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Abstract— Pre-Charge Half Buffer (PCHB) is a Quasi-Delay
Insensitive (QDI) asynchronous design paradigm that has found
commercial applications in the semiconductor industry. PCHB
circuits use dual-rail signals instead of Boolean logic and are
unique in that PCHB gates incorporate both registration and a
handshaking scheme for synchronization. We have developed a
methodology for formal equivalence verification of
combinational PCHB circuits against their corresponding
Boolean specification circuits. The methodology transforms the
PCHB circuit into a Boolean circuit, which can then be checked
against a Boolean specification circuit using an existing
combinational equivalence checker. The methodology also checks
for liveness and handshaking correctness of the original PCHB
circuit. The proposed methodology has been demonstrated using
several multipliers and ISCAS circuit benchmarks.

Keywords— Asynchronous Circuits, Formal
Equivalence Checker, Pre-Charge Half Buffer.

Verification,

I. INTRODUCTION

The traditional synchronous, clocked approach to digital
circuit design is now suffering from many clock related issues,
such as timing closure and excessive power dissipation, due to
decreasing transistor feature size and increasing operating
frequency. On the other hand, asynchronous, clockless Quasi-
Delay Insensitive (QDI) circuits eliminate these clock-related
issues, and provide a robust, low-power approach to designing
digital circuits [1]. Therefore, QDI circuits are becoming more
widely utilized in the multi-billion-dollar semiconductor
industry, as predicted by the International Technology
Roadmap for Semiconductors (ITRS) [2]. Pre-Charge Half
Buffer (PCHB) [3] is one such commercially successful QDI
paradigm that has been utilized by major semiconductor
companies, such as Intel [1].

Nowadays, formal verification is required by industry,
especially for safety critical applications, to detect corner case
bugs and guarantee circuit correctness. Exhaustive testing can
detect shallow bugs, but cannot ensure complete correctness.
Although PCHB circuits have found some commercial success,
there exist few verification schemes for such circuits; and
existing methods have several drawbacks.

This paper proposes a formal verification methodology for
combinational PCHB circuits, and compares the results with a
previous method [9]. The paper is divided into five main
sections. Section 2 contains a brief overview of PCHB circuits
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and reviews related work on PCHB verification. The proposed
PCHB verification methodology is detailed in Section 3;
Section 4 discusses the results; and Section 5 provides
conclusions and directions for future work.

II. PCHB BACKGROUND

A. PCHB Functionality

PCHB gates incorporate both registration and handshaking
control [3]. In addition to performing specific logic functions
they also behave as memory elements. Therefore, an
arrangement of multiple gates in a combinational PCHB circuit
operates similar to a synchronous pipeline; i.e., PCHB circuits
themselves are not combinational; they include internal
feedback, as shown in Fig. 1. The control consists of request
and acknowledge signals from individual gates, Rack and Lack,
respectively, and a combination of C-elements [4] to establish a
well-defined handshaking scheme for synchronization. These
unique features add to the complexity of the design, making
formal verification of such circuits very challenging.

QDI circuits, such as PCHB, utilize multi-rail logic signals,
such as dual rail logic, where a signal consists of two wires, D’
and D’. Tt can represent three states: DATAO (D=1, D'=0),
DATAL1 (D%=0, D'=1) and NULL (D°=0, D'=0). DATAO and
DATAI1 are equivalent to Boolean logic ‘0’ and ‘1°,
respectively. Unavailability of DATA is represented by NULL.
(D=1, D'=1) is an illegal state, as two rails cannot be asserted
simultaneously. A PCHB gate has dual-rail inputs and outputs,

Pre-charge to NULL|

[T T
Li[ +—d [
Se(: SetF'
X° ; {C %;T
|
-5
YO
%/_ .

Lack

Rack

FO
F1

7@}}7

5

Function

Fig. 1. PCHB NAND2 Circuit [5]



X and Y, and F, respectively, for the NAND2 example in Fig.
1. The set functions, F? and F’, are implemented to achieve
the particular gate functionality. The 2-input NOR gates
connected to both inputs’ rails and the output’s rails detect
when a dual-rail signal is either DATA or NULL; and the C-
element connects these completion detection signals to
generate the gate’s acknowledge signal, Lack. The weak
inverter arrangement is used to hold the output DATA until
pre-charged back to NULL to attain delay-insensitivity. When
Lack is request-for-data (rfd), the inputs will eventually
become DATA and when Lack is request-for-NULL (#fi), the
inputs will eventually become NULL. The function evaluates,
and the output becomes DATA whenever both Lack and Rack
are rfd and the X and Y inputs are DATA. If Rack is rfd and
Lack is rfn, or vice versa, the state is held by the weak
inverters. When Lack and Rack are both rfi, the output is pre-
charged back to NULL. Whenever the inputs and outputs are
all DATA, Lack changes to rfin; and when the inputs and
output are all NULL, Lack changes to rfd.

Handshaking logic between PCHB gates can be
implemented using either full-word or bit-wise completion
[12], or some combination of the two. Full-word completion
requires that the Lack signal of each PCHB gate in level; be
conjoined by one or more C-elements to produce a single Lack
signal, whose output is connected to the Rack signal of each
PCHB gate in level;.;, where a gate’s level is the longest path
(in terms of number of PCHB gates) from the circuit’s primary
inputs to that gate’s output. On the other hand, bit-wise
completion only sends the completion signal from PCHB gate
b back to each PCHB gate whose output is an input to gate b.

B. Related Verification Work

There have been several methodologies implemented to
verify different models of asynchronous circuits, with the ones
directly applicable to PCHB described below. Chuang et al.
developed a deadlock verification scheme for sequential
PCHB circuits in [7]; however, the method does not address
verification of the combinational wunits, neither their
functionality nor their handshaking connections. They assume
that their optimized synthesis method for generating a
combinational PCHB circuit from its Boolean specification [6]
is correct. For example, inversion in a handshaking signal will
cause deadlock and swapped rails of a dual-rail signal will
produce incorrect results, but will not deadlock the system,
neither of which [7] would detect. In [8], a reverse synthesis-
based approach to creating a high-level specification is
presented; however, in case of a bug, the methodology does
not address the issue of finding the error. Also, [8] is
applicable to control circuits, but not datapath circuits. A
formal verification methodology for combinational PCHB
circuits is presented in [9], based on model checking. The
methodology models PCHB gates as transition systems (TS)
and verifies a comprehensive set of properties that check for
safety and liveness of the circuit. However, scalability is the
major drawback of that method, as the resulting circuit TSs
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suffer from state explosion, which in turn leads to infeasible
verification times.

III. PROPOSED VERIFICATION METHODOLOGY

This paper proposes a fast and highly scalable formal
verification methodology for combinational PCHB circuits.
The methodology includes an equivalence verification scheme
that verifies the functionality of combinational PCHB circuits
against their respective Boolean specifications to check for
safety, and a graph-based approach to check for liveness and
handshaking correctness, both described below.

A. Safety Check: An Equivalence Verification Methodology

The safety check requires two steps. First, a conversion
algorithm takes the netlist of a combinational PCHB circuit as
input and transforms that into a corresponding Boolean netlist.
The generated Boolean circuit is then checked against the
Boolean specification using an equivalence checker. To
describe the methodology, the 2x2 PCHB multiplier, shown in
Fig. 2 is used as an example. Note that although the PCHB
multiplier is similar to a Boolean multiplier at the gate level,
PCHB gate structures are far more complex. For example, a 2-
input Boolean NAND gate only requires 4 transistors; whereas
a 2-input PCHB NAND gate requires 46 transistors to account
for dual-rail signaling, registration, and handshaking control. In
general, PCHB circuits require approximately 8-15 times more
transistors than corresponding Boolean circuits due to their
complex features, as can be seen in Table 1.

Fig. 3 shows the netlist format of the 2x2 PCHB multiplier.
The first two lines correspond to all primary inputs and outputs
of the circuit, respectively. A dual-rail signal, a0 is represented
as "a0_la0 0", where a0_I and a0_0 are rail’ and rail’ of a0,
respectively. Lines 3 to 10 represent the individual PCHB gates
used in the circuit. The first column of each of these lines
represent the fype of the gate, where the ending number
represents the number of gate inputs; e.g., and2 represents a 2-
input AND gate. The second column indicates the level of the
gate, which is the longest path (in terms of number of PCHB
gates) from the circuit’s primary inputs to that gate’s output.
The remaining columns list the gate's input signals, Rack
signal, Lack signal, and output signal, respectively. Type Cn in
lines 11-13 represent an n-input C-element used to connect the
PCHB handshake signals. Following Cr are its n input signals,
and then its output signal.

The PCHB netlist is converted into its corresponding
Boolean netlist, shown in Fig. 4a, by replacing each PCHB
gate with its corresponding Boolean gate, and each dual-rail
signal with a corresponding Boolean signal. Swapped rails of a
dual-rail signal result in the introduction of an inverter. For
example, if line 3 of Fig. 3 was instead “and2 1 a0 0a0 1 ...”,
this would result in the following additional line in Fig. 4a:
“inv 1 a0, a0_bar”, and line 3 of Fig. 4a to be changed to “and2
2 a0_bar, b0 p0”. If a PCHB gate input’s rail’ and rail’ are not
part of the same dual-rail signal, an error message is generated
noting the misconnection between rails and where this occurs.
The converted Boolean netlist is then encoded in the
Satisfiability Modulo Theory Library (SMT_LIB) language,
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Fig. 2. PCHB 2x2 multiplier

1. a0, al, b0, bl a0: fanout: [1 3] comp_fanin: [12 3 4]
2. p0,pl, p2, p3 al: fanout: [2 4] comp_fanin: [1 2 3 4]
3. and2 1 a0,b0 pO | bO: fanout: [1 2] comp_fanin: [12 3 4]
4. and2 1 al,b0 t0 bl: fanout: [3 4] comp_fanin: [12 3 4]
5. and2 1 a0,bl tl 1:  fanout: 0 comp_fanin: 0
6. and2 1 al,bl t3 2: fanout: [5 6] comp_fanin: [5 6]
7. xor2 2 t0,t1 pl | 3: fanout: [5 6] comp_fanin: [5 6]
8. and2 2 t0,t1 2 4:  fanout: [7 8] comp_fanin: [7 8]
9. xor2 3 t2,t3 p2 5:  fanout: 0 comp_fanin: 0
10.and2 3 t2,t3 p3 6: fanout: [7 8] comp_fanin: [7 8]

7:  fanout: 0 comp_fanin: 0

8: fanout: 0 comp_fanin: 0

(@ (®)

Fig. 4. a) Converted Boolean netlist b) fan_out and comp_fanin structure

using a developed automated conversion tool, which is then
input to an SMT solver to check for functional equivalence
between the transformed Boolean version of the original PCHB
circuit and its corresponding Boolean specification. For the 2x2
multiplier example, the SMT solver checks for the following
safety property: FpcuB Bool Equivalent (@0, al, b0, b1) = MUL (a,
b), where (al, a0) and (b1, b0) are the (Most Significant Bit,
Least Significant Bit) of a and b, respectively. We use the z3
SMT solver [11] to check for equivalence verification, but any
combinational equivalence checker could be used.

B. Liveness and Handshaking Correction Check

Liveness means absence of deadlock in a circuit. For
combinational PCHB circuits, proper connections between
handshaking  signals ensures liveness and  proper
synchronization. The same PCHB netlist shown in Fig. 3 and
used as input for the safety check method, is utilized as input
for the liveness check to trace back the handshaking paths and
C-element connections to verify proper handshaking, ensuring
that every output generated by a particular input, acknowledges
that input. For each PCHB gate, i, its output is compared with
every other PCHB gate ;’s inputs, i#/, to generate a fanout list,
fanout(i), for PCHB gate i. For example, referring to Fig. 3,
fanout for the and?2 gate on line 4 would contain the xor2 gate
on line 7 and the and? gate on line 8. For each PCHB gate, i,
its Rack input is compared with every other PCHB gate j’s
Lack output, i#j, and every C-element’s output, to generate a

Fig. 3. PCHB netlist of a 2x2 Multiplier

completion fanin list, comp_fanin(i), for PCHB gate i. For
example, referring to Fig. 3, comp_fanin for the and2 gate on
line 4 would contain the xor2 gate on line 7 and the and2? gate
on line 8, since they are both inputs to the C-element on line
11, whose output is the Rack input of the and?2 gate on line 4.
Similarly, a fanout and comp_fanin list is generated for each
external input.

After fanout and comp_fanin for each PCHB gate and
external input is calculated, as shown in Fig. 4b for the 2x2
multiplier example, fanout(k) is checked to ensure that it is a
subset of comp_fanin(k), for all PCHB gates and external
inputs. Bit-wise completion results in fanout(k) being equal to
comp_fanin(k), while full-word completion results in fanout(k)
being a proper subset of comp_fanin(k), with the restriction that
each gate that is in comp_fanin(k) and not in fanout(k) must be
from the immediate subsequent level of gate/input . fanout(k)
not being a subset of comp_fanin(k) could result in deadlock,
while fanout(k) being a proper subset of comp fanin(k) but
violating the level restriction described above, could decrease
circuit performance, but will not result in deadlock. Hence, if
fanout(k) is a proper subset of comp_fanin(k), then each gate
that is in comp_fanin(k) and not in fanout(k) must be inspected
to ensure that it meets this level restriction. If not, it is flagged
as an incorrect connection. Note that fanout 0 indicates an
external output, while comp_fanin 0 denotes an external Rack
input. The running time for this liveness check algorithm is
O(I+P)*(P+C), where I, P and C are the number of external
inputs, PCHB gates, and C-elements in the circuit, respectively.

IV. RESULTS

The proposed methodology has been demonstrated on
several multipliers and ISCAS-85[10] combinational circuit
benchmarks; and the verification times are compared with
those from an existing PCHB formal verification methodology
based on model checking [9]. As shown in Table 1, the
proposed methodology is significantly faster than the model
checking based approach for every circuit. Furthermore, the
proposed methodology was able to verify complex circuits
with hundreds of gates, such as a 12x12 multiplier; whereas,
the model checking approach Timed Out (TO) for much
smaller circuits, demonstrating the scalability of the approach
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TABLE 1. VERIFICATION RESULTS FOR VARIOUS COMBINATIONAL PCHB CIRCUITS.

Note that DNS in Table 1 stands for “Did Not Simulate”;
since the model checking approach Timed Out for a 4x4
multiplier, we can safely assume that it would time out for
more complex circuits, such as ISCAS c432 and other higher
order multipliers. 10x10Mul-B1, 10x10Mul-B2 and
10x10Mul-B3 are buggy circuits where bugs were
introduced in data signals, logic elements and handshaking
units, respectively. 10x10Mul-B4 is a buggy circuit with
swapped rail connections. In every case, the proposed
methodology detected and identified each bug very fast.
Verification was performed using the z3 SMT solver [11] on
an Intel® Core™ i7-4790 CPU with 32GB of RAM, running
at 3.60 GHz. The verification times in Table 1 only include
the z3 runtime, as the netlist conversion times and time
required to verify the handshaking signals were negligible in
comparison.

V. CONCLUSIONS AND FUTURE WORK

Combinational PCHB circuits operate similar to a
synchronous pipeline, which makes verification much more
difficult.  The  proposed equivalence  verification
methodology for combinational PCHB circuits presented
herein is significantly faster and much more scalable
compared to the previous model checking approach; and it
detected all inserted test bugs. Future work consists of
extending the proposed methodology to sequential PCHB
circuits, including those with data feedback.
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