QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING 1

Functionality-Oriented Convolutional Filter Pruning

Zhuwei Qin' 1School of Electrical and Computer
zgin@gmu.edu Engineering
Fuxun Yu' George Mason University
fyu2@gmu.edu Fairfax, VA, USA
Chenchen Liu2 2University of Maryland,
ccliu@umbce.edu Baltimore County
Xi 1 Baltimore, MD, USA

iang Chen

xchen26@gmu.edu

Abstract

The sophisticated structure of Convolutional Neural Network (CNN) models allows
for outstanding performance, but at the cost of intensive computation load. To reduce
this cost, many model compression works have been proposed to eliminate insignifi-
cant model structures, such as pruning the convolutional filters which have smaller abso-
lute weights. However, most of these works merely depend on quantitative significance
ranking without qualitative filter functionality interpretation or thorough model structure
analysis, resulting in considerable model retraining cost. Different from previous works,
we interpret the functionalities of the convolutional filters and identify the model struc-
tural redundancy as repetitive filters with similar feature preferences. In this paper, we
proposed a functionality-oriented filter pruning method, which can precisely remove the
redundant filters without compromising the model functionality integrity and accuracy
performance. Experiments with multiple CNN models and databases testified the unreli-
ability of conventional weight-ranking based filter pruning methods, and demonstrate our
method’s advantages in terms of computation load reduction (at most 68.88% FLOPs),
accuracy retaining (<0.34% accuracy drop), and expected retraining independence.

1 Introduction

Nowadays, Convolutional Neural Networks (CNNs) have been widely applied to various
cognitive tasks (esp. image recognition) [11, 15, 29]. This great success is benefited from
CNNGs’ sophisticated model structures, which utilize multiple inter-connected layers of con-
volutional filters to hierarchically abstract input data features and assemble accurate predic-
tion results [2, 4]. However, the increasing layer width and depth boost not only accuracy
but also computation load. For example, a 2.3 parameter size increment from AlexNet to
VGG-16 will introduce 21.4x more computation load in terms of FLOPs [11, 21].

Many optimization works have been proposed to relieve the CNN computation cost [3, 8,
12], and the filter pruning is considered as one of the most efficient approaches. Filter prun-
ing methods identify the convolutional filters with the smallest significance based on differ-
ent metrics. By removing these filters and repeatedly retraining the model, the computation
load can be significantly reduced while the prediction accuracy is well retained [6, 25, 30].

(© 2019. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

2 QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING

—

Convl-2 Conv2-2
E £1 Norm Based Pruning Functionality based Prunin;
E H H E 40 1.43% Accuracy Drop 0.12% Accuracy Drop
Conv3 2 Conv- 35 B i 7]

25
jo3
=25

ConvS 2 <5
EEEE . I EEEEN B
S15
Z
10
0
P4 PS5 P3 Pl P2---P4 PS5 P3 Pl P2--
_ 71 " VGG-16 trained on CIFAR10
norm value decreasing
(a) MSimilar Visualized Patterns: Repetitive Functionality (b) . Reserved Filters ¥ Pruned Filters

Figure 1: (a) An illustration of the visualized patterns of convolutional filters. (b) ¢; norm
based filter pruning and functionality-oriented pruning.

However, such significance-ranking based filter pruning methods have been increasingly
questioned: On the one hand, the correlation between the filter weight and functionality
significance (e.g., in [12]) is not theoretically proven. Some works have found that prun-
ing certain small filters may cause severe accuracy drop than pruning large ones [23]. On
the other hand, the excessive dependence on the retraining process seriously questions the
rationality of the conventional filter significance identification. Some works show that the
retraining process actually reconstructs the CNN models due to massive filters are inappro-
priately pruned [13]. Therefore, to re-examine the convolutional filter pruning, rather than
merely quantitatively ranking the filter significance, it is urgent to qualitatively interpret filter
functionalities and identify actual model redundancies.

In this work, targeting image-cognitive CNNs, we utilized CNN visualization techniques
to interpret the convolutional filter functionality [24, 26, 27]. Specifically, we adopted the
Activation Maximization method to synthesize a specific input image for each filter [24].
These images can trigger the maximum activation of corresponding filters, thus representing
each filter’s preferred input feature pattern as its particularly functionality. As shown in
Fig. 1 (a), with the layer depth increasing, the visualized filter functionality patterns evolve
from fundamental colors and shapes into recognizable objects.

Based on the visualized interpretation, we discover that a certain number of repetitive fil-
ters with similar functionality patterns exist in each layer, which can be grouped into multiple
functionality clusters (denoted by red boxes). The functionality repetition in each cluster can
be considered as a model structural redundancy in the filter level.

Motivated by this discovery, we propose a functionality-oriented filter pruning method.
In our methods, regardless of the weight values, we find the best pruning ratio of every
cluster in every layer to reduce the model structural redundancy. After the pruning, only a
small amount of retraining effort is required to fine tune the accuracy performance. Fig. 1 (b)
presents a set of filter pruning examples to demonstrate the difference between our proposed
method and the conventional ¢1-norm based filter pruning method. With the same amount
of filters pruned, we can see that, our method precisely address the redundant filters in every
cluster and layer, resulting a negligible accuracy drop.

Experiment results show that, on CIFAR-10, our method reduces more than 43% and
44.1% FLOPs on ResNet-56 and VGG-16 respectively, achieving 0.05% and 0.72% relative
accuracy improvement. On CIFAR100, our method reduces more than 37.2% FLOPs on
VGG-16 without losing accuracy. On ImageNet, with 50.64% and 23.8% FLOPs reduction,
our method can accelerate VGG-16 and ResNet32 without accuracy drop.

We also observe the filter functionality transition in the retraining process. Experiments

QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING 3

reveal that, the conventional filter pruning methods may significantly compromise filters’
functionality integrity, resulting in considerable retraining cost. While, our method demon-
strates expected accuracy retaining capability and retraining independence.

In the following sections, we will proceed into specific design and evaluation details.

2 Related work

Convolutional Filter Pruning Previous filter pruning works can be roughly divided into two
categories: (1) Post-Training Filter Pruning methods are applied to pre-trained CNN mod-
els by identifying and pruning the insignificant filters based on particular weights ranking
schemes. For example, [12], [5], and [17] utilized ¢;-norm, ¢>-norm, and Taylor expansion
respectively to rank the filter weights for pruning in each layer. (2) Training Phase Filter
Pruning methods apply particular regulation constraints to the CNN model training phase,
and enforce a certain amount of filters to become sufficiently small to be safely pruned
(e.g., structured sparsity learning [22], structured Bayesian pruning [18], and ¢y regulariza-
tion [14]). Usually, the second category methods can achieve better optimization perfor-
mance due to their profound effects in the early training stage. However, the first category
methods have better practicability with wider application scenarios. In this work, we will fo-
cus on renovating the first category methods and compare our methods with corresponding
state-of-the-art.

Convolutional Filter Visualization As the convolutional filters are designed to capture cer-
tain input features, the semantics of the captured feature can conclusively indicate the func-
tionality of each filter [16, 19, 20, 28]. However, the functionality is hard to be directly
interpreted, which significantly hinders qualitative CNN model analysis and optimization
development [2]. Recently, many CNN visualization works have been proposed to analyze
CNN models in a functionality perspective: [27] established the correlation between each
filter and a specific semantic concept; [24] designed a novel visualization technique — Acti-
vation Maximization — to illustrated a filter’s maximum activation pattern, which represents
the filter’s exclusive feature preference as its functionality. In this work, we will utilize the
Activation Maximization (AM) as our major visualization tool for filter analysis.

3 Functionality-Oriented Filter Pruning Methods

Proposed Method Overview Based on the convolutional filter functionality and structural
redundancy analysis, we propose a functionality-oriented filter pruning method. The pro-
posed method consists of the following major steps:

(1) Filter Functionality Interpretation: Given a pre-trained model, each filter’s function-
ality is firstly interpreted by AM visualization;

(2) Functionality Redundancy Identification: Based on proper similarity analysis on the
visualized functionality patterns, the filters with repetitive functionalities are clustered to-
gether. These repetitive filters can be considered as redundant filters to be pruned;

(3) Filter Significance Identification: Inside each cluster, based on the gradients analysis,
each filter’s relative accuracy contribution is further evaluated. Such a filter significance
identification will be applied to determine the pruning priority in cluster level pruning;

(4) Model-wise Filter Pruning: Given a global pruning ratio R, we multiply it with the
layer-wise coefficients to get each layer’s actual pruning ratio r;. The layer-wise coefficients

4 QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING

Layer K Filters Ratio
Comvl 115 62 96.8% 1 Our Proposed Method L1 Based Method
Convl2 17 64 100% R
Comv2_1 20 128 100% Te—
Conv2_2 31 121 945% 0.8][convi_t— Conv 11
Conv3_1 26 251 98.0% Conv 1.2 Conv 1.2
Comv32 24 251 98.0% Conv2 1= Conv2 | —
onvs_. . >=0.6]| Conv2 2 Conv2 2
Conv3_3 14 239 93.4% R Conv3 | — Conv3_1—
Conv4_1 27 447 87.3% S Conv3 2— Conv3 2—
Conv4_2 28 437 854% 3 0.4|] Convii— Conv3 3 —
Convd_3 38 439 85.7% < Convd_I Conv4 -
Conv4 2« Conv 4 2
Conv5_l 46 500 97.7% Comyd 3 o Conv 4 3
Conv5_2 61 503 98.2% 0.2 conv 5 1 e Conv5 1
Conv5_3 40 506 98.8% Conv5 2 Cony 5 2+
Conv 5 3= Conv 5 3 ===+
S 387 3942 93.3%
um ? 0 10 30 50 70 90 10 30 50 70 90
Filter Pruned (%) Filter Pruned (%)

Figure 2: Filter Cluster Sum-

mary Figure 3: Individual Layer’s Accuracy Impact

are determined by each layer’s pruning accuracy impact as we will show later. For each
layer, this layer-wise pruning ratio r; will be applied to every filter cluster.

(5) Model Fine-tuning: After model pruning, a small number of retraining iterations
might be applied to recover potential accuracy drop.

The algorithm details are presented as follows:
Filter Functionality Interpretation In AM visualization, each filter’s functionality is de-
fined as its feature extraction preference from the CNN inputs. The feature extraction pref-
erence of the iy, filter]—'il in the [, layer is represented by a synthesized input image X that
can cause the maximum activation of 7/ (i.e. the convolutional feature map value). The
synthesis process of such an input image can be formulated as:
oAl (x)

ox ’

V(F!) = argmaxAl(X), X+ X+n- (1)
X

where Af(X) is the activation of filter]-"l-l from an input image X, 1 is the gradient ascent
step size. With X initialized as an input image of random noises, each pixel of this input
is iteratively changed along the 8A£ (X)/9X increment direction to achieve the maximum
activation. Eventually, X demonstrates a specific visualized pattern V(]—'il), which contains
the filter’s most sensitive input features with certain semantics, and represents the filter’s
functional preference for feature extraction.

Functionality Redundancy Identification To identify the functionality redundancy, we ap-
ply k-means algorithm with pixel-level Euclidean-distance to cluster the filters with similar
visualized patterns in each layer. The pixel-level Euclidean-distance between the AM visu-
alized patterns of filter .F,i and]—'il is formulated as:

SEV(F).V(F)] = IV(F) = V(FIP.)
which indicates the functionality similarity of any two convolutional filters.

To determine the proper number of clusters (i.e. K), we perform a grid search from one
to half of the total filter number (i.e. I;/2) in each layer. With a larger cluster number, smaller
pattern differences are taken into consideration, causing many clusters may only contain one
filter with extremely minimal similarity with others. These filters are considered as non-
clustered filters and merged in a locked cluster, which are considered to have unique features
and will not be pruned. The maximal K during the grid search is selected as final parameter.

In Fig. 2, we show the filter cluster distribution based on k-means analysis. For a VGG-
16 model with 13 convolutional layers, the filters in each layer are grouped into 14 to 61

QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING 5

4 10
s HEEN - DRER 311 I O X - N
1]]] » HHNEN EEEE
- BREE

Pruning Rate
(o))
H
=
=
o
o
Pruning Rate
o
B
X
|
l

CT UL

[Locked O\

: DERR
Contribution Index Contribution Index
(a) Conv3 2 (b) Convs_2

Figure 4: Case study of the filter functionality-oriented filter pruning on the Conv3_2 and
Conv5_2 of VGG-16. The convolutional filters are shown by their visualized patterns, and
aligned according to the contribution index increment.

clusters. With the layer depth increment, the cluster number also becomes larger: in layer
Conv5_2, the cluster number is as large as 61. This is because of the feature complexity
increases with more divergent visualized graphic patterns. Meanwhile, our proposed method
can effectively cluster most filters. The minimum cluster ratio across all convolutional layers
remains above 85%. In average, about 93% filters are well clustered through the whole
model, indicating our method’s sufficient filter redundancy analysis capability.

Filter Significance Identification Ideally, the filters with the same functionality can substi-
tute each other. However, they may still have slight contribution difference to the prediction
accuracy. To identify each filter’s contribution to the output, we use the first-order Taylor
expansion to approximate the CNN output variation under the filter’s impact:

dz(Al)

Z(AL+A) = Z(A!
(Ai+A)=Z(A;) + 2]

A, where A= Af — 0, 3)

where Z (Af +A) is the CNN output loss and the Aﬁ is iy, filter’s output feature map in layer /.
When filter]-"il ~!in the [— 1 layer is pruned, the filter’s output feature map is corresponding
set to zero, i.e. changing the i;;, dimension of Al to zero. Therefore, the influence on Z can

Jz(Al)

be qualitatively evaluated by its coefficient 3 Al .

Before pruning, each filter]-'l.(c’) in the cluster Cf of layer [is firstly ranked by the
contribution index, which is calculated by examining the average gradients:

. 1 ¥
17 =5 %
n=1

dZ(F,Ah

AT | @

where Z(F,A!) is the CNN output loss of a test image x,, and Al(x,) is the feature map of
filter]-'l.(c’l) for each test image x,,.

Filter Pruning and Fine-Tuning Based on the functionality redundancy and filter signifi-
cance identification, we can proceed to the stage of model-wise convolutional filter pruning.
Given a global model pruning ratio R, the layer-wise pruning ratio of each layer r; is de-
termined by multiplying R and the layer-wise coefficients, which are determined according
to each layer’s pruning accuracy impact. For example, Fig.3 shows the layer-wise network
accuracy impact according to our method and ¢;-norm based method. Clearly, the shal-
low layers demonstrate higher accuracy impact, while the deeper layers have lower impact.
Therefore, we prune more gently for shallower layers but more aggressive for deeper layers.
The layer-wise coefficients of the pruning ratios r; from the shallow layers to deep layers

6 QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING

(convl_x to conv5_x) is thus set to 0.25:0.125:0.125:0.375:0.375. For other models, dedi-
cated pruning ratios are discussed in later experiments.

Meanwhile, we can see that our proposed pruning has a slower accuracy degradation
rate compared with the ¢;-norm based pruning method in majority of layers. This means
the redundant filters can be more accurately identified and pruned through the proposed
interpretive functionality-oriented filter pruning approach.

Fig. 4 shows our functionality-oriented filter pruning examples with the convolutional
layers of Conv3_2 (a) and Conv5_2 (b) with r; = 30%. The convolutional filters are shown
by their visualized functionality patterns, and the filters with similar patterns are grouped
into multiple clusters. When the layer-wise pruning ratio is assigned, the filters with small
contribution index values will be firstly pruned. According to our proposed method, larger
clusters are pruned with more filters. This make senses since such balanced functionality
reduction will lead to non-biased functionality composition as the original model’s. There-
fore, we can see different amounts of filters are pruned between different clusters but all the
pruning ratios are ~30% as shown in the Fig. 4.

Leveraging the convolutional filters’ qualitative functionality analysis, our proposed method
is expected to leverage the neural network interpretability for more accurate redundant filter
allocation, faster pruning speed, and optimal computation efficiency.

After the model-wise pruning, a small amount of model fine-tuning will be applied to
recover the potential accuracy drop, as we will show in later experiments.

4 Experiments

We evaluate our proposed method with both single-branch CNN models (i.e., ConvNet,
VGG [21]) and a multiple-branch CNN model (i.e., ResNet [4]) on CIFAR10/100 [10] and a
subset of ImageNet [1]. A data argumentation procedure is applied to CIFAR10/100 dataset
through the horizontal flip and random crop, generating a 4-pixel padded training dataset.
The visualization analysis and filter pruning are implemented in Caffe environment [9]. The
contribution index is calculated by using the whole training dataset for more accurate CNN
model analysis. The retraining process for our method is executed only by 40 epochs (i.e., 1/4
of the original training epochs) with a constant learning rate of 0.001. While the retraining
process for the compared state-of-the-art will be continuously applied until model conver-
gence. Specifically, the compared works include ¢;-norm Pruning [12], Taylor Pruning [17],
Geometric Median Pruning (GM) [6], and Channel Pruning [7].

4.1 CIFAR Experiment

In this section, we first evaluate our method on two CIFAR image datasets, namely CIFAR-
10 and CIFAR-100. The experimental results are shown in Table 1.

ConvNet on CIFAR-10 Our ConvNet is designed based on the AlexNet model with 5 convo-
lutional layers, which contain 64-128-256-512-512 filters respectively. All the convolutional
filters are constructed with a 3x3 kernel size. The baseline test accuracy of our ConvNet is
90.05%. As shown in the Table 1, ours method pruned 40% convolutional filters without
accuracy drop and achieved 37.4% computation load reduction We also implemented the ;-
norm and Taylor pruning for comparison. These methods pruned the same amount of filters
as our method to achieve the same amount of FLOPs reduction. As shown in the Table 1, our
method achieves better performance in terms of both pruned accuracy and retrained accuracy.

QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING 7
Table 1: CIFAR Pruning Comparison

CNN Pruning Baseline FLOPs FLOPs Prune Retrain
Models Methods acc. (%) (x10%) | (%) acc. (%) acc. (%)
ConvNet £1-norm* 90.05 5.34 374 83.29 88.53
(CIFAR10) Taylor* 90.05 5.34 37.4 85.29 89.42
Ours (40%) 90.05 5.34 374 87.88 90.04
VGG-16 {1-norm [12] 93.25 2.06 342 - 93.40
(CIFAR10) Taylor* 93.25 1.85 44.10 73.24 92.31
GM [6] 93.58 5.34 359 80.38 94.00

Ours (45%) 93.25 1.85 44.10 91.13 93.30

ResNet-56 f1-norm [12] 93.04 0.91 27.60 - 93.06
(CIFAR10) Taylor* 92.85 0.71 43.00 76.32 92.01
Channel [7] 92.80 0.56 50.00 - 93.23
Ours (40%) 92.85 0.71 43.00 81.13 93.30
VGG-16 £1-norm* 73.14 1.96 37.32 63.21 72.31
(CIFAR100) Taylor* 73.14 1.96 37.32 65.19 72.52
Ours (45%) 73.14 1.96 37.32 68.21 73.21

“*” indicates our implementation. Ours(40%) means 40% filters are pruned by our method.

VGG-16 on CTFAR-10 We implemented a VGG-16 model following the same pre-processing
and hyper-parameters configurations as [12], which consists of 13 convolutional layers and 2
fully-connected layers. Each convolutional layer is followed by a batch normalization layer.
As shown in Table 1, our method has better performance than the ¢;-norm and Taylor prun-
ing. Under a pruning ratio of 45%, our proposed method can achieve 44.1% FLOPs reduc-
tion with the accuracy well-retained. Although the GM pruning achieves an even improved
accuracy performance after the retraining process, it only reduced 35.9% computation load,
about 18.6% less than our proposed method.

ResNet-56 on CIFAR-10 ResNet-56 is a multiple-branch CNN model, which contains three
convolutional stages of residual blocks connected by projection mapping channels, one
global average pooling layer, and one fully-connected layer. After trained on CIFAR-10
from scratch using the same training parameters as [4], the model can achieve a baseline
accuracy of 92.85%. To avoid changing the input and output feature maps of each residual
block, same as ¢;, we only prune filters from the first layers of each block. Considering
ResNet-56 model has many layers, we set the pruning ratio of all convolutional layers to
the same value in this experiment. Our method demonstrate better accuracy retaining ca-
pability compared to the ¢;-norm and Taylor pruning. Comparing to the Channel Pruning,
although our computation load reduction is slightly smaller, our implementation is much
more straightforward, considering the Channel Pruning requires additional multiple-branch
enhancement to generalize itself to ResNet.

VGG-16 on CIFAR-100 We further evaluated our pruning method on the CIFAR 100 dataset.
Using the same VGG-16 model, our method introduces less accuracy drop compared to state-
of-the-art with the same computation load reduction. Meanwhile, the accuracy drop caused
by our pruning method can be fully recovered with 0.07% accuracy improvement.

4.2 ImageNet Experiment

In evaluations on ImageNet, 10 and 100 classes of images out of 1000 classes, namely
ImageNet-10 and ImageNet-100 are utilized in this work. Each class contains 1300 training
images and 50 validation images. We evaluate our proposed method for the VGG-16, and

8 QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING

Table 2: ImageNet Pruning Comparison

CNN Pruning Baseline FLOPs FLOPs Prune Retrain
Models Methods acc. (%) (x10'0) | (%) acc. (%) acc. (%)
VGG-16 £1-norm* 93.76 0.57 62.99 21.22 92.26

(ImageNet-10) Taylor* 93.76 0.57 62.99 24.37 93.12
Ours(40%) 93.76 0.57 62.99 25.13 94.34

ResNet-32 £1-norm* 88.31 1.55 32.90 80.37 84.75
(ImageNet-10) Taylor* 88.31 1.55 32.90 81.03 85.12

Ours(30%) 88.31 1.55 32.90 81.25 88.25
VGG-16 £1-norm* 78.51 0.76 50.64 36.35 76.56
(ImageNet-100) Taylor* 78.51 0.76 50.64 40.28 77.32

Ours(30%) 78.51 0.76 50.64 43.25 79.51
ResNet-32 {1-norm* 75.34 1.76 23.81 63.25 72.52

(ImageNet-100) Taylor* 75.34 1.76 23.81 68.14 73.43
Ours(20%) 75.34 1.76 23.81 70.21 75.40

“*” indicates our implementation. Ours(40%) means 40% filters are pruned by our method.

ResNet-32 models on the ImageNet-10 and ImageNet-100 respectively.

The VGG-16 model is implemented as the same architecture as the VGG-16 model on
CIFAR. The proportion of the pruning ratios from shallow layers to deep layers (convl_x
to conv5_x) is set to 2:1:1:3:3. The ResNets-32 model for ImageNet have three stages of
residual blocks, which contain 3, 4, and 2 residual blocks respectively, and each residual
block has three convolutional layers. Same as ResNet-56 model, in each residual block, only
the first two convolutional layers are pruned to keep the input and output feature maps to be
identical. The pruning ratio of all convolutional layers is set to the same value for simplicity.
The result of ImageNet pruning comparison is shown in the Table 2.

ImageNet-10 Table 2 shows that our method outperforms previous methods on ImageNet10
dataset. For the VGG-16 model, large accuracy loss occurs in the three pruning method.
However, our proposed method induces less accuracy degradation compared with the ¢;
and Taylor. With re-training, our method achieves higher accuracy than the baseline accu-
racy. Using the ResNet-32, it is hard to recover the accuracy drop through retraining on the
ImageNet-10 dataset, and hence acceptable pruning rate in this scenario is relatively small.
As shown in the Table 2, we can achieve 32.90% FLOPs reduction on ResNet-32 with only
0.06% accuracy drop.

ImageNet-100 With larger image data complexity and more class composition complexity,
the feature extraction becomes more complex. It’s become more challenge for the filter func-
tionality identification and clustering. Our method can still outperform previous methods on
ImageNet100 dataset. As shown in the Table 2, we can achieve 50.64% FLOPs reduction on
VGG-16 with 1% accuracy improvement. For the ResNet-32, our method can still achieve
less accuracy and better retraining accuracy improvement than the previous method.

4.3 CNN Model Retraining Analysis

In most filter pruning works, the retraining process is essential to compensate the accuracy
drop. However, as aforementioned, its role still lacks certain research. In this work, we also
analysis the retraining process quantitatively and qualitatively in filter pruning.

Fig. 5 compares the retraining processes of our method and the ¢;-norm based pruning
method with ConvNet and VGG-16 on CIFAR-10. Comparing our method (solid line) with
the ¢1-norm based method (dashed line), we can observe that: The models pruned by our

QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING 9

0.95 0.95
092 | —— 0.85
> et
2089 | __ 0.75
= e <
80.86 |+ 0.65[4.
0.83 | ConvNet Ours(40%) —— L1(40%) === 0.55 ConvNet Ours(65%) — L1(65%) -+
VGG Ours(45%) — L1(45%) =+ ’ VGG Ours(65%) —— L1(65%) ===+
0.80 0.45
0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200
Retraining Iterations Retraining Iterations

Figure 5: Pruned Model Accuracy Recovery by Retraining.

0 300 400 500 600 700 800
“ oY

900 1000

Retraining Iterations >

T e i e Y M i

Figure 6: Filter Functionality Transformation During Retraining.

method always demonstrate quicker accuracy recovery. Taking VGG-16 as an example, our
method is close to the convergence accuracy after only after 100 iterations with less retraining
dependency. While the accuracy of the £;-norm based method is still ~3% lower than ours,
resulting in significantly more retraining effort.

We also use AM visualization to analysis the filter functionality transition during the re-
training process as shown in Fig. 6. We randomly choose and visualize one preserved filter
after pruning with our method and the ¢;-norm based method. During the retraining process,
we visualize its functionality pattern every 100 iterations. From Fig. 6, we can see that, the
visualized pattern after the ¢;-norm pruning demonstrates dramatic change. This indicates
that the ¢;-norm based method significantly defects the original CNN model’s functionality
integrity, and the retraining process has to reconfigure the filter’s functionality for compen-
sation. Meanwhile, the filter functionality pattern remains unchanged in our method, which
indicates our method’s precise redundant filter identification.

5 Conclusion

In this work, through convolutional filter AM visualization and functionality analysis, we
firstly demonstrate that filter redundancy exists in the form of functionality repetition. Then,
we shows that such functional repetitive filters could be effectively pruned from CNNs to
provide computation redundancy reduction. Based on such motivation, we propose an in-
terpretable functionality-oriented filter pruning method: By first interpreting and clustering
filters with same functions together, we remove the repetitive filters with smallest signifi-
cance and contribution in a balanced manner inside each cluster. Therefore, this implicitly
helps maintain the similar functionality composition as the original model, and thus brings
less damage to the model accuracy. Extensive experiments on CIFAR and ImageNet demon-
strate the superior performance of our pruning method over state-of-the-art methods. By
analyzing the functionality changing of remaining filters in the retraining process, we fur-
ther prove our assumption that ¢;-norm based pruning partially destructs original CNNs’
functionality integrity. By contrast, our method shows consistent filter functionality during
retraining process, demonstrating less harm to original model functionality.

10

QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING

Acknowledgments

This work was supported in part by NSF CNS1717775.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

(14]

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In CVPR, 2009.

Abel Gonzalez-Garcia, Davide Modolo, and Vittorio Ferrari. Do semantic parts emerge
in convolutional neural networks? International Journal of Computer Vision, 2018.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In CVPR, 2015.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning
for accelerating deep convolutional neural networks. arXiv preprint arXiv:1808.06866,
2018.

Yang He, Ping Liu, Ziwei Wang, and Yi Yang. Pruning filter via geometric median for
deep convolutional neural networks acceleration. arXiv preprint arXiv:1811.00250,
2018.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep
neural networks. In ICCV, 2017.

Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional
neural networks with low rank expansions. arXiv preprint arXiv:1405.3866, 2014.

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In ACM Multimedia, 2014.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny
images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In NIPS, 2012.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning
filters for efficient convnets. arXiv preprint arXiv:1608.08710, 2016.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking
the value of network pruning. arXiv preprint arXiv:1810.05270, 2018.

Christos Louizos, Max Welling, and Diederik P Kingma. Learning sparse neural net-
works through /_0 regularization. arXiv preprint arXiv:1712.01312, 2017.

QIN, ET AL: FUNCTIONALITY-ORIENTED CONVOLUTIONAL FILTER PRUNING 11

[15] Yawei Luo, Liang Zheng, Tao Guan, Junqing Yu, and Yi Yang. Taking a closer look at
domain shift: Category-level adversaries for semantics consistent domain adaptation.
arXiv preprint arXiv:1809.09478, 2018.

[16] Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representations
by inverting them. In CVPR, 2015.

[17] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning
convolutional neural networks for resource efficient transfer learning. arXiv preprint
arXiv:1611.06440, 3, 2016.

[18] Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, and Dmitry P Vetrov. Struc-
tured bayesian pruning via log-normal multiplicative noise. In NIPS, 2017.

[19] Zhuwei Qin, Funxun Yu, Chenchen Liu, and Xiang Chen. How convolutional neural
network see the world-a survey of convolutional neural network visualization methods.
arXiv preprint arXiv:1804.11191, 2018.

[20] Zhuwei Qin, Fuxun Yu, Chenchen Liu, and Xiang Chen. Captor: a class adaptive
filter pruning framework for convolutional neural networks in mobile applications. In
ASPDAC, 2019.

[21] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[22] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured
sparsity in deep neural networks. In NIPS, 2016.

[23] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethinking the smaller-norm-
less-informative assumption in channel pruning of convolution layers. arXiv preprint
arXiv:1802.00124, 2018.

[24] Jason Yosinski, Jeff Clune, Anh Nguyen, Thomas Fuchs, and Hod Lipson. Under-
standing neural networks through deep visualization. arXiv preprint arXiv:1506.06579,
2015.

[25] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron im-
portance score propagation. In CVPR, 2018.

[26] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Ob-
ject detectors emerge in deep scene cnns. arXiv preprint arXiv:1412.6856, 2014.

[27] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
Learning deep features for discriminative localization. In CVPR, 2016.

[28] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba. Revisiting the importance
of individual units in cnns via ablation. arXiv preprint arXiv:1806.02891, 2018.

[29] Fengda Zhu, Linchao Zhu, and Yi Yang. Sim-real joint reinforcement transfer for 3d
indoor navigation. arXiv preprint arXiv:1904.03895, 2019.

[30] Huiyuan Zhuo, Xuelin Qian, Yanwei Fu, Heng Yang, and Xiangyang Xue. Scsp:
Spectral clustering filter pruning with soft self-adaption manners. arXiv preprint
arXiv:1806.05320, 2018.

