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Abstract

Motivation: Due to the complexity and heterogeneity of multicellular biological systems, mathem-
atical models that take into account cell signalling, cell population behaviour and the extracellular
environment are particularly helpful. We present PhysiBoSS, an open source software which com-
bines intracellular signalling using Boolean modelling (MaBoSS) and multicellular behaviour using
agent-based modelling (PhysiCell).

Results: PhysiBoSS provides a flexible and computationally efficient framework to explore the ef-
fect of environmental and genetic alterations of individual cells at the population level, bridging the
critical gap from single-cell genotype to single-cell phenotype and emergent multicellular behav-
iour. PhysiBoSS thus becomes very useful when studying heterogeneous population response to
treatment, mutation effects, different modes of invasion or isomorphic morphogenesis events. To
concretely illustrate a potential use of PhysiBoSS, we studied heterogeneous cell fate decisions in
response to TNF treatment. We explored the effect of different treatments and the behaviour of
several resistant mutants. We highlighted the importance of spatial information on the population
dynamics by considering the effect of competition for resources like oxygen.

Availability and implementation: PhysiBoSS is freely available on GitHub (https://github.com/sys
bio-curie/PhysiBoSS), with a Docker image (https://hub.docker.com/r/gletort/physiboss/). It is dis-
tributed as open source under the BSD 3-clause license.

Contact: gaelle.letort@college-de-france.fr or laurence.calzone@curie.fr

Supplementary information: Supplementary data are available at Bioinformatics online.
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1 Introduction

Mathematical modelling of individual cells has already been widely
used to address questions tackling the complexity of biological sys-
tems (Mogilner ez al., 2006; Ventura et al., 2006). Due to the high
inter-dependency of the different biological scales driving the devel-
opment of cells (and tumours in the case of cancer), models that ex-
plore the interplay between cells and their environment are also
needed to better describe tumourigenesis (Anderson and Quaranta,
2008; Deisboeck et al., 2011; Loessner ef al., 2013; Sanga et al.,
2007). As a result, multi-scale modelling is being recognized as an
important contribution to build a comprehensive mechanistic view
of cancer (Deisboeck et al., 2011; Loessner et al., 2013), to enable
predictions at the level of the cell, the population of cells (e.g. the tu-
mour) or the organ.

The dynamical study of cell populations is crucial to improving
prognosis or treatment efficiency (Sanga et al., 2007). Knowing the
rules governing the behaviour of each separate component in a
population is not enough to predict the emergent behaviour of such
a complex system, and similarly, understanding the disregulated
processes in an individual cell is not enough to predict the behaviour
of the cell population. The most famous cellular automaton model,
Conway’s Game of Life, demonstrates how simple single-cell rules
that are perfectly known can generate non-intuitive and complex
behaviours at the multi-cellular systems level.

Some studies have demonstrated that genotypically identical cells
can adopt different phenotypes according to their environment
(Gligorijevic et al., 2014) or tumourigenic factors (Leal-Egana et al.,
2017). Notably, the interplay between spatial position and signal-
ling is critical in development, for example in morphogenesis
(Nelson et al., 2006), in cell competition (Levayer et al., 2016) and
in cell fate decisions through Notch signalling patterning (Liao and
QOates, 2017). The interaction between all these different factors is
also crucial for exploring the diverse modes of cell motility (Friedl
and Wolf, 2010) and is thus a core question in understanding dis-
eases such as cancer. Computer modelling is therefore increasingly
necessary to tackle such complex problems (Sharpe, 2017).

Several mathematical formalisms can be used to model both the
individual cell and population levels (e.g. discrete, continuous, hy-
brid, etc.) (Le Novere, 2015; Loessner et al., 2013; Tanaka, 2015).
The choice of appropriate formalism depends on the modelling
scope (e.g. see the summary of different models used to study shape
homeostasis in Gerlee et al., 2017). At the level of the cell popula-
tion, some previous modelling efforts have been done with cellular
automaton models (e.g. Altinok et al., 2011), with cellular Potts
models (e.g. Kumar et al., 2016) or centre-based models (e.g.
Drasdo and Hohme, 2005; Ramis-Conde et al., 2009). These
approaches have typically focused on the emergent multicellular dy-
namics after assigning simple, microenvironment-driven single-cell
phenotypes, rather than including both the intracellular events and
how individual cellular alterations might affect the population.

There have been some attempts to couple intracellular and popu-
lation dynamics. However, to overcome computational problems,
such models usually needed to be kept simple, or were limited in
size. Note that simple models of the signalling pathways with small
numbers of variables inside each cell can already be very inform-
ative, as for example the model in Bekkal Brikci et al. (2008) that
used partial differential equations to explore the transition from one
cell cycle phase to another at the population level, or the model with
ordinary differential equations (ODEs) to explore population dy-
namics (Rué and Garcia-Ojalvo, 2013). Nevertheless, to take the
microenvironment into account, some crucial components need to

be added to these frameworks, and the models can quickly become
very complex.

Quite interestingly, Gao et al. (2016) also demonstrated the ne-
cessity of taking into account intracellular dynamics in the popula-
tion dynamic to study CD8+ T-cell response to external stimulati.
Their multi-scale on-lattice approach (Prokopiou et al., 2014), com-
bining a model of ODEs within a Cellular Potts model, provides a
complete and powerful model that was computationally expensive,
depending on the size of the intracellular model. Other multi-scale
models have been developed to answer specific questions in the last
few years (e.g. Anderson et al., 2006; Belmonte et al., 2016; Gerlee
and Anderson, 2009; Jeon et al., 2010; Ramis-Conde et al., 2009),
but they are usually specifically tailored to a given problem, and
cannot be adapted in a straightforward manner to new questions.
Additionally, very few of the software packages are available as
open source, thus hindering repeatability, reproducibility and
community-driven refinement. Other tools such as EpilLog have
been developed to include multilevel logical models in a 2D lattice
representing the epithelium (Varela et al., 2018). Currently, EpiLog
supports intracellular models of great size with a lattice composed
of up to a million cells, but do not yet fully model the growth and
movements of the cell population. Other 2D developments have
been published that bridge intracellular pathways and cell popula-
tion interactions, such as VirtualLeaf (Merks et al., 2011) that uses
an off-lattice vector-based framework of irregular shapes to depict
plant leaves’ cells, and Athale and Deisboeck (2006)’s work that
uses an off-lattice agent-based method to simulate the effects of epi-
dermal growth factor receptor (EGFR) density and activation on tu-
mour growth dynamics.

Agent-based models are particularly suitable methods for a
multi-scale approach, allowing modellers to integrate multiple scales
as well as spatial considerations, and providing a mostly intuitive
representation of biological systems (An ef al., 2009). Importantly,
these models are also very flexible, allowing the simulation of a
wide range of situations with minor adaptations.

In order to simulate not only populations of isolated cells but
also organized groups of cells (tissues, organoids, etc.), cell-centred,
off-lattice models are an appropriate choice of agent-based models
(Osborne et al., 2017; Tanaka, 2015). Among the available tools
implementing cell-centred agent-based models, CellSys (Drasdo and
Hohme, 2005), Chaste (Mirams et al., 2013) and PhysiCell
(Ghaffarizadeh et al., 2018; Macklin ez al., 2012) are particularly
interesting. The implementation of physical laws in CellSys reprodu-
ces multi-cellular phenomena quite accurately (Drasdo ef al., 2007;
Hoehme and Drasdo, 2010). However, the multi-scale model devel-
oped by this group was restricted to differential equation models in
a particular scenario (Ramis-Conde and Drasdo, 2012; Ramis-
Conde er al., 2008; Schluter et al., 2014) and thus difficult to adapt
to other biological questions. Moreover, CellSys to date has not
been released as open source. Among other available tools, Chaste
provides an environment to implement different kinds of modelling
approaches (agent-based, cellular automaton, vertex model, etc.)
within the same framework (Mirams et al., 2013; Pitt-Francis et al.,
2009) as well as ODEs for intra-cellular modelling. Importantly, its
implementation allows the direct comparison of outputs from the
different modelling techniques and outlines their advantages and
limits (Osborne et al., 2017). However, due to all these possibilities,
it is a more complex environment than other agent-based tools.
PhysiCell is an agent-based software with the particular advantages
of being open source and having minimal dependencies.
Nevertheless, this software still lacked intra-cellular modelling.
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Recently, promising agent-based open source software, such as
MecaGen (Delile ez al., 2017) and EmbryoMaker (Marin-Riera et al.,
2016), showed the power of combining mechanical behaviour and
gene regulation to understand embryogenesis and could be used to
study other developmental problems. However, the gene regulatory
networks are modelled with ODEs, which might restrict it to relatively
small signalling representations and raises the difficulty of parameter
estimation. Moreover, due to its morphogenesis scope, MecaGen does
not consider cell division dynamics (cell volume growth, death, etc.),
or issues such as clonal diversity. All of these software tools have been
summarized and can be compared in Supplementary Table S1.

We choose to start from an agent-based-dedicated open source
software, PhysiCell, and, since we wish to link intra- and inter-
cellular descriptions, we combine it with a tool for modelling
Boolean networks, MaBoSS. Our ultimate goal is to develop an
open source flexible modelling framework that combines the de-
scription of the signalling pathways inside individual cells and their
interaction with the environment.

To explore and integrate cell population dynamics, cellular signal-
ling mechanisms, and the interplay between cells and their surround-
ing (i.e. other cells or the microenvironment), we propose to combine
an agent-based approach with a Boolean representation of biochem-
ical events taking place in each cell. For that purpose, we have devel-
oped a new software framework, PhysiBoSS, that combines and
extends two well-established tools: a signalling pathway modelling
tool, MaBoSS (Stoll et al., 2012, 2017), which performs stochastic
simulations of the signalling pathway inside each cell, and an agent-
based modelling tool, PhysiCell (Ghaffarizadeh et al., 2018), that rep-
resents each individual cell as a physical dynamical entity.

We detail our implementation of PhysiBoSS and demonstrate its
use with a model of cell-fate decisions in response to Tumour Necrosis
Factor (TNF) to illustrate the importance of considering cell-cell com-
munication in homogeneous as well as heterogeneous cell populations.
With this cancer example, we will showcase the use of PhysiBoSS to
numerically study the effect of treatment regimes on a heterogeneous
cell population and its effects on clonality and tumour growth.

2 Materials and methods

To address the issue of including individual cell description into an
agent-based model, we adapted, merged and expanded two existing
open source software tools. The first one, PhysiCell (Ghaffarizadeh
et al., 2018), focuses on the evolution of a multicellular system (par-
ticularly tumours) by simulating the dynamics of a population of
cells under specific constraints, in 2D or in 3D. The second one,
MaBoSS (Stoll et al., 2012, 2017), defines a continuous-time
Markov process on the state transition graph of a Boolean model.
Note that a state transition graph is a graph which encompasses all
possible transitions between model states, and a model state is a vec-
tor which captures the activity of all the nodes of the model.
MaBoSS estimates the probability of visiting reachable states of the
model. The two software tools were merged so that the conditions
for the tumour’s growth depend on the status of individual cells and
the behaviour of individual cells is influenced by their environment.

2.1 PhysiCell

PhysiCell is an open source agent-based software with minimal
dependencies. To improve computational efficiency, it simulates
off-lattice position and volume but not morphology; where needed,
cell morphology is approximated as a soft sphere. The code is paral-
lelized using OpenMP when possible, allowing the simulation of

thousands of cells for several days in a reasonable time (a few
hours), and simulations of 10° to 10° cells can be run over several
days. An efficient implementation of the diffusion of environmental
entities (oxygen, glucose, growth factors, etc.) and their interaction
with the cells (uptake, secretion, etc.) is also provided by PhysiCell’s
BioFVM module (Ghaffarizadeh et al., 2016). Beyond secretion and
uptake of diffusing substrates, PhysiCell has implemented key
phenotypic behaviours: cell volumetric growth, adhesion, repulsion,
directed and random motility, cell cycle progression and death proc-
esses. PhysiCell allows users to attach tailored C++ functions and
data structures to each individual cell, which can then modify the
cell agents’ phenotypes dynamically throughout a simulation. We
use this functionality to add MaBoSS’ signalling model to each indi-
vidual cell agent, and then to link each agent’s signalling state to its
phenotypic behaviour.

2.2 MaBoSS

MaBoSS (Stoll et al., 2012, 2017) is an open source C++ simulator
of Boolean models of signalling pathways. In this logical modelling
framework, variables (genes, proteins or specific protein functions)
can take two values, 0 or 1, mimicking their activity. Each variable
is updated according to the status of its regulating variables, con-
nected by logical connectors AND, OR and NOT. Variable state
transitions are stochastically calculated from parametrisable rates.
MaBoSS can simulate a Boolean model describing the signalling
pathways inside an individual cell and providing probabilities of
reaching the stable states. Inputs can be upstream events such as re-
ceptor activation, and outputs correspond to phenotypic behaviours
such as cell death, proliferation, migration, etc. The optimized im-
plementation of this formalism allows for computation of a high
number of variables in the network.

2.3 PhysiBoSS

PhysiBoSS integrates these two software frameworks to obtain a
detailed description of each cell’s behaviour and how an alteration
in a cell can affect the whole population. There are three main parts
in the PhysiBoSS structure:

*  BioFVM module handles the simulation of one or more diffusing
environmental entities (Ghaffarizadeh et al., 2016). It simulates
diffusion, degradation and release of diffusible entities in the
extracellular space, including extracellular matrix (ECM) (Fig. 1,
green). Space is discretised in a voxel mesh containing informa-
tion of the local density of the modelled diffusing entities (oxy-
gen, glucose, growth factors, etc.);

* PhysiCell core handles the representation of the cells’ mechanics
(Ghaffarizadeh et al., 2018) and key phenotypic behaviours. A
cell is represented as a soft sphere with two radii: cellular and nu-
clear. It can move and interact with neighbouring objects, divide,
and change its properties according to specific conditions (Fig. 1,
blue);

® MaBoSS core computes the solutions of a logical model repre-
senting the dynamics of a network of intracellular events (Stoll
et al., 2012). This module gathers its input conditions from the
PhysiCell core evaluation (e.g. presence of neighbours or of
growth factors, etc.) and retrieves outputs that correspond to cell
fates in PhysiCell core (e.g. forming adhesions, migrating, or
dying). The logical model and parameter descriptions are defined
in two files following MaBoSS standard, so any MaBoSS model
can be directly used in PhysiBoSS, provided that its inputs and
outputs are integrated in the agent-based part (Fig. 1, orange).
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Fig. 1. Schematic representation of PhysiBoSS. Three main parts are inter-
connected: the microenvironment representation in BioFVM (green, bottom
left), allowing simulation of diffusing entities; the physical representation of
cells as dynamic spheres in PhysiCell (blue, top); and the signalling modelling
of each cell in MaBoSS (orange, bottom right) (Color version of this figure is
available at Bioinformatics online.)

Importantly, as this system involves a broad range of events at dif-
ferent biological scales, PhysiBoSS uses different time steps for dif-
ferent parts of the model (see Supplementary File S1).

2.3.1 Numerical implementation

The main core of the software is adapted from PhysiCell, and the
MaBoSS module is compiled as a linked external library. PhysiBoSS
is written in C++ with minimal external dependencies. PhysiBoSS
uses one executable file reading an associated specific parameter file.
This structure is convenient to generate numerous simulations
with different parameters/configurations. Three executables are
provided:

* PhysiBoSS, the main executable, requires four files: a model spe-
cific parameter file, the two MaBoSS model files, and a file with
initial conditions. If the simulation is going to model ECM, then
a matrix-specific initial condition file is needed.

* PhysiBoSS_CreatelnitTxtFile generates an initial condition file
that specifies the cells’ initial positions and their volumes for a
variety of classic geometries (e.g. sphere, cylinder or rectangle).
For more complex geometries (e.g. Hello World example in the
PhysiBoSS GitHub documentation), the initial configuration can
be created from a binary image of the desired shape by placing
cells on the positive areas.

* PhysiBoSS_Plot generates an .svg output snapshot of the simula-
tion at a given time point (more details on the wiki). Note that
we plan to develop further visualization tools and a graphical
interface in future releases of PhysiBoSS.

The details for preparing, executing and visualizing a simulation
can be found in detail in Supplementary File S1 and scripts are pro-
vided on the GitHub repository to automate them, along with step-
by-step examples with all the necessary files. The computational
time required for one individual run is strongly sensitive to its
parameters, such as time/space steps, number of cells, diffusing enti-
ties, etc. (Supplementary Table S2).

2.3.2 PhysiBoSS features

PhysiBoSS works with spherical cells that represent living cells that
can grow/shrink, divide, move, interact with their environment or
other cells and die. These cells progress through the cell cycle and
change their physical properties, have a front-rear polarity and can
be part of cell strains, where each cell shares a set of common phys-
ical and genetic parameters (Supplementary File S1).

Simulation of different cell strains—Users can simulate heteroge-
neous populations of genetically and/or physically different cells.
For this, the parameter file must take into account all physical
parameters of each strain type, as well as the transition rates of
mutated genes of genetically different strains. PhysiBoSS implements
mutation by modifying each variable’s on—off transition rates, rather
than changing the Boolean network structure. For example, over-
expression of a gene will be implemented as a node with very high
activation rate and a null deactivation rate. These transition rates need
to be controlled through a variable in MaBoSS configuration files, and
their values need to be specified for each cell strain in the parameter
file. (See GitHub repository for more details and examples.)

Extracellular matrix representation—As PhysiBoSS aims to inte-
grate environmental, multicellular and intracellular descriptions of
biology, the representation of the ECM was addressed in this frame-
work. In previous theoretical works, ECM has been represented by
a fibrous matrix in a mechanochemical model (Ahmadzadeh et al.,
2017), as ‘cells’ of a Cellular Potts Model (Kumar et al., 2016), as
linear elastic medium (Bischofs and Schwarz, 2003), as a network of
Hookean springs (Zhu and Mogilner, 2016), as
objects composed of networks of springs (Tozluoglu et al., 2013), or
as passive spheres (Drasdo and Hohme, 2005). The choice for these
different representations is strongly dependent on the biological
question: a discrete ECM representation can be enough, while in

(non-)deformable

other cases, it is necessary to model the deformation, softening,
hardening or degradation of the ECM. This choice is also often a
compromise between computational cost and the desired level of
precision.

PhysiBoSS proposes two ways of implementing ECM modelling:
the first representation is to use ECM as passive spheres (Fig. 2A)
that can be pushed by other spheres or active cells depending on a
friction coefficient. Cells can also degrade (or reinforce) these pas-
sive spheres upon contact with user-defined rates, by decreasing (or
increasing) the radius of the passive spheres. The advantage of this
implementation is that it integrates well within PhysiCell code struc-
ture and is not highly expensive computationally. This approach can
be used, for example, to model the ability of cells to create tracks in
the ECM or to simulate steric hindrance due to Dextran presence in
a medium (Delarue et al., 2014). However, its precision is poor and
not very well suited for simulations of filamentous environment.
Moreover, if the simulated space is large (or spheres are small), the
high number of necessary passive spheres can drastically increase the
computational cost.

The second representation uses the BioFVM module by consider-
ing ECM as a non-diffusing density. Cells can interact with the sur-
rounding matrix by adherence, repulsion, degradation and
deposition of ECM (Supplementary File S1), but they cannot push
it. This allows for a finer spatial ECM definition with small mesh
sizes. This representation is very convenient to describe a non-
deformable matrix and could be used for example to study cell
population growth on restricted areas, as micropatterns (Fig. 2B).
However, its non-elastic formulation can be a major drawback for
other studies.

Cell—cell and cell-matrix adhesions—The core modelling of cell-
cell and cell-matrix interactions from Macklin et al. (2012) are
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Fig. 2. Examples of PhysiBoSS features. (A) Final state (24 h) of a simulation
of active cells (green, Survival; black, Necrosis; red, Apoptosis) spheroid in-
side a core of passive ECM agents (light grey) (left panel). Final state (24 h) for
active cells inside a fixed ECM dark grey field (right panel). (B) Final images
(24 h) of mechanical cell sorting surrounded by ECM (passive spheres, light
grey): the blue cell line (inside) forms strong junctions, while the red cell line
(extern) is weakly adhesive. Cells do not adhere to ECM (left panel), or only
the blue cell line can attach to the matrix (right panel). (A-B) Initial states of
the simulations are shown in Supplementary Figure S1 (Color version of this
figure is available at Bioinformatics online.)

maintained in PhysiBoSS, with slight modifications to allow dynam-
ic evolution of homotypic, heterotypic (Duguay et al., 2003) and
matrix adhesions. Notably, a coefficient of cadherin/integrin
densities involved in the adhesion was included to respond to the
(de-)activation of the Boolean network’s adhesion pathway, so that
this coefficient varies accordingly to reflect the different protein re-
cruitment. Differences in strength between these diverse adhesions
can be sufficient to drive specific cell sorting (Steinberg, 1963). To
validate our implementation, we verified that our framework repro-
duced the sorting behaviour explored in Cerchiari e al. (2015). The
results of this can be seen in Figure 2B, where the test was limited to
a purely mechanical-driven sorting. However, PhysiBoSS could be
used to further explore cell sorting by taking into account cell prolif-
eration and differences in motility, which have been seen to impact
the sorting mode or efficiency (Strandkvist et al., 2014).

3 Results

We showcase three examples of scientific problems that PhysiBoSS
can address, using a cell fate model upon TNF injection as a case
study. This Boolean model describes the pathways leading to the main
cellular fates in response to TNF receptor activation: Survival (read-
out of proliferative cells), Apoptosis and non-apoptotic cell death
(NonACD) (Calzone et al., 2010). Earlier simulations of this model
using MaBoSS predicted that isolated cells in a fixed system lead to
heterogeneous fate commitment (Calzone ef al., 2010), and this het-
erogeneity could be interpreted as the limited efficiency of TNF treat-
ment on tumours. The model used here has been slightly modified
from Calzone et al. (2010). We included nodes that account for the
mRNAs of some of the components (Supplementary Fig. S2A), which
introduce some delays between protein-to-protein interactions and

signal transduction on one side and translation and transcription time-
frames on the other side, as we set lower probability rates for
transcription and translation events (Mahaffy and Pao, 1984)
(Supplementary Fig. S4F). Indeed, previous mathematical models
showed it is necessary to account for the delay in transcription (Lewis,
2003; Mahaffy, 1988; Momiji and Monk, 2009) to explain observed
biological behaviours (Hirata et al., 2002; Shimojo et al., 2008).
Simulating the model using PhysiBoSS let us address important
questions related to collective behaviours (such as homogeneous or
heterogeneous populations), spatial (diffusion and consumption of
TNE, paracrine secretion of TNF from neighbouring cells, etc.) and
dynamical behaviours (continuous or discontinuous presence of
TNF, autocrine secretion of TNF through NFxB’s feedback loop,
etc.). We were also able to test the effect of clones in a tumour
and their response to TNF treatment. Different TNF dose regimes
in homogeneous cell populations were first simulated, using as
initial conditions proliferating and healthy functioning cells
(Supplementary File S2). At frequent intervals, each cell’s internal
signalling model was updated according to its current environment
(TNF internalization or not) and its current signalling state (resulting
from MaBoSS previous iterations). This determined the cell (de-)acti-
vation of TNF-x secretion, through NF«xB feedback, and ultimately
the cell fate decision (switch the cell state either to Survival, Apoptosis
(irreversible), or NonACD (irreversible), Supplementary Fig. S2B).

3.1 Model validation

To validate our model, we referred to two studies focusing on differ-
ent TNF treatment regimes using 3T3 mouse fibroblast cells in
microfluidic chambers (Kellogg et al., 2015; Tay et al., 2010). These
works show that cells’ response to TNF injection is highly heteroge-
neous. The proportion of cells that responded to TNF injection
within the first 8 h on average (reported in their experiments as tran-
sient relocation of NF«B to the nucleus) depended on the dose con-
centration and the duration of the injection, referred by Tay et al. as
‘stimulus area’ (Tay et al., 2010). The fraction of responding cells
varied from 0, for a dose area smaller than 10% ng s/mL, to a ‘total’
response when dose area was around 10%ng s/mL, with a Hill-like
dependency on the stimulus area: Hill coefficient around 1.5 and a
20-50 min response time (Kellogg et al., 2015).

We first calibrated our model to simulate growth dynamics of 3T3
cells. In the absence of TNF, the population grows without constraints
(Fig. 3A, Supplementary Fig. S3A), with a doubling time of approxi-
matively 16 hours (Kim ez al., 2004). We then explored the response
of the population when TNF was injected in the medium (details on
TNF dynamics in Supplementary File S2). Upon limited TNF injec-
tion, only a partial response of the population was observed, in ac-
cordance with the experimental observations described above (Fig. 3B,
Supplementary Fig. S3B). We then varied both the TNF concentrations
and the injection durations and obtained a similar Hill-like depend-
ency of the fraction of active cells to injection area (Fig. 3C).
Parameters of TNF dynamics were chosen to have similar range of re-
sponse to similar injections” doses of experimental data, ranging from
no response under 10% ng.s/mL to a ‘total’ response above 10° ng s/mL
(Hill coefficient: 4.8, 40-60 min response time).

We measured the activated fraction of cells present at the end of
the simulation (i.e. when NFxB got activated at least transiently), as
presented in the experiments. In our simulations, 20% of the cells
internalized TNF and committed to Apoptosis without activating
NFxB pathway. In fact, Tay et al. showed that after 8 hours of high
TNF concentration (10ng/mL), cells started to express less anti-
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apoptotic genes and more pro-apoptotic genes (Tay et al., 2010), in
qualitative agreement with the simulation predictions.

As shown in Figure 3C, the simulated response was stiffer than
the experimental one, although the model reproduced qualitatively
the observed behaviour within the same range of values. This sug-
gests that our model can be used to predict qualitatively the cell
population response to TNF in other conditions, and that the simu-
lations can retrieve a range of TNF concentration values and per-
centage of cells that responded, but one should be cautious before
interpreting the results quantitatively.

3.2 Multicellular spheroid response to TNF treatment

In vitro multi-cell spheroid models are now widely used to study
tumourigenesis (Loessner et al., 2013; Sutherland, 1988), due to
their similarity with iz vivo conditions, allowing for a good
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Fig. 3. Population response to TNF injection. (A) Simulation without TNF.
Snapshot of a simulation after 12h (left). Time evolution of the number of
cells in each cell fate (right) for five simulations. (B) Same as A for a low-dose
injection of TNF (1 ng/mL during 5min). (C) Fraction of ‘activated’ cells (transi-
ent NF«xB activation) compared to the initial number of viable cells according
to TNF stimulus area (concentration time duration). The blue dotted line rep-
resents the Hill-function fit to the simulation data (coefficient 4.8), and the
black dashed line represents a Hill-function of coefficient 1.5 as in experi-
ments from (Kellogg et al., 2015). (A-C) Green, Proliferative cells; red, cells
committed to Apoptosis; black, cells committed to NonACD. Initial disk ra-
dius: 400pm (Color version of this figure is available at Bioinformatics
online.)
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compromise between system complexity and clinical relevance
(Hirschhaeuser ef al., 2010). Our model was used to investigate how
a multi-cell spheroid would respond to TNF injection, showing that
it could be used to test the effect of injection frequency, clonality or
complex heterogeneous scenarios.

In the absence of TNF, the spheroid grew as cells doubled their
volumes and divided (Fig. 4A, Supplementary Fig. S4). Continuous
injection of a low dose of TNF drastically reduced the expansion of
the population (a 4.5-fold increase in cell numbers after 24 h in the
non-treated simulation, compared to a 1.8-fold increase in the
treated one), because ~50% of the initial population committed to
Apoptosis or NonACD in response to TNF (Fig. 4B, Supplementary
Fig. S4). However, cells that activated the survival NFxB pathway
became resistant to TNF (Survival stable state) and transmitted this
resistance to the daughter cells, who inherit their mother cell’s sig-
nalling network state. This sub-population continued to grow inde-
pendently of the TNF presence: discontinuing the TNF injection or
increasing it 10-fold after 600 min did not affect the overall behav-
iour (Fig. 4C). In the first 600 min, these cells received a constant ex-
ternal input (TNF activation) and reached a stable state, as could be
predicted from a MaBoSS simulation of an individual cell (Calzone
et al., 2010). In the first scenario, increasing the TNF dose did not
affect the signalling network of these already activated cells or their
stable state. In the second scenario proliferative cells were still pre-
sent as, due to the absence of TNF, cells switched from a NFxB
pathway-activated proliferative stable state to an un-activated pro-
liferative stable state.

From these results, we hypothesized that injections of short dur-
ation of TNF (instead of having a continuous regime) could sensitize
the cells to TNF. To test that idea, we simulated pulses of TNF injec-
tions at given frequencies and found out that transient exposure did
strongly affect the population’s response (Fig. 4D, Supplementary
Fig. S4C). This is important to consider as in vivo tissue cells are
subjected to bursts of TNF expression from neighbouring immune
response cells, while they might be under continuous injection in
in vitro trials. Cells that were proliferative after the first injection
were still responding to TNF in the following injections and the pro-
portion of dying cells was much higher than with a continuous treat-
ment, showing the importance of considering non-steady regimes.
Note that this conclusion was also valid in 2D simulations (data not
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Fig. 4. Spheroid response to TNF injection. (A) Simulation in the spheroid model without TNF. Snapshot of a simulation (left) after 24 h. Time evolution of the number
of cells in each cell fate (right) for five simulations. (B) Same as A for a continuous low-dose injection of TNF (0.5 ng/mL, continuously). (C) Simulation when TNF in-
jection (0.5ng/mL) is stopped (left) or drastically increased (5 ng/mL, right) after 600 min. Time evolution of the number of cells in each cell fate for five simulations
under each condition. (D) Effect of pulse injection frequencies in the model simulations. Time evolution of the number of cells in each cell fate for five simulations
when pulsed injections (0.5 ng/mL during 10 min) are repeated every 150 (left) and 600 (right) min. (A-D) Green, Proliferative cells; red, Apoptosis; black, NonACD.
Grey shading represents TNF injection. Initial spheroid radius is 100 um (Color version of this figure is available at Bioinformatics online.)
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shown), which suggests that these behaviours were not strongly
affected by the different TNF diffusions due to the geometries of the
simulations, monolayer or spheroids, so long as sufficient TNF
reached all the cells. The predicted differential response between tran-
sient and continuous exposures had been observed in a recent in vitro
study (Lee et al., 2016), where the authors observed more death for
short 1 min pulses compared to long 60 min pulses in Hela cells. Their
results suggested that the duration of the pulse has an effect on the dif-
ferential activation of the pro-apoptotic or pro-survival pathways.

Notably, cells activated the apoptotic pathway in response to the
first injection, whereas later injections committed cells mostly to
NonACD (Fig. 4D), thus highlighting the importance of dynamics in
the cells’ responses. This was consistent with the construction of our
network, with faster Apoptosis commitment (Supplementary File S2).
Moreover, changing the transcription rate in the model affected the
type of cell fate decision, as increasing it favoured necrosis (NonACD)
(Supplementary Fig. S4F). Indeed, faster transcription caused, among
other effects, faster mXIAP activation that caused Apoptosis inhibition
and faster mROS production of ROS, benefiting NonACD cell fate.

This suggests that PhysiBoSS can be used to screen frequencies
and concentrations of treatment injections, narrowing iz vitro inves-
tigations. Furthermore, it is also possible to test the system’s re-
sponse in different cell types, with different TNF secretion rates in
response to NFxB activation, which would affect the overall sensi-
tivity to TNF concentrations (Supplementary Fig. S4D). We also
used the tool to test the effect of the initial spheroid size on the TNF
availability, the overall effect on global multicellular behaviour; ini-
tial tests using different ranges did not yield substantially different
results (Supplementary Fig. S4E).

3.3 Response to TNF treatment of heterogeneous multi-
cellular spheroids

One major challenge in pharmacological targeted treatments is the
high level of spatial and temporal heterogeneity (Dagogo-Jack and
Shaw, 2017), within the population due to the presence of different
clones that respond differentially to the same conditions. To illustrate
the effect of treatment on a genetically heterogeneous population, we
simulated a spheroid initially composed of 75% of wild type strain
(non-mutated, WT) and 25% of mutated cells with over-expressed(+)
IKK and cFLIP (Fig. SA). This double mutation was found to drastical-
ly promote cell survival using our pipeline of computational tools for
logical models exploration (Montagud et al., 2017) (Supplementary
File S2). As expected, part of the WT population died under TNF
treatment while the mutant population survived and proliferated
(Fig. 5B). Importantly, the presence of the mutated population did not
impact the response of the WT population: the final ratio of surviving
WT cells compared to their initial number was similar to the one in a
WT-only population (Supplementary Fig. S5C, no significant differ-
ence under Kolmogorov—Smirnov test). This phenomenon was also
observed with two other mutations promoting either Apoptosis or
NonACD, or with different initial proportion of WT cells in the total
population (Supplementary Fig. S5).

In this simulation, cell communication was limited to TNF con-
sumption/secretion and physical interaction. However, it is known
that in a crowded environment such as a tumour, there is cell com-
petition for resources like oxygen, nutrients and growth factors. To
study the impact of resource competition among cell strains, we
included oxygen diffusion and its cell consumption in the 3D spher-
oid set-up. A threshold under which cell commits to necrosis
(NonACD) due to lack of oxygen was fixed (Supplementary File S2,
Parameter table). As a consequence, in a homogeneous WT
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Fig. 5. Genetically heterogeneous population under TNF treatment.
Simulations of heterogeneous population composed of 75% of WT cells (or-
ange) and 25% of IKK+ and cFLIP-+ mutated cells (purple). (A) Snapshots of a
genetically heterogeneous population simulation at initial and final time (24
h), with cells coloured by cell type (left and middle) or by cell fate (right). (B)
Time evolution of the number of cells in each strain (WT and mutated) for 10
simulations. Grey shading indicates presence of TNF in continuous injection
at 0.5ng/mL. (C) Same as A with oxygen dynamics taken into account. (D)
Same as B for simulations with oxygen diffusion. (A-D) Cell fate colours:
green, Proliferative cells; red, Apoptotic; black, NonACD. Initial spheroid ra-
dius: 200 um, + stands for over-expression (Color version of this figure is
available at Bioinformatics online.)

population without TNF, a necrotic core formed with a thin prolif-
erative rim around it (Supplementary Fig. S6A), as described for
large spheroids (Freyer and Sutherland, 1986; Sutherland, 1988).
Under TNF treatment, the homogeneous population growth was
strongly limited by the combination of TNF- and oxygen-mediated
death (Supplementary Fig. S6B).

When mixed with the IKK+ and ¢FLIP+ mutated population,
WT cells had to compete with proliferating mutant cells for oxygen
in addition to surviving TNF signalling. Thus, the majority of the
WT cells that did not commit to Apoptosis or NonACD by TNF sig-
nal, committed to NonACD by lack of access to oxygen (Fig. 5C
and D). WT strain growth was considerably reduced compared to
its growth in the homogeneous spheroid (Supplementary Fig. S6E).
Similarly, when mixed with pro-Apoptotic or pro-NonACD
mutants, WT cells had better access to oxygen and proliferated
more than in a homogeneous spheroid (Supplementary Fig. S6C-E).
This competition among strains was also observed for other ratios
of WT/mutated populations (Supplementary Fig. S6F).

The resulting tumour is the consequence of the different
adaptive abilities of these strains to the environmental conditions and
to the TNF treatment. As illustrated here, this may result in the growth
of resistant clones that gain access to nutrients. Importantly, it was re-
cently shown that the tumour spatial structure strongly impacts the
adaptive therapy efficiency (Bacevic et al., 2017). Hence, using tools
such as PhysiBoSS that include both spatial distribution and signalling
networks is necessary for exploring and predicting the best clinical
adaptive therapy strategies (Gatenby et al., 2009).

4 Discussion

PhysiBoSS provides a way to bridge gene perturbations to cell popu-
lation dynamics, taking into account microenvironmental perturba-
tions. It is thus a unique tool to address issues as clonality in
tumours, taking into account both intra-clonal (through
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stochasticity within MaBoSS and PhysiCell) and inter-clonal hetero-
geneity, the interaction of individual cells with the microenviron-
ment (TNF, oxygen, etc.), and their temporal evolution (Dagogo-
Jack and Shaw, 2017). In particular, PhysiBoSS allows showcasing a
substantial difference of the cell population’s response to perturba-
tions in TNF availability, which proves to be dependent on the sig-
nalling pathway dynamics (see also Lee er al., 2016).

Multi-scale models have a great potential to study morphogenetic
events by combining biochemical patterning with cell signalling and
mechanics (Delile et al., 2017; Marin-Riera et al., 2016). Indeed, the
overall population-level organization can be influenced both by cell
differentiation in response to external signals (e.g. growth factor ac-
cess) and cell organization by mechanical clues (e.g. differences in ad-
hesion or motility). Computational tools such as PhysiBoSS can be
used to predict the resulting organization of such interplay between
genetic and phenotype factors under environmental perturbations, and
thus reduce experimental exploration (Sharpe, 2017).

One limitation of PhysiBoSS is its spherical representation of cells
morphology. In the next version of PhysiBoSS, we plan to propose
other shapes such as an ellipsoidal shape as in Delile et al. (2017) and
cylindrical shape as in Marin-Riera et al. (2016). We also plan to test
PhysiBoSS using high-performance computing, similarly to the ap-
proach presented by Coulier and Hellander (2018), as well as high-
throughput investigations on HPC resources as in Ozik et al. (2018).
Additionally, we will extend its representation of the extracellular ma-
trix, so that users can choose different modes of implementation
according to the biological questions. Indeed, PhysiBoSS will be modi-
fied so as to offer different levels of representations from a very ab-
stract representation (as currently possible as a field or passive
spheres), to a more realistic representation (e.g. filamentous environ-
ment, which could be done by introducing a finite element mesh for
the ECM, as suggested in Ghaffarizadeh ez al., 2018). Finally, another
direction could be to combine MaBoSS with other agent-based model-
ling software, to allow for different frameworks (e.g. Cellular Potts,
vertex model) according to the biological question of interest.

PhysiBoSS is available on GitHub (https:/github.com/sysbio-
curie/PhysiBoSS), under the BSD 3-clause license, with its own DOI
(10.5281/zenodo.1194827). PhysiBoSS is compatible with most
Unix systems and a Docker image (https://hub.docker.com/r/gletort/
physiboss/) allows one to run PhysiBoSS on incompatible systems.
We provide in the repository the source code of PhysiBoSS, several
scripts to facilitate its use, reproducible examples (with all necessary
files), and extended documentation on its wiki.
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