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Abstract—Sleep Convention Logic (SCL) is an emerging 
ultra-low power Quasi-Delay Insensitive (QDI) asynchronous 
design paradigm with enormous potential for industrial 
applications. Design validation is a critical concern before 
commercialization. Unlike other QDI paradigms, such as 
NULL Convention Logic (NCL) and Pre-Charge Half Buffers 
(PCHB), there exists no formal verification methods for SCL. 
In this paper, we propose a unified formal verification scheme 
for combinational as well as sequential SCL circuits, based on 
equivalence checking, which verifies both safety and liveness. 
The method is demonstrated using several multipliers, MACs, 
and ISCAS benchmarks.    

Keywords— equivalence checking, formal verification, QDI  

I. INTRODUCTION  

SCL, also known as Multi-Threshold NULL Convention 
Logic (MTNCL) [4], integrates the MTCMOS technique for 
leakage power reduction with the popular NCL architecture 
[1] to provide an ultra-low power, high speed QDI 
asynchronous paradigm.  Formal verification techniques are 
widely used in the semiconductor industry to validate 
commercial designs; however, there are currently no formal 
verification schemes for SCL circuits. A few formal 
verification techniques exist for other QDI circuits, such as 
NCL [5, 17] and Pre-Charge Half Buffers (PCHB) [7, 18]; 
but, those methods are not directly applicable to SCL circuits 
because of its unique structure. In this paper, we propose a 
formal verification method based on equivalence checking 
that verifies both functionality and handshaking control of 
combinational and sequential SCL circuits.  

  The rest of the paper is organized as follows: Section II 
provides an overview of the SCL framework, background, 
and related verification works. The proposed formal 
verification method is presented in Section III, followed by 
demonstration of the method verifying several benchmark 
circuits in Section IV. Finally, conclusions and future work 
are discussed in Section V. 

II. PREVIOUS WORK 

A. Sleep Convention Logic (SCL) 

As mentioned earlier, SCL combines MTCMOS 
technology with NCL. Like NCL, it utilizes dual-rail logic 
(i.e., two wires to represent 1 bit of data, where (D1=0, D0=1) 
= DATA0, (D1=1, D0=0) = DATA1, (D1=0, D0=0) = NULL 
or absence of DATA, and (D1=1, D0=1) is an invalid state). 
Also like NCL, SCL circuits are comprised of the same 27 
threshold gates consisting of all functions of 4 or fewer 
variables; however, NCL gates include hysteresis, which 
requires all inputs to be deasserted before the output is 
deasserted, whereas SCL gates include an additional sleep 
input, which de-asserts the gate output when asserted. 
Because of this sleep mechanism, SCL circuits do not need 
to be input-complete or observable, as required for NCL 
circuits [4].  

As shown in Fig. 1, an SCL pipeline is similar to NCL, 
where each stage consists of a QDI register (Ri), 

combinational logic (C/Li), and completion detection (Ci). 
However, SCL instead utilizes early completion [3], and 
each stage component is slept to NULL by asserting the 
corresponding sleep signal rather than transitioning to NULL 
by propagating a NULL wavefront. 

B. Related Work on Formal Verification 

 Wijayasekara et al. [5] have proposed an idea to verify 
NCL circuits based on the theory of WEB-Refinement [6], 
where the specification and implementation are both 
modeled as Transition Systems (TSs). Due to the multitude 
of feedback loops caused by handshaking control, the TSs 
become very complex with a huge state-space, resulting in 
state space explosion and infeasible verification times. Sakib 
et al. [7] describe a model checking based approach for 
PCHB circuits that also models the PCHB circuit as a TS, 
but this again suffers from state space explosion. A deadlock 
verification scheme for delay insensitive circuits based on 
the Click Library [8] is proposed in [9]; however, this 
method is not directly applicable, as SCL circuits are 
structurally very different. There also exists several Design-
For-Test (DFT) techniques for NCL [10, 11] and SCL [12]; 
however, only testing is not sufficient to ensure complete 
functional correctness. Since scalability is the major limiting 
factor for the aforementioned similar methods [5, 7], this 
paper avoids modelling the SCL circuit as a TS, and instead 
develops an alternate approach that is scalable and addresses 
the limiting factors encountered in other methods. 

III. SCL EQUIVALENCE VERIFICATION METHODOLOGY 

In industry, QDI circuits are typically synthesized from 
corresponding synchronous specifications, which go through 
a series of transformations, resulting in the synthesized 
circuit being structurally very different from the original 
specification. For such a scenario, equivalence checking is a 
widely used formal technique that ensures functional and 
logical equivalence between two structurally different 
systems. As detailed below, the proposed method requires 
two steps, the first to ensure safety (i.e., functional 
correctness), and the second to check handshaking 
correctness to ensure liveness (absence of deadlock).  

A. Safety Check for Combinational SCL Circuits 

 Fig. 2a shows an SCL 2×2 multiplier. The C/L is 
comprised of SCL 2-input AND functions (AND2) and Half 
Adders (HAs), shown in Figs 2c and 2d, respectively. The 
STAGE 1 and 3 registers are the input and output registers, 
respectively; and the STAGE 2 register is an intermediate 
pipelining register used to increase throughput. All registers 
are reset to NULL, since there is no datapath feedback. 
Comp1, Comp2, and Comp3 are the completion units that 
generate the sleep signals for their respective stages. Ki is the 
external request input, and Ko = ko1 is the external 
acknowledge output. SLP is an external sleep input that 
sleeps the STAGE 1 completion unit.  
 The netlist of the SCL 2×2 multiplier is shown in Fig. 3a. 
The line numbers are used for ease of reference only and do
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Fig. 1: SCL SECRII w/o nsleep architecture     Fig. 2: (a) 2×2 SCL multiplier   (b) Equivalent Boolean 2×2 multiplier   (c) SCL AND2 function   (d) SCL HA 

not appear in the actual netlist.  The first two lines denote the 
set of primary inputs and primary outputs, respectively.  For 
any dual-rail signal, a, a_0 and a_1 denote a0 and a1, 
respectively. Lines 3-18 denote the gate structure of the C/L, 
where the first column indicates the type of SCL gate, the 
second column refers to the level of the gate (i.e., the longest 
path to the gate from any primary input, not counting 
registers), and the third, fourth, and fifth columns correspond 
to the gate’s data inputs, sleep input, and output, 
respectively. Lines 19-30 are the 1-bit dual-rail SCL 
registers, where the first column corresponds to the reset 
type, columns 2 and 3 are the data input0 and input1 rails, 
respectively, column 4 is the sleep input, and columns 5 and 
6 are the data output0 and output1 rails, respectively. Lines 
31-33 are the three completion units, where Comp in the first 
column denotes an early completion component, the second 
column indicates the Ki input that comes from the following 
stage completion, the third column includes all of the 
completion unit’s data inputs, the fourth column is the sleep 
input, and the last column is the output. Note that this SCL 
netlist is generated by processing the original SCL netlist to 
order the components as described above and to combine all 
of the completion unit gates into the single completion 
component described above. Each completion component, 
such as Comp2 in Fig. 2a, is comprised of TH12/TH24comp 
gates and THnn SCL gates arranged in a tree structure, 
followed by a final inverted NCL TH22 gate (without sleep), 
as shown in [4]. When processing the original SCL netlist to 
obtain the abstracted completion component shown in the 
Fig. 3a netlist, we ensure that all data inputs to a completion 
unit go to TH12/TH24comp gates, and their outputs form a 
tree of SCL THnn gates, whose output, along with the Ki 

input, is input to an inverted NCL TH22 gate that produces 
the Ko output, and that all SCL gates have the same slp input. 

The safety check first reduces the SCL netlist, as shown 
in Fig. 3a, into an equivalent Boolean netlist, as shown in 
Fig. 3b. Each SCL C/L gate is replaced with its 
corresponding Boolean function, omitting the sleep input. 
Each rail of a dual-rail signal is treated as a distinct Boolean 
signal, which requires the addition of an inverter for each 
primary circuit input, to generate its complement to replace 
each input’s rail0, used in the C/L, as shown in lines 3-6. 
Similar to the SCL netlist structure, the first two lines in the 
converted netlist correspond to the set of primary inputs and 
primary outputs, respectively. Each subsequent line 

corresponds to a C/L gate, where the first column denotes the 
type of gate, the second column denotes the gate’s level, the 
third column denotes the gate’s inputs, and the fourth column 
denotes the gate’s output. Note that the C/L sleep input, SCL 
registers, and completion units are removed, since these are 
not utilized in the Boolean circuit; and their connections will 
be verified as part of the liveness check, explained next. 

The Boolean netlist obtained from the SCL netlist is then 
checked against the specification Boolean function. We use 
the Z3 [13] SMT solver to perform this check. For the 
example 2×2 multiplier with two 2-bit dual-rail inputs, x(1:0) 
and y(1:0), the SMT solver checks the following property: 
FSCL_Bool_Equv (x0, x1, y0, y1) → MUL (x(1:0), y(1:0)), where 
FSCL_Bool_Equv is the function corresponding to the Boolean 
circuit obtained from converting the SCL circuit to be 
verified, (x1, x0) and (y1, y0) are the (MSB, LSB) of x and y, 
respectively, and MUL corresponds to the Boolean 
specification of the multiplier circuit. It also checks that the 
rail0 and rail1 outputs in the converted netlist are 
complements of each other: i.e., FSCL_Bool_Equv (p0_1, p1_1, 
p2_1, p3_1) → ¬ FSCL_Bool_Equv (p0_0, p1_0, p2_0, p3_0). 

B. Handshaking Check for Combinational SCL Circuits 

The 2×2 multiplier in Fig. 2a implements the SECRII 
w/o nsleep architecture, where the registers, completion 
units, and C/L are all slept during the NULL cycle. The 
output of the STAGE 1 completion unit, ko1, is the slp input 
of the STAGE 1 registers (1-4), the STAGE 1 C/L, C/L1, 
and the STAGE 2 completion unit, Comp 2. We developed 
an algorithm that takes an SCL netlist, as shown in Fig. 3a, 
and converts it into a graph structure, where each register, 
threshold gate, and completion unit are modeled as nodes. 
The directed edges going into and out from a node 
correspond to the inputs and outputs of that particular node, 
respectively. The algorithm traverses the graph to gather the 
needed information in order to verify that the handshaking 
exactly follows the SCL protocol. For registers, completion 
units, and threshold gates, the following information is 
stored: data inputs, sleep input, and data output(s). After 
gathering this information, the following handshaking 
checks are performed:  
 • Register sleep and Completion data inputs: Each 
stage register’s data inputs must be exactly the same as for 
the stage’s completion unit; and the completion unit output 
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Fig. 3: (a) SCL 2×2 multiplier netlist   (b) Converted equivalent Boolean netlist 

must be the register’s sleep input. As an example, the inputs 
of registers (1-4) in STAGE1 are also the data inputs to 
completion unit, Comp1. Hence, the output of Comp1, ko1, 
is the slp input for registers (1-4). 
 • Sleep for C/L: Each completion unit sleeps its 
stage’s register and C/L, such that every SCL C/L gate’s 
sleep input should be the same as its preceding register’s 
sleep input. Hence, for each gate, i, we create a gate_fanin(i) 
list that traces back all inputs of gatei to their originating 
register. For example, the TH12 gate on line 13 of Fig. 3a, 
corresponds to the TH12 gate that generates the c10 output 
of the HA in C/L1 in Fig 2a. Tracing this gate’s inputs back 
to their generating registers yields x1_0, y0_0, x0_0, y1_0, 
resulting in a gate_fanin list of Reg1, Reg2, Reg3, Reg4, 
which all have the same slp input as the TH12 gate. Once 
the gate_fanin list for all gates are computed, all registers in 
each gate_fanin(i) list are inspected to ensure that they all 
have the same slp input, and that this sleep input is also the 
slp input for gatei. If the gate_fanin list contains registers 
from multiple stages (i.e., different slp inputs), or if the 
gate’s slp input differs from its corresponding input 
register’s slp input, then an error is generated. 
 • Completion output, and slp and Ki inputs: Compi’s 
Ki input must be the output of Compi+1, and its slp input 
must be the output of Compi-1. In Fig. 2a, Comp2’s Ki input 
is the output of Comp3, and its slp input is the output of 
Comp1. The first and last stages are slightly different. 
Comp1’s (i.e., the completion unit whose data inputs are the 
circuit’s external data inputs) slp input must be the external 
SLP input, and its output must be the external Ko output; the 
last stage completion’s (i.e., the completion unit associated 
with the register that produces the external data outputs) Ki 
input must be the external Ki input. 

C. Safety Check for Sequential  SCL Circuits 

Verification of sequential SCL circuits are much more 
complex because of datapath feedback, which requires at 
least 2N+1 SCL registers in a feedback loop with N DATA 
tokens in order to avoid deadlock [14]. Hence, common 
practice when synthesizing an SCL circuit from its 
synchronous specification is to replace every synchronous 

register with three SCL registers, reset to NULL, DATA, 
NULL. For the 4+2×2 MAC example in Fig. 4b, the output 
register is replaced with registers 5-8 and 15-22, as shown in 
the Fig. 4a SCL implementation. In addition to the fed back 
accumulator output, the STAGE 1 registers (registers 1-8) 
also include the external data inputs, Xi (1:0) and Yi (1:0), 
while the STAGE 2 register is an additional reset-to-NULL 
register included to increase performance. Note that STAGE 
1 and 2 could be combined into a single stage or STAGE 3 
could be removed without causing deadlock. 
 The netlist structure for a sequential SCL circuit is 
similar to that for a combinational circuit, shown in Fig. 3a. 
The only differences are the inclusion of C-elements in the 
feedback loop handshaking, and reset-to-DATA registers, 
REG_DATA0 in this case. The algorithm to convert the SCL 
netlist into its equivalent synchronous netlist is also similar 
to the combinational SCL conversion described in Section 
III.A, with the following additions: each reset-to-DATA 
register is converted into an equivalent 2-bit Boolean 
register, one bit for the SCL register’s rail1 output and the 
other for its rail0 output. Same as for the combinational 
circuit conversion, the reset-to-NULL registers and all sleep 
signals are omitted from the converted synchronous netlist, 
as these will be verified in the subsequent handshaking 
check. For sequential circuits, the additional C-elements are 
also omitted from the converted synchronous netlist, and will 
also be verified in the handshaking check.  
 The theory of WEB-Refinement [6] is then utilized to 
check for equivalence between the converted synchronous 
netlist and the original synchronous specification. We 
assume that the I\O mapping and the register mapping 
between the specification and implementation circuits are 
provided. The converted netlist, synchronous specification, 
and equivalence check properties are modeled in SMT-LIB, 
and the properties checked using the Z3 SMT solver. For the 
4+2×2 MAC, the following properties are checked: 
Considering symbolic state transitions for any current state 
values of 2-bit primary inputs, x_cs(1:0) and y_cs(1:0), and 
4-bit accumulator values acc_cs(3:0), the next state of the 
converted synchronous netlist obtained from the SCL 
implementation should be equivalent to the next state of the 
synchronous specification; i.e., FSCL_Sync_Eq (x0_cs, x1_cs,  

1.    xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1 
2.    p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1 
3.    th12   1   x0_0,y0_0   ko1   t0_0 
4.    th22   1   x0_1,y0_1   ko1   t0_1 
5.    th12   1   x1_0,y0_0   ko1   t1_0 
6.    th22   1   x1_1,y0_1   ko1   t1_1 
………………………………………………………. 
11.  th24comp   2   t2_0,t1_1,t1_0,t2_1   ko1   m1_0 
12.  th24comp   2   t2_0,t1_0,t2_1,t1_1   ko1   m1_1 
13.  th12   2   t2_0,t1_0   ko1  c1_0 
………………………………………………………. 
15. th24comp  3  m2_0,m3_1,m3_0,m2_1   ko2   z2_0  
16. th24comp  3  m2_0,m3_0,m2_1,m3_1   ko2   z2_1 
17.  th12   3   m2_0,m3_0   ko2   z3_0 
18.  th22   3   m3_1,m2_1   ko2   z3_1 
19.  Reg_NULL   xi0_0  xi0_1   ko1   x0_0  x0_1 
20.  Reg_NULL   xi1_0  xi1_1   ko1   x1_0  x1_1 
………………………………………………………... 
30.  Reg_NULL   z3_0  z3_1   ko3   p3_0  p3_1 
31.  Comp   ko2   xi0_0,xi0_1,xi1_0,xi1_1,yi0_0,yi0_1,yi1_0,yi1_1   SLP   ko1 
32.  Comp   ko3   t0_0,t0_1,m1_0,m1_1,c1_0,c1_1,t3_0,t3_1   ko1   ko2 
33.  Comp   Ki    z0_0,z0_1,z1_0,z1_1,z2_0,z2_1,z3_0,z3_1    ko2   ko3 

 
1.  Inputs: xi0_1,xi1_1,yi0_1,yi1_1 
2.  Outputs:  p0_0,p0_1,p1_0,p1_1,p2_0,p2_1,p3_0,p3_1 
3.  not   1   xi0_1   xi0_0 
4.  not   1   yi0_1   yi0_0 
5.  not   1   xi1_1   xi1_0 
6.  not   1   yi1_1   yi1_0  
7.  th12   2   xi0_0,yi0_0   p0_0 
8.  th22   1   xi0_1,yi0_1   p0_1 
9.  th12   2   xi1_0,yi0_0   t1_0 
10. th22   1   xi1_1,yi0_1   t1_1 
11. th12   2   xi0_0,yi1_0   t2_0 
12. th22   1   xi0_1,yi1_1   t2_1 
13. th12   2   xi1_0,yi1_0   t3_0 
14 th22    1   xi1_1,yi1_1    t3_1 
15. th24comp   3   t2_0,t1_1,t1_0,t2_1   p1_0 
16. th24comp   3   t2_0,t1_0,t2_1,t1_1   p1_1 
17. th12   3   t2_0,t1_0   c1_0 
18. th22   2   t1_1,t2_1   c1_1 
19. th24comp   4   c1_0,t3_1,t3_0,c1_1   p2_0 
20. th24comp   4   c1_0,t3_0,c1_1,t3_1   p2_1 
21. th12   4   c1_0,t3_0   p3_0 
22. th22   3   t3_1,c1_1   p3_1 
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Fig. 4. (a) 4+2×2 SCL MAC  (b) Converted equivalent Boolean circuit 

y0_cs, y1_cs, acc0_cs, acc1_cs, acc2_cs, acc4_cs)→ 
FSync_Spec (x_cs(1:0), y_cs(1:0), acc_cs(3:0)). For each 
register in the converted synchronous netlist, we also check 
that its output rail0 and rail1 are complements of each other. 

D. Handshaking Check for Sequential SCL Circuits 

Handshaking verification is the same as for 
combinational SCL circuits, except that the first and last 
registers of a feedback loop include an extra C-element, as 
shown in Fig. 4a, which requires the following two 
additional checks: The Ki input for a feedback loop’s output 
register’s completion (e.g., Comp4 in Fig. 4a) must be the 
combination (via a C-element) of  its downstream register’s 
completion’s Ko (external Ki input in Fig. 4a) and its 
feedback loop input register’s completion’s Ko (ko1 in Fig. 
4a), instead of only its downstream register’s completion’s 
Ko, as in combinational SCL circuits. The slp input for a 
feedback loop’s input register’s completion (e.g., Comp1 in 
Fig. 4a) must be the combination (via a C-element) of its 
upstream register’s completion’s Ko (external SLP input in 
Fig. 4a) and its feedback loop output register’s completion’s 
Ko (ko3 in Fig. 4a), instead of only its upstream register’s 
completion’s Ko, as in combinational SCL circuits. 

IV. RESULTS 

The algorithms described in Section III were 
implemented using Python. As tabulated below, several SCL 
sequential MACs and combinational multipliers and ISCAS 
benchmarks [15, 16] were successfully verified applying the 
proposed methodology, executed on an Intel® Core™ i7-
4790 CPU with 32GB of RAM running at 3.60 GHz, using 
the Z3 SMT solver [13] to check for functional equivalence. 
Additionally, a number of buggy circuits were tested, 
including circuits with erroneous handshaking signals, such 
as an incorrect sleep signal connection to a C/L gate (i.e., 
20+10×10 MAC B1) and a C/L gate with one data input 
being a signal’s rail0 instead of the correct rail1 (i.e., 
20+10×10 MAC B2). For all buggy cases, the proposed 
approach was able to flag the errors, providing a descriptive 
message indicating the erroneous connection for 
handshaking errors, and producing counter examples to trace 
back the error path (via the SMT solver) for cases of 

functional in-equivalence. Since B2 was caught during the 
safety check, its verification time was much less than for B1, 
which was detected in the handshaking check. Time to 
convert an SCL netlist to its equivalent Boolean/synchronous 
netlist was negligible compared to safety and handshaking 
check times, and therefore was not included in Table I. 

V. CONCLUSIONS AND FUTURE WORK 

This paper proposes an equivalence verification 
methodology for both combinational and sequential SCL 
circuits. The method currently only works for sequential 
circuits without interacting feedback loops, such as a MAC, 
since the handshaking is otherwise much more complicated, 
and requires the development of an algorithm to map each 
register in the converted synchronous circuit to its 
corresponding register in the original synchronous 
specification. These problems will be tackled in future work, 
such that the developed approach will be applicable to any 
arbitrary sequential circuit. Scalability of the approach can be 
improved further using abstraction techniques, and a 
commercial equivalence checker instead of an SMT solver.  

TABLE I.  VERIFICATION RESULTS FOR VARIOUS SCL CIRCUITS 

SCL Circuit 
Verification Times (in sec.) 

Safety Check 
Handshaking 

Check 
Total time 

8x8 MUL 10.62 0.055 10.675 

10x10 MUL 683.49 0.1536 683.64 

12x12 MUL 49,963.05 0.316 49,963.36 

ISCAS c17 [15] 0.01 0.002 0.012 

ISCAS c432 [15] 1.03 0.0468 1.0768 

ISCAS s27 [16] 0.09 0.002 0.092 

12+6x6 MAC 1.69 0.031 1.721 

16+8x8 MAC 12.03 0.1007 12.131 

20+10x10 MAC 1,581.72 0.213 1581.93 

24+12x12 MAC 1,40,780.13 0.4078 1,40,780.5 

20+10x10 MAC B1 1483.22 0.3403 1483.5603 

20+10x10 MAC B2 0.17 0.197 0.367 
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