
An Equivalence Verification Methodology for
Asynchronous Sleep Convention Logic Circuits

Mousam Hossain, Ashiq A. Sakib, Sudarshan K. Srinivasan, and Scott C. Smith
Department of Electrical and Computer Engineering

North Dakota State University, Fargo, ND, USA

Abstract—Sleep Convention Logic (SCL) is an emerging
ultra-low power Quasi-Delay Insensitive (QDI) asynchronous
design paradigm with enormous potential for industrial
applications. Design validation is a critical concern before
commercialization. Unlike other QDI paradigms, such as
NULL Convention Logic (NCL) and Pre-Charge Half Buffers
(PCHB), there exists no formal verification methods for SCL.
In this paper, we propose a unified formal verification scheme
for combinational as well as sequential SCL circuits, based on
equivalence checking, which verifies both safety and liveness.
The method is demonstrated using several multipliers, MACs,
and ISCAS benchmarks.

Keywords— equivalence checking, formal verification, QDI

I. INTRODUCTION

SCL, also known as Multi-Threshold NULL Convention
Logic (MTNCL) [4], integrates the MTCMOS technique for
leakage power reduction with the popular NCL architecture
[1] to provide an ultra-low power, high speed QDI
asynchronous paradigm. Formal verification techniques are
widely used in the semiconductor industry to validate
commercial designs; however, there are currently no formal
verification schemes for SCL circuits. A few formal
verification techniques exist for other QDI circuits, such as
NCL [5, 17] and Pre-Charge Half Buffers (PCHB) [7, 18];
but, those methods are not directly applicable to SCL circuits
because of its unique structure. In this paper, we propose a
formal verification method based on equivalence checking
that verifies both functionality and handshaking control of
combinational and sequential SCL circuits.

 The rest of the paper is organized as follows: Section II
provides an overview of the SCL framework, background,
and related verification works. The proposed formal
verification method is presented in Section III, followed by
demonstration of the method verifying several benchmark
circuits in Section IV. Finally, conclusions and future work
are discussed in Section V.

II. PREVIOUS WORK

A. Sleep Convention Logic (SCL)

As mentioned earlier, SCL combines MTCMOS
technology with NCL. Like NCL, it utilizes dual-rail logic
(i.e., two wires to represent 1 bit of data, where (D1=0, D0=1)
= DATA0, (D1=1, D0=0) = DATA1, (D1=0, D0=0) = NULL
or absence of DATA, and (D1=1, D0=1) is an invalid state).
Also like NCL, SCL circuits are comprised of the same 27
threshold gates consisting of all functions of 4 or fewer
variables; however, NCL gates include hysteresis, which
requires all inputs to be deasserted before the output is
deasserted, whereas SCL gates include an additional sleep
input, which de-asserts the gate output when asserted.
Because of this sleep mechanism, SCL circuits do not need
to be input-complete or observable, as required for NCL
circuits [4].

As shown in Fig. 1, an SCL pipeline is similar to NCL,
where each stage consists of a QDI register (Ri),

combinational logic (C/Li), and completion detection (Ci).
However, SCL instead utilizes early completion [3], and
each stage component is slept to NULL by asserting the
corresponding sleep signal rather than transitioning to NULL
by propagating a NULL wavefront.

B. Related Work on Formal Verification

 Wijayasekara et al. [5] have proposed an idea to verify
NCL circuits based on the theory of WEB-Refinement [6],
where the specification and implementation are both
modeled as Transition Systems (TSs). Due to the multitude
of feedback loops caused by handshaking control, the TSs
become very complex with a huge state-space, resulting in
state space explosion and infeasible verification times. Sakib
et al. [7] describe a model checking based approach for
PCHB circuits that also models the PCHB circuit as a TS,
but this again suffers from state space explosion. A deadlock
verification scheme for delay insensitive circuits based on
the Click Library [8] is proposed in [9]; however, this
method is not directly applicable, as SCL circuits are
structurally very different. There also exists several Design-
For-Test (DFT) techniques for NCL [10, 11] and SCL [12];
however, only testing is not sufficient to ensure complete
functional correctness. Since scalability is the major limiting
factor for the aforementioned similar methods [5, 7], this
paper avoids modelling the SCL circuit as a TS, and instead
develops an alternate approach that is scalable and addresses
the limiting factors encountered in other methods.

III. SCL EQUIVALENCE VERIFICATION METHODOLOGY

In industry, QDI circuits are typically synthesized from
corresponding synchronous specifications, which go through
a series of transformations, resulting in the synthesized
circuit being structurally very different from the original
specification. For such a scenario, equivalence checking is a
widely used formal technique that ensures functional and
logical equivalence between two structurally different
systems. As detailed below, the proposed method requires
two steps, the first to ensure safety (i.e., functional
correctness), and the second to check handshaking
correctness to ensure liveness (absence of deadlock).

A. Safety Check for Combinational SCL Circuits

 Fig. 2a shows an SCL 2×2 multiplier. The C/L is
comprised of SCL 2-input AND functions (AND2) and Half
Adders (HAs), shown in Figs 2c and 2d, respectively. The
STAGE 1 and 3 registers are the input and output registers,
respectively; and the STAGE 2 register is an intermediate
pipelining register used to increase throughput. All registers
are reset to NULL, since there is no datapath feedback.
Comp1, Comp2, and Comp3 are the completion units that
generate the sleep signals for their respective stages. Ki is the
external request input, and Ko = ko1 is the external
acknowledge output. SLP is an external sleep input that
sleeps the STAGE 1 completion unit.
 The netlist of the SCL 2×2 multiplier is shown in Fig. 3a.
The line numbers are used for ease of reference only and do

978-1-7281-0397-6/19/$31.00 ©2019 IEEE

Fig. 1: SCL SECRII w/o nsleep architecture Fig. 2: (a) 2×2 SCL multiplier (b) Equivalent Boolean 2×2 multiplier (c) SCL AND2 function (d) SCL HA

not appear in the actual netlist. The first two lines denote the
set of primary inputs and primary outputs, respectively. For
any dual-rail signal, a, a_0 and a_1 denote a0 and a1,
respectively. Lines 3-18 denote the gate structure of the C/L,
where the first column indicates the type of SCL gate, the
second column refers to the level of the gate (i.e., the longest
path to the gate from any primary input, not counting
registers), and the third, fourth, and fifth columns correspond
to the gate’s data inputs, sleep input, and output,
respectively. Lines 19-30 are the 1-bit dual-rail SCL
registers, where the first column corresponds to the reset
type, columns 2 and 3 are the data input0 and input1 rails,
respectively, column 4 is the sleep input, and columns 5 and
6 are the data output0 and output1 rails, respectively. Lines
31-33 are the three completion units, where Comp in the first
column denotes an early completion component, the second
column indicates the Ki input that comes from the following
stage completion, the third column includes all of the
completion unit’s data inputs, the fourth column is the sleep
input, and the last column is the output. Note that this SCL
netlist is generated by processing the original SCL netlist to
order the components as described above and to combine all
of the completion unit gates into the single completion
component described above. Each completion component,
such as Comp2 in Fig. 2a, is comprised of TH12/TH24comp
gates and THnn SCL gates arranged in a tree structure,
followed by a final inverted NCL TH22 gate (without sleep),
as shown in [4]. When processing the original SCL netlist to
obtain the abstracted completion component shown in the
Fig. 3a netlist, we ensure that all data inputs to a completion
unit go to TH12/TH24comp gates, and their outputs form a
tree of SCL THnn gates, whose output, along with the Ki

input, is input to an inverted NCL TH22 gate that produces
the Ko output, and that all SCL gates have the same slp input.

The safety check first reduces the SCL netlist, as shown
in Fig. 3a, into an equivalent Boolean netlist, as shown in
Fig. 3b. Each SCL C/L gate is replaced with its
corresponding Boolean function, omitting the sleep input.
Each rail of a dual-rail signal is treated as a distinct Boolean
signal, which requires the addition of an inverter for each
primary circuit input, to generate its complement to replace
each input’s rail0, used in the C/L, as shown in lines 3-6.
Similar to the SCL netlist structure, the first two lines in the
converted netlist correspond to the set of primary inputs and
primary outputs, respectively. Each subsequent line

corresponds to a C/L gate, where the first column denotes the
type of gate, the second column denotes the gate’s level, the
third column denotes the gate’s inputs, and the fourth column
denotes the gate’s output. Note that the C/L sleep input, SCL
registers, and completion units are removed, since these are
not utilized in the Boolean circuit; and their connections will
be verified as part of the liveness check, explained next.

The Boolean netlist obtained from the SCL netlist is then
checked against the specification Boolean function. We use
the Z3 [13] SMT solver to perform this check. For the
example 2×2 multiplier with two 2-bit dual-rail inputs, x(1:0)
and y(1:0), the SMT solver checks the following property:
FSCL_Bool_Equv (x0, x1, y0, y1) → MUL (x(1:0), y(1:0)), where
FSCL_Bool_Equv is the function corresponding to the Boolean
circuit obtained from converting the SCL circuit to be
verified, (x1, x0) and (y1, y0) are the (MSB, LSB) of x and y,
respectively, and MUL corresponds to the Boolean
specification of the multiplier circuit. It also checks that the
rail0 and rail1 outputs in the converted netlist are
complements of each other: i.e., FSCL_Bool_Equv (p0_1, p1_1,
p2_1, p3_1) → ¬ FSCL_Bool_Equv (p0_0, p1_0, p2_0, p3_0).

B. Handshaking Check for Combinational SCL Circuits

The 2×2 multiplier in Fig. 2a implements the SECRII
w/o nsleep architecture, where the registers, completion
units, and C/L are all slept during the NULL cycle. The
output of the STAGE 1 completion unit, ko1, is the slp input
of the STAGE 1 registers (1-4), the STAGE 1 C/L, C/L1,
and the STAGE 2 completion unit, Comp 2. We developed
an algorithm that takes an SCL netlist, as shown in Fig. 3a,
and converts it into a graph structure, where each register,
threshold gate, and completion unit are modeled as nodes.
The directed edges going into and out from a node
correspond to the inputs and outputs of that particular node,
respectively. The algorithm traverses the graph to gather the
needed information in order to verify that the handshaking
exactly follows the SCL protocol. For registers, completion
units, and threshold gates, the following information is
stored: data inputs, sleep input, and data output(s). After
gathering this information, the following handshaking
checks are performed:
 • Register sleep and Completion data inputs: Each
stage register’s data inputs must be exactly the same as for
the stage’s completion unit; and the completion unit output

t2

t3

t1

x0

x1

y0

y1

p0
xi0

xi1

yi0

yi1

p1

p2

p3

z0

z1

z2

z3

t0

m1

c1

Comp 3

z0 z1 z2 z3

Comp 2

t0 m1 c1 t3

Comp 1

xi0 xi1 yi0 yi1

ko1 ko2 ko3 Ki

SLP

slp slp slp
slp

slp

slp slp slp

HA

xi1

p0

t2t3

c1

t1

AND2 AND2 AND2 AND2

yi1 yi1 xi1 yi0xi0 xi0 yi0

HA

p1p2p3

C/L1 C/L2

STAGE 1 STAGE 2 STAGE 3

(c)

slp

(d)

slp

(b)

(a)

m
2

m
3

Ko
ki ki ki

rst rst rst
RESET

ko ko ko

Ci

C/Li

Ci+1

Ri Ri+1

sleep sleep

Koi Koi+1

sleep

C/Li+1

Koi+2

ST
AG

E
(i-

1)

ST
AG

E
(i+

2)

Fig. 3: (a) SCL 2×2 multiplier netlist (b) Converted equivalent Boolean netlist

must be the register’s sleep input. As an example, the inputs
of registers (1-4) in STAGE1 are also the data inputs to
completion unit, Comp1. Hence, the output of Comp1, ko1,
is the slp input for registers (1-4).
 • Sleep for C/L: Each completion unit sleeps its
stage’s register and C/L, such that every SCL C/L gate’s
sleep input should be the same as its preceding register’s
sleep input. Hence, for each gate, i, we create a gate_fanin(i)
list that traces back all inputs of gatei to their originating
register. For example, the TH12 gate on line 13 of Fig. 3a,
corresponds to the TH12 gate that generates the c10 output
of the HA in C/L1 in Fig 2a. Tracing this gate’s inputs back
to their generating registers yields x1_0, y0_0, x0_0, y1_0,
resulting in a gate_fanin list of Reg1, Reg2, Reg3, Reg4,
which all have the same slp input as the TH12 gate. Once
the gate_fanin list for all gates are computed, all registers in
each gate_fanin(i) list are inspected to ensure that they all
have the same slp input, and that this sleep input is also the
slp input for gatei. If the gate_fanin list contains registers
from multiple stages (i.e., different slp inputs), or if the
gate’s slp input differs from its corresponding input
register’s slp input, then an error is generated.
 • Completion output, and slp and Ki inputs: Compi’s
Ki input must be the output of Compi+1, and its slp input
must be the output of Compi-1. In Fig. 2a, Comp2’s Ki input
is the output of Comp3, and its slp input is the output of
Comp1. The first and last stages are slightly different.
Comp1’s (i.e., the completion unit whose data inputs are the
circuit’s external data inputs) slp input must be the external
SLP input, and its output must be the external Ko output; the
last stage completion’s (i.e., the completion unit associated
with the register that produces the external data outputs) Ki
input must be the external Ki input.

C. Safety Check for Sequential SCL Circuits

Verification of sequential SCL circuits are much more
complex because of datapath feedback, which requires at
least 2N+1 SCL registers in a feedback loop with N DATA
tokens in order to avoid deadlock [14]. Hence, common
practice when synthesizing an SCL circuit from its
synchronous specification is to replace every synchronous

register with three SCL registers, reset to NULL, DATA,
NULL. For the 4+2×2 MAC example in Fig. 4b, the output
register is replaced with registers 5-8 and 15-22, as shown in
the Fig. 4a SCL implementation. In addition to the fed back
accumulator output, the STAGE 1 registers (registers 1-8)
also include the external data inputs, Xi (1:0) and Yi (1:0),
while the STAGE 2 register is an additional reset-to-NULL
register included to increase performance. Note that STAGE
1 and 2 could be combined into a single stage or STAGE 3
could be removed without causing deadlock.
 The netlist structure for a sequential SCL circuit is
similar to that for a combinational circuit, shown in Fig. 3a.
The only differences are the inclusion of C-elements in the
feedback loop handshaking, and reset-to-DATA registers,
REG_DATA0 in this case. The algorithm to convert the SCL
netlist into its equivalent synchronous netlist is also similar
to the combinational SCL conversion described in Section
III.A, with the following additions: each reset-to-DATA
register is converted into an equivalent 2-bit Boolean
register, one bit for the SCL register’s rail1 output and the
other for its rail0 output. Same as for the combinational
circuit conversion, the reset-to-NULL registers and all sleep
signals are omitted from the converted synchronous netlist,
as these will be verified in the subsequent handshaking
check. For sequential circuits, the additional C-elements are
also omitted from the converted synchronous netlist, and will
also be verified in the handshaking check.
 The theory of WEB-Refinement [6] is then utilized to
check for equivalence between the converted synchronous
netlist and the original synchronous specification. We
assume that the I\O mapping and the register mapping
between the specification and implementation circuits are
provided. The converted netlist, synchronous specification,
and equivalence check properties are modeled in SMT-LIB,
and the properties checked using the Z3 SMT solver. For the
4+2×2 MAC, the following properties are checked:
Considering symbolic state transitions for any current state
values of 2-bit primary inputs, x_cs(1:0) and y_cs(1:0), and
4-bit accumulator values acc_cs(3:0), the next state of the
converted synchronous netlist obtained from the SCL
implementation should be equivalent to the next state of the
synchronous specification; i.e., FSCL_Sync_Eq (x0_cs, x1_cs,

1. xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1
2. p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1
3. th12 1 x0_0,y0_0 ko1 t0_0
4. th22 1 x0_1,y0_1 ko1 t0_1
5. th12 1 x1_0,y0_0 ko1 t1_0
6. th22 1 x1_1,y0_1 ko1 t1_1
……………………………………………………….
11. th24comp 2 t2_0,t1_1,t1_0,t2_1 ko1 m1_0
12. th24comp 2 t2_0,t1_0,t2_1,t1_1 ko1 m1_1
13. th12 2 t2_0,t1_0 ko1 c1_0
……………………………………………………….
15. th24comp 3 m2_0,m3_1,m3_0,m2_1 ko2 z2_0
16. th24comp 3 m2_0,m3_0,m2_1,m3_1 ko2 z2_1
17. th12 3 m2_0,m3_0 ko2 z3_0
18. th22 3 m3_1,m2_1 ko2 z3_1
19. Reg_NULL xi0_0 xi0_1 ko1 x0_0 x0_1
20. Reg_NULL xi1_0 xi1_1 ko1 x1_0 x1_1
………………………………………………………...
30. Reg_NULL z3_0 z3_1 ko3 p3_0 p3_1
31. Comp ko2 xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1 SLP ko1
32. Comp ko3 t0_0,t0_1,m1_0,m1_1,c1_0,c1_1,t3_0,t3_1 ko1 ko2
33. Comp Ki z0_0,z0_1,z1_0,z1_1,z2_0,z2_1,z3_0,z3_1 ko2 ko3

1. Inputs: xi0_1,xi1_1,yi0_1,yi1_1
2. Outputs: p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1
3. not 1 xi0_1 xi0_0
4. not 1 yi0_1 yi0_0
5. not 1 xi1_1 xi1_0
6. not 1 yi1_1 yi1_0
7. th12 2 xi0_0,yi0_0 p0_0
8. th22 1 xi0_1,yi0_1 p0_1
9. th12 2 xi1_0,yi0_0 t1_0
10. th22 1 xi1_1,yi0_1 t1_1
11. th12 2 xi0_0,yi1_0 t2_0
12. th22 1 xi0_1,yi1_1 t2_1
13. th12 2 xi1_0,yi1_0 t3_0
14 th22 1 xi1_1,yi1_1 t3_1
15. th24comp 3 t2_0,t1_1,t1_0,t2_1 p1_0
16. th24comp 3 t2_0,t1_0,t2_1,t1_1 p1_1
17. th12 3 t2_0,t1_0 c1_0
18. th22 2 t1_1,t2_1 c1_1
19. th24comp 4 c1_0,t3_1,t3_0,c1_1 p2_0
20. th24comp 4 c1_0,t3_0,c1_1,t3_1 p2_1
21. th12 4 c1_0,t3_0 p3_0
22. th22 3 t3_1,c1_1 p3_1

HA HA
FA

HA

HA

FA
FA

x1

ac
c0

t0

t2

t3

t5

c1

t4
t6

c2
t7

c3

t8

c5

t1
AN

D
AN

D
AN

D
AN

D

y1
x0

y1
x1

y0
y0

x0

ac
c1

ac
c2

t9

t10

c6

x0
x1

y0
y1

RE
G_

NU
LL

(4
)

RE
G_

NU
LL

(3

)
RE

G_
NU

LL

(2
)

RE
G_

NU
LL

(1

)

ac
c0

ac
c1

ac
c2

ac
c3

RE
G_

NU
LL

(8
)

RE
G_

NU
LL

(7

)
RE

G_
NU

LL

(6
)

RE
G_

NU
LL

(5

)

RE
G_

NU
LL

(1

8)
RE

G_
NU

LL

(1
7)

RE
G_

NU
LL

(1

6)
RE

G_
NU

LL
(1

5)

RE
G_

DA
TA

0
(2

2)
RE

G_
DA

TA
0

(2
1)

RE
G_

DA
TA

0
(2

0)
RE

G_
DA

TA
0

(1
9)

p0

acci3

acci0

acci1

acci2

acci3

xi0

xi1

yi0

yi1

RE
G_

NU
LL

(1

2)
RE

G_
NU

LL

(1
1)

RE
G_

NU
LL

(1

0)
RE

G_
NU

LL
(9

)
RE

G_
NU

LL

(1
3)

RE
G_

NU
LL

(1

4)

ac
c3

r0
r1

r2

r3
r4

r5C/L1

Comp1 Comp2 Comp3 Comp4

xi
2

yi
2

acci
4

slp

slp

slp

C/L2

slp

slp

p1

p2

p3

acci2

acci1

acci0

C

C
ko1

slp slp slp slp

ko2 ko3 ko3

SLP Ki

slp

c3t7t6c1t5 c2 t10t9r0 t8 p3p2p0 p1

kiki ki ki
Ko

rst

rst rst rst

RE
SE

T

STAGE 2 STAGE 3 STAGE 4

(a)

ko ko ko ko

STAGE 1

Fig. 4. (a) 4+2×2 SCL MAC (b) Converted equivalent Boolean circuit

y0_cs, y1_cs, acc0_cs, acc1_cs, acc2_cs, acc4_cs)→
FSync_Spec (x_cs(1:0), y_cs(1:0), acc_cs(3:0)). For each
register in the converted synchronous netlist, we also check
that its output rail0 and rail1 are complements of each other.

D. Handshaking Check for Sequential SCL Circuits

Handshaking verification is the same as for
combinational SCL circuits, except that the first and last
registers of a feedback loop include an extra C-element, as
shown in Fig. 4a, which requires the following two
additional checks: The Ki input for a feedback loop’s output
register’s completion (e.g., Comp4 in Fig. 4a) must be the
combination (via a C-element) of its downstream register’s
completion’s Ko (external Ki input in Fig. 4a) and its
feedback loop input register’s completion’s Ko (ko1 in Fig.
4a), instead of only its downstream register’s completion’s
Ko, as in combinational SCL circuits. The slp input for a
feedback loop’s input register’s completion (e.g., Comp1 in
Fig. 4a) must be the combination (via a C-element) of its
upstream register’s completion’s Ko (external SLP input in
Fig. 4a) and its feedback loop output register’s completion’s
Ko (ko3 in Fig. 4a), instead of only its upstream register’s
completion’s Ko, as in combinational SCL circuits.

IV. RESULTS

The algorithms described in Section III were
implemented using Python. As tabulated below, several SCL
sequential MACs and combinational multipliers and ISCAS
benchmarks [15, 16] were successfully verified applying the
proposed methodology, executed on an Intel® Core™ i7-
4790 CPU with 32GB of RAM running at 3.60 GHz, using
the Z3 SMT solver [13] to check for functional equivalence.
Additionally, a number of buggy circuits were tested,
including circuits with erroneous handshaking signals, such
as an incorrect sleep signal connection to a C/L gate (i.e.,
20+10×10 MAC B1) and a C/L gate with one data input
being a signal’s rail0 instead of the correct rail1 (i.e.,
20+10×10 MAC B2). For all buggy cases, the proposed
approach was able to flag the errors, providing a descriptive
message indicating the erroneous connection for
handshaking errors, and producing counter examples to trace
back the error path (via the SMT solver) for cases of

functional in-equivalence. Since B2 was caught during the
safety check, its verification time was much less than for B1,
which was detected in the handshaking check. Time to
convert an SCL netlist to its equivalent Boolean/synchronous
netlist was negligible compared to safety and handshaking
check times, and therefore was not included in Table I.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an equivalence verification
methodology for both combinational and sequential SCL
circuits. The method currently only works for sequential
circuits without interacting feedback loops, such as a MAC,
since the handshaking is otherwise much more complicated,
and requires the development of an algorithm to map each
register in the converted synchronous circuit to its
corresponding register in the original synchronous
specification. These problems will be tackled in future work,
such that the developed approach will be applicable to any
arbitrary sequential circuit. Scalability of the approach can be
improved further using abstraction techniques, and a
commercial equivalence checker instead of an SMT solver.

TABLE I. VERIFICATION RESULTS FOR VARIOUS SCL CIRCUITS

SCL Circuit
Verification Times (in sec.)

Safety Check
Handshaking

Check
Total time

8x8 MUL 10.62 0.055 10.675

10x10 MUL 683.49 0.1536 683.64

12x12 MUL 49,963.05 0.316 49,963.36

ISCAS c17 [15] 0.01 0.002 0.012

ISCAS c432 [15] 1.03 0.0468 1.0768

ISCAS s27 [16] 0.09 0.002 0.092

12+6x6 MAC 1.69 0.031 1.721

16+8x8 MAC 12.03 0.1007 12.131

20+10x10 MAC 1,581.72 0.213 1581.93

24+12x12 MAC 1,40,780.13 0.4078 1,40,780.5

20+10x10 MAC B1 1483.22 0.3403 1483.5603

20+10x10 MAC B2 0.17 0.197 0.367

ACKNOWLEDGMENT

This work is supported by the National Science
Foundation under Grant No. CCF-1717420.

HA

HAFA HA

HA

FA
FA

xi1

acci3 acci0

t0t2

t3

p0

t4
t6t7

p1
c5

t1

AND AND AND AND

yi1 yi1 xi1 yi0xi0

acci1acci2

p2
p3

c6

REG_DATA0 REG_DATA0 REG_DATA0 REG_DATA0

acci0acci1acci2acci3

(b)

xi0 yi0

rs
tRE

SE
T

REFERENCES
[1] K. M. Fant and S. A. Brandt, “NULL convention logic: a

completeand consistent logic for asynchronous digital circuit
synthesis,” In Proc. IEEE International Conference on Application
Specific Systems, Architectures and Processors, August 1996, pp.
261–273.

[2] S. C. Smith and J. Di, Designing Asynchronous Circuits using NULL
Convention Logic (NCL), ser. Synthesis Lectures on Digital Circuits
and Systems. Morgan & Claypool Publishers, 2009.

[3] S. C. Smith, “Speedup of self-timed digital systems using early com-
pletion,” In Proc. IEEE Computer Society Annual Symposium on
VLSI, April 2002, pp. 98–104.

[4] L. Zhou, R. Parameswaran, F. Parsan, S. Smith, and J. Di, “Multi-
Threshold NULL Convention Logic (MTNCL): An Ultra-Low Power
Asynchronous Circuit Design Methodology,” Journal of Low Power
Electronics and Applications, vol. 5, no. 2, May, pp. 81–100, 2015.

[5] Vidura M. Wijayasekara, S.K.Srinivasan and S. C. Smith,
"Equivalence verification for NULL Convention Logic (NCL)
circuits," In Proc. IEEE 32nd International Conference on Computer
Design (ICCD), Oct 2014, pp. 195-201.

[6] P. Manolios, “Correctness of pipelined machines,” In Proc. Formal
Methods in Computer-Aided Design–FMCAD 2000, ser. LNCS,
Springer-Verlag, W. A. Hunt, Jr. and S. D. Johnson, Eds., vol. 1954,
2000, pp. 161–178.

[7] A. A. Sakib, S. C. Smith, and S. K. Srinivasan, “Formal modeling and
verification for pre-charge half buffer gates and circuits”, In Proc.
IEEE International Midwest Symposium on Circuits and Systems,
August 2017, pp. 519-522.

[8] A. Peeters, F. te Beest, M. de Wit & W. Mallon, “Click elements: An
implementation style for data-driven compilation,” In Proc. IEEE
Symposium on Asynchronous Circuits and Systems (ASYNC’10),
2010, pp. 3-14.

[9] F. Verbeek and J. Schmaltz, “Verification of building blocks for
asynchronous circuits”, In Proc. ACL2, ser. EPTCS, R. Gamboa and
J. Davis, Eds., vol. 114, 2013, pp. 70–84.

[10] V. Satagopan, B. Bhaskaran, W. K. Al-Assadi, S. C. Smith, and S.
Kakarla, “DFT techniques and automation for asynchronous
NULLconventional logic circuits,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 15, no. 10, pp. 1155–1159,
October 2007.

[11] W. Al-Assadi and S. Kakarla, “Design for test of asynchronous
NULLconvention logic (NCL) circuits”, Journal of Electronic
Testing, vol. 25, no. 1, 2009, pp. 117–126.

[12] F. Parsan, S. C. Smith, W. K. Al-Assadi, “Design for Testability of
Sleep Convention Logic”, IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 24, pp. 743-753, 2015.

[13] L. M. de Moura and N. Bjørner, “Z3: An efficient smt solver”, in
TACAS, ser. Lecture Notes in Computer Science, C. R.
Ramakrishnan and J. Rehof, Eds., vol. 4963, Springer, 2008, pp. 337–
340

[14] T. E. Williams, “Self-Timed Rings and Their Application to
Division”, Ph.D. Thesis, CSL-TR-91-482, Department of Electrical
Engineering and Computer Science, Stanford University, 1991.

[15] D. Bryan, The ISCAS ‘85 benchmark circuits and netlist format
[online] Available: https://ddd.fit.cvut.cz/prj/Benchmarks/iscas85.pdf.
[Accessed Feb. 1, 2019].

[16] F. Brglez, D. Bryan, and K. Kozminski, “Combinational profiles of
sequential benchmark circuits,” In Proc. Int’l. Symp. Circuits and
Systems, 1989, pp. 1929-1934.

[17] V. M. Wijayasekara, A. T. Rollie, R. G. Hodges, S. K. Srinivasan, S.
C. Smith, “Abstraction techniques to improve scalability of
equivalence verification for NCL circuits,” Electron. Letters, 2016,
52, (19), pp. 1594–1596.

[18] A. A. Sakib, S. C. Smith, and S. K. Srinivasan, “An equivalence
verification methodology for combinational asynchronous PCHB
circuits,” In Proc. IEEE International Midwest Symposium on
Circuits and Systems, 2018, pp. 767 - 770.

