Automated verification of input
completeness for NCL circuits

S. Le™, S.K. Srinivasan and S.C. Smith

An automated formal verification approach for ensuring input
completeness of NULL Convention Logic (NCL) circuits is proposed.
NCL circuits have the benefit that they can operate in extreme environ-
ments where traditional synchronous circuits fail due to significant
fluctuations in circuit timing. Input completeness is a critical property
to ensure correct functioning of NCL circuits in extreme environments
and therefore is required to be verified. Note that an NCL circuit can be
functionally correct and still not be input complete, which could cause
the circuit to operate correctly under normal conditions, but mal-
function only when the circuit timing is substantially changed (e.g.
operating in a very hot or cold environment such as outer space).

Introduction: NULL Convention Logic (NCL) circuits [1] are a type
of quasi-delay insensitive asynchronous design style that has been
demonstrated to function in environments characterised by high radi-
ation exposure, and high or low temperatures or large temperature fluc-
tuations, where synchronous circuit counterparts fail [2]. The ability of
NCL circuits to function correctly in extreme environments makes them
very suitable for space exploration, the power industry, the automobile
industry (internal combustion engines), oil/gas exploration, medical
imaging instrumentation, the laser industry, superconducting computing
and energy storage systems, and low voltage or low power applications
such as wireless sensor networks or Internet of Things.

Synchronisation of NCL circuits happens via the propagation of
NULL and DATA waves through the circuit, utilising handshaking
instead of a traditional clock signal. Dual-rail signals are used for data
representation. A NULL state (absence of data) is represented by
0b00 and a DATA state is represented as either O0bO1 (0 in Boolean)
or Ob10 (1 in Boolean). The state Obll is an ILLEGAL state. To
achieve delay insensitivity, all NCL circuits must satisfy two properties,
input completeness and observability. In order for a combinational NCL
circuit to be input complete, its outputs may not all transition from
NULL to DATA until all inputs have transitioned from NULL to
DATA, and conversely, may not all transition from DATA to NULL
until all inputs have transitioned from DATA to NULL [3]. Note that
some outputs can transition to DATA (NULL) before all inputs are
DATA (NULL) as long as all outputs cannot become DATA (NULL)
until all inputs are DATA (NULL) [4]. Observability ensures that
every gate asserted during a DATA wavefront propagates through the
circuit to cause at least one circuit output to be asserted. In this Letter,
an automated formal verification approach to check input completeness
of NCL circuits is proposed. The efficiency of the proposed approach is
demonstrated using 37 NCL circuit benchmarks.

Related work: A manual approach to checking input completeness is
outlined in [5]. To check a circuit for input completeness, an analysis
has to be done on each output term. For example, in order for output
Z to be input complete with respect to input 4, every product term in
all rails of Z (in SOP format) must contain any rail of A. This ensures
that Z cannot be DATA until 4 is DATA, and if Z is constructed
solely out of NCL gates with hysteresis, the gate hysteresis ensures
that Z cannot transition from DATA to NULL until 4 transitions from
DATA to NULL. Hence, Z is input complete with respect to A.
However, this method cannot ensure input completeness of relaxed
NCL circuits [6], where not all gates contain hysteresis. Also, scalability
is a problem with this approach, as the number of product terms
that need to be verified grows exponentially as the number of inputs
increase.

Kondratyev et al. [7] provide a formal verification approach for obser-
vability verification, which entails determining all input combinations that
assert gate;, then forcing gate; to remain de-asserted while checking that
none of those input combinations result in all circuit outputs becoming
DATA. This check is performed for all gates to ensure circuit observabil-
ity; and if also applied to each circuit input (i.e. replace gate; with input; in
the observability check explanation), will guarentee input completeness.
In contrast, our approach directly verifies input completeness for all
circuit inputs using only two proof obligations (POs).

There have also been several formal verification approaches to check
safety and liveness of NCL circuits [8, 9]; however, safety and liveness

verification does not guarantee input completeness, which has to be ver-
ified independently.

Input-completeness verification: The proposed approach for input-
completeness verification is as follows. Two POs have been formulated,
one for NULL to DATA transition and one for DATA to NULL
transition. The POs are generic and can be applied to any NCL com-
binational circuit, and can be automatically checked using a decision
procedure such as a satisfiability modulo theories (SMT) solver. The
PO for the NULL to DATA transition is described next.

NULL to DATA proof obligation: Without loss of generality, an NCL
circuit is assumed to have m threshold gates, p dual-rail inputs, and ¢ dual-
rail outputs. g, ... g’ are Boolean variables that represent the current state
of the threshold gates. i'...# are the symbolic values applied to the
circuit inputs. o' ... 07 are the circuit output values obtained using a sym-
bolic step of the circuit by applying the current state and inputs given
above. The predicates used in the NULL to DATA PO are as follows.
Po: A, —(i" = 0b11) represents that none of the dual-rail inputs are
illegal. pi: AZZT (g% = 0) indicates that all threshold gates have an
initial value of 0, which represents the NULL state of the circuit before
a DATA transition. p,: V) (i" = 0b00) represents that at least one
input is NULL; and p3: V/_1 (0" = 0b00) represents that at least one
output is NULL. The PO for NULL to DATA input completeness is
given below, and states that if the inputs are all legal, the threshold
gates are all initialised to 0, and one or more of the inputs are NULL,
then after stepping the circuit, one or more of the outputs must be
NULL. Since the input values are symbolic, when the above PO is
checked using a decision procedure, it verifies the property for all possible
input combinations that satisfy the PO hypothesis

{po A p A p2y—p3

DATA to NULL proof obligation: For the DATA to NULL PO, all poss-
ible valid combinations of threshold gate values that the circuit can have
after transitioning to DATA need to first be computed. To do this, the
circuit is first symbolically stepped by initialising all threshold gates
to 0 and applying valid (not ILLEGAL) DATA inputs (identified as
step A), which corresponds to a NULL to DATA transition. The
values of the gates after step A will correspond to all possible valid com-
binations of the gates before a DATA to NULL transition. Next, the
circuit is again symbolically stepped (called step B) to correspond to
the DATA to NULL transition by using the values of the gates at the
end of step A. Step B is used to verify input completeness for the
DATA to NULL transition. For the PO, let g}...g"% be the gate
values for step A, g}...g» be the gate values for step B, i}...# be
the step A inputs, i, ..., be the inputs for step B, and o}...0% be
the outputs for step B. NCLStep represents a step of the circuit with
the specified inputs.

The predicates required for the PO are as follows.
paz Anh (% = 0b01) V (i = 0b10)) represents that step A inputs
correspond to valid DATA. ps: AiZT (g% = 0) indicates that the gates
are initialised to 0 for step A. p(,:(g};, S, 88) = NCLStep(iji, LB
assigns gh...g4, the values of the gates at the end of step A.
pri A (% = i) V (i% = 0b00)) indicates that each input for step B
can either have transitioned to NULL or retained its value from step A.
ps: Vol (i = i) indicates that at least one of the step B inputs
has retained its previous DATA value. po: Vi_1 (0% = 0b01)V (0} =
0510)) indicates that at least one of the step B outputs is still DATA
(i.e. not NULL). The PO itself is given below

{ps A ps A ps A pr A pst—py

Results: Verification of the two POs can be performed using an SMT
solver. The benchmarks used for verification were N x N unsigned dual-
rail NCL multipliers ranging from 3 to 20 bits, as well as the
ISCAS-85 C432 27-channel interrupt controller [10]. To perform verifica-
tion, both the circuit and the POs needed to be encoded in the SMT-LIB
[11] language. This was performed automatically using a developed tool
that took as input the netlist of the circuit and generated both the circuit
model and PO specifications in SMT-LIB format. PO checking was
performed using the zZ3 SMT solver [12]. Verification experiments were
run on a 3.5 GHz Intel Core i5 6600k processor with 16 GB of DDR4
RAM.

ELECTRONICS LETTERS 4th October 2018 Vol. 54 No. 20 pp. 1158-1160

Table 1: Z3 runtime for benchmark NCL unsigned multipliers and
NCL ISCAS circuit (all times listed in seconds)

Circuit NtoD Buggy N to D DtoN Buggy D to N
umult3 0.024 0.062 0.030 0.033
umult4 0.030 0.031 0.048 0.039
umult5 0.056 0.037 0.116 0.061
umult6 0.161 0.092 0.289 0.240
umult?7 0.414 0.246 1.209 1.009
umult8 1.398 0.651 5.877 1.561
umult9 4.591 2.409 18.238 7.266
umult10 18.705 3.734 103.419 22.172
umultl1 63.169 21.529 363.063 223.627
umult12 223.371 9.714 1620.489 6.572
umultl3 801.975 21.590 7014.603 84911
umultl4 4796.622 26.271 30,935.954 43.472
umultl5 10,974.461 417.004 TO 802.518
umult16 76,300.605 534.320 TO 45.577
umultl7 TO 160.857 TO 204.847
umultl8 TO 3566.523 TO 21.659
umult19 TO 4930.595 TO 70.909
umult20 TO 5381.748 TO 108.503
r-umult3 0.024 0.024 0.030 0.029
r-umult4 0.030 0.031 0.047 0.037
r-umult5 0.048 0.054 0.104 0.047
r-umult6 0.135 0.127 0.427 0.057
r-umult? 0.399 0.433 1.539 0.064
r-umult8 1.209 1.530 6.830 0.097
r-umult9 4.928 4.926 27.827 0.119
r-umult10 15.636 16.050 118.184 0.111
r-umultl 1 58.690 3.967 963.396 0.153
r-umultl2 205.409 188.072 2996.760 0.213
r-umultl3 761.903 777.390 16,969.252 0.183
r-umult14 2591.337 77.150 77,112.377 0.233
r-umultl5 12,592.790 9637.624 TO 0.308
r-umult16 41,717.063 29,484.895 TO 0.811
r-umultl7 TO 2922.783 TO 1.120
r-umult18 TO 12,453.725 TO 1.656
r-umult19 TO TO TO 1.642
r-umult20 TO TO TO 2.117
ISCAS-85 0.062 0.068 0.074 0.070

The verification results for the benchmark circuits are shown in
Table 1. umultN represents an N x N NCL unsigned multiplier com-
prised completely of NCL gates. r-umultN represents a relaxed N x N
NCL unsigned multiplier that contain Boolean gates when hysteresis
is not needed. The first column in the table gives the circuit name.
The second and third columns give the verification times for correct
and buggy versions of the circuit for the NULL to DATA PO, respect-
ively. The fourth and fifth columns give the verification times for correct
and buggy versions of the circuit for the DATA to NULL PO, respect-
ively. TO (timed out) denotes that the verification simulation time was
greater than one day. The multipliers were designed using input-
complete AND functions to generate the X;Y; partial products and
input-incomplete AND functions to generate the rest of the partial
products (i.e. X;Y;; i! =) [13]. Buggy versions of the non-relaxed
multipliers (i.e. comprised solely of NCL gates with hysteresis) were
obtained by selecting a dual-rail-input at random and replacing its
corresponding partial product generating input-complete AND function
with the input-incomplete version. The other multiplier components,
half-adders (HAs) and full-adders (FAs) are inherently input complete
(i.e. all outputs cannot be determined without all inputs) and therefore
cannot be made to be input incomplete when designed solely using
NCL gates with hysteresis. Relaxed NCL multipliers were designed
by replacing the TH22 gate within the input-incomplete AND functions
and HAs with Boolean AND gates. Buggy versions of the relaxed
multipliers were obtained by replacing one of the following gates with
its Boolean version: the THand0 gate within an X;Y; partial product
generating AND function, a TH24comp gate within a HA, or a
TH34w2 or TH23 gate within a FA. The ISCAS C432 circuit was
designed by utilising as many input-incomplete functions as possible
while still maintaining input completeness. Its buggy version was

ELECTRONICS LETTERS

obtained by replacing the input-complete three-input NAND component
used to calculate RC, with its input-incomplete version. For all bugs, z3
produces a counterexample that can be used to trace the bug.

Conclusion: An approach to automated verification of input com-
pleteness for NCL circuits is presented. It ensures input completeness
of combinational NCL circuits comprised solely of gates with hysteresis,
as well as relaxed NCL circuits that contain some gates without
hysteresis; whereas the previous manual approach for ensuring input
completeness [5] is not applicable to relaxed NCL circuits. It also
ensures input completeness for all inputs simultaneously, whereas [7]
must check each input separately. The proposed approach is efficient;
however, scalability can be improved and will be a topic for future work.

Acknowledgment: This paper is based on work supported by the
National Science Foundation under grant no. CCF-1717420.

© The Institution of Engineering and Technology 2018
Submitted: 28 June 2018 E-first: 30 August 2018
doi: 10.1049/e1.2018.6068

One or more of the Figures in this Letter are available in colour online.

S. Le, S.K. Srinivasan and S.C. Smith (Electrical and Computer
Engineering, North Dakota State University, Fargo, ND 58105, USA)

52 E-mail: son.ngoc.le@ndus.edu

References

1 Fant, K.M., and Brandt, S.A.: ‘Null convention logictm: a complete and
consistent logic for asynchronous digital circuit synthesis’. Proc. of Int.
Conf. on Application Specific Systems, Architectures and Processors,
1996. ASAP 96, Chicago, IL, USA, August 1996, pp. 261-273

2 Di, J., and Smith, S.C.: ‘Asynchronous digital circuits’ in Mead, C.A.,
and Conway, L.A. (Eds.), ‘Extreme environment electronics’
(CRC Press, 2012), pp. 663-673

3 Smith, S.C., DeMara, R.F., Yuan, J.S., ef al.: ‘Optimization of NULL
convention self-timed circuits’, Integr. VLSI J., 2004, 37, (3),
pp. 135-165. Available at http:/dx.doi.org/10.1016/j.v1s1.2003.12.004

4 Seitz, CL.. ‘System timing’, ‘Introduction to VLSI systems’
(Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1979), pp. 218-262

5 Smith, S.C., and Di, J.: ‘Designing asynchronous circuits using
null convention logic (NCL)’, Synth. Lect. Digit. Circuits Syst.,
2009, 4, (1), pp. 1-96. Available at https:/doi.org/10.2200/
S00202ED1V01Y200907DCS023

6 Jeong, C., and Nowick, S.M.: ‘Optimization of robust asynchronous
circuits by local input completeness relaxation’. 2007 Asia and South
Pacific Design Automation Conf., Yokohama, Japan, January 2007,
pp. 622-627

7 Kondratyev, A., Neukom, L., Roig, O., et al: ‘Checking
delay-insensitivity: 104 gates and beyond’. Proc. Eighth Int. Symp.
on Asynchronous Circuits and Systems, Manchester, UK, April 2002,
pp. 149-157

8 Wijayasekara, V.M., Srinivasan, S.K., and Smith, S.C.: ‘Equivalence
verification for null convention logic (NCL) circuits’. 2014 IEEE
32nd Int. Conf. on Computer Design (ICCD), Seoul, South Korea,
October 2014, pp. 195-201

9 Wijayasekara, V.M., Rollie, A.T., Hodges, R.G., et al.: ‘Abstraction
techniques to improve scalability of equivalence verification for NCL
circuits’, Electron. Lett., 2016, 52, (19), pp. 1594-1596

10 ‘ISCAS-85 ¢432 27-channel interrupt controller’. Available at http:/
web.eecs.umich.edu/~jhayes/iscas.restore/c432.html

11 Barrett, C., Fontaine, P., and Tinelli, C.: ‘The SMT-LIB standard:
version 2.6’. Tech. Rep., Department of Computer Science, The
University of Towa, 2017. Available at www.SMT-LIB.org

12 De Moura, L., and Bjerner, N.: ‘Z3: an efficient SMT solver’.
International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, Budapest, Hungary,
29 March-6 April 2008, pp. 337-340. Available at http:/dl.acm.org/
citation.cfm?id=1792734.1792766

13 Smith, S.C., DeMara, R.F., Yuan, J.S., et al.: ‘Delay-insensitive gate-
level pipelining’, Integr. VLSI J., 2001, 30, (2), pp. 103-131

4th October 2018 Vol. 54 No. 20 pp. 1158-1160

