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Abstract— Pre-Charge Half Buffer (PCHB) is a Quasi-Delay 
Insensitive (QDI) asynchronous design paradigm that has found 
commercial applications in the semiconductor industry. PCHB 
circuits use dual-rail signals instead of Boolean logic and are 
unique in that PCHB gates incorporate both registration and a 
handshaking scheme for synchronization. We have developed a 
methodology for formal equivalence verification of 
combinational PCHB circuits against their corresponding 
Boolean specification circuits. The methodology transforms the 
PCHB circuit into a Boolean circuit, which can then be checked 
against a Boolean specification circuit using an existing 
combinational equivalence checker. The methodology also checks 
for liveness and handshaking correctness of the original PCHB 
circuit. The proposed methodology has been demonstrated using 
several multipliers and ISCAS circuit benchmarks. 

Keywords— Asynchronous Circuits, Formal Verification, 
Equivalence Checker, Pre-Charge Half Buffer. 

I. INTRODUCTION 

The traditional synchronous, clocked approach to digital 
circuit design is now suffering from many clock related issues, 
such as timing closure and excessive power dissipation, due to 
decreasing transistor feature size and increasing operating 
frequency. On the other hand, asynchronous, clockless Quasi-
Delay Insensitive (QDI) circuits eliminate these clock-related 
issues, and provide a robust, low-power approach to designing 
digital circuits [1]. Therefore, QDI circuits are becoming more 
widely utilized in the multi-billion-dollar semiconductor 
industry, as predicted by the International Technology 
Roadmap for Semiconductors (ITRS) [2]. Pre-Charge Half 
Buffer (PCHB) [3] is one such commercially successful QDI 
paradigm that has been utilized by major semiconductor 
companies, such as Intel [1]. 

Nowadays, formal verification is required by industry, 
especially for safety critical applications, to detect corner case 
bugs and guarantee circuit correctness. Exhaustive testing can 
detect shallow bugs, but cannot ensure complete correctness. 
Although PCHB circuits have found some commercial success, 
there exist few verification schemes for such circuits; and 
existing methods have several drawbacks. 

This paper proposes a formal verification methodology for 
combinational PCHB circuits, and compares the results with a 
previous method [9]. The paper is divided into five main 
sections. Section 2 contains a brief overview of PCHB circuits 

and reviews related work on PCHB verification. The proposed 
PCHB verification methodology is detailed in Section 3; 
Section 4 discusses the results; and Section 5 provides 
conclusions and directions for future work. 

II. PCHB BACKGROUND 

A. PCHB Functionality 

PCHB gates incorporate both registration and handshaking 
control [3]. In addition to performing specific logic functions 
they also behave as memory elements. Therefore, an 
arrangement of multiple gates in a combinational PCHB circuit 
operates similar to a synchronous pipeline; i.e., PCHB circuits 
themselves are not combinational; they include internal 
feedback, as shown in Fig. 1. The control consists of request 
and acknowledge signals from individual gates, Rack and Lack, 
respectively, and a combination of C-elements [4] to establish a 
well-defined handshaking scheme for synchronization. These 
unique features add to the complexity of the design, making 
formal verification of such circuits very challenging. 

QDI circuits, such as PCHB, utilize multi-rail logic signals, 
such as dual rail logic, where a signal consists of two wires, D0 
and D1. It can represent three states: DATA0 (D0=1, D1=0), 
DATA1 (D0=0, D1=1) and NULL (D0=0, D1=0). DATA0 and 
DATA1 are equivalent to Boolean logic ‘0’ and ‘1’, 
respectively. Unavailability of DATA is represented by NULL. 
(D0=1, D1=1) is an illegal state, as two rails cannot be asserted 
simultaneously. A PCHB gate has dual-rail inputs and outputs, 

     
Fig. 1. PCHB NAND2 Circuit [5] 
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X and Y, and F, respectively, for the NAND2 example in Fig. 
1. The set functions, F0 and F1, are implemented to achieve 
the particular gate functionality. The 2-input NOR gates 
connected to both inputs’ rails and the output’s rails detect 
when a dual-rail signal is either DATA or NULL; and the C-
element connects these completion detection signals to 
generate the gate’s acknowledge signal, Lack. The weak 
inverter arrangement is used to hold the output DATA until 
pre-charged back to NULL to attain delay-insensitivity. When 
Lack is request-for-data (rfd), the inputs will eventually 
become DATA and when Lack is request-for-NULL (rfn), the 
inputs will eventually become NULL. The function evaluates, 
and the output becomes DATA whenever both Lack and Rack 
are rfd and the X and Y inputs are DATA. If Rack is rfd and 
Lack is rfn, or vice versa, the state is held by the weak 
inverters. When Lack and Rack are both rfn, the output is pre-
charged back to NULL. Whenever the inputs and outputs are 
all DATA, Lack changes to rfn; and when the inputs and 
output are all NULL, Lack changes to rfd. 

Handshaking logic between PCHB gates can be 
implemented using either full-word or bit-wise completion 
[12], or some combination of the two. Full-word completion 
requires that the Lack signal of each PCHB gate in leveli be 
conjoined by one or more C-elements to produce a single Lack 
signal, whose output is connected to the Rack signal of each 
PCHB gate in leveli-1, where a gate’s level is the longest path 
(in terms of number of PCHB gates) from the circuit’s primary 
inputs to that gate’s output. On the other hand, bit-wise 
completion only sends the completion signal from PCHB gate 
b back to each PCHB gate whose output is an input to gate b. 

B. Related Verification Work 

There have been several methodologies implemented to 
verify different models of asynchronous circuits, with the ones 
directly applicable to PCHB described below. Chuang et al. 
developed a deadlock verification scheme for sequential 
PCHB circuits in [7]; however, the method does not address 
verification of the combinational units, neither their 
functionality nor their handshaking connections. They assume 
that their optimized synthesis method for generating a 
combinational PCHB circuit from its Boolean specification [6] 
is correct. For example, inversion in a handshaking signal will 
cause deadlock and swapped rails of a dual-rail signal will 
produce incorrect results, but will not deadlock the system, 
neither of which [7] would detect. In [8], a reverse synthesis-
based approach to creating a high-level specification is 
presented; however, in case of a bug, the methodology does 
not address the issue of finding the error. Also, [8] is 
applicable to control circuits, but not datapath circuits. A 
formal verification methodology for combinational PCHB 
circuits is presented in [9], based on model checking. The 
methodology models PCHB gates as transition systems (TS) 
and verifies a comprehensive set of properties that check for 
safety and liveness of the circuit. However, scalability is the 
major drawback of that method, as the resulting circuit TSs 

suffer from state explosion, which in turn leads to infeasible 
verification times. 

III. PROPOSED VERIFICATION METHODOLOGY 

This paper proposes a fast and highly scalable formal 
verification methodology for combinational PCHB circuits. 
The methodology includes an equivalence verification scheme 
that verifies the functionality of combinational PCHB circuits 
against their respective Boolean specifications to check for 
safety, and a graph-based approach to check for liveness and 
handshaking correctness, both described below. 

A.  Safety Check: An Equivalence Verification Methodology 

The safety check requires two steps. First, a conversion 
algorithm takes the netlist of a combinational PCHB circuit as 
input and transforms that into a corresponding Boolean netlist. 
The generated Boolean circuit is then checked against the 
Boolean specification using an equivalence checker. To 
describe the methodology, the 2x2 PCHB multiplier, shown in 
Fig. 2 is used as an example. Note that although the PCHB 
multiplier is similar to a Boolean multiplier at the gate level, 
PCHB gate structures are far more complex. For example, a 2-
input Boolean NAND gate only requires 4 transistors; whereas 
a 2-input PCHB NAND gate requires 46 transistors to account 
for dual-rail signaling, registration, and handshaking control. In 
general, PCHB circuits require approximately 8-15 times more 
transistors than corresponding Boolean circuits due to their 
complex features, as can be seen in Table 1. 

Fig. 3 shows the netlist format of the 2x2 PCHB multiplier. 
The first two lines correspond to all primary inputs and outputs 
of the circuit, respectively. A dual-rail signal, a0 is represented 
as "a0_1a0_0", where a0_1 and a0_0 are rail1 and rail0 of a0, 
respectively. Lines 3 to 10 represent the individual PCHB gates 
used in the circuit. The first column of each of these lines 
represent the type of the gate, where the ending number 
represents the number of gate inputs; e.g., and2 represents a 2-
input AND gate. The second column indicates the level of the 
gate, which is the longest path (in terms of number of PCHB 
gates) from the circuit’s primary inputs to that gate’s output. 
The remaining columns list the gate's input signals, Rack 
signal, Lack signal, and output signal, respectively. Type Cn in 
lines 11-13 represent an n-input C-element used to connect the 
PCHB handshake signals. Following Cn are its n input signals, 
and then its output signal. 

The PCHB netlist is converted into its corresponding 
Boolean netlist, shown in Fig. 4a, by replacing each PCHB 
gate with its corresponding Boolean gate, and each dual-rail 
signal with a corresponding Boolean signal. Swapped rails of a 
dual-rail signal result in the introduction of an inverter. For 
example, if line 3 of Fig. 3 was instead “and2 1 a0_0a0_1 …”, 
this would result in the following additional line in Fig. 4a: 
“inv 1 a0, a0_bar”, and line 3 of Fig. 4a to be changed to “and2 
2 a0_bar, b0 p0”. If a PCHB gate input’s rail1 and rail0 are not 
part of the same dual-rail signal, an error message is generated 
noting the misconnection between rails and where this occurs.               
The converted Boolean netlist is then encoded in the 
Satisfiability Modulo Theory Library (SMT_LIB) language,
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1.   a0_1a0_0, a1_1a1_0, b0_1b0_0, b1_1b1_0
2.   p0_1p0_0, p1_1p1_0, p2_1p2_0, p3_1p3_0
3.   and2  1   a0_1a0_0, b0_1b0_0   rack    lack1   p0_1p0_0
4.   and2  1   a1_1a1_0, b0_1b0_0   rack1   lack2 t0_1t0_0
5.   and2  1   a0_1a0_0, b1_1b1_0   rack1   lack3 t1_1t1_0
6.   and2  1   a1_1a1_0, b1_1b1_0   rack2   lack4 t3_1t3_0
7.   xor2  2   t0_1t0_0, t1_1t1_0   rack   lack5   p1_1p1_0
8.   and2  2   t0_1t0_0, t1_1t1_0   rack2   lack6   t2_1t2_0
9.   xor2  3   t2_1t2_0, t3_1t3_0   rack   lack7   p2_1p2_0
10. and2  3   t2_1t2_0, t3_1t3_0   rack   lack8   p3_1p3_0
11. C2     lack5, lack6    rack1
12. C2     lack7, lack8    rack2
13. C4     lack1 ,lack2, lack3, lack4   lack  

                                                               Fig. 2. PCHB 2x2 multiplier       Fig. 3. PCHB netlist of a 2x2 Multiplier 

1.   a0, a1, b0, b1 
2.   p0, p1, p2, p3 
3.   and2  1  a0,b0   p0 
4.   and2  1  a1,b0   t0 
5.   and2  1  a0,b1   t1 
6.   and2  1  a1,b1   t3 
7.   xor2  2  t0, t1    p1 
8.   and2  2  t0, t1   t2 
9.   xor2  3  t2, t3   p2 
10. and2  3  t2, t3   p3 

a0:   fanout: [1 3]        comp_fanin: [1 2 3 4]  
a1:   fanout: [2 4]        comp_fanin: [1 2 3 4]  
b0:   fanout: [1 2] comp_fanin: [1 2 3 4]  
b1:   fanout: [3 4] comp_fanin: [1 2 3 4]  
1:     fanout: 0 comp_fanin: 0 
2:     fanout: [5  6]       comp_fanin: [5  6]     
3:     fanout: [5  6]       comp_fanin: [5  6]  
4:     fanout: [7  8]       comp_fanin: [7  8]  
5:     fanout: 0 comp_fanin: 0  
6:     fanout: [7  8]       comp_fanin: [7  8]  
7:     fanout: 0 comp_fanin: 0 
8:     fanout: 0              comp_fanin: 0 

            (a)                                                            (b) 
Fig. 4. a) Converted Boolean netlist   b) fan_out and comp_fanin structure 

using a developed automated conversion tool, which is then 
input to an SMT solver to check for functional equivalence 
between the transformed Boolean version of the original PCHB 
circuit and its corresponding Boolean specification. For the 2x2 
multiplier example, the SMT solver checks for the following 
safety property: FPCHB_Bool_Equivalent (a0, a1, b0, b1) = MUL (a, 
b), where (a1, a0) and (b1, b0) are the (Most Significant Bit, 
Least Significant Bit) of a and b, respectively. We use the z3 
SMT solver [11] to check for equivalence verification, but any 
combinational equivalence checker could be used. 

B. Liveness and Handshaking Correction Check 

Liveness means absence of deadlock in a circuit. For 
combinational PCHB circuits, proper connections between 
handshaking signals ensures liveness and proper 
synchronization. The same PCHB netlist shown in Fig. 3 and 
used as input for the safety check method, is utilized as input 
for the liveness check to trace back the handshaking paths and 
C-element connections to verify proper handshaking, ensuring 
that every output generated by a particular input, acknowledges 
that input. For each PCHB gate, i, its output is compared with 
every other PCHB gate j’s inputs, i≠j, to generate a fanout list, 
fanout(i), for PCHB gate i. For example, referring to Fig. 3, 
fanout for the and2 gate on line 4 would contain the xor2 gate 
on line 7 and the and2 gate on line 8. For each PCHB gate, i, 
its Rack input is compared with every other PCHB gate j’s 
Lack output, i≠j, and every C-element’s output, to generate a 

completion fanin list, comp_fanin(i), for PCHB gate i. For 
example, referring to Fig. 3, comp_fanin for the and2 gate on 
line 4 would contain the xor2 gate on line 7 and the and2 gate 
on line 8, since they are both inputs to the C-element on line 
11, whose output is the Rack input of the and2 gate on line 4. 
Similarly, a fanout and comp_fanin list is generated for each 
external input. 

After fanout and comp_fanin for each PCHB gate and 
external input is calculated, as shown in Fig. 4b for the 2x2 
multiplier example, fanout(k) is checked to ensure that it is a 
subset of comp_fanin(k), for all PCHB gates and external 
inputs. Bit-wise completion results in fanout(k) being equal to 
comp_fanin(k), while full-word completion results in fanout(k) 
being a proper subset of comp_fanin(k), with the restriction that 
each gate that is in comp_fanin(k) and not in fanout(k) must be 
from the immediate subsequent level of gate/input k. fanout(k) 
not being a subset of comp_fanin(k) could result in deadlock, 
while fanout(k) being a proper subset of comp_fanin(k) but 
violating the level restriction described above, could decrease 
circuit performance, but will not result in deadlock. Hence, if 
fanout(k) is a proper subset of comp_fanin(k), then each gate 
that is in comp_fanin(k) and not in fanout(k) must be inspected 
to ensure that it meets this level restriction. If not, it is flagged 
as an incorrect connection. Note that fanout 0 indicates an 
external output, while comp_fanin 0 denotes an external Rack 
input. The running time for this liveness check algorithm is 
O(I+P)*(P+C), where I, P and C are the number of external 
inputs, PCHB gates, and C-elements in the circuit, respectively. 

IV. RESULTS 

The proposed methodology has been demonstrated on 
several multipliers and ISCAS-85[10] combinational circuit 
benchmarks; and the verification times are compared with 
those from an existing PCHB formal verification methodology 
based on model checking [9]. As shown in Table 1, the 
proposed methodology is significantly faster than the model 
checking based approach for every circuit. Furthermore, the 
proposed methodology was able to verify complex circuits 
with hundreds of gates, such as a 12x12 multiplier; whereas, 
the model checking approach Timed Out (TO) for much 
smaller circuits, demonstrating the scalability of the approach
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TABLE I.  VERIFICATION RESULTS FOR VARIOUS COMBINATIONAL PCHB CIRCUITS. 

PCHB Circuits # Transistors in 

Boolean Circuit 

# Transistors 

in PCHB Implementation 

Proposed Method 

Time (sec) 

Model Checking [9] 

Time (sec) 

Full Adder 36 266 <10 ms 21.54 

ISCAS C-17 24 320 0.01 138.62 

4-to-16 decoder 136 1,284 0.01 222.6 

32- bit MUX 386 4,836 0.23 413.20 

4x4 Multiplier 504 3,324 0.06 TO 

6x6 Multiplier 1,332 8,720 0.33 DNS 

8x8 Multiplier 2,544 16,620 12.18 DNS 

9x9 Multiplier 3,294 21,470 96.08 DNS 

10x10 Multiplier 4,140 26,960 741.84 DNS 

11x11 Multiplier 5,082 33,070 7323.07 DNS 

12x12 Multiplier 6,120 39,812 62,823.67 DNS 

10x10Mul-B1 4,140 26,960 1.01 DNS 

10x10Mul-B2 4,140 26,960 0.06 DNS 

10x10Mul-B3 4,140 26,960 0.84 DNS 

10x10Mul-B4 4,140 26,960 0.79 DNS 

ISCAS c432 590 7,362 1.31 DNS 

Note that DNS in Table 1 stands for “Did Not Simulate”; 
since the model checking approach Timed Out for a 4x4 
multiplier, we can safely assume that it would time out for 
more complex circuits, such as ISCAS c432 and other higher 
order multipliers. 10x10Mul-B1, 10x10Mul-B2 and 
10x10Mul-B3 are buggy circuits where bugs were 
introduced in data signals, logic elements and handshaking 
units, respectively. 10x10Mul-B4 is a buggy circuit with 
swapped rail connections. In every case, the proposed 
methodology detected and identified each bug very fast. 
Verification was performed using the z3 SMT solver [11] on 
an Intel® Core™ i7-4790 CPU with 32GB of RAM, running 
at 3.60 GHz. The verification times in Table 1 only include 
the z3 runtime, as the netlist conversion times and time 
required to verify the handshaking signals were negligible in 
comparison.  

V. CONCLUSIONS AND FUTURE WORK 

Combinational PCHB circuits operate similar to a 
synchronous pipeline, which makes verification much more 
difficult. The proposed equivalence verification 
methodology for combinational PCHB circuits presented 
herein is significantly faster and much more scalable 
compared to the previous model checking approach; and it 
detected all inserted test bugs. Future work consists of 
extending the proposed methodology to sequential PCHB 
circuits, including those with data feedback. 
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