
xml2jupyter: Mapping parameters between XML and
Jupyter widgets
Randy Heiland1, Daniel Mishler1, Tyler Zhang1, Eric Bower1, and Paul
Macklin1

1 Intelligent Systems Engineering, Indiana University
DOI: 10.21105/joss.01408

Software
• Review
• Repository
• Archive

Submitted: 08 April 2019
Published: 01 July 2019

License
Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

Summary

Jupyter Notebooks (Kluyver et al., 2016, Perkel (2018)) provide executable documents (in
a variety of programming languages) that can be run in a web browser. When a notebook
contains graphical widgets, it becomes an easy-to-use graphical user interface (GUI). Many
scientific simulation packages use text-based configuration files to provide parameter values
and run at the command line without a graphical interface. Manually editing these files to
explore how different values affect a simulation can be burdensome for technical users, and
impossible to use for those with other scientific backgrounds. xml2jupyter is a Python package
that addresses these scientific bottlenecks. It provides a mapping between configuration files,
formatted in the Extensible Markup Language (XML), and Jupyter widgets. Widgets are
automatically generated from the XML file and these can, optionally, be incorporated into
a larger GUI for a simulation package, and optionally hosted on cloud resources. Users
modify parameter values via the widgets, and the values are written to the XML configuration
file which is input to the simulation’s command-line interface. xml2jupyter has been tested
using PhysiCell (Ghaffarizadeh, Heiland, Friedman, Mumenthaler, & Macklin, 2018), an open
source, agent-based simulator for biology, and it is being used by students for classroom and
research projects. In addition, we use xml2jupyter to help create Jupyter GUIs for PhysiCell-
related applications running on nanoHUB (Madhavan et al., 2013).
A PhysiCell configuration file defines model-specific <user_parameters> in XML. Each
parameter element consists of its name with attributes, defining its data type, units (optional),
description (optional), whether the widget should be hidden (optional), and the parameter’s
default value. The attributes will determine the appearance and behavior of the Jupyter
widget. For numeric widgets (the most common type for PhysiCell), xml2jupyter will calculate
a delta step size as a function of the default value and this step size will be used by the widget’s
graphical increment/decrement feature.
To illustrate, we show the following simple XML example, containing each of the four (cur-
rently) supported data types and the various attributes:

<PhysiCell_settings>
<user_parameters>

<radius type="double" units="micron"
description="initial tumor radius">250.0

</radius>
<threads type="int">8</threads>
<color type="string" hidden="true">red</color>
<fix_persistence type="bool">True</fix_persistence>

</user_parameters>
</PhysiCell_settings>

Heiland et al., (2019). xml2jupyter: Mapping parameters between XML and Jupyter widgets. Journal of Open Source Software, 4(39), 1408.
https://doi.org/10.21105/joss.01408

1

https://doi.org/10.21105/joss.01408
https://github.com/openjournals/joss-reviews/issues/1408
https://github.com/rheiland/xml2jupyter
https://doi.org/10.5281/zenodo.3261541
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.21105/joss.01408


Figure 1: Simple example of XML parameters as Jupyter widgets.

When we map this into Jupyter widgets, we obtain the rendered results in Figure 1. Notice
the color parameter is not displayed since we specified it should be hidden in the XML. The
name of the other parameters, their values, and attributes, if present, are displayed in rows (as
disabled Jupyter button widgets). Using alternating row colors (“zebra stripes”) helps visually
match associated fields and avoid changing the wrong parameter value. For numeric widgets
(type “int” or “double”), we compute a delta step value based on the magnitude (log) of the
initial value. For example, the radius widget will have a step value of 10, whereas threads
will have a step value of 1.
For a more realistic example, consider the config_biorobots.xml configuration file (found
in the config_samples directory). The XML elements in the <user_parameters> block
include the (optional) description attribute which briefly describes the parameter and is dis-
played in another widget. To demonstrate xml2jupyter on this XML file, one would: 1) clone
or download the repository, 2) copy the XML configuration file to the root directory, and 3)
run the xml2jupyter.py script, providing the XML file as an argument.

$ cp config_samples/config_biorobots.xml .
$ python xml2jupyter.py config_biorobots.xml

The xml2jupyter.py script parses the XML and generates a Python module, user_param
s.py, containing the Jupyter widgets, together with methods to populate their values from
the XML and write their values back to the XML. To “validate” the widgets were generated
correctly, one could, minimally, open user_params.py in an editor and inspect it. But to
actually see the widgets rendered in a notebook, we provide a simple test:

$ python xml2jupyter.py config_biorobots.xml test_user_params.py
$ jupyter notebook test_gui.ipynb

This should display a minimal notebook in your browser and, after selecting Run all in the
Cell menu, you should see the notebook shown in Figure 2.

PhysiCell Jupyter GUI

Our ultimate goal is to generate a fully functional GUI for PhysiCell users. xml2jupyter provides
one important piece of this - dynamically generating widgets for custom user parameters for a
model. By adding additional Python modules to provide additional components (tabs) of the
GUI that are common to all PhysiCell models, a user can configure, run, and visualize output
from a simulation. Two tabs that provide visualization of output files are shown in Figure 3
with results from the biorobots simulation. Note that some of the required modules are not
available in the Python standard library, e.g., Matplotlib (Hunter, 2007) and SciPy (Oliphant,
2007). We provide instructions for installing these additional dependencies in the repository
README.

Heiland et al., (2019). xml2jupyter: Mapping parameters between XML and Jupyter widgets. Journal of Open Source Software, 4(39), 1408.
https://doi.org/10.21105/joss.01408

2

https://doi.org/10.21105/joss.01408


Figure 2: The biorobots parameters rendered as Jupyter widgets.

Figure 3: Plotting the biorobots (cells; left) and signals (substrates; right).

Heiland et al., (2019). xml2jupyter: Mapping parameters between XML and Jupyter widgets. Journal of Open Source Software, 4(39), 1408.
https://doi.org/10.21105/joss.01408

3

https://doi.org/10.21105/joss.01408


Figure 4: The cancer biorobots parameters in a nanoHUB Jupyter application.

Extensions and Discussion

We hope others will be inspired to extend the core idea of this project to other text-based
configuration files. XML is only one of several data-interchange formats and, although we
created this tool for XML-based configurations based on needs to create GUIs for PhysiCell
projects, the approach should be more broadly applicable to these other formats. And while
the additional Python modules that provide visualization are also tailored to PhysiCell output,
they can serve as templates for other scientific applications whose input and output file formats
provide similar functionality.
xml2jupyter has helped us port PhysiCell-related Jupyter tools to nanoHUB, a scientific cloud
for nanoscience education and research that includes running interactive simulations in a
browser. For example, Figure 4 shows the xml2jupyter-generated User Params tab in our
pc4cancerbots tool running on nanoHUB. Figure 5 shows the cells (upper-left) and three
different substrate plots for this same tool. This particular model and simulation is described
in this video.
Other PhysiCell-related nanoHUB tools that have been created using xml2jupyter include
pc4heterogen, pcISA, and pc4cancerimmune. Readers can create a free account on
nanoHUB and run these simulations for themselves. We encourage students to use xml2jupyter
to create their own nanoHUB tools of PhysiCell models that 1) can be run and evaluated by
the instructor, 2) can be shared with others, and 3) become part of a student’s living port-
folio. (Another repository, https://github.com/rheiland/tool4nanobio, provides instructions
and scripts to help generate a full GUI from an existing PhysiCell model.)
We welcome suggestions and contributions to xml2jupyter. For example, currently, we arrange
the generated parameter widgets vertically, one row per parameter. This is an appropriate
layout for an educational setting. But if a GUI will be used by researchers who are already
familiar with the parameters, it may be preferable to generate a more compact layout of
widgets, e.g., in a matrix with only the parameter names and values. Moreover, it may
be useful to provide additional control over styling and placement by a separate style.xml or

Heiland et al., (2019). xml2jupyter: Mapping parameters between XML and Jupyter widgets. Journal of Open Source Software, 4(39), 1408.
https://doi.org/10.21105/joss.01408

4

https://nanohub.org/tools/pc4cancerbots
https://www.youtube.com/watch?v=wuDZ40jW__M
https://nanohub.org/tools/pc4heterogen
https://nanohub.org/tools/pcisa
https://nanohub.org/tools/pc4cancerimmune
https://github.com/rheiland/tool4nanobio
https://doi.org/10.21105/joss.01408


Figure 5: The cancer biorobots Jupyter notebook on nanoHUB.

Heiland et al., (2019). xml2jupyter: Mapping parameters between XML and Jupyter widgets. Journal of Open Source Software, 4(39), 1408.
https://doi.org/10.21105/joss.01408

5

https://doi.org/10.21105/joss.01408


similar file, or by an external cascading style sheet. We will explore these options in the future,
with the aim of separating as much GUI specification and styling from the original scientific
application as possible. Such a decoupling would make it easier for scientific developers to
continue refining their scientific codes without worrying about impact on the GUI, and without
undue encumbrance by non-scientific annotations.
Also, we currently provide just 2-D visualizations of (spatial) data. In the near future, we will
provide visualizations of 3-D models and welcome suggestions from the community.

Acknowledgements

We thank the National Science Foundation (1720625) and the National Cancer Institute (U01-
CA232137-01) for generous support. Undergraduate and graduate students in the Intelligent
Systems Engineering department at Indiana University provided internal testing, and students
and researchers within the NSF nanoMFG (1720701) group generously provided external test-
ing. All of their feedback resulted in considerable improvements to this project. Finally, we
thank our collaborators at Purdue University, especially Martin Hunt and Steve Clark, who
provided technical support with nanoHUB and Jupyter.

References

Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M., & Macklin, P. (2018).
PhysiCell: An open source physics-based cell simulator for 3-d multicellular systems. PLOS
Computational Biology, 14(2), 1–31. doi:10.1371/journal.pcbi.1005991
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing In Science &
Engineering, 9(3), 90–95. doi:10.1109/MCSE.2007.55
Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley,
K., et al. (2016). Jupyter notebooks – a publishing format for reproducible computational
workflows. (F. Loizides & B. Schmidt, Eds.). IOS Press. doi:10.3233/978-1-61499-649-1-87
Madhavan, K., Zentner, L., Farnsworth, V., Shivarajapura, S., Zentner, M., Denny, N., &
Klimeck, G. (2013). NanoHUB.org: Cloud-based services for nanoscale modeling, simulation,
and education. Nanotechnology Reviews, 2(1). doi:10.1515/ntrev-2012-0043
Oliphant, T. E. (2007). Python for scientific computing. Computing In Science & Engineering,
9(3), 10–20. doi:10.1109/MCSE.2007.58
Perkel, J. M. (2018). Why jupyter is data scientists’ computational notebook of choice.
Nature, 563, 145–146. doi:10.1038/d41586-018-07196-1

Heiland et al., (2019). xml2jupyter: Mapping parameters between XML and Jupyter widgets. Journal of Open Source Software, 4(39), 1408.
https://doi.org/10.21105/joss.01408

6

https://doi.org/10.1371/journal.pcbi.1005991
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1515/ntrev-2012-0043
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1038/d41586-018-07196-1
https://doi.org/10.21105/joss.01408

	Summary
	PhysiCell Jupyter GUI
	Extensions and Discussion
	Acknowledgements
	References



