are

significantly less observations of reff,o < 6 μm and reff,o > 25 μm compared to the standard PCL results, while

the 1st, 50th, and 99th percentiles of observations are 6.73, 14.60, and 26.90 μm. Overall, differences cover the

rangeof−7.65 μm < reff−reff,o < 12.00 μm, which is reduced to−3.18 μm < reff−reff,o < 6.76 μm if only the 1st

and 99th percentiles are considered. This indicates that while both overestimations and underestimations are

observed for PCL pixels, clear-sky contaminations yield a primarily positive bias in retrieved effective droplet

radius with a median bias of about half a micron. These findings are consistent with the reported findings in

Marshak et al. (2006), where some very small and mostly very large reff can occur for PCL pixels.

Note that in this studywe do not analyze the impact of three-dimensional (3-D) radiative effects (i.e., ignoring

horizontal photon transport in realistic 3-D cloud structures in the 1-D radiative transfer simulations). Retrieval

biases due to 3-D radiative effects are commonly associated with cloud shadows and illuminated cloud sides,

among others (Barker & Liu, 1995; Chambers et al., 1997; Marshak et al., 2006). Due to increased variability in

cloud top height and an abundance of cloud edges with low 𝜏 these biases can be substantial for heteroge-

neous, broken cumulus fields. As a result, the 𝜏o and reff,o retrievals, while correcting for the effects of clear-sky

contamination, are not necessarily the true underlying cloud properties.

3.3. Dependence on Subpixel Horizontal Resolution

The scale dependence of Csub, which is illustrated in Figure 3, indicates that a decrease in subpixel horizontal

resolutionmight induce significant uncertainties, which directly impacts the reliability of R0.86,o and R2.1,o and,

subsequently, the cloud property retrieval.

A comparison of 𝜏o, using observations from the native horizontal resolution of 30m, and those based on

240-m reflectances is shown in Figure 5a. A summary of the results is presented in table 2. Even though

lower-resolution subpixel data were used to calculate both R0.86,o and R2.1,o, there is overall good agreement

between the two retrievals for the overcast part of PCL pixels with r = 0.985 and nRMSD = 8.79%. A decrease

of subpixel horizontal resolution to 480m reduces the correlation (r = 0.941) and increases the nRMSD to

15.55%, as shown in Figure 5b. Considering the uncertainty in Csub (compared to the 30-m results) this behav-

ior is not surprising. Distributions of the difference between 𝜏o from lower-resolution subpixel data and from

30-m observations is shown in Figure 5c. These PDFs can be directly compared to the distribution of 𝜏 − 𝜏o

in Figure 4c. Using 240-m reflectances, the 1st, 50th, and 99th percentiles of the difference are reduced to

−0.94, −0.17, and 0.13, respectively (−1.66, −0.29, and 0.35 for the 480-m results). While the comparison is

worse than for 240-m subpixel observations, retrieved 𝜏o from 480 and 30-m data still agree better than the

standard retrievals from the pixel level reflectances (see Figure 4a).
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Figure 5. Comparison between retrieved cloud optical thickness based on the average 30-m reflectance of the overcast part of a partly cloudy pixel (𝜏o) and 𝜏o
based on the average (a) 240- and (b) 480-m subpixel reflectance. The pixel level scale is 960m. Colors indicate the subpixel cloud cover (Csub ; from 30-m data

and based on the extensive cloud masking scheme described in section 2); the gray diagonal line represents the identity line. The correlation coefficient (r) and

normalized root-mean-square deviation between 𝜏o from 30m and lower-resolution reflectances (nRMSD) is given. (c) Probability density functions (PDFs) of the

difference between 𝜏o from 30-m data and 240-m (blue), as well as 480-m overcast reflectance (black), respectively. The 1st, 50th, and 99th percentiles are given.

(d–f ) Same as (a)–(c) but for the effective droplet radius (reff,o).

Retrieved reff,o based on 240-m subpixel observations also agree well with the 30-m results, as shown in

Figure 5d. Compared to the standard retrievals shown in Figure 4d, the correlation coefficient is increased

(r = 0.996) and significantly reduced deviations from the identity line yield a much lower nRMSD of = 4.06%.

As before, the retrieval based on 480-m data deviates more from the 30-m results, as illustrated in Figure 5e.

The scatter around the identity line is increased and starts to resemble the behavior of reff shown in Figure 4e,

although the correlation coefficient is still higher (r = 0.977) and the nRMSD is lower (9.26%). Figure 5f illus-

trates the PDF of the difference between reff,o from the lower-resolution subpixel data and the 30-m results.

Compared to the standard reff retrieval the maximum deviations are significantly reduced, as the 1st, 50th,

and 99th percentiles of the difference of reff,o from 240 and 30-m observations are−1.77,−0.34, and 1.11 μm,

respectively (−3.92,−0.80, 2.54 μm for the 480-m results). Again, these results are summarized in Table 2.

Considering the good agreement between derived Csub from 30 and 120-mdata, the agreement between the

respective 𝜏o and reff,o is even better if higher-resolution subpixel data are available to calculate the average

overcast subpixel reflectance following equation (1). However, at all subpixel scales the results are less biased

than the standard retrieval of 𝜏 and reff, which simply utilizes the pixel level reflectances and assumesCsub = 1.

4. Improved PCL Retrieval With Subpixel VNIR Information

The unique ASTER data set in this study provides the necessary subpixel information about Csub, R0.86 and

R2.1 at arbitrary horizontal resolutions (as long as it is > 30m). However, most satellite-based passive sensors

are characterized by more limited subpixel observations. Imagers that facilitate operational retrievals with a

global coverage (e.g., MODIS and VIIRS) usually sample reflectances at much coarser spatial resolutions. The
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operational MODIS C6 retrievals are performed at horizontal scales of 1,000m and are based on aggregated

VNIR andSWIR reflectances,which are observed at 250 and500m, respectively.Meanwhile, theVNIR andSWIR

reflectances from VIIRS are sampled at a horizontal resolution of 375m and are subsequently aggregated to

750m for the cloud property retrieval. Other instruments (e.g., SEVIRI) only have a single high-resolution VNIR

band and no high-resolution SWIR reflectances are available.

This section introduces approaches to estimate the subpixel cloud cover (section 4.1) and high-resolution R2.1
(section 4.2) forMBL cloud scenes. These techniquesmake use of available subpixel VNIR reflectance observa-

tions and thus are applicable for common satellitemissions. However, the analysis is geared toward apotential

MODIS application and thus features similar pixel level and subpixel horizontal resolutions of 960 and 240m.

The estimated subpixel properties provide the input for a retrieval for PCL pixels following equation (1), which

is evaluated in section 4.3.

4.1. Estimation of Subpixel Cloud Cover

Approaches to determine cloud cover in the presence of PCL pixels have been reported byMinnis et al. (1987),

Wielicki and Parker (1992), and Coakley et al. (2005). These techniques are highly scene dependent, include

observations at a thermal band to determine brightness temperatures and consist of comparisons with cloud

albedo climatologies. A simpler approach is employed by the operational MODIS cloudmask product (Acker-

manet al., 1998; Baumet al., 2012),whichyields abinary 250-mcloudiness flag fromapair of visible reflectance

thresholds. The proposed estimation of the subpixel cloud cover (C∗
sub

; the superscript ∗ indicates the esti-

mated value) closely follows this MODIS approach and is based on a simpler cloudmasking scheme based on

240-m VNIR data. In a first step, the pixel level cloud mask value is assigned to each of the 240-m subpixels.

Note that for this study the four cloudiness flags are already reduced to a binary cloud mask, as described in

section 2. Subsequently, two spectral tests are performed for each subpixel of a cloudy pixel level observation.

The first test is composed of a comparison of the 240-m subpixel VNIR reflectance to the 90th percentile of

clear-sky pixels in the respective scene (p90). The second test determines whether the color ratio of R0.86/R0.65
is within the range of two predefined thresholds (here R0.65 indicates ASTER band 2 reflectances centered

around 𝜆 = 0.65 μm). This test closely resembles the third cloudiness test of the full ASTER cloud mask algo-

rithmdescribed inWerner et al. (2016) and is used to distinguish clouds from the darker ocean surface, as well

as frommeasurement over land. Consequently, a subpixel is determined to be cloudy if

R0.86 > p90 and

0.8 <
R0.86

R0.65
< 1.75. (2)

It is important to emphasize the limitations of this technique, which essentially just accentuates the general

uncertainties of satellite-based cloud fraction estimations. As discussed by Dey et al. (2008), Di Girolamo and

Davies (1997), and Yang and Di Girolamo (2008), cloud detection algorithms should be designed individually

with a particular application in mind. Its performance is affected not only by observational scale and thresh-

olding effects but also by scene characteristics such as cloud type and surface albedo, as well as the presence

of three-dimensional radiative effects and sunglint, among others. The applied cloudmasking scheme in this

study was designed for (and validated by) marine cumulus and stratus scenes, with only liquid phase and

low to moderate aerosol turbidity, and which were sampled outside of strong sunglint and large solar zenith

angles (i.e., 𝜃0 > 65∘). Consequently, the presented results in this section, which evaluate the subpixel cloud

cover estimates based on equation (2), are only valid for similar cloud sceneswith a high contrast in the visible

spectral wavelength range between cloudy and clear pixels.

Figure 6a shows a comparisonbetween the actually observedCsub (based on 240-mdata) andC∗
sub

, derived for

all cloudy 960-mpixels. Dots indicate themedian of theC∗
sub

distributionwithin eachCsub bin (in increments of

0.05), while the vertical bars illustrate the interquartile range (IQR; 75th–25th percentile of data points). There

is a high correlation between C∗
sub

and Csub with r = 0.948 and nRMSD= 6.40%. Most deviations from the

identity line tend to be overestimations of the estimated subpixel cloud cover, which increasewith decreasing

Csub. Since in the standard retrieval of 𝜏 and reff the PCL pixel is assumed to exhibit Csub = 1, a slight over-

estimation indicates that the derived R0.86,o and R2.1,o from equation (1) fall between the actually observed

values and the total reflectances at the pixel level scale. This behavior is preferable to an underestimation of

C∗
sub

(compared to the true Csub), where the R0.86 and R2.1 would be overcorrected.
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Figure 6. (a) Comparison between the actually observed subpixel cloud cover (Csub ; based on the extensive cloud

masking scheme described in section 2) derived from 240-m data and the estimated results (C∗
sub

; based on

equation (2)). The pixel level scale is 960m. The number of observations (n), correlation coefficient r, and normalized

root-mean-square deviation between the Csub and C∗
sub

(nRMSD) is given. (b) Same as (a) but Csub is derived from

observations at a horizontal resolution of 30m.

Comparing C∗
sub

to the actually observed values from30-mdata (i.e., calculated fromobservations at the high-

est possible resolution) instead of Csub at 240m reveals that the general overestimation of C∗
sub

becomesmore

prominent, as shown in Figure 6b. This is especially true for pixels with large subpixel cloud cover (Csub > 0.85),

where the estimated results almost universally exhibit C∗
sub

= 1. However, for these PCL pixels the biases asso-

ciated with pixel level retrievals of 𝜏 and reff are comparatively small (see Figure 3) and the impact of C∗
sub

overestimations should be negligible. Overall, the correlation between C∗
sub

and Csub decreases (r = 0.930)

and the bias (nRMSD = 8.13%) becomes larger when Csub is derived from 30-m observations.

Considering the limitations of the approach, while keeping in mind that the comparisons are performed for

marine liquidwater clouds only, it can be concluded that the steps outlined in this section provide reasonable

estimates of the actually observed subpixel cloud cover for the 48 MBL cloud fields in this study. Naturally,

this also indicates that the binary 250-m cloudiness flag provided by MODIS yields good estimates of C∗
sub

, at

least for MBL cloud scenes in the absence of cirrus, low Sun or sunglint.

4.2. Estimation of High-resolution SWIR Observations

While many sensors provide information about the distribution of subpixel VNIR reflectances within the

remotely sensedpixels, some sensors, likeMODIS, evenprovide subpixel SWIR reflectance data, albeit at lower

spatial scales. In the following paragraphs three methods are discussed, which provide estimations of R2.1 for

each subpixel, based on different assumptions and the information about the observed subpixel behavior

of R0.86.

The first method, which is referred to hereafter asOversampled SWIR Reflectance Approach and is illustrated in

Figure 7a, assumes that while there is variability in R0.86 within a pixel, R2.1 remains constant on the subpixel

scale. This means that the pixel level R2.1 value is simply assigned to each of the available subpixels, which

makes this approacheasy to implement andcomputationally inexpensive. The red triangle in theexample LUT

indicates a pixel with average observations of R0.86 = 0.305 and R2.1 = 0.200, while the black dots represent

the position of four subpixels with varying VNIR reflectance (gray lines indicate the values R0.86,i and R2.1,i of

the i = 1 − 4 subpixels). Since it is assumed that there is no variability in R2.1,i within the pixel, it follows that

R2.1,i = R2.1 = 0.200. To test the quality of this assumption, the inhomogeneity indexH𝜎,2.1 is calculated, which

is defined as the ratio of standard deviation (𝜎2.1) to spatial average (i.e., the pixel level value R2.1) of subpixel

SWIR reflectances (Cho et al., 2015; Di Girolamo et al., 2010; Liang et al., 2009; Zhang & Platnick, 2011; Zhang

et al., 2012):

H𝜎,2.1 =
𝜎2.1

R2.1
. (3)
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Figure 7. (a) Example lookup table to illustrate the Oversampled SWIR Reflectance Approach. The red triangle indicates the mean R0.86 and R2.1 of a pixel, while

the black dots illustrate R0.86 of four subpixels and the respective R2.1 based on the Oversampled SWIR Reflectance approach. Gray vertical and horizontal lines

are visual aids. (b and c) Same as (a) but illustrating the Constant Reflectance Ratio Approach and Constant reff Approach, respectively. (d) Probability density

function of the subpixel variability of R2.1 (H𝜎,2.1). The subpixel and pixel level scale is 240 and 960m, respectively. (e) Same as (d) but for the difference of the

ratio of R0.86 to R2.1. (f ) Same as (d) but for the subpixel variability of the effective droplet radius (H𝜎,reff
).

Figure 7d shows the PDF of observed H𝜎,2.1 for all cloudy ASTER pixels. The pixel level and subpixel scale is

960 and 240m, respectively. The peak of the distribution is found around low values of H𝜎,2.1 ≈ 0.03, which

is representative of rather homogeneous distributions. However, there are a multitude of pixels with signif-

icantly higher values that are associated with inhomogeneous pixels. The 1st, 50th, and 99th percentiles of

H𝜎,2.1 observations is 0.013, 0.074, and 0.434. This indicates that for the sampled cloud fields in this study there

is a nonnegligible subpixel variability in R2.1 and that a general assumption of H𝜎,2.1 = 0 is not appropriate.

A second approach is based on the assumption that the inhomogeneity index of the VNIR reflectance equals

H𝜎,2.1 (i.e., spectrally consistent subpixel deviations from the spatially averaged reflectance):

H𝜎,2.1 = H𝜎,0.86

𝜎2.1

R2.1
=

𝜎0.86

R0.86
√

1

n−1
⋅

∑i=n

i=1
(R2.1,i − R2.1)

2

R2.1
=

√

1

n−1
⋅

∑i=n

i=1
(R0.86,i − R0.86)

2

R0.86
, (4)

where the index i = 1, 2,… , n indicates each of the n available subpixels. Additionally, if deviations of indi-

vidual subpixel reflectances from the average (pixel level) values are similar for both bands (i.e., R2.1,i − R2.1 =

R0.86,i − R0.86), equation (4) can be simplified to

R2.1,i

R0.86,i
=

R2.1

R0.86
. (5)

Equation (5) suggests that the ratio of SWIR to VNIR reflectance at the subpixel scale is equal to the ratio of the

pixel level results. Consequently, this method is called Constant Reflectance Ratio Approach and is illustrated
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in Figure 7b. Similar to Figure 7a, the pixel level reflectances of R0.86 = 0.305 and R2.1 = 0.235 are indicated

by a red triangle in the example LUT. While the individual subpixels have the same R0.86,i as before, the cor-

responding estimates of R2.1,i show some variability. Positive and negative R0.86,i deviations from the pixel

level VNIR reflectance yield positive and negative R2.1,i deviations from R2.1, respectively. To test the viability

of the assumption in equation (5), the PDF of the difference between subpixel and pixel level SWIR to VNIR

reflectance ratio (i.e.,
R2.1,i

R0.86,i
−

R2.1

R0.86
) is calculated and shown in Figure 7e. These ratios are derived for all cloudy

960-mASTERpixels,while the subpixel horizontal resolution is 240m. The1st,50th, and99thpercentiles of the

calculated differences are−0.56,−0.02, and 0.50. However, 50% of observations are in the range−0.13–0.07

(i.e., a difference between subpixel and pixel level reflectance ratio of≤ 13%) and themedian is close to 0. This

indicates that for a majority of observations the assumption of constant reflectance ratios at different scales

is reasonable.

A third approach to estimate R2.1,i assumes a constant reff within a pixel. Since the relationship between

retrieved cloud properties and cloud top reflectance is determined by the LUT, each R2.1,i can be derived via

interpolation of the modeled SWIR reflectances at the position of each R0.86,i along the respective reff isoline.

This Constant reff Approach is illustrated in Figure 7c, where individual R2.1,i align with the reff = 12 μm-isoline.

The appropriate reff isoline can be determined in different ways: (i) depending on the retrieved pixel level

cloud properties the interpolation is performed along the isoline corresponding to the closest reff that exists

in the LUT simulations. Depending on the reff resolution of the applied LUT (i.e., the reff values for which simu-

lations exist) this can lead to substantial uncertainties, while the computational costs are low. (ii) Interpolated

LUT values are generated for the retrieved 𝜏 and reff, which reduces uncertainty and increases computational

costs. To test whether the assumption of constant reff within a pixel is reasonable, the inhomogeneity index

with regard to the effective radius (H𝜎,reff
; defined as the ratio of standard deviation to spatial average of sub-

pixel reff at 240m) is calculated for all cloudy pixels with a horizontal resolution of 960m. Figure 7f shows the

PDF of H𝜎,reff
, which is visibly narrower than the PDF of H𝜎,2.1 in Figure 7d. The 1st, 50th, and 99th percentiles

of observations are 0.00, 0.02, and 0.21, which suggests that a majority of ASTER pixels indeed exhibit little

variability in subpixel reff.

Each of the proposed approaches offers advantages and disadvantages. The Oversampled SWIR Reflectance

Approach is simple and computationally inexpensive, but based on the PDF of observed H𝜎,2.1 in Figure 7d

this method might result in significant uncertainties in the estimation of R2.1,i. Meanwhile, ASTER observa-

tions indicate that the assumptions in the Constant Reflectance Ratio Approach seem reasonable. While this

method is computationally inexpensive, it is only valid for thinner clouds, where 𝜏 and reff are strongly corre-

lated (note the almost linear increase of the reff isolines in Figure 7 for 𝜏 < 8). Conversely, for 𝜏 > 17 the R0.86
sensitivity to 𝜏 is nearly orthogonal to the R2.1 sensitivity to reff (i.e., the respective isolines become orthogo-

nal). As a result, large subpixel R0.86 variability is associated with low R2.1 variability for such pixels. Finally, the

Constant reff Approach requires a successful cloud property retrieval, which has been shown to frequently fail

for pixels with very low Csub. Moreover, the pixel level reff can be significantly biased due to clear-sky contam-

ination (see biases in Figure 4), as well as the plane-parallel homogeneous bias (Marshak et al., 2006; Werner

et al., 2018; Zhang et al., 2016), which describes the difference between pixel level retrievals and the spa-

tial average of the subpixel results. For such observations the derivation of R2.1,i is performed along a wrong

isoline. Note that if applied to MODIS observations, 250-m SWIR reflectances can be estimated from actually

observed R2.1 at 500m, while the retrieval products are provided at horizontal resolutions of 1,000m. Thus,

applying this approach for suchgeometries requires an additional 500-m retrieval of reff, whichwould increase

the computational costs even further.

To evaluate the three techniques with ASTER data, joint PDFs of actually observed R2.1 at a horizontal res-

olution of 240m and the estimated results (R∗
2.1
; the superscript ∗ again indicates the estimated value) are

calculated and shown in Figure 8 for (a) the Oversampled SWIR Reflectance Approach, (b) the Constant

Reflectance Ratio Approach, and (c) the Constant reff Approach. The first two approaches are facilitated by

pixel level R2.1, whichwere sampled above all cloudy 960-mpixels. Tominimize the influence of clear-sky con-

tamination and theplane-parallel homogeneousbias, the respective reff isoline in theConstant reff Approach is

determined from the spatial average of actually observed 240-m retrievals and not from the pixel level result.

The Oversampled SWIR Reflectance Approach yields the lowest correlation (r = 0.980) and largest bias

(nRMSD = 9.36%) between R2.1 and R∗
2.1
, although the majority of observations are concentrated around

the identity line. The comparison improves noticeably for the Constant Reflectance Ratio Approach, where
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Figure 8. (a) Joint probability density function of actually observed 240-m shortwave-infrared (SWIR) reflectance (R2.1) and estimated R2.1 based on the

Oversampled SWIR Reflectance Approach. The estimation is facilitated by observed R2.1 at a horizontal resolution of 960m. Only cloudy 960-m pixels are

considered in the analysis. The number of observations (n), correlation coefficient r, and normalized root-mean-square deviation between observed and

estimated R2.1 (nRMSD) are given. (b and c) Same as (a) but the estimation is based on the Constant Reflectance Ratio Approach and Constant reff Approach,

respectively. (d–f ) Same as (a–c) but the estimation is based on observed R2.1 at a horizontal resolution of 480m.

r = 0.995 and the bias is reduced to nRMSD = 4.40% (i.e., less than half the bias of the first method).

Both approaches yield n = 2, 094, 838 high-resolution R∗
2.1

values. However, due to the extra constraint of

a successful effective radius retrieval, this number is reduced by about 34,000 data points (2%) if the Con-

stant reff Approach is applied. While this method results in the highest correlation (0.998) and lowest bias

(nRMSD = 2.40%; almost half the bias of the Constant Reflectance Ratio Approach, some significant overes-

timation and underestimations of R∗
2.1

are observed. This is not surprising, because the approach assumes a

successful cloud property retrieval along a fixed reff isoline. If some of the subpixels deviate substantially from

this line, or are positioned outside the LUT, the error in R∗
2.1

can become quite large. If the pixel level horizon-

tal resolution is increased to 480m (i.e., closely resembling the MODIS geometry), the comparisons improve

noticeably. Correlation coefficients increase to r = 0.991, 0.998, 0.999 for the three approaches, while the

biases are reduced to nRMSD = 6.02%, 2.93%, and 1.77%. The number of successful R∗
2.1

estimations is slightly

increased, which can be explained by the increase in the number of cloudy pixels at 480m. As before, this

number is lower for the Constant reff Approach, where a successful cloud property retrieval is required.

Both the Constant Reflectance Ratio Approach and Constant reff Approach yield reasonable estimates of R∗
2.1
.

However, depending on the magnitude of the bias in the pixel level reff retrieval, employing the Constant reff
Approach for a PCL observation requires multiple retrieval iterations. During each iteration the new estimate

of reff,o provides a more reliable isoline for the R∗
2.1

interpolation. This makes the Constant reff Approach com-

putationally less efficient in comparison to the other two approaches. Note that due to the better comparison

with actual ASTER observations for small R2.1,i (which are more common in PCL pixels) the cloud property

retrievals in the following sections have been derived with the Constant Reflectance Ratio Approach.
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Figure 9. (a) Comparison between retrieved cloud optical thickness based on the average 30-m reflectance of the overcast part of a pixel (𝜏o) and the cloud

optical thickness based on estimations for C∗
sub

and R∗
2.1

from the Constant Reflectance Ratio Approach (𝜏∗o ). Colors indicate the subpixel cloud cover (Csub ; based

on the extensive cloud masking scheme described in section 2); the gray diagonal line indicates the identity line. The correlation coefficient r and normalized

root-mean-square deviation between 𝜏o and 𝜏∗o (nRMSD) is given. (b) Same as Figure 4b but also including a probability density function (PDF) of 𝜏∗o (orange).

(c) PDF of the difference between 𝜏∗o and 𝜏o for all PCL pixels (black), as well as between 𝜏∗o and 𝜏o based on the average 240m reflectance of the overcast part of

a pixel (blue). The respective 1st, 50th, and 99th percentiles are given. (d–f ) Same as (a–c) but for the effective droplet radius reff,o, r
∗
eff,o

, and reff .

4.3. Evaluation of Estimated PCL Retrieval

Section 4.1 demonstrates that information about the subpixel VNIR distribution can be used to infer rea-

sonable estimates of the subpixel cloud cover, while section 4.2 introduces methods to reliably estimate the

SWIR reflectance for each subpixel. Both provide the means to calculate the average of estimated cloudy

reflectances, that is,R∗
0.86,o

andR∗
2.1,o

in equation (1), and subsequently retrieve 𝜏∗
o
and r∗

eff,o
(asbefore, the super-

script ∗ indicates the estimated value). Naturally, any uncertainty in the respective estimations will induce an

uncertainty in the derived cloud properties.

Figures 9a and 9d show a comparison between 𝜏∗
o
and r∗

eff,o
and the respective 𝜏o and reff,o, which are based

on ASTER observations at 30-m horizontal resolution. The estimated retrievals are based on the Constant

Reflectance Ratio Approach with R2.1 samples at 480m; as before the analysis is performed for all cloudy PCL

pixels with a horizontal resolution of 960m. This geometry allows not only for a direct comparison to the

results in Figure 4 but also for an evaluation of the estimated retrieval for PCL pixels (based on equation (1)) in

regard to a potential MODIS application. Derived 𝜏∗
o
agree well to the actually observed 𝜏o with r = 0.973 and

a reduced bias of nRMSD = 11.59%, which resembles a significant improvement from the standard retrieval

based on the pixel level reflectance. A similarly improved comparison between reff,o and r∗
eff,o

is shown in

Figure 9d, where the correlation is increased (r = 0.989) and the bias is reduced (from nRMSD = 13.74%

to nRMSD = 6.06%). As a result, the PDFs of 𝜏∗
o
and r∗

eff,o
(orange) in Figures 9b and 9e closely resemble the

respective distributions of 𝜏o and reff,o. The improvement from the standard retrieval is particularly obvious for

the effective droplet radius, where the prominent tail of large reff > 25 μm is not observed for r∗
eff,o

. Similar to

Figures 4c and 4f, PDFs of the remaining biases between estimated and observed cloudy part retrievals (black
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Table 3

The 1st, 50th, and 99th Percentiles of the Difference 𝜏∗o − 𝜏o and r
∗
eff,o

− reff,o

𝜏∗o − 𝜏o r∗
eff,o

− reff,o

Approach 1st 50th 99th 1st 50th 99th

Standard −3.74 −0.47 −0.07 −3.27 μm 0.84 μm 6.16 μm

Oversampled SWIR Reflectance −0.66 0.01 0.30 −0.38 μm 1.67 μm 9.00 μm

Constant Reflectance Ratio −0.71 −0.01 0.22 −1.64 μm −0.06 μm 2.11 μm

Constant reff −0.53 0.00 0.25 −0.90 μm 0.43 μm 3.20 μm

Note. Statistics aregiven for theOversampledSWIRReflectance,ConstantReflectanceRatio, andConstant reff Approaches.

Also, the statistics for the difference between standard partly cloudy retrievals, which are based on the average pixel

level reflectance, and 𝜏o and reff,o are also presented. The pixel level and subpixel horizontal resolutions are 960 and

240m, respectively. SWIR = shortwave-infrared.

lines) are shown in Figures 9c and 9e. The distributions are much narrower, as the 1st, 50th, and 99th per-

centiles of the difference 𝜏∗
o
−𝜏o are−1.26,−0.22, and 0.10 (2.42,−0.43, 2.20 μm for the difference r∗

eff,o
− reff,o).

These statistics are also very similar to the 240-m results from the scale analysis in Figures 5c and 5f. If 𝜏∗
o

and r∗
eff,o

are compared to 𝜏o and reff,o from 240-m subpixel observations (instead of the high-resolution 30-m

results), the differences become even smaller (blue lines). Here the 1st, 50th, and 99th percentiles of the

difference 𝜏∗
o
− 𝜏o are −0.71, −0.01, and 0.22 (1.64,−0.06, 2.11 μm for the difference r∗

eff,o
− reff,o).

The remaining biases between 𝜏∗
o
and r∗

eff,o
from the three approaches highlighted in section 4.2 and the

actually observed cloud retrievals at 240m are summarized in Table 3. To provide the appropriate reference

statistics, the differences 𝜏 − 𝜏o and reff − reff,o (i.e., the performance of the standard retrieval approach) are

also listed. Regarding the difference 𝜏∗
o
− 𝜏o the three approaches described in section 4.2 yield considerable

improvements in comparison to the standard retrieval. Statistics for the three methods are very similar and

highlight that the estimated retrieval for PCL pixels can effectively mitigate the bias introduced by clear-sky

contamination (i.e., a median difference close to 0). Larger variability between the three approaches exist for

the differences of r∗
eff,o

− reff,o. Considering the uncertainties in R∗
2.1

shown in Figure 8a, the differences for

the Oversampled SWIR Reflectance Approach are characterized by the largest 50th and 99th percentiles that

are even larger than the ones from the standard retrieval. This approach can also not mitigate the extended

tail of reff > 25 μm in the PDF (however, it minimizes observations of very small reff,o < 6 μm). Both the Con-

stant Reflectance Ratio Approach and Constant reff Approach provide considerable improvements and the

retrievals exhibit substantially reduced biases. Distributions of r∗
eff,o

have no tail of large droplets for either

approach and the PDFs look almost indistinguishable. The Constant Reflectance Ratio Approach yields amin-

imum median difference between reff,o and r∗
eff,o

(it also has the lowest 99th percentile). Note that while the

respective deviations become larger, these conclusions do not change when 𝜏o and reff,o are derived from

30-m data.

The results in Figure 9 and Table 3 illustrate that for the 48 MBL cloud scenes in this study the estimations

presented in sections 4.1 and 4.2 yield retrievals, which correspond to the cloudy part of PCL pixels and agree

well with the actually observed ASTER properties. This approach is directly applicable to MODIS observations

and represents a significant improvement over the standard retrieval, which simply utilizes the pixel level

observations of R0.86 and R2.1.

5. Impact on Liquid Water Path and Droplet Number Concentration

Retrievals of 𝜏 and reff are widely used to infer the LWP and the cloud droplet number concentration (N). Both

parameters are key variables for studies of aerosol-cloud interactions (Albrecht, 1989; Twomey, 1974) and the

subsequent radiative forcing (Lohmann et al., 2010; Ramaswamy & Chen, 1993). Therefore, it is essential to

evaluate how these parameters are biased, when they are derived for PCL pixels.

The LWP can be calculated from the product of 𝜏 and reff (Brenguier et al., 2000; Miller et al., 2016):

LWP = Γ ⋅ 𝜌l ⋅ 𝜏 ⋅ reff, (6)

where 𝜌l and Γ are the density of liquid water and a coefficient, which accounts for the vertical cloud profile.

For vertically homogeneous clouds Γ = 2∕3. Relating the retrieved cloud variables to N requires a number of
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assumptions and simplifications (Bennartz, 2007; Brenguier et al., 2000; Schüller et al., 2005):

N = 𝛼 ⋅ 𝜏0.5 ⋅ r−2.5
eff

, (7)

with 𝛼 = 1.37 ⋅ 10−5 following Quaas et al. (2006). As before, for PCL pixels both parameters can be derived

from (i) 𝜏 and reff, which represent the biased results due to clear-sky contamination; (ii) 𝜏o and reff,o, which

correspond to the parameters from the overcast part of a pixel; and (iii) 𝜏∗
o
and r∗

eff,o
, which are the estimated

results that mitigate the PCL bias. The analysis in section 3.2 reveals an overall negative and positive bias in

retrieved 𝜏 and reff, respectively. This would indicate an overall negative bias for derived N, while the bias in

LWP could be either positive or negative, depending on whether the 𝜏 or reff contribution dominates.

Figure 10a shows a comparisonbetweenderived LWPo, which is basedon 𝜏o and reff,o at a horizontal resolution

of 30m, and the standard results of LWP for all PCL pixels. The relationship looks similar to the one for 𝜏 , which

is illustrated in Figure 4a, as there are strong underestimations of LWP with r = 0.937 and nRMSD = 27.48%.

The 1st, 50th, and 99th percentiles of the normalized difference between LWP and LWPo (defined as the differ-

ence between both parameters, divided by LWPo) are −72%, 18.67%, and 1.40% (corresponding to absolute

differences of−35.1,−5.1, and 0.46g/m2). The respective distribution is almost exclusively comprised of neg-

ative values, as shown in Figure 10b. These biases are drastically reduced, if the liquid water path is derived

from 𝜏∗
o
and r∗

eff,o
. Figure 10c shows the normalized difference between LWP∗

o
and LWPo. Similar to previous

Figures, LWP∗
o
is derived from 240-m subpixel reflectances and compared to LWPo based on both 30 (black)

and 240-m (blue) subpixel data. Naturally, the estimated results compare best to LWPo at 240m, where the

1st, 50th, and 99th percentiles of the normalized difference are−26.21%,−1.72%, and 10.70%.However, even

compared to the 30-m results of LWPo there is a significant improvement, if the derivation is based on 𝜏∗
o
and

r∗
eff,o

instead of the standard results.

Figures 10d–10f illustrate the relationships between N, No, and N∗
o
, which are derived from 𝜏 and reff, 𝜏o, and

reff,o, as well as 𝜏
∗
o
and r∗

eff,o
, respectively. The pixel level comparison betweenNo andN reveals a lot of scatter, a

lower correlation (r = 0.871) and a rather large bias (nRMSD=51.66%). Besides the expected underestimation

in N a number of samples with large overestimations are apparent, which are associated with small effective

radius retrievals around 5 μm. While these observations, which exhibit a relative difference in droplet number

concentration of>40%, exist for only 3.6% of all PCL pixels, they still have a sizable statistical impact. The 1st,

50th, and 99th percentiles of the relative difference are −68.37%, −18.41% and 104.15% (i.e., absolute differ-

ences of−42.7,−4.3, and 101.2 cm−3). The median biases, as well as the minimum andmaximum deviations,

are reduced significantly when N∗
o
is compared to No. Themedian of normalized differences between the two

variables at 240m is 0.77%, while the 1st and 99th percentiles are −25% and 31.81%, respectively.

The analysis in this section shows that there are significant biases in LWP andN, if both are derived for PCL pix-

els. A derivation based on equation (1) and the approaches detailed in sections 4.1 and 4.2 not only mitigates

the overall biases for the analyzed cloud scenes but also drastically reduces the range of observed deviations

from the actually observed cloud properties.

6. Validation With Extensive ASTER Data Set

The previous analysis in this study is based on the ASTER data set described inWerner et al. (2016) andWerner

et al. (2018),which consists of 48marine altocumulus andbroken cumulus scenes sampledoff the coast of Cal-

ifornia. While there are a number of granuleswith scene cloud covers<25%,most scenes are characterized by

a cloud fractionof>75%.Observations from these cloudfieldswere carefully colocatedwith the simultaneous

MODIS samples and comparisonsof retrieved cloudproperties exhibit a goodagreementwith theoperational

MODIS C6 products (Werner et al., 2016). In this section we applied the proposed PCL retrieval approach to

446 ASTER scenes sampled over the tropical western Atlantic Ocean (12–20∘N, 55–66∘W) between Septem-

ber and December 2004 during the RICO campaign (Rauber et al., 2007), over the Gulf of Mexico (26–30∘N,

90–98∘W)between July and September 2006 during theGoMACCS campaign, andover the Indian ocean (5∘S

to 12∘N, 68–78∘E) between November 2006 and April 2007. More information about these scenes is given in

Zhao et al. (2009).

These broken cumulus fields are characterized by small cloud sizes, generally low scene cloud fractions (with

a median scene cloud cover of 7.79%) and the occasional presence of land surfaces (due to the inclusion of

small islands), while a handful of scenes even exhibit noticeable sunglint. Furthermore, these scenes have not
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Figure 10. (a) Comparison between derived liquid water path (LWP) based on the average 30-m reflectance of the overcast part of a pixel (LWPo) and the one

derived from the total reflectance. Colors indicate the subpixel cloud cover (Csub ; based on the extensive cloud masking scheme described in section 2); the gray

diagonal line indicates the identity line. The number of observations (n), correlation coefficient r, and normalized root-mean-square deviation between LWPo and

LWP (nRMSD) is given. (b) Probability density function (PDF) of the difference between LWP and LWPo , normalized by LWPo , for all PCL pixels. The 1st, 50th, and

99th percentiles are given. (c) PDF of the difference between derived liquid water path based on R∗
2.1,o

at 30m (black), as well as 240m (blue), from the Constant

Reflectance Ratio Approach (LWP∗o) and LWPo , normalized by LWPo , for all PCL pixels. (d–f ) Same as (a)–(c) but for the cloud droplet number concentrations N, No

and N∗
o.

been colocated with the respective MODIS observations and, as a result, the retrieved cloud properties have

not been compared to the operational MODIS C6 results. However, this comprehensive data set provides the

opportunity to test the viability of the assumptions and estimations in sections 4.1 and 4.2 under more com-

plex observational conditions. While the correlation between C∗
sub

and Csub (based on 240-m data) for these

scenes is r = 0.781, the bias is significantly larger with nRMSD = 35.46%. Most of the deviations occur for

Csub < 0.2, where a pixel level cloud property retrieval fails in more than 54% of cases (because reflectances

are too small and fall outside the LUT) and the median of successful 𝜏 = 1.12. Here, the average overesti-

mation of C∗
sub

is 32.97%. For pixels with Csub > 0.2 there is an average overestimation of C∗
sub

of 7.62% and

r = 0.834. Similarly, there are slightly lower correlation coefficients and increased biases between R∗
2.1

and R2.1
(at 240-mhorizontal resolution) of r = 0.991andnRMSD=8.16%, if determined fromtheConstant Reflectance

Ratio Approach.

Figure 11 illustrates how the increased uncertainties in C∗
sub

and R∗
2.1

impact the cloud property retrieval for

PCL pixels. PDFs of 𝜏 (i.e., the standard retrieval approach; black), 𝜏o (i.e., the retrieval based on the observed

R0.86,o and R2.1,o; blue) and 𝜏∗
o
(i.e., the retrieval based on the estimated R∗

0.86,o
and R∗

2.1,o
; red) are shown in

Figure 11a. Thedistributions arebasedonn = 54, 328 cloudyPCLpixels at a horizontal resolution 960m,while

𝜏∗
o
is derived from theConstant Reflectance Ratio Approach. The subpixel horizontal resolution is 240m.While

the distribution of 𝜏∗
o
is slightly shifted toward smaller values, it can reliably reproduce the shape and range

of the 𝜏o distribution. The 1st, 50th, and 99th percentiles of the normalized difference between 𝜏 and 𝜏o are

−79.89%, −37.86%, and 1.37%. In contrast, the comparison between 𝜏∗
o
and 𝜏o becomes significantly better
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Figure 11. (a) Probability density function (PDFs) of the cloud optical thickness derived from the standard retrieval

approach (𝜏 ; black), only from cloudy subpixel reflectances based on equation (1) (𝜏o ; blue), and the estimated overcast

reflectances based on the assumptions detailed in sections 4.1 and 4.2 (𝜏∗o ; red). Data are from cloudy PCL pixels, which

were observed over marine broken cumulus scenes (Zhao et al., 2009). The pixel level and subpixel horizontal

resolutions are 960 and 240m, respectively. (b–d) Same as (a) but for the effective droplet radius (reff , reff,o, and r∗
eff,o

),

liquid water path (LWP, LWPo , and LWP∗o), and cloud droplet number concentration (N, No and N∗
o), respectively.

with percentiles of −52.75%, −6.01%, and 9.07%, respectively. Similar improvements are observed for the

effective droplet radius, liquid water path, and droplet number concentration, illustrated in Figures 11b–11d.

The 1st, 50th, and 99th percentiles of the normalized difference between reff and reff,o are −48.96%, 6.80%,

and 62.13%, which improves to −25.33%, −0.16%, and 24.63% for r∗
eff,o

. Most importantly, about 36.81% of

all pixel level retrievals with the standard approach fail, predominantly because R2.1 becomes too low (i.e.,

the retrieved reff would be larger than the maximum value in the LUT). This finding is similar to the one in

Cho et al. (2015), who reported that for marine liquid water clouds about 33.81% of MODIS 2.1 μm retrievals

fail. Conversely, observations with very large values are almost non-existent for reff,o and r∗
eff,o

. Meanwhile,

differences between LWP and LWPo exhibit percentiles of−88.14%,−33.76%, and 4.37%,while those between

N andNo are−84.26%,−32.61%, and 216.83% (as for the California scenes, there is a general underestimation

inN for PCL pixels, butmaximumdeviations can be very large). Comparing the observed results for the cloudy

part of PCL pixels to LWP∗
o
and N∗

o
yields much better agreements and the respective percentiles become

−58.88%, −7.72%, and 10.59% (LWP∗
o
) and −58.31%, −1.59%, and 91.97% (N∗

o
).

The complex nature of these scenes seems to have no discernible negative impact on the reliability of the

retrieval of the estimated cloud products 𝜏∗
o
, r∗

eff,o
, LWP∗

o
, and N∗

o
and the significant improvements observed
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Figure 12. (a) Comparison between retrieved cloud optical thickness based on estimations for C∗
sub

and R∗
2.1

from the Constant Reflectance Ratio Approach (𝜏∗o )

and the one retrieved from aggregated reflectance (𝜏). Data are from all (estimated) MODIS partly cloudy pixels, which were observed over the 48 marine

altocumulus and broken cumulus scenes over the Pacific Ocean off the Coast of California (see section 2). Colors indicate the estimated subpixel cloud cover

(C∗
sub

; based on equation (2) and 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) visible to near-infrared reflectances); the gray diagonal line

indicates the identity line. The number of observations (n), correlation coefficient r, and normalized root-mean-square deviation between 𝜏∗o and 𝜏 (nRMSD) is

given. (b) PDF of the difference between 𝜏 and 𝜏∗o . (c) Same as (b) but for the cloud droplet number concentration (N and N∗
o). (d) Same as (a) but for the effective

droplet radius (reff and r∗
eff,o

). (e and f) Same as (b) but for liquid water path (LWP and LWP∗o).

for PCL pixels, which were sampled above MBL clouds off the coast of California, can be reproduced for more

complex broken cumulus fields from different locations.

7. MODIS PCL Data

MODIS VNIR and SWIR reflectances are reported at their native horizontal resolution of 250 and 500m in

the operational MOD02QKM and MOD02HKM files, respectively (these file names are reserved for the Terra

platform; for Aqua the MYD-designation replaces MOD). Similar to the ASTER application before, in this

section these subpixel observations are used to derive 𝜏∗
o
, r∗

eff,o
, LWP∗

o
and N∗

o
. Since no MODIS cloud property

retrievals are performed at the 250-m scale, in a first step the ratio of atmospherically corrected to uncorrected

reflectance is determined for the necessary bands and applied to each of the 16 (for VNIR band observa-

tions) and 8 (for SWIR band observations) subpixels. Note, that atmospherically corrected reflectances at the

pixel level scale of 1,000 m are reported in the operational MOD06 level 2 files. Subsequently, the average

cloudy reflectances are determined from Equation (1). Here, the pixel level reflectances R0.86 and R2.1 are the

atmospherically corrected values provided by MODIS, while the average clear-sky reflectance is derived from

the subpixel VNIR observations and the estimated C∗
sub

and 250-m R∗
2.1
. Also note, that only the respective

≈ 60 × 60 km2 ASTER scene is included in the MODIS analysis, that is, data are only from the respective sub-

scene and not the whole MODIS granule. These subscenes are the colocated MODIS data set reported in
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Werner et al. (2016). While ASTER does offer cross-track pointing capability, our data have all observations

close to nadir, with viewing zenith angles ranging from 0.03∘ to 13.99∘.

Compared to the ASTER analysis in this study, this test with MODIS data exhibits some inherent uncertainties:

(i) The atmospheric correction based on 1,000-m data might be different from a theoretical 250-m result. (ii)

The observational geometry of ASTER 960-mdata and the operationalMODIS results is different; not only due

to the different pixel sizes but also because of different pixel orientations. This means that the retrieved cloud

properties and calculated PCL biases might be noticeably different. (iii) For MODIS there is no ground truth to

compare the retrieval results to. Consequently, thederivedPCLbiases arebasedon thedifferencebetween the

retrieved cloud properties from the standard retrieval approach and the estimated results from the methods

described in sections 4.1 and 4.2. Similarly, no operational Csub is available, aside from the estimated values

based on equation (2). As before, nearly clear or overcast pixels (i.e., very low and high C∗
sub

) are excluded

from the analysis. Here, the somewhat arbitrary thresholds of C∗
sub

= 3∕16 and C∗
sub

= 13∕16 are chosen,

respectively, which yield a comparable number of PCL pixels as for the ASTER analysis.

Figure 12a shows a pixel level comparison between 𝜏∗
o
and 𝜏 , while Figure 12d illustrates a similar comparison

between r∗
eff,o

and reff. Even though the reference retrievals are the respective estimated cloud properties,

which are related to the overcast portion of a pixel, clear-sky contamination yields a similar underestimation

of 𝜏 and general overestimation of reff for the MODIS observations (see Figure 4 for the ASTER comparison).

The correlation coefficients are comparable to the ASTER analysis, whereas the nRMSD results are noticeably

higher. Figures 12b and 12e show the respective PDFs of the relative difference between standard retrievals

and the estimated, overcast results. For the cloud optical thickness, the 1st, 50th, and 99th percentiles of the

relative difference 𝜏 − 𝜏∗
o
are −65.06%, −25.24%, and −5.63% (absolute values of −3.70, −0.46, and −0.06),

while statistics of−19.09%, 3.62%, and 68.00% (absolute values of−2.38, 0.39, and 8.72 μm) are observed for

the difference reff − r∗
eff,o

. These differences, as well as the observed distributions, are very similar to the ASTER

biases reported in Table 3 and Figure 4, especially for the cloud optical thickness. Likewise, distributions for

the difference N − N∗
o
and LWP − LWP∗

o
are shown in Figures 12c and 12f, respectively. The 1st, 50th, and 99th

percentiles of each difference are −81.36%, −20.37%, and 39.13% (absolute values of −138.83, −8.39, and

22.78 cm−3) for N and −61.69%, −22.83%, and 15.14% (absolute values of −26.73, −2.89, and 1.74g/m2) for

LWP.While themaximumdifferences are rather different for both cloudparameters, theminimumandmedian

biases are very similar to the ASTER PCL results (see Figure 10). Given the difficulties in comparing the two

data sets and the lack of true reference retrievals, this good agreement confirms the improvements that can

be achieved for PCL retrievals and a possible application for MODIS.

8. Summary and Conclusions

This study uses ASTER observations from MBL cloud scenes at different horizontal resolutions to evaluate

cloud property retrievals for PCL pixels. It subsequently introduces techniques to estimate the subpixel cloud

cover and reflectance distribution in the SWIR band by utilizing available subpixel observations of R0.86 (in

the VNIR). The high-resolution ASTER data provide the means to compare the pixel level results to reference

retrievals, which are representative of the overcast part of a PCL pixel. As a result, this study conclusively illus-

trates that these estimates facilitate an improved cloud property retrieval for PCL pixels, which successfully

mitigates the effects of clear-sky contamination. The approach can easily be adopted to similar MBL cloud

observations from other imagers, such as MODIS, VIIRS, and SEVIRI.

ASTER measurements at a horizontal resolution of 30m provide high-resolution cloud properties at the sub-

pixel scale, while an aggregation of the observations to a scale of 960m yields pixel level retrievals of 𝜏 and reff,

which are comparable to the operationalMODIS resolution.While the total reflectances R0.86 and R2.1 are com-

prised of clear-sky and overcast subpixel reflectances, averages of the subpixel reflectances from the overcast

part yield the actual cloud properties 𝜏o and reff,o, which are unbiased by the clear-sky component of the PCL

pixels. Naturally, for overcast pixels 𝜏 = 𝜏o and reff = reff,o, but for PCL observations the pixel level retrievals

of 𝜏 and reff can be severely biased. For the analyzed ASTER scenes in this study there are significant under-

estimations of 𝜏 and overestimations of reff, which can be larger than −58.46%) and 41.05% in magnitude,

respectively. These biases directly impact the derivations of LWP and N, which both exhibit general underes-

timations of up to −68.37% and −72.00%, respectively. Due to the power laws involved in the calculations of

N, biases can become as large as 104%. Note that these quantitative results are specific to the studied data

set and are not necessarily expected for other observations (e.g., global MODIS retrievals).
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To mitigate the impact of clear-sky contamination for PCL pixels, methods to estimate C∗
sub

and R∗
2.1

at a hor-

izontal subpixel resolution of 240m are introduced, which are based on the availability of high-resolution

R0.86 observations. The derivation ofC
∗
sub

follows the operationalMODIS approach and a comparison between

the results and the actually observed Csub reveals a good agreement with a high correlation. Meanwhile,

estimates of R∗
2.1

are subject to different assumptions about the subpixel cloud characteristics. Of the three

proposed assumptions, the Constant Reflectance Ratio Approach yields a good comparison between R∗
2.1

and

the observed R2.1 for PCL pixels, while remaining independent of a successful pixel level retrieval and compu-

tationally efficient. The described methods provide the necessary estimates of the average cloudy subpixel

reflectance for the retrieval of 𝜏∗
o
and r∗

eff,o
, which agree well with the actually observed cloud properties. The

remaining mean biases for both results are greatly reduced, from−17.01% to−0.45% (for 𝜏 and 𝜏∗
o
) and from

6% to−0.56% (for reff, and r∗
eff,o

). Similar improvements compared to the standard results are achieved for the

derived parameters LWP∗
o
andN∗

o
, where remainingmean biases are−1.72% (down from−18.67%) and 0.77%

(down from −18.41%), respectively.

The assumptions to estimateC∗
sub

and R∗
2.1
, as well as the reliability of the improved PCL retrieval, are evaluated

by means of an extended ASTER data set. These additional MBL cloud fields are composed of broken cumu-

lus and are significantly more complex. They are characterized by small horizontal cloud diameters and low

scene cloud covers, as well as the occurrence of sun glint and land surfaces. However, the retrieved 𝜏∗
o
, r∗

eff,o
,

LWP∗
o
, and N∗

o
still agree well with the actually observed cloud properties and the impact of clear-sky contam-

ination can be successfully mitigated. Considering that C∗
sub

is already provided by the operational MODIS C6

cloud product, implementation of a PCL retrieval following those estimations and equation (1) for all cloudy

MODIS pixels appears to be feasible and would likely result in an improved cloud property retrieval for MBL

cloud scenes.

While forMODIS observations there is neither an operational Csub nor the necessary reference retrievals for an

evaluation, an application of the proposed PCL retrieval scheme still allows for an analysis of retrieval biases

due to clear-sky contamination, similar to theASTERanalysis. Here the subpixel VNIR andSWIR reflectances are

provided by theMODIS level-1 samples at horizontal resolutions of 250m and 500m, respectively. A compari-

son between the operational retrievals results at the native 1,000m scale and the estimated values 𝜏∗
o
and r∗

eff,o

yields underestimations of> 3.00 andoverestimations of> 8 μm, respectively. Despite different observational

geometries, the derived bias distributions and median biases are similar to the ASTER results.

It is important to note that the proposed PCL retrieval approach has only been tested and evaluate for MBL

clouds, where there is sufficient contrast between the bright cloud tops and the dark ocean surface. It is rea-

sonable to assume that the reliability of the retrieved cloud products suffers for more complex cloud fields,

primarily due to uncertainties in C∗
sub

. The simple cloud masking scheme based on high-resolution obser-

vations at VNIR bands will likely yield substantial overestimations of C∗
sub

if the sampled scenes exhibit an

increased aerosol particle loading, overlying cirrus, sunglint or strong radiative smoothing as a consequence

of 3-D radiative effects (i.e., low solar zenith angles and horizontal photon transport). Similarly, estimates of

C∗
sub

that are only determined by the R0.86 threshold are subject to possible false cloud classifications on the

subpixel scale for measurements over bright surfaces (e.g., sand and urban landscapes). However, given that

the standard retrieval for PCL pixels assumes that Csub = 1, a slight overestimation of C∗
sub

would still signify

an improvement, while a worst-case scenario (C∗
sub

= Csub = 1) would provide identical results (i.e., 𝜏∗
o
= 𝜏 ;

similar for the other cloud properties).

Not discussed in this study is the possibility of reducing the number of failed PCL retrievals. About 36.81% of

all PCL observations for the data set in section 6 exhibit failed retrievals, predominantly because R2.1 becomes

too low. The removal of the clear-sky component yields a successful 𝜏o and reff,o retrieval for 87.65% for these

pixels. Additionally, equation (1 also helps to identify 14.44% of clear pixel level observations as PCL ones

(i.e., a clear 960 −m pixel includes at least one cloudy 240-m subpixel). Also not discussed are biases due to

the plane-parallel homogeneous bias. While the mathematical framework presented in Zhang et al. (2016)

is shown to successfully mitigate observed retrieval biases, it is only suitable for overcast conditions (Werner

et al., 2018). Since this study provides the means to derive the average cloudy reflectance and respective

cloud properties, a correction of the plane-parallel homogeneous bias can now also be applied to PCL pix-

els, which improves the reliability even further. At last, it is important to note that the retrieved 𝜏o and reff,o
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might be impacted by 3-D radiative effects. PCL pixels are more susceptible to biases induced by unac-

counted horizontal photon transport, especially for observations with low Csub. These issues will be studied in

future works.
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