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Abstract
Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology, 
Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no 
denying that mathematics continues to play an increasingly prominent role in cancer research. 
Mathematical Oncology—defined here simply as the use of mathematics in cancer research—
complements and overlaps with a number of other fields that rely on mathematics as a core 
methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical 
studies to clinical trials designed with mathematical models. This Roadmap differentiates 
Mathematical Oncology from related fields and demonstrates specific areas of focus within this 
unique field of research. The dominant theme of this Roadmap is the personalization of medicine 
through mathematics, modelling, and simulation. This is achieved through the use of patient-
specific clinical data to: develop individualized screening strategies to detect cancer earlier; make 
predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome 
therapy resistance; and establish domain-specific standards to share model predictions and to make 
models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor 
for the beautiful, strange, and evolving relationship between mathematics and cancer.
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‘Two Beasts’ (2017)
Artist: Ben Day Todd. Acrylic, gouache on canvas

‘Two Beasts’ is an exploration of form and colour. By adding and subtracting paint, pushing and pulling colour,  
new information is found and previously unknown dialogues are recorded.
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1.  Introduction to the 2019 Mathematical 
Oncology Roadmap

Russell C Rockne1

1	 Department of Computational and Quantitative Medicine, 
Division of Mathematical Oncology, City of Hope National 
Medical Center, Duarte, CA 91010, United States of America

Mathematical Oncology—defined here simply as the 
use of mathematics in cancer research—has gained 
momentum in recent years with the rapid accumula-
tion of data and applications of mathematical meth-
odologies. The purpose of this 2019 Mathematical 
Oncology Roadmap is to provide a forward-looking 
view of the field and to demonstrate specific areas of 
focus within this unique field of research. The top-
ics presented here are not intended to be exhaustive, 
but rather to feature emerging, high-impact areas 
that have the potential to shape the direction of 
Mathematical Oncology in the next 5–10 years. The 
selected topics cover both theoretical and practical 
issues.

The dominant theme of this Roadmap is the 
personalization of medicine through mathematics, 
modelling, and simulation. This is achieved primar-
ily through the use of patient-specific clinical data. In 
this Roadmap, mathematical approaches are used to: 
make individualized predictions of response to ther-
apy; present data and simulation standards with the 
goal of creating reproducible models; and improve 
cancer screening to detect cancer earlier. These 
approaches are also used to predict and steer cancer 
evolution to guide the design of adaptive, patient-
specific treatment plans that overcome therapy 
resistance, with the goal of turning incurable cancers 
into chronic, manageable conditions rather than fatal 
diseases. Each contribution is summarized here in the 
order it appears:

Personalizing medicine by merging mechanistic and 
machine learning models
The role of Mathematical Oncology in the future of 
precision or personalized medicine is demonstrated 
through patient-specific mathematical modelling, 
analysis of patient-specific clinical data, and patient-
specific adaptive therapies. Hawkins-Daarud and 
Swanson demonstrate these principles by looking 
towards a future merging of mathematical modelling 
and machine learning, in which knowledge-based 
mechanistic modelling is used to guide and inform 
machine learning when data is sparse. Hawkins-Daarud 
and Swanson highlight the potential and the challenges 
of merging these fields of mathematical modelling and 
machine learning with an application to primary brain 
cancers and clinical imaging data such as MRI.

Setting data and model standards
However successful a modelling or simulation method 
may be, if it cannot be deployed or used by other groups, 

it is of limited value. For Mathematical Oncology 
to achieve its highest impact, Sluka et  al argue that 
standards are needed for both data and mathematical 
models, to ensure interoperability, to leverage and build 
upon prior work, and ultimately to develop useful tools 
that can be used to study and treat cancer. Of course, 
the use of standards in science is not new, however, data 
and model standardization in this domain face unique 
challenges, particularly with respect to spatial models. 
Sluka et al identify the central challenges and potential 
advances afforded by the establishment of ‘FAIR’ 
(Findable, Accessible, Interpretable, and Reusable) 
models in Mathematical Oncology.

Turning tumour forecasting into a rigorous predictive 
science
In addition to the challenges of developing and 
standardizing mathematical models of cancer growth 
and response to therapy, lies the ‘grand challenge of 
Mathematical Oncology’: to faithfully reproduce—
and predict—the spatiotemporal dynamics of tumour 
growth. Similar to weather models that predict the 
path of a hurricane, Hormuth et al call for the use of 
families of models in which the optimal model (or 
models) is selected with Bayesian methodologies and 
used to update patient-specific predictions over time. 
The goal of this approach is to establish a foundation 
for tumour forecasting as a rigorous predictive science 
through careful model selection and validation.

Modelling cancer screening and early detection
Benjamin Franklin famously stated that ‘An ounce of 
prevention is worth a pound of cure’. Nowhere could 
this be more true than in cancer; however, nowhere 
else could this sentiment be more challenging to 
implement. Many serious issues face the field of early 
detection of cancer, including the risk of false negatives, 
false positives, and the possibility of transient early-
stage cancers that are successfully defeated by the 
body’s immune system. However, Curtius and Al Bakir 
propose that mathematical models of carcinogenesis 
can be used to evaluate and predict the efficacy of 
screening strategies using multiscale approaches, with 
the ultimate goal of producing clinically actionable 
personalized cancer screening recommendations.

Analysing cancer dynamics and the evolution  
of resistance
As cancer cells grow into a malignant lesion or tumour, 
the cells evolve and accumulate mutations in their 
DNA. The analysis of evolutionary dynamics using 
mathematical models is a rich field that has many 
applications to cancer. Wodarz et al identify the spatial 
structure of the tumour cell population as a critical 
challenge in modelling tumour evolution. In particular, 
they suggest that novel computational methodologies 
are required to simulate and predict tumour evolution 
at realistically large population sizes with realistically 
small rates of mutation. Here, Wodarz et  al use 
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mathematical modelling to predict the evolution of 
resistant cells within the evolving cancer as a whole.

Applying a single-cell view to cancer heterogeneity and 
evolution
In contrast to the view taken by Wodarz et  al, 
Aparicio et  al consider tumour evolution at single-
cell resolution. Using single-cell genome sequencing 
data, Aparicio et  al present mathematical and 
computational methods to analyse single-cell data 
from a topological perspective. Low-dimensional 
projections, or visualisations, that are used to study 
high-dimensional single-cell sequencing data may 
give a misleading representation of the relationships 
between individual cells. Aparicio et al use machine 
learning and algebraic topology to construct 
simplified skeleton graphs as approximations for 
the geometry of high-dimensional data. These 
sophisticated methodologies enable the examination 
of the heterogeneity of individual cells in a continuum 
of states, from normal/healthy to cancerous. The 
mathematics of topological data analysis combined 
with single-cell sequencing technologies provide a 
powerful tool to study fundamental aspects of cancer 
biology at an unprecedented resolution.

Accurately representing metabolism in cancer  
progression
Altered metabolism and metabolic reprogramming 
are hallmarks of cancer and are associated with 
cancer progression and therapeutic resistance. Due 
to the many interconnected metabolites, enzymes, 
regulatory mechanisms, and pathways, systems 
biology approaches have been used to study cell 
metabolism. Often, mathematical representations 
of cell metabolism use a constraint-based formalism 
that does not explicitly account for spatial-temporal 
variations. Finley proposes a multiscale approach to 
modelling kinetics and time-varying heterogeneities 
that may arise in aberrant cell metabolism in cancer 
due to environmental fluctuations. She also proposes 
the use of patient-specific data and open source 
computational platforms that support data and model 
standards, with the ultimate goal of using these models 
to generate novel drug combinations and treatment 
strategies.

Modelling and predicting patient-specific responses to 
radiation therapy
Long before the rise of immunotherapy, the 
three pillars of cancer treatment were surgery, 
chemotherapy, and radiation therapy. Radiation 
remains a definitive and curative treatment for many 
cancers and is highly personalized, with radiation 
fields and doses sculpted to an individual patient’s 
anatomy and cancer. However, Enderling et al show 
that radiation therapy outcomes may be predicted 
and improved using simple mathematical models that 
account for the growth rate of the cancer and introduce 

the ‘proliferation-saturation index (PSI)’. The authors 
discuss challenges for the clinical adoption of this 
mathematically-defined, patient-specific, predictive 
response index, and consider the road ahead, which 
includes prospective randomized clinical trials.

Pioneering evolutionary therapy
In contrast to the optimization of radiation therapy, 
Anderson and Gatenby propose an entirely new 
pillar of cancer treatment: evolutionary therapy. 
In this paradigm, treatment schedule and dose are 
mathematically designed to reduce the possibility of 
treatment resistance. Instead of using the maximum 
tolerated dose, evolutionary therapy aims to give the 
minimum effective dose through repeated treatment 
cycles to maintain tumour control over extended 
periods of time. Early results from an evolutionary 
therapy clinical trial in prostate cancer, designed by 
the authors with in silico ‘phase i’ trials, suggest that 
the length of treatment cycles is highly patient-specific 
and may be predicted with mathematical modelling.

Exploring fitness landscapes and evolutionary game 
theory
The principles of evolutionary therapy and therapeutic 
resistance can be modelled mathematically using 
evolutionary game theory (EGT), in which evolution 
is determined by selection or optimisation of ‘fitness’. 
A fitness landscape is a conceptual and mathematical 
abstraction that enables predictions and interpretations 
of the temporal process of evolution. However, 
significant practical and theoretical challenges prevent 
the measurement or inference of the exact geometry 
of the fitness landscape. Kaznatcheev et al propose that 
we reconsider the very concept of abstraction itself in 
order to better understand and use the EGT framework 
to guide evolutionary therapy, using algorithmic 
computer science as a practical example.

In contrast to the theoretical considerations of 
Kaznatcheev et al, Krishnan et al demonstrate a practi-
cal method to experimentally estimate the parameters 
of an EGT model, with the goal of designing combi-
nation therapies that not only avoid therapeutic resist
ance but are even able to steer cancer evolution on a 
patient-specific basis. The authors hypothesize—and 
demonstrate—how EGT-driven therapies can be 
practically implemented in the clinic to overcome 
therapeutic resistance in cancer treatment.

Summary
In summary, this 2019 Mathematical Oncology 
Roadmap identifies three critical milestones along the 
path to mathematically designed cancer treatment: 
(1) obtaining accurate, rigorous, and reproducible 
predictions of the spatial-temporal progression 
of cancer; (2) avoiding and mitigating therapeutic 
resistance; and (3) merging mechanistic knowledge-
based mathematical models with machine learning. 
Surprisingly, despite the emergence of the era of ‘big 
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data’, we are learning that we still lack the right kind 
of data. Big data in cancer is often taken from a single 
point in time and space, from only one biological 
scale, or without an appropriate micro-environmental 
context. The road ahead includes continued 
development of knowledge-based mathematical 
models and methods to bridge big data to the ideal of 
personalized, predictive, adaptive therapy.

As we look towards the next 5–10 years in Math-
ematical Oncology, we note that government agencies 
such as the federal drug administration (FDA) in the 

United States have begun to officially recognize model-
ling and simulation as forms of valid scientific evidence 
in the review and approval process. From our perspec-
tive, with the support and adoption of government reg-
ulatory agencies that recognize these methodologies, 
tumour forecasting, patient-specific adaptive therapies 
with the use of in silico treatment scenarios, virtual clin-
ical trials, and mathematical modelling and simulation 
have the potential to accelerate our scientific progress 
in cancer research, and have the potential to transform 
the way we detect and treat cancer in the clinic.

Phys. Biol. 16 (2019) 041005
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2.  The future of personalization in 
mathematical oncology: a mathematical 
merger of mechanistic and machine 
learning models

Andrea Hawkins-Daarud1 and Kristin R Swanson1,2

1	 Mayo Clinic, Phoenix, Arizona
2	 Arizona State University, Tempe, Arizona

Status
Cancer patient care is intrinsically multidisciplinary. 
Tumor board is the clinical environment used to bring 
together those different disciplines to make treatment 
decisions, but, unfortunately, it is an agonizing 
environment of doubt—Is the tumor progressing? 
Is the optimal treatment A or B? All it takes is a brief 
experience in a tumor board to feel the injustice of a 
cancer diagnosis and the frustration of not knowing 
the truly optimal treatment. Every patient is unique 
and every patient will respond differently to the same 
treatment protocol. Thus, the central tumor board 
challenge is—how do we best integrate the unwieldy 
multitude of dispersed data (imaging, tissue, blood, 
molecular) to generate optimal clinical decisions for 
each patient? The current strategy for grappling with 
this complexity is to average over cohorts of seemingly 
similar patients with similar diagnoses to select an 
average treatment applied to an average patient with 
average outcomes. Yet, it is empirically evident that 
cancer is a complex evolving system that does follow 
some rules that are known and can be modeled and 
predicted mathematically in each patient. For instance, 
we know that cancer is a proliferative process that 
outcompetes the otherwise normal tissue to grow. 
Cancer cells have the ability to engage and co-opt 
their local environment to their benefit for growth 
and invasion. While these cancer cells hack normal 
rules of biology to their advantage, other known or 
identifiable biological and physical rules drive and/or 
constrain phenotypes. Based on these processes, the 
seemingly unwieldy cancer process can be formalized 
as mathematical equations which can be parametrized 
for each patient’s data (e.g. imaging, molecular, tissue). 
Every cancer patient deserves their own individualized 
equation (TEDx: http://bit.ly/1p1pl8A), a personalized 
parameterization of their disease evolution that can be 
exploited to guide and optimize his or her care.

Current and future challenges
The potential machine learning (ML) or artificial 
intelligence (AI) applications to healthcare have 
recently received particular notice in the media 
with IBM’s Watson, applications to radiology and 
diagnoses aided by wearable technology amongst 
many others. Each of these examples are exciting, but 
the full promise of personalized medicine remains 
unrealized. While the amount and types of clinical data 
being generated for each cancer patient is increasing 
dramatically, there are no holistic approaches or 

algorithms available that can incorporate all this data 
to identify the best treatment for each individual 
patient. There are, obviously, many reasons for this, 
but a critical challenge is that cancer is a spatially 
complex, adaptive process and the data being collected, 
while vast, is quite limited in that it is showing, at best, 
infrequent snapshots of extremely small regions of 
the tumor. Ultimately, this means AI and ML models 
will not be able to be trained on the right data to make 
reliable predictions.

Mechanistic models can help. Cancer is fundamen-
tally a physical process subject to the same predictable 
laws of nature studied in physics and chemistry. Of 
course, it is also a biological, multicellular evolving eco-
system with critical events happening on an enormous 
range of spatial and temporal scales from improper 
DNA methylation to the alteration of an organ’s func-
tion. These complex interacting components compli-
cate the interpretation of data and experimental plan-
ning. While there are many fields of cancer research, 
mathematical oncology, a field dominated by mecha-
nistic models, is arguably the best equipped to abstract 
overarching principles and develop a deeper under-
standing of how the mechanisms driving cancer can 
be exploited and shut down. To date, however, there 
are few models that have bridged the scales necessary 
to fully utilize all the data generated. Thus, these mod-
els provide insight, but are not necessarily adapted to 
assimilate the breadth and depth of the data.

Advances in mathematics, technology, or data to meet 
challenges
These two approaches, insightful mechanistic models 
and the powerful black box of machine learning, are 
highly complementary. A grand challenge of our day 
is to develop methods leveraging both their strengths 
to create a symbiotic modeling paradigm such that its 
whole is greater than the sum of its parts—one that can 
both leverage the vast data at our fingertips (machine 
learning) but also the knowledge we already have gained 
from that data (mechanistic models). We envision such 
mergers can and will take many forms, such as those 
outlined in the following and illustrated in figure 1.

	1.	�Mechanistic Model Calibration via Machine 
Learning A current challenge for mechanistic 
models is the incorporation of the vast amount 
of ‘omic’ data into parameters. ML approaches 
could be used to identify gene or expression 
signatures that best correspond with given 
mechanistic model parameters utilizing cell 
cultures and preclinical models. Once initial 
signatures are found, correlations could be 
validated with in vivo human data.

	2.	�Mechanistic Model Outputs as Inputs to 
Artificial Intelligence Models A critical 
limitation for AI models is the relatively limited 
amount (both spatially and temporally) of data 
available for training. Mechanistic models can 
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be used to create personalized extrapolations 
of the provided data for utilization in the AI 
models. This synthetic data could be used as a 
regularizer or as fully weighted training data 
and could enhance the model stability when 
working with smaller sets of data.

	3.	�Actionize Machine Learning Predictions with 
Mechanistic Models Static outputs from ML 
models could be leveraged as initial conditions 
in dynamic mechanistic models to move the 
ML prediction forward in time. If, for instance, 
a ML model could take information from the 
transcriptome to predict local concentrations 
of cellular constituents, this information could 
provide an initial condition for models of cellular 
interaction allowing the mechanistic model to 
better incorporate data from many different scales.

	4.	�Data Assimilation for Mechanistic Models 
utilizing Machine Learning Outputs Building 
on the previous method, if the appropriate data 
for the ML model is anticipated to be available 
for a series of discrete time points, such as MRIs, 
the ML model output can be used within a data 
assimilation framework to continuously correct 
predictions from mechanistic models.

Concluding remarks
Science and data have always had a strong relationship, 
but in the last decade or so, the term data science has 
started taking on a specific meaning related to machine 
learning and artificial intelligence which ironically 
leaves behind the notion of the scientific method and 
hypothesis testing. While there is no doubt that the 
recent explosion of data cannot be fully exploited 
without such AI methods, mechanistic models offer a 
strong complementary, hypothesis driven, approach to 
synthesizing meaning and strengthening predictions 
that should not be ignored. This is particularly true in 
the field of mathematical oncology, where the data is 
often vast and deep but not representative spatially or 
temporally. Creating fundamental mergers between 
these two approaches is a critical step to fully realizing 
the vision of targeted personalized therapy.
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Figure 1.  Illustrating the types of advances one might expect to see in the integration of mechanistic modeling into machine 
learning methods (and vice versa) applied to the case of brain cancer. Mechanistic models, e.g. [1–5], and machine learning, 
e.g. [6, 7], can interact in multiple ways. (1) ML models can help mechanistic models make sense of multi-scale data to calibrate 
parameters, e.g. [8, 9]. (2) Mechanistic model predictions can be used as input into ML models to augment spatially or temporally 
sparse data, e.g. [10] (3) Static outputs from ML models can be used as initial conditions for mechanistic models and (4) ML models 
and mechanistic models can work together via data assimilation to create spatially and temporally resolved predictions over long 
periods of time.
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3.  Data and model standards

James P Sluka1,2, James A Glazier1,2   
and Paul Macklin1,*
1	 Intelligent Systems Engineering, Indiana University. 

Bloomington, IN 47408, United States of America
2	 Biocomplexity Institute, Indiana University. Bloomington, 

IN 47408, United States of America
*	 Invited author. macklinp@iu.edu

Status
Cancer presents a complex series of systems problems 
involving intracellular dynamics, intercellular 
interactions, and extracellular biochemical and 
biophysical processes, embedded in a complex and 
continually changing spatial context. Although single 
laboratories can contribute important advances, they 
cannot individually solve the large-scale problems of 
cancer biology. As a result, consortia of experimental 
labs, clinical centers, and computational groups are 
increasingly pooling their specialized expertise to gain 
new insights into the complexity of cancer [11]. This 
pooling requires integration not only of heterogeneous 
data collected by different groups, but also of scientific 
hypotheses and deductive observations (knowledge 
capture), and conceptual, mathematical and 
computational models. Such integration is much more 
efficient when data and knowledge representations are 
standardized.

Difficulty in finding, accessing, interpreting, and 
reusing data, knowledge, and models hinders collabo-
rative cancer research. A lack of standardized data and 
knowledge representations, inconsistent metadata 
(e.g. to describe experimental protocols), technical 
and financial obstacles, and systemic cultural barri-
ers all discourage sharing [12]. Modern genomics and 
proteomics demonstrate that widespread adoption of 
data standards enables faster and more efficient scien-
tific progress.

Many biological research communities are devel-
oping standards to annotate and share concepts and 
data. For example, the microarray and microscopy 
research communities are developing standards for 
sharing annotated data such as MGED [13] for micro-
arrays, OMERO [14] for microscopy, and the National 
Cancer Institute’s ‘Common Data Elements for Can-
cer Research’ [15].

Currently a lack of standards impedes sharing of 
many types of mathematical models and computer 
simulations of cancer. While mathematical models can 
elegantly express data-driven hypotheses, their reuse 
and combination into larger-scale models requires 
(currently lacking) standardized representations of 
equations, model assumptions, and the rationale for 
parameter estimates. The same problems apply to 
computer simulations.

The systems biology markup language (SBML) 
community has successfully developed standards to 
describe dynamic biological network models and to 
enable their translation into executable computer 

simulations [16]. The SBML standard not only defines 
mathematical concepts and syntax, but also allows 
annotation of model components with biological 
terms (e.g. naming genes and biological processes). 
Well-constructed SBML models retain their under-
lying biological descriptions and associated scien-
tific knowledge. Similar standards for representing 
multicellular data, knowledge and models are critical 
for cancer research, but they are presently less devel-
oped. The Cell Behavior Ontology [17] and multi 
cellular data standard (MultiCellDS) [18] are steps in 
this direction. Standards for general knowledge and 
hypothesis representation are even less developed.

Current and future challenges
To maximize the value of mathematical models 
and computer simulations of cancer to the research 
community, funding agencies, and society, data, 
knowledge, models, and simulations should be FAIR: 
findable, accessible, interpretable and reusable [19]. 
Describing models and data using accepted biological 
nomenclature and maintaining their links with their 
underlying biological hypotheses would greatly facilitate 
finding, accessing and interpreting their domain and 
biological content, maximizing their value by capturing 
their embedded scientific knowledge for reuse.

To enable sharing and reuse in future research, we 
must record experimental, clinical, and simulation 
data using community-driven standards, drawing 
upon ontologies that precisely define biological terms 
and relationships. These data must include metadata 
such as descriptions of experimental and computa-
tional protocols that contextualize data and allow rep-
lication [12, 19].

Beyond expressing raw data and models, the com-
munity must also develop annotations of biological 
hypotheses, observations and insights (knowledge). 
Researchers often communicate this information 
using qualitative conceptual ‘mental models’ or ‘ver-
bal models’ that represent decades of expert learning. 
Machine-readable, searchable representations of con-
ceptual biological knowledge would greatly facilitate 
sharing [12].

Because sharing computational models is largely 
limited to sharing source code with little documenta-
tion and no biological annotations (or worse, executa-
bles with no source code), simulations are often unre-
producible [19]. Future computational models (and 
their parameter sets) must be biologically annotated to 
facilitate their reuse in more comprehensive multiscale 
simulations. Biological annotations would also make 
computational models more accessible via search 
engines, reducing the need for formal repositories and 
driving further reuse.

Advances in mathematics, technology, or data to meet 
challenges
Enabling FAIR research requires robust annotation 
schemes for biological, clinical, mathematical, and 
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computational data, including context, biological 
assumptions, and knowledge gained. Relationships and 
interactions between biological entities and processes 
resemble graph structures in SBML network models. 
However, ‘translating’ imaging data into biological 
annotations will require machine learning approaches 
that extend beyond present-day image processing 
and feature extraction tools [12]. More broadly, tools 
and utilities must develop alongside standards to 
make standards-compliant science simple and user-
friendly, and to integrate it into existing experimental, 
mathematical, and computational workflows.

We can learn from the SBML community’s experi-
ence to develop similarly robust and FAIR descriptions 
of mathematical and computational models beyond 
SBML’s interaction-network concepts. Representing 
spatial effects is particularly challenging. Projects like 
CellML [20] and MultiCellDS [18] require continued 
effort to grow from white papers to widely-adopted 
standards. Synergies are clearly possible. For example, 
descriptions of microscopy imaging data and multi-
cellular simulation outputs have significant overlap 
and should admit a common description language.

We also need to harmonize the numerous data and 
model standardization efforts across biotech and bio-
logical communities. These efforts need to coordinate 
to ensure that emerging standards are consistent, par
ticularly in the biological description of data, experiments, 
models, and knowledge. Ideally, harmonized standards 
should apply to many types of experimental observation 
(e.g. high throughput microscopy), and generalize from 
cancer to normal physiology and other diseases.

Standards should be designed so that they support, 
rather than inhibit, creativity. Tools that make anno-
tation and standards compliance easy are critical to 
voluntary adoption. Properly implemented and exten-
sible standards serve as a conduit to communicate new 
ideas and allow better connectivity between models, 
tools, and data.

Well-implemented standards provide value to 
individuals in the form of increased access to data, 

models, and tools, and greater impact via reuse. We 
must also ensure that standards are straightforward 
to implement across computing languages and plat-
forms, particularly for scientists who focus on devel-
oping conceptual and mathematical models.

Concluding remarks
Sharing cancer data, models, and knowledge using 
standardized formats and FAIR principles offers 
substantial benefits. Stable standards will encourage 
development of shared software that can import 
annotated data, design models, execute them as 
simulations, and analyze their outputs. As technologies 
such as bioprinting advance, the same tools could 
enable the direct translation of captured knowledge 
into living experiments.

Technologies for sharing will help us create auto-
mated tools that systematically mine biological litera-
ture, databases, and knowledge repositories. Sharing 
technologies and standardized data are essential if 
machine vision and other learning approaches are to 
automate the extraction of observational insights from 
experimental, clinical, and simulation data [12].

Widespread adoption of standards and adherence 
to FAIR principles will transform cancer research into 
an ecosystem of mutually compatible concepts, data, 
models, and tools. Such standardization will enable 
community science that exceeds the sum of its parts 
and accelerates progress in treating cancer.
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Status
While mathematical modelling of tumor growth 
dynamics has a long history, current approaches are 
limited in their practical applicability. There exist 
three main reasons for this. First, tumor dynamics 
are extremely complicated because of the underlying 
physical and biological processes, as well as the 
variability across individuals. Second, we cannot easily 
conduct relevant experiments; we can, for obvious 
reasons, only observe. Third, the data we do observe 
is limited; we typically have few measurement 
points via anatomical imaging or biopsy. Despite 
those formidable challenges, there is hope. Several 
imaging methods exist that can provide quantitative 
information noninvasively, in three dimensions, 
and at multiple time points. Magnetic resonance 
imaging techniques can quantitatively characterize 
vascular properties, cellularity, pH, and pO2 [21]. 
Furthermore, positron emission tomography can 
quantitatively characterize metabolism, proliferation, 
hypoxia, and various cell surface receptors [22]. These 
measurements can be made throughout therapy; thus, 
imaging allows models to be constrained with patient 
specific data rather than tabulations from the literature 
or animal studies.

In recent years, there have been increasingly suc-
cessful examples of integrating patient-specific infor-
mation with mechanism-based mathematical models 
designed to predict the spatio-temporal development 
of cancer. Successful efforts matching model predic-
tions with clinical observations have been realized in 
cancers of the breast (figure 2, [23]), kidney [24], and 
brain [25].

Current and future challenges
If a mathematical model could faithfully predict 
the spatiotemporal evolution of an individual’s 
tumor, then patient-specific hypotheses could be 
tested in silico, thereby allowing the optimizing of 
intervention for the individual patient using the 
specific characteristics of their own unique situation. 
Unfortunately, this vision is quite disconnected from 
the current state-of-the-art, and remains a grand 
challenge in mathematical oncology. Currently, the 
response of solid tumor to therapy is monitored by 
changes in tumor size as measured by physical exam 
or anatomically-based, imaging; unfortunately, these 
methods cannot determine response as anatomical 
changes are often temporally downstream of 
underlying physiological, cellular, or molecular 

changes. Early and accurate predictions would enable 
replacing an ineffective treatment with an alternative 
regimen, thereby potentially improving outcomes and 
curtailing unnecessary toxicities. The development of 
mechanism-based, predictive mathematical models 
that could address this fundamental shortcoming 
in cancer care would represent, without question, an 
enormous improvement in the human condition. 
The major challenges to achieving this goal can be 
summarized by the following three questions:

	1.	�Among the enormous number of models 
covering a huge range of physical and biological 
events, which models are the ‘best’ for 
predicting quantities of interest?

	2.	�How is the uncertainty in the predicted quantities 
of interest quantified and how can the model 
predictions significantly improve patient care?

	3.	�How can one access data to inform 
computational models and, at the same time, 
cope with experimental noise and errors in the 
systems used to collect and process data?

Advances needed to meet the challenges
The importance of accurately predicting eventual 
patient response is difficult to overstate. The field of 
numerical weather prediction provides an excellent 
example of how practical, predictive oncology can 
be achieved. Weather prediction employs satellites 
to provide a diagnosis of the state of the atmosphere, 
which is then evolved forward by meteorological 
models to provide a prognosis (i.e. a ‘forecast’) of 
the atmosphere’s future state. Similarly, imaging 
provides a diagnosis of the state of a cancer, which 
can then be evolved forward by mathematical tumor 
models to provide a prognosis of the tumor’s future 
development [26]. With this analogy in mind, we 
discuss the advances that must be made to address the 
three questions of the previous section.

It is imperative that the field constructs math-
ematical models based on the established principles 
of physics and cancer [27]. While phenomenological 
models can provide practical advances for predictive 
oncology (e.g. the linear quadratic model of radiobi-
ology [28]), they are fundamentally limited in their 
ability to describe the underlying biology and, there-
fore, the precise effects of any therapeutic interven-
tion. Unfortunately, this has proved to be a terribly 
difficult undertaking as we do not yet have the F  =  ma 
of cancer. In lieu of this fundamental relation, we have 
advocated for developing families of models (reminis-
cent of the approach used in weather modelling), each 
with its own set of biological and physical assumptions  
[26, 29]. These models are then calibrated with ration-
ally selected, patient-specific data, before being sub-
jected to a Bayesian methodology that both selects the 
optimal model and then validates its ability to accu-
rately predict the spatiotemporal development of an 
individual patient’s tumor.
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The sentiment that we are ‘swimming in data’ is 
often expressed, but it is a tremendous oversimplifi-
cation. While it is true that there are volumes of clin-
ical data available, it is not of the kind that is readily 
integrated into mechanism-based models. We may 
be swimming in data, but we are in the wrong pool. 
Advances in biomedical imaging are now providing us 
with the appropriate tools to quantitatively character-
ize cellular, molecular, and physiological processes that 
can constrain the next generation of predictive models.

Concluding remarks
It must be stressed that building data-informed, 
mechanism-based mathematical models of cancer 
is a fundamentally different approach than relying 
only on ‘big data’ [30]. This is not to dispute the fact 
that statistical inference is of critical importance; 

but rather, by its very nature it is based on statistical 
properties of large populations in which conditions 
that prevail in specific individuals are hard to detect. 
That is, the ‘big data-only’ approach cannot account 
for subtle changes in the individual patient—indeed, 
the very characteristics that make us individuals—
over an extended time. It is critical to unite such 
population-based statistical data with patient-specific 
measurements and with patient-specific mathematical 
models that can predict patient-specific changes 
associated with cancer initiation, progression, and 
response to therapy. This transformation is inevitable.
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Figure 2.  A breast cancer patient was scanned by magnetic resonance imaging at four points during neoadjuvant therapy (NAT). 
The first two scans (left set of images) are used to calibrate model parameters for predicting response observed at the third time 
point. The last two scans (right set) are used to update parameters for predicting response observed at the time of surgery.
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5.  Cancer screening and early detection 
with modeling
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Status
Cancer screening aims to detect neoplastic changes 
early for curative intervention. Current programmes, 
however, suffer from both overdiagnosis of benign 
lesions and underdiagnosis of dangerous lesions missed 
by screening [31]. Consequently, improvement in 
screening success is an important health policy research 
area, and one primed for quantitative assessment. In this 
Roadmap article we argue that mathematical modeling 
of tumor evolution will underpin radical improvement 
in the effectiveness of screening and surveillance.

For clarity within a varied literature, the term can-
cer screening refers to initial testing for the presence of 
a specified neoplastic change of interest in the body 
(e.g. detection of premalignant or malignant lesions). 
Subsequent tests that are offered after an initial screen-
ing diagnosis are defined as surveillance screens. A 
biomarker is a measurable, objective indication of a 
biological state (e.g. aneuploidy or tumor size) associ-
ated with relevant preclinical disease states potentially 
before symptoms develop.

The length of time between the early detection 
of a preclinical state and the future clinical detection 
is called lead time, which depends on the nature of 
the biomarker measured. If the age at completion of 
lead time surpasses patient lifetime, this patient will 
be considered an overdiagnosed case for that cancer. 
Lastly, risk stratification refers to prognostic sub-
grouping offered to patient groups based on screen 
outcome.

Currently, screening design uses data from epi-
demiological studies but does not typically consider 
tumor evolution, which ultimately determines disease 
development timescales. From a biological perspec-
tive, early detection of biomarkers that alert us to cellu-
lar changes along the path to cancer (e.g. premalignant 
metaplasia detected in biopsy sample histology or cir-
culating tumor DNA present in liquid biopsies) is the 
clinical manifestation of field cancerization, wherein 
groups of cells have acquired some but not all of the 
phenotypes necessary for clinical malignancy [32]. If 
we determine the pattern and pace at which normal 
cells become cancerized in their microenvironments, 
we can utilize multiscale data within mathematical 
models of carcinogenesis to evaluate and predict the 
efficacy of screening strategies for early detection in 
silico (figure 3).

The impact of this research will be to develop novel 
methodology capable of (1) utilizing screen data to 
assay the carcinogenic process in vivo, and (2) robustly 

assessing and refining screening practices using mech-
anistic forecasting to improve early detection and per-
sonalize clinical recommendations.

Current and future challenges
Current screening prevents cancer deaths but there are 
many areas for improvement. Below we discuss a few 
main challenges faced.

1. � Defining success and introducing bias
To measure the efficacy of screening, investigators may 
perform randomized control trials (RCT) to compute 
relative risks of endpoints such as cancer incidence 
and mortality between screened and unscreened 
populations [31]. Although intended to reduce biases, 
these studies are not designed to predict long-term 
trade-offs in costs versus benefits between alternative 
screening/lifelong surveillance regimens, which 
instead require decision modeling [33–39]. The choice 
of metric for quantifying early detection-associated 
costs (e.g. decreased patient quality of life or burden to 
the healthcare system per overdiagnosed case) versus 
benefits (e.g. life-years gained or cancer precursor 
eradication per screen) will vary cost-effectiveness 
results.

2. � Choosing an appropriate computational model
Model selection for the established outcome 
must capture the essential features of disease 
progression from birth to death. These might include 
epidemiological features such as patient smoking 
history [33] and sampling modality such as tissue [34] 
or blood [35] biopsies. Importantly, the relationship 
between biomarker level and time (Fbiomarker, figure 3) 
is often sensitive to clinically unobservable events, 
such as metastasis initiation [36] and false positive 
diagnoses [37], potentially confounding reports from 
medical exams and contributing to inaccuracy of 
mathematical formulation.

3. � Handling stratification and heterogeneity
Based on biomarkers measured from screens, patients 
are stratified into ‘low’ and ‘high’ risk groups. 
Prognostic cut-offs between groups are ultimately 
arbitrary and can be subject to medical discretion. 
Two common issues with this practice are that studies 
rarely consider time-dependent implications (e.g. a 
high-risk mutated cell may not survive long enough to 
initiate tumorigenesis) and most rely on a small subset 
of risk factors measured at a single time point rather 
than a holistic view of diverse patient background (e.g. 
family history of cancer, lifestyle, immune system’s 
innate ability to eliminate mutated cells, adverse 
mutations). Moreover, the challenge is to accurately 
characterize the unique evolutionary trajectories of 
individuals (figure 3(A)), while still recommending 
useful screening programs that capture average 
population behavior (figure 3(B)).
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4.  Testing and performing model validation
New technologies for early detection are rapidly 
developing, but it remains costly to obtain large, 
longitudinal cohort follow-up data to robustly assess 
outcomes and validate screening recommendations 
in those with an adverse biomarker state; such clinical 
evidence will be required before altering the existing 
screening regimens.

Advances in mathematics, technology, or data to meet 
challenges

1. � Collecting population data for research use
National health institutes are increasing support of early 
detection studies obtained from prospective cohort 
and large-scale population screening, which will better 
inform parameters used in modeling such as disease 
regression rates and more subjective measures like 
quality-adjusted life-years used in economic evaluations.

2. � Mathematical developments
Mathematical modeling (stochastic processes, 
evolutionary theory, dynamical systems, differential 
equations) is a framework that can help us to rigorously 
answer the questions of ‘when’ to screen individuals for 
cancer indications, and ‘who’ will benefit most from 
particular surveillance regimes and clinical intervention. 
There is a clear need for novel methods to combine 
models with classical biostatistics commonly used in 
cancer risk stratification studies for clinical translation.

Three current methodologies for assessing cancer 
screening with modeling are shown in figure 4. These 
include Markov chains for natural history of disease 
transition [33, 37, 38], biologically-based models that can 
incorporate evolutionary dynamics like clonal expansions 
and biomarker shedding in diverse lesions [33–36, 39],  
and biological event timing models that infer critical 
genetic events during carcinogenesis [40]. Moreover, 
biologically-based models could inform the transition 
probabilities of the Markov approach. The aim of all these 
models is to quantify long latency periods of premalig-
nancy on a patient’s forecasted evolutionary trajectory. 
These periods provide a window for therapeutic inter-
vention when detected during effectively-timed screens.

3.  Modern technologies for sensitive and specific early 
detection biomarkers
Rapid advancements in multi-omic and optical imaging 
technologies allow for the diagnoses of precancerous 
and early cancer lesions at higher resolution and at 
decreasing cost to the healthcare system. These will 
provide researchers with better understanding of 
patient-specific disease evolution, and ultimately result 
in personalized prevention efforts becoming a clinical 
reality. Taking a holistic view and studying disease 
evolution at adequate power will require huge amounts 
of well-annotated patient data, but with digitization of 
medical records and large population cohorts currently 
undergoing follow-up, we envisage this may be feasible 
within the next 30 years.

Figure 3.  (A) Evolutionary trajectories of slow versus fast carcinogenesis correspond to longer versus shorter lead times for 
potential clinical intervention, respectively. (B) Screening programme design aims to maximise positive biomarker yield in an 
average at-risk population.
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4.  Performing virtual trials in silico for rigorous model 
selection and testing
Well-calibrated mathematical models provide a cost-
effective, ethical means for simulating virtual cohorts 
of patient outcomes to judge the effectiveness of a 
screening/surveillance regime both across a population 
and in individuals. Bayesian approaches and deep 
learning of large clinical datasets will also enhance 
statistical inference of unobserved events that drive 
carcinogenesis timing; such modeling will be necessary 
in future early detection research as it is not technically 
feasible to measure many aspects of tumorigenesis (such 
as single progenitor cell initiation) in the patient cohort 
itself. Moreover, this dynamic, computational approach 
is a straightforward method to continuously test and 
recommend modifications to screening/surveillance 
guidelines (e.g. to reflect subsequent technological 
advances in endoscopic optical imaging), as opposed 
to the current situation wherein such guidelines are 
updated on average once per decade.

Concluding remarks
There is exciting potential for mathematical modeling 
in addressing the challenges of cancer early detection, 
alongside developments in biomarker discovery and 

validation. Modeling cancer screening will allow 
researchers to examine the underlying cause of the vast 
inter- and intra-patient heterogeneity we currently 
observe clinically during disease progression in a 
robust and unbiased way. It will be possible to create 
explicit formulations for the dynamics of biomarker 
changes in the body and to formulate quantitative 
functions for screening efficiency in order to optimize 
cancer screening and surveillance scheduling.

In reality, all cancers form from a series of evo
lutionary changes that may be detectable (and poten-
tially preventable) if we anticipate and seek such 
changes during screening, and track them during sur-
veillance to direct clinical action. In our increasingly 
integrated world, patients, doctors, policy-makers, and 
mathematical modelers will be required to engage in 
interdisciplinary science efforts to best answer ques-
tions about how to beat cancer early.
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Figure 4.  Three models of carcinogenesis to evaluate screening. (A) Natural history models may also explicitly include misdiagnoses 
into transition rates. (B) Biological models can incorporate growth rates initiated by tumor suppressor gene inactivation (e.g. 
APC in colorectal adenomas [39]). (C) Inferred biological event models can include alternative pathways such as known germline 
mutations (e.g. VHL in patients with von Hippel-Lindau disease [40]).
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Status
The development and progression of cancer is driven 
in part by evolutionary processes within the underlying 
tissue cell populations. Cells that are subject to 
homeostatic regulation in healthy tissue acquire 
mutations that can alter the properties of the affected 
cell. Many such mutations can lead to a selective 
disadvantage while others do not change the fitness of 
the cell or confer a selective advantage. Accumulation 
of one or more such driver (advantageous) mutations 
can allow the cells to escape homeostatic regulation 
and to proliferate out of control. These clonally 
expanding cells can in turn accumulate further 
mutations that result in increases in heterogeneity 
in the cell population and in further progression of 
the tumor. Such evolutionary processes are not only 
crucial for the disease development, but can also 
contribute to resistance against cancer therapies. It is 
therefore crucial to gain understanding of both the 
evolutionary principles according to which tumors 
progress, and the mechanisms by which treatment 
resistance evolves.

Mathematical models form an integral part in the 
analysis of evolutionary dynamics in general, and the 
same applies to evolutionary dynamics in the context 
of tumors [41, 42]. Mathematical and computational 
work has contributed insights both into aspects of 
tumor initiation and progression, and into the princi-
ples of resistance evolution [43]. Important measures 
that have been investigated include the probability that 
mutants resistant against a given treatment regime exist 
in the tumor cell population at the time when treat-
ment is started; the expected number of mutants that 
are present at the time when treatment is started; the 
probability that mutants with certain characteristics 
become fixed in healthy tissue or an emerging tumor; 
the time it takes for mutants to rise towards a certain 
threshold level, etc. In the context of specific tumors, 
it has been possible to measure some of the main 
parameters underlying such models for individual 
patients. One example is chronic lymphocytic leuke-
mia [44]. Division and death rates have been meas-
ured by administering deuterated water to patients, 
radiological imaging has been used to estimate the 
total tissue tumor burden, and model fitting to clini-
cal data has been used to estimate kinetic parameters 
underlying treatment responses. With the knowledge 
of such patient-specific parameters, the mathematical 
modeling approaches can in principle be used to make 
individualized predictions about treatment outcomes, 
such as the time to resistance-induced relapse against 

targeted therapies [45]. They can further be used to 
explore alternative treatment options with the aim to 
prolong the duration of tumor control.

Current and future challenges
Much of the work described so far has been 
performed under the assumption that there is no 
spatial structure in the cell population, i.e. that 
cells mix well with each other. This might be a 
reasonable approximation for some leukemias, but 
is an unrealistic assumption for solid tumors, which 
are characterized by complex spatial structures. A 
variety of spatial computational models of tumors 
have been developed to study different questions, 
e.g. [46], notably mechanistic models of tumor 
growth and vascularization have been successful. 
Many aspects of the evolutionary dynamics of 
mutant populations in spatial settings, however, 
remain poorly understood. Interestingly, analyses 
of spatial evolutionary processes performed so 
far indicate that the dynamics can be significantly 
affected by spatial structures, often in complex ways. 
An example is the process of fitness valley crossing, 
where an advantageous phenotype requires the 
accumulation of two (or more) separate mutations, 
each of which is individually deleterious or neutral. 
Such evolutionary pathways have been documented 
to occur in the context of many cancers. An example 
is the inactivation of tumor suppressor genes, such as 
the APC gene in colorectal cancer, where both copies 
of the gene must lose function for the cell to become 
advantageous. It turns out that the evolutionary 
timing of fitness valley crossing depends on the exact 
assumptions on the spatial dynamics [47] (figure 5).

In the spatial Moran process model that assumes 
constant cell populations, spatial interactions were 
found to accelerate the rate of fitness valley crossing. By 
contrast, in contact processes that do not assume con-
stant cell populations, the rate of fitness valley crossing 
could be accelerated or delayed, and there could even 
be an optimal degree of mixing that maximizes the rate 
of evolution.

Studies of single mutant dynamics in spatially struc-
tured cell populations have also shown that basic mutant 
dynamics in space are different compared to well-mixed 
scenarios [48]. The fate of mutants can depend on the 
timing and the spatial location of mutant emergence. 
Mutants that are generated relatively early and at the 
surface of an expanding spatial cluster of cells can grow 
to relatively large numbers (also referred to as ‘jackpot’ 
mutations). On the other hand, mutants can become 
surrounded and encased by wild-type cells, which limits 
their growth and introduces and element of competi-
tion between mutant and wild-type cells, even though 
the tumor mass is characterized by unbounded growth. 
A better understanding of how evolutionary processes 
contribute to cancer development in such settings is 
crucial for improving therapies. It is especially impor-
tant is to gain understanding of how mutants clones 
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defined by different susceptibilities to specific therapies 
develop in such spatial scenarios, both in the presence 
and in the absence of treatment.

Advances in mathematics, technology, or data to meet 
challenges
As more information is obtained about the spatial 
evolutionary dynamics of tumors, both experimentally 
and theoretically, spatial computational models will 
increasingly form the basis for simulating disease 
progression and therapy outcome for specific scenarios 
and individual patients. In contrast to investigating 
basic principles of evolutionary dynamics, however, 
these applied questions will require the simulation 
of tumor growth and evolution at realistically large 
population sizes. Because this brings with it significant 
computational costs, the simulation of cell populations 
that reach sizes between 1010 and 1013 cells becomes 
unfeasible. The problem lies in the fact that while the 
overall tumor population size is very large, mutant 
cell populations exist initially at very small numbers, 
which requires stochastic simulations. The time step 
in stochastic simulation algorithms decreases as the 
overall population becomes large, thus rendering such 
computer simulations impractically slow. One way in 
which this problem has been dealt with is to assume 
smaller cell populations and higher mutation rates, 
hypothesizing that the dynamics scale in realistic ways. 
It is, however, currently unclear whether this holds 
true. Therefore, to be able to simulate and predict 
tumor development and treatments at realistically 

large population sizes and at realistically small 
mutation rates, novel computational methodologies 
are required. To this end, a modeling approach 
has been proposed which assumes that the tumor 
consists of discrete microlesions; cells can migrate 
from microlesions to establish new ones, which can 
all grow over time, and new driver mutations can 
be generated [49]. From this model, the average 
behavior can be obtained analytically, which allows 
simulation of tumor dynamics and evolution at large 
sizes. In order to capture the stochastic dynamics of 
various mutant types, however, methodologies need 
to be developed that allow the stochastic description 
of small mutant clones in a spatial setting in realistic 
time frames. Deterministic partial differential 
equation  approximations of such spatial, stochastic 
processes generally do not yield accurate time series. 
In the context of mixed populations (where stochastic 
dynamics are simulated e.g. with Gillespie’s method), 
novel computational approaches have been developed 
(e.g. the Next Reaction Method and Tau-Leaping 
methods), which try to address these difficulties. 
There is also an important push in the development 
of hybrid stochastic-deterministic approaches, where 
small populations are handled stochastically, while 
larger populations are described deterministically. 
Such approaches have been typically employed in the 
field of physical chemistry but have not significantly 
penetrated the studies of population dynamics and 
evolution, presumably because they can rely on 
theoretical concepts (e.g. Langevin’s equation), which 
are not very common in these fields. At the same time, 
such approaches would be very useful for the field of 
mathematical oncology, as demonstrated by a recent 
study [50]. Application of such methodology to 
spatial dynamics, however, is a complicated extension, 
the development of which will be as challenging as it 
is important. The ability to simulate spatial tumor 
evolution at realistic population sizes and mutation 
rates will be central to the development of clinically 
applicable computational models of tumor evolution, 
which can be used for the personalization of therapy 
regimes.

Concluding remarks
The importance of spatial genetic heterogeneity in 
tumors has penetrated clinical and experimental 
cancer research. In various cancers, data indicate that 
a tumor mass can consist of regions that are genetically 
distinct and that contain different mutants that can 
influence the susceptibility of these cell clones/spatial 
regions to therapies. The emerging biological details 
about evolutionary patterns in spatially structured 
tumors will allow appropriate computational 
models to make more accurate and clinically 
relevant predictions regarding disease course and 
treatment outcome, and the availability of efficient 
computational methodologies will be of central 
importance in this respect.

Figure 5.  Schematic illustrating the different effects spatial 
restriction can have on the waiting time until a fitness valley 
is crossed, in the Moran Process and the contact process. 
Nearest neighbor interactions represent the strictest degrees 
of spatial restriction, while mass action corresponds to 
perfect mixing of cells.
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Status
A tumour is a dynamic disease of the cell that, through 
alterations in its genome and epigenome, leads to 
its uncontrolled proliferation. Tumours are found 
to vary dramatically across patients (inter-tumour 
heterogeneity) and across cells within a tumour (intra-
tumour heterogeneity). Heterogeneity has been found 
to be a major factor in cell adaptation driving spread 
and response to therapy [51].

With the advent of high throughput sequencing 
[52], there has been a dramatic development in the 
characterization of inter-tumour diversity. Large scale 
efforts, like The Cancer Genome Atlas or the Interna-
tional Cancer Genome Consortium, have portraited 
the molecular make up of thousands of tumours gen-
erating diverse large-scale biological datasets. The 
need to extract useful biological and clinical knowl-
edge from these efforts have highlighted the necessity 
for new mathematical and computational methods to 
analyse and integrate them.

The past few years have witnessed the further 
development of a variety of techniques enabling sin-
gle-cell molecular measurements, including sequenc-
ing the DNA of single cells, or measuring their mRNA, 
methylation, chromatin state or protein levels [53, 54]. 
Single-cell RNA sequencing constitutes a powerful 
technology to address the problem of intra-tumor het-
erogeneity, enabling the quantification of transcrip-
tome landscapes at single-cell resolution, and provid-
ing a tool to observe the dynamics of tumor evolution.

However, single-cell sequencing data comes with 
some unique analytical challenges. These challenges 
can be appreciated in dynamic biological phenomena 
like cell differentiation or tumor evolution, continuous 
processes where traditional clustering methods may 
not be suitable. While clustering tries to split data into 
seemingly distinct sets, the analysis of dynamic pro-
cesses needs methods that can capture the continuous 
relation between cellular states. Topology is a branch of 
mathematics that studies continuous transformations 
of geometrical objects. Topological data analysis (TDA) 
adapts techniques of topology to extract information 
from the geometric and topological data structure. This 
makes TDA amenable to deal with continuous data 
structures and therefore, to analyze single-cell data of 
dynamic biological processes, including cancers.

Current and future challenges
Ambitious large-scale single-cell projects aim to provide 
atlases of millions of cells pushing the analysis into the 

paradigmatic ‘Big-Data’, high-dimensional scenario. 
The variety of single-cell platforms and associated 
unique technological challenges bring an additional 
layer of complexity into the analysis. Associated 
technological problems vary across platforms and 
include drop-out effects, big sparsity of the data (on 
the order of 90% of the inputs) and noisy biological or 
technological variability in gene expression (typically, 
around 99% of the variability is associated with 
the noise). On the other hand, the discovery of rare 
subpopulations and transitional cell states, which 
may amount only to a dozen per experiment, present 
unique computational challenges. Here, we would 
like to emphasize two mathematical properties of the 
underlying processes, that are useful when analyzing 
single-cell data [55]: the continuity, associated 
with cell differentiation and the locality property, 
important in identification of different branches of cell 
differentiation and small subpopulations.

In figure  6, we highlight these two important 
attributes and principles. In figure 6(A), we show the 
schematics of cell differentiation at different time-
points. Traditional clustering techniques only provide 
limited information about well-defined cell states, 
failing to explore continuous nature of cell differentia-
tion processes. Topological representation of the pro-
cesses, depicted in figure 6(A)(bottom), captures both 
continuous structure of the process and well-defined 
states of cells, associated with clusters. In figure 6(B), 
we illustrate the locality property, important in pre-
serving differences in cell populations, that otherwise 
are disregarded in lower dimensions. If locality is not 
preserved, close cell types in high-dimensional spaces, 
but biologically distinct can be artifactually misrepre-
sented as close (even identical) points in the reduced 
space. As an example (see figure 6(B)), we took a 3D 
‘Trefoil’ curve, where every point is distinct in the orig-
inal space. Low-dimensional representations, as MDS, 
PCA and t-SNE algorithm among many others, tend 
to create artifacts, by breaking the continuity or failing 
to separate distinct points. Topological representation 
respects both continuity and locality of every point.

Advances in mathematics, technology, or data to meet 
challenges
In the past decade, TDA has emerged as a new 
discipline at the interface between machine learning 
and algebraic topology. The goal of TDA is to extract 
and represent information about the shape of data. 
One can think of single-cell data as points (cells) in 
a high-dimensional space, where the dimensions 
correspond to the number of features (typically 
genes). Most constructions of TDA consist of replacing 
the original space by a mathematical object called 
simplicial complex, that captures topological features. 
Simplicial complexes can be seen as generalizations of 
networks (see figures 6(A) and 7).
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One of these properties is the skeleton of the space 
or Reeb space which informs us about the number 
of connected components in the space or how many 
holes of different dimensions exist. Mapper [56] is 
an algorithm based on TDA which constructs simpli-
cial complexes as approximations to Reeb spaces. The 
result, when applied to single-cell data, is a network 
where nodes represent sets of cells with similar global 
transcriptional profiles, and edges connect nodes that 
have at least one cell in common. In figure 7, we show 
an example of a topological representation for single-
cell RNA sequencing of glioblastoma corresponding 
to a patient sequenced in [57]. In this case, TDA is not 
only able to disentangle different tumor and stromal 
cell populations (figure 7(A)), but also to capture 
intra-tumor heterogeneity. Figures 7(C) and (E) show 

a different distribution of astrocytes and oligodendro-
cytes within the tumor population. Interestingly, from 
panels B and D one can extract a certain correlation 
between the neural progenitor signature and the more 
proliferative cells and more astrocyte-like markers.

Concluding remarks
Single-cell technologies are a powerful tool to 
study fundamental aspects of cancer biology at 
an unprecedented resolution. This is generating 
an increasing explosion of molecular data and 
consequently, the necessity of new mathematical 
methods to analyse it. On the other hand, the 
intrinsic features of single-cell datasets constitute a 
challenge for traditional methods of analysis based 
on combinatorics and clustering. TDA is a modern 

Figure 6.  (A) Simulation of a longitudinal single-cell analysis with datasets at different timepoints. Different colours represent 
different cell types or states. In the down side, a TDA representation. (B) Comparison of TDA and traditional algorithms for 
dimensional reduction, as multidimensional scaling (MDS), principal component analysis (PCA) and t-distributed stochastic 
neighbor embedding (t-SNE).
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mathematical set of tools which has a potential to 
predict the dynamics of intracellular. Remarkably, 
algorithms based on TDA preserve locality and can 
capture the continuous nature of the biological 
phenomena that are analysed at a single-cell level 
[58–60]. This is crucial to understand better tumour 
progression and evolution. Future work applying TDA 
techniques may shed light on key questions in cancer 

studies like the structure and information contained in 
the tumour heterogeneity.
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Figure 7.  (A) A topological representation of a glioblastoma RNAseq single-cell dataset shows diverse stromal/tumour populations. 
The expression of specific genes shows similarity with known cell populations: (B) representation of MKI67 expression, 
(C) oligodendrocyte genes expression, (D) neural progenitor expression, and (E) astrocyte genes expression.
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Status
Altered metabolism is a hallmark of cancer that 
enables cancer cells to meet the high energetic burden 
required to support their increased proliferation. 
Such metabolic reprogramming mediates cancer 
progression, influences treatment efficacy, and 
contributes to drug resistance. Thus, it is imperative 
to better understand tumor metabolism, including 
metabolic networks in cancer cells specifically, and in 
other cells that comprise the tumor microenvironment.

Systems biology approaches, including computa-
tional modeling, are needed to obtain a global under-
standing of the interconnected metabolites, enzymes, 
and regulatory mechanisms that characterize cellular 
metabolism. Systems biology methods allow controlled 
exploration of the roles of multiple cell types, molecular 
species, and biochemical reactions in cellular metabo-
lism. Such approaches focus on how individual comp
onents of biological systems contribute to system func-
tion and behavior, facilitate a deeper understanding of 
complex biological processes, and provide opportuni-
ties to develop new hypotheses and interventions.

There is a substantial and productive history of 
applying computational modeling to study cancer, from 
initiation through metastasis [61]. This work demon-
strates that computational models, refined by exper
imental results can reveal effective treatment strategies 
and provide unexpected predictive insights. In fact, 
systems biology modeling complements pre-clinical 
and clinical studies of tumor metabolism. Specifically, 
systems biology models of cancer metabolism [62] 
provide quantitative insight into the dynamics of meta-
bolic pathways, are useful in investigating the metabolic 
mechanisms driving the cellular phenotype and have 
helped identify potential therapeutic strategies. Thus, 
systems biology approaches provide new insights into 
metabolism and can lead to novel therapeutic strategies. 
When constructed and validated using experimental 
measurements, systems biology models can be used to 
perform in silico experiments to predict the effects of 
perturbing the metabolic network. In this way, the mod-
els are a valuable alternative to wet experiments that can 
be expensive and time-consuming.

Current and future challenges
Many published metabolic modeling techniques have 
focused on constraint-based approaches in which certain 
physical, chemical, or biological constraints are applied 
to predict the metabolic phenotypes. These are time-
invariant stoichiometric models that predict reaction 
fluxes, which remain difficult to measure experimentally 
at the systems-level. Genome-scale metabolic models 

have been constructed to explore the interconnected 
metabolic pathways documented to occur in an 
organism, including cancer-specific models [63]. Such 
models provide insight into how particular oncogenes 
influence metabolism, and they help identify specific 
drug targets and biomarkers. However, constraint-
based models are static and fail to capture the kinetic 
aspects in the system or time-varying heterogeneities 
that arise due to environmental fluctuations. 
Additionally, ongoing work is aimed at integrating 
high-throughput omics data into constraint-based 
models for a more comprehensive view of the metabolic 
landscape. Overall, constraint-based models are widely 
used, and they contribute to our understanding of the 
role of metabolism in cancer progression.

Kinetic modeling is an alternative to constraint-based 
modeling. When considering processes that are inher-
ently transient, such as the effects of reprogramming 
of cancer metabolism, kinetic modeling is required to 
understand the dynamic relationships between metabolic 
fluxes, metabolite concentrations, and microenviron
mental conditions. Therefore, models that represent the 
metabolic pathways using a system of nonlinear ordinary 
differential equations  are useful. These kinetic mod-
els provide a mechanistic description of the transient 
dynamics of the system and have been used to identify key 
enzymes associated with tumor growth and malignancy 
and predicted the effects of targeting those enzymes [64].

Though highly valuable, kinetic modeling also has 
some drawbacks. One limitation is that these models 
require many kinetic parameters in order to accurately 
characterize the reaction rates. This can be overcome 
by fitting the model to quantitative experimental data 
and estimating the parameter values needed to best fit 
the data. Another limitation is that while these models 
predict the dynamics of intracellular processes, they 
rarely account for downstream effects that occur at the 
cellular and tissue level.

Indeed, multi-scale modeling is a challenge imped-
ing the successful application of systems biology 
approaches to address clinically relevant questions 
related to cancer metabolism. There are two aspects to 
this challenge. The first is a need for robust computa-
tional tools to link mechanistically detailed, dynamic 
models of intracellular metabolism to tumor growth. 
Second, there is a need for multi-scale models that link a 
detailed metabolic network model to cell proliferation/
apoptosis and account for the heterogeneous, multi-
cellular tumor microenvironment. It is well established 
that the internal dynamics of metabolism directly influ-
ence cancer progression. In addition tumor-stromal 
interactions play an important role in drug resistance. 
However, there is a lack of spatiotemporal models that 
address these critical aspects of cancer metabolism.

Advances in science and technology to meet challenges
The key to advancing systems biology models of 
cancer metabolism is to take advantage of existing 
computational tools for performing multi-cellular 
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simulations and link them with detailed models of 
intracellular metabolism with cell- and tissue-level 
dynamics. There are many computational models of 
cancer cell growth and progression, but few simulate how 
the dynamics of intracellular metabolism drives tumor 
growth. Our recent work links a detailed kinetic model of 
intracellular metabolism to population-level cancer cell 
proliferation [64] but does not simulate the dynamics 
of individual cells. Ghadiri and coworkers integrate a 
constraint-based model with an agent-based model of 
tumor [65]; however, this model does not evaluate the 
metabolic fluxes within each cell as time progresses.

Some computational models of cancer predict meta-
bolic interactions between tumor cells. In one example, 
Robertson-Tessi et al incorporate a simplified metabolic 
model with angiogenesis and tumor growth and predict 
treatment outcome [66]. They developed a hybrid con-
tinuum/agent-based model in which glucose and oxygen 
are metabolized inside of the cell and directly influence 
cell growth. However, these models rarely account for the 
interactions and dependencies between cancer cells and 
other cells in the tumor microenvironment. Moreover, 
these models lump together several metabolic reactions 
and thus cannot predict how targeting specific metabolic 
enzymes influences cell growth.

Overall, there is a clear gap in the application of 
multi-cellular modeling combined with mechanisti-
cally detailed models, particularly in the context of 
cancer metabolism. Some tools exist that enable com-
putationally intensive simulations of multi-cellular 
environments; however, future work is needed to com-
bine these tools with computational models of metab-
olism reaction networks. We highlight two particular 
tools: CompuCell3D and PhysiCell.

	 •	�CompuCell3D employs lattice-based Glazier–
Graner–Hogeweg (GGH) stochastic modeling of 
generalized cells to simulate tissue-scale behavior 
[67]. The generalized cell’s behavior (such as 
proliferation, an increase in volume, migration, 
and cell–cell adhesion) is driven by its effective 
energy. The probability that a behavior is performed 
depends on how that behavior changes the cell’s 

effective energy (i.e. whether the potential behaviors 
increase or decrease the energy). Behaviors that 
lower the cell’s effective energy are preferred. 
CompuCell3D has been applied in many instances, 
including incorporating intracellular signaling 
dynamics that influence the cells’ behavior [68].

	 •	�PhysiCell implements off-lattice cell agents to 
model multicellular systems within a biochemical 
microenvironment [69]. Cell agents interact via 
direct physical contact or by exchanging diffusible 
biochemical signals. This tool has been applied to 
model up to 106 cells in tissue volumes of ~10 mm3. 
In addition, PhysiCell makes it possible to link 
intracellular networks with cell behavior. For 
example, a Boolean model of cell signaling has been 
embedded within each cell to simulate the effects of 
breast cancer treatment [70].

Concluding remarks
With multi-scale, multi-cellular models in hand, it 
would be possible to predict the effects of molecularly 
targeted metabolism-based therapies on cancer cells, 
neighboring cells in the tumor, and overall growth 
of the tumor tissue. Such multi-scale models that 
include detailed metabolic reactions in combination 
with cell–cell interactions can be used to identify novel 
cancer treatment strategies, serving as a framework to 
hypothesize optimal drug combinations and treatment 
protocols. We can draw upon work that successfully 
integrates models of intracellular signaling models with 
the cell-level response. And in the future, multi-scale 
models that incorporate both signaling and metabolism 
networks can even be combined. In conclusion, detailed 
modeling of cellular metabolism is a clinically relevant 
application of systems biology modeling that has the 
potential to significantly impact cancer treatment.
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Figure 8.  Schematic of relevant systems investigated when modelling cancer metabolism.
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Status
Radiation therapy (RT) is the single most commonly 
used cancer treatment. More than 50% of patients 
receive radiation at some point in their cancer care, 
either as curative monotherapy, in combination 
with surgery, chemotherapy, or immunotherapy, or 
as palliative therapy. Current RT practice is based 
on maximum tolerated dose (MTD) concepts 
independent of patient-specific biology. Treatment 
protocols have been derived from average outcomes 
of long-term empirical practices or large clinical 
trials and continue because they have produced 
reasonable outcomes. Despite a long history of 
medical physics and physical concepts centered 
around radiation dose delivery technology and 
safety, few inroads have been made to synergize 
quantitative approaches with radiation biology and 
radiation oncology methodologies to optimize RT and 
treatment personalization. Integrating mathematical 
modelling with radiation oncology may have an 
immediate impact for a large number of patients, and 
help revolutionize how we conceive of and clinically 
prescribe radiotherapy in the precision medicine era.

Current and future challenges
RT is the most successful treatment in cancer care that 
can be given with the intent to cure, as palliative therapy, 
or potentially with the intent to convert the tumor into 
an in situ vaccine [71]. Whilst a wealth of radiation 
biology data has been, and continues to be collected, 
few biological concepts have impacted clinical 
radiation oncology relative to physical conformality of 
dose. Historically, dose-escalation trials have focused 
on increasing log cell kill with acceptable toxicities to 
provide as much loco-regional control as possible. 
In current RT practice, the treatment protocol 
parameters (total dose and dose fractionation) are 
prescribed a priori based on tumor type, disease stage, 
nodal status, and metastatic burden [72]. Whilst cancer 
is reminiscent of a complex dynamic adaptive system 
that may be best understood by perturbing it, to date 
no concerted efforts have focused on collecting and 
evaluating longitudinal tumor states to personalize RT, 
and on identifying markers for treatment adaptation. 
To fully embrace the clinical potential of RT for 
the patient population as a whole—and individual 
patients in particular—we need to (i) determine the 

optimal total dose to control an individual patient’s 
tumors, (ii) identify optimal dose fractionation, (iii) 
explore the synergy of radiation with the patient’s 
immune system as well as with (iv) surgery, biological 
agents or chemotherapeutics. To prospectively 
determine individual treatment protocols, we must 
be positioned to reliably predict patient-specific 
treatment responses.

Advances in science and technology to meet challenges
Quantitative approaches have shown great promise 
in retrospective analyses of radiation outcomes [73], 
correlation of pre-treatment tumor growth dynamics 
with radiation sensitivity [1], and optimization of 
dose fractionation in pre-clinical models [74]. To 
fully harness the potential benefits of integrated 
mathematical oncology, a close dialog between both 
mathematical and radiation oncology needs to be 
fostered [72]. With few high-resolution measurements 
on the cellular and sub-cellular level, hope lies in the 
anticipated collection of longitudinal data to inform 
differential equation  and equation  models to help 
simulate tumor growth and RT response dynamics.

In a preclinical model of glioblastoma an inte-
grated, iterative approach of experimental data 
informing a mathematical model, the model pre-
dicting optimal radiation schedules, and subsequent 
experimental validation yielded novel radiation frac-
tionation protocols that significantly improve survival 
in mice [74]. Due to the nature of the differential equa-
tion  model, glioma stem cell division mechanisms 
were identified as contributing to improved survival, 
which will warrant further evaluation. Challenges for 
translating preclinical models into the clinic include 
the scalability from a total of 10 Gy radiation dose 
in one week for a mouse to the patient who receives 
routinely 50–60 Gy over many weeks, as well as the 
logistics of scheduling irregular hyperfractionated 
protocols vis-à-vis the increasing trend for stereotactic 
radiation.

Deriving an optimal total dose for individual 
patients was recently achieved by combining a molec-
ular index of radiosensitivity (RSI), derived from gene 
expression analysis from pre-treatment biopsy tissue, 
with a mathematical model to derive a genomically 
adjusted radiation dose (GARD) [75]. To personalize 
dose fractionation, mathematical modeling of pre-
treatment tumor growth between the diagnostic scan 
and radiation CT simulation has identified a prolif-
eration saturation index (PSI, figure 9) [76, 77]. Based 
on PSI, patients can be non-randomly stratified into 
standard daily fractionation, hypofractionation, or 
twice-daily hyperfractionation protocols to achieve 
optimal tumor volume reduction. The estimation of 
GARD and PSI from, respectively, one or two patient-
specific data points neglects the opportunity for mul-
tiple mathematical models to comparably simulate the 
data but potentially predict different dose and dose 
fractionations. Prospective clinical trials are necessary 
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to fully evaluate the predictive power of mathematical 
model biomarkers.

The timeliest and arguably most challenging 
research question for radiation oncology is the opti-
mal dose and dose fractionation to induce robust 
antitumor immunity, and how to optimally sequence 
immunotherapeutics to harness RT-induced immune 
responses. Few radiation protocols have been evalu-
ated specifically for immune activation, and even 
fewer protocols have been studied with limited 
immunotherapy agents in vivo. Evaluating all possi-
ble treatment combinations at different timing and 
at different radiation and immunotherapy doses is 
experimentally and clinically impossible. Mathemati-
cal modeling of tumor-immune interactions trained 
to simulate available experimental and clinical studies 
and validated on independent data sets may provide a 
powerful tool for in silico trials of untested treatment 
combinations [78]. Numerical simulations, optim
ization theory, and high throughput machine learn-
ing approaches are poised to help identify promising 
synergistic protocols to maximize RT-induced anti-
tumor immunity for local and systemic tumor con-
trol. Model-predicted therapies would still need to be 

prospectively validated and, even if unsuccessful, the 
newly derived data will help to iteratively improve the 
model to inform the next generation of clinical trials.

Concluding remarks
RT is part of the therapy of more than half of all cancer 
patients, yet little research is directed to personalize 
radiation in the precision medicine era. Improving 
radiation treatment outcomes by a small margin will 
help more patients than the small target groups for 
novel clinical agents. We foresee a strong opportunity 
to integrate mathematical modeling with radiobiology 
and radiation oncology to address the immediate 
challenges for personalized RT. With a long history 
of successful physical models in radiation oncology, 
integration of mathematical modeling may be straight 
forward with a potentially large payoff.
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Figure 9.  Pre-treatment tumor growth dynamics can be derived from volume measurements at diagnosis and treatment planning 
and used to calculate patient-specific PSI to predict RT responses.
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Status
Despite major advances in cancer therapies, most 
metastatic cancers remain fatal because tumor cells 
have a remarkable capacity to evolve drug resistance, 
both through genetic and non-genetic mechanisms. A 
common maxim in cancer treatment is to ‘hit hard and 
fast’ through dose-dense strategies that administer the 
highest possible drug dose in the shortest possible time 
period. The maximum tolerated dose (MTD) principle 
has been the standard-of-care for cancer treatment for 
several decades. In fact, all cancer drugs must go through 
a Phase I trial in which the MTD is established. The 
MTD strategy, however, only rarely cures patients with 
common disseminated cancers. An evolutionary flaw 
in this MTD strategy is the assumption that resistant 
populations are not present prior to therapy. It is now 
clear that resistant cancer cells are almost invariably 
present in the diverse cancer cell populations prior 
to treatment. This accounts for the consistent failure 
of MTD treatments to cure metastatic cancers, but 
the consequences are actually worse. MTD therapy, is 
designed to kill as many cancer cells as possible, although 
intuitively appealing, actually accelerates the emergence 
of resistant populations due to a well-recognized 
Darwinian phenomenon termed ‘competitive release’. 
As illustrated in figure  10, when high doses of drug 
are applied continuously, competitive release allows 
rapid emergence of resistant populations because of 
the combination of intense selection pressure and 
elimination of all potential ‘sensitive’ competitors. 
An alternative evolution-based strategy delivers the 
minimum effective dose (MED) that deliberately 
maintains a persistent drug-sensitive population. 
Treatment is then discontinued. Although the cancer 
population regrows, there is no selection for resistance 
so that it remains equally sensitive (figure 10). Through 
repeated treatment cycles, the tumor remains under 
control for extended periods of time. In mathematical 
models and early clinical trials, we have found the length 
of each cycle is highly patient-specific and can range 
from 4 months to 1.5 years, but very much depends on 
the specific cancer under consideration.

We have termed this approach ‘adaptive therapy’ 
and the eventual goal is to continuously adjust drugs, 
doses, and treatment schedules to prolong tumor con-
trol [79, 80].

Furthermore, adaptive therapy is only one exam-
ple of a larger class of evolutionary-enlightened thera-
peutic approaches. Critically, as complex systems that 
span multiple spatial and temporal scales, these thera-

peutic perturbations of cancers often elicit non-linear 
dynamics so that outcomes can be predicted only using 
rigorously-defined, biologically-parameterized, and 
clinically-driven mathematical models. The Math-
ematical Oncology field must develop models that pre-
dict treatment responses in specific patients to enable 
the next generation of precision cancer medicine [81].

Current and future challenges
Optimal treatment strategies, based on observed 
molecular targets, have been a focus of ‘precision 
oncology’ for some time. However, this approach has 
ignored a key piece of clinical reality—tumours are 
heterogeneous and evolve under the selection pressure 
of treatment. Therefore, even highly targeted and initially 
successful treatments almost inevitably fail as the cancer 
cells evolve adaptive strategies. Several mathematical 
techniques have been developed to model treatment 
outcomes. Evolutionary game theoretic approaches focus 
on the interactions between distinct subpopulations 
under different selection pressures in a frequency 
dependent manner [81, 84–86]. Ordinary Differential 
Equation  models can capture population dynamics 
but often at the cost of over simplifying the interactions. 
More complex approaches, that explicitly include space  
[82, 83] or bridge multiple scales, have also been 
developed. However, a significant challenge with these 
approaches is how to calibrate them for a specific patient, 
since some of the parameters are abstract, e.g. fitness 
benefit or cost. Further, even for minimal models some 
parameters may be impossible to measure in a patient.

Assuming a model can be calibrated to a given 
patient, there is still a great deal of uncertainty regarding a 
specific fit since the model is gross simplification of real-
ity. One approach to tackle this uncertainty is to develop 
multiple distinct models of the same tumour and gener-
ate an ensemble or consensus treatment plan, similar to 
hurricane prediction. Another is to deliberately consider 
all possible model parameter fits for a given patient as a 
cohort of patients that closely mimic the dynamics of 
the real patient. The successful in silico treatment strat-
egies for the cohort then predict optimal therapy in the 
real patient. This ‘Phase i trial’ approach [87] allows us 
to both run an exhaustive array of all possible treatment 
options on the cohort but also allows for the cohort to 
be further refined as additional response data is obtained 
throughout the course of treatment. Phase i trials can 
also serve to bridge the divide between homogenous pre-
clinical models and heterogeneous clinical reality as well 
as allowing for optimal strategies to be developed and 
tested before a drug ever reaches a patient.

This temporally changing treatment paradigm is 
a fundamental departure from the traditional fixed, 
one-size-fits-all strategy, and needs to be driven by 
a constant dialogue between model prediction and 
patient response. However, measuring and quantify 
patient tumour burden as well as intratumoural evo
lution during therapy using clinically-available patient 
data remains a major challenge.
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Advances in mathematics, technology, or data to meet 
challenges
There is a problem with big data in cancer. Its spatial 
scale is entirely molecular, it averages the properties 
of a large and heterogeneous population of cancer 
cells, and it is both an invasive and destructive 
procedure such that it is often only obtained at a 
single time point. While genome scale data can direct 
the choice of specific cancer drugs and potentially 
classify patients into different categories, it is mostly 
utilized in a correlative manner. If we hope to build 
mechanistic predictive mathematical models, most 
of ‘big data’ in cancer is the wrong data. It is not 
longitudinal, not spatial, only from one scale, averaged 
and homogeneous, not correlated or co-registered, 
and not analyzed within an appropriate micro-
environmental context. There is an urgent need to 
gather the right data that will allow us to better define 
the cancer system and connect the scales of cancer, 
bridging genotype to phenotype, cell to tissue, organ 
to organism and individual to population. Because 
of the complex and dynamic nature of cancer it will 
not be sufficient to simply interpolate between data 
over these diverse spatial and temporal scales, rather 
we need to functionally integrate them through 
mathematical and computational models.

For a cancer patient, the reality of monitoring dis-
ease burden over time with sufficient frequency and res-
olution is currently infeasible. New technologies need 
to be developed that can readily monitor tumor burden 
in non-invasive and cost-effective ways that will directly 
facilitate the model prediction—treatment response 
loop of evolutionary therapy. The right data will depend 
on the potential treatments available, the specific cancer 
under consideration, and the constrained reality of clin-
ical practice. Serum markers are currently our best can-
didates. However, not all cancers have a good surrogate 
for burden (e.g. Prostate Specific Antigen). Circulating 

DNA and circulating tumor cells are emerging areas of 
intense investigation and hold significant promise but 
these markers focus on molecular scale changes.

Thus, an additional challenge is linking mecha-
nistic mathematical models to the genomic as well as 
the phenotypic scale. However, connecting the wealth 
of quantitative genomic information from a patient 
with functional cellular phenotypes remains an open 
question. Some progress is being made using machine 
learning approaches and mathematical models are 
emerging of cancer evolution at the genomic scale [88].

Concluding remarks
There are currently 52 drugs approved for treatment of 
metastatic prostate cancer. Yet, every man who develops 
metastatic prostate cancer this year will not survive his 
disease. Throughout the past century, cancer therapy 
has focused entirely on the continuous development of 
new and more effective drugs. However, this enormous 
investment in time and resources has yet to significantly 
reduce the mortality rate of most common, adult 
metastatic cancers. Clearly, the drive to develop new 
and more effective cancer treatments is necessary. 
However, it is possible that the major impediment to 
improved outcomes in many cancers is not the absence 
of effective drugs but the absence of effective strategies. 
Thus, we view a key role for Mathematical Oncology 
is the development of patient calibrated mathematical 
models that integrate evolutionary first principles into 
cancer therapies to improve outcomes.
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Figure 10.  Conventional high dose therapy (top) maximally selects for resistant phenotypes (pink). Adaptive therapy (bottom) 
maintains a small population of cells that are sensitive to treatment. While the resistant cells survive, the cost of resistance renders 
them less fit in the absence of therapy. Thus, sensitive cells return when therapy is removed, suppressing growth of the resistant 
population.
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Status
Somatic evolution is now recognized as a central 
force in the initiation, progression, treatment, and 
management of cancer. This has opened a new front 
in the proverbial war on cancer: focusing on the 
ecology and evolutionary biology of cancer. On this 
new front, we are starting to deploy new kinds of 
mathematical machinery: fitness landscapes and 
evolutionary games.

A fitness landscape is a mathematical space where 
each point is a possible genotype or phenotype; two 
points are adjacent if they differ in a mutation or epimu-
tation at a single locus; and each point has an associated 
fitness value. We often visualise evolutionary dynamics 
as ‘climbing up the hill’ of fitness values—although in 
high dimensional spaces it might be better to replace the 
mountain metaphor by a maze metaphor [89].

A central feature of fitness landscapes is the 
amount and kind of interactions between loci—such 
interaction is called epistasis. Synthetic lethality is a 
particularly important kind of epistasis for cancer 
cells. If there are mutations at two loci which each 
change the fitness in one direction when they occur 
on their own, but in the opposite direction when they 
both occur together—either bad  +  bad  =  good, or 
good  +  good  =  bad—then the landscape is said to 
have reciprocal sign epistasis. It has been shown that any 
fitness landscape with more than one local peak must 
have reciprocal sign epistasis.

Fitness landscapes conceptualize fitness as a single 
scalar value—a number. But a scalar can only express 
cell-autonomous effects, where fitness is inherent 
to the properties of a single cell. But cancer displays 
important non-cell-autonomous effects that allow fit-
ness to depend on a cell’s micro-environmental con-
text, including frequency of other cell types [90, 91]. To 
accommodate this, evolutionary game theory (EGT) 
views these cell types as strategies, and models fitness 
as a function, which depends on the abundance of 
strategies in the population. On the surface, the games 
perspective is more expressive, since scalars can be rep-
resented as constant functions.

But as always we pay for greater expressiveness by 
a loss of analysis techniques. For example, when deal-
ing with fitness landscapes, we can often consider the 
strong-selection weak-mutation limit, which allows 
us to replace a population by a single point in the 
landscape. In the case of evolutionary games, such an 
approximation is unreasonable since it would elimi-

nate the very ecological interactions that EGT aims 
to study. This means that the strategy space that can 
be analysed in an evolutionary game is usually much 
smaller than the genotype/phenotype space consid-
ered in a fitness landscape. Typical EGT studies con-
sider just a handful of strategies (most often just two 
[90, 92, 93]), while fitness landscapes start at dozens 
of genotypes and go up to tens of thousands (or even 
hyper-astronomical numbers of genotypes in theor
etical work [89]). However, there is ongoing work on 
adaptive landscapes that aims to combine the strengths 
of fitness landscapes and game theory.

Game theory models have so far had more direct 
impact in oncology than fitness landscape models. 
The standard approach has been to develop a game 
theory model from the bottom up, starting from a 
reasonable reductive grounding and adding micro-
dynamic details. This is in keeping with the reduction-
ist tactics used on the old cell and molecular biology 
front. For example, Basanta et al [92] studied motility 
in cancer by defining two intuitive strategies: Go ver-
sus Grow. The first model included no spatial aspects; 
later work built on this by adding minimal spatial 
effects and considering the heterogeneity of spatial 
structure in a tumour [93]. This progression to more 
complicated and detailed models is a common pattern 
among EGT models in oncology. The other common 
aspect is that the games rely on biological or clini-
cal intuition; the exact game parameters are seldom 
measured. This EGT perspective has helped oncolo-
gists to express a number of interesting theoretical 
consequences of non-cell autonomous processes, but 
has only recently started to be translated into direct 
experimental work.

Current and future challenges
Compared to EGT, fitness landscapes have not 
been as extensively used beyond mental models 
in oncology. But they have been central to work in 
understanding evolution of Escherichia coli and 
yeast. The most notable example might be Lenski’s 
long-term evolution experiment with E. coli that has 
been propagating 12 initially identical populations 
for over 70 000 generations since 24 February 1988. 
Another example is the study of the evolution of drug 
resistance in microbes [94], which has direct parallels 
to evolution of resistance in cancer.

The key difficulty in developing fitness landscape 
models for oncology is that cancer cells are more com-
plex, and oncological experimental systems are less 
well-controlled, than their microbial counterparts. In 
particular, micro-dynamical foundations of somatic 
evolution, reprogramming of human cells, and in vitro 
mutation operators are less well understood. The tac-
tic from the old front of the molecular and cell biology 
of cancer would be to study and classify these micro-
dynamics in more and more detail. On the new front of 
somatic evolution, we have a more promising tactic—
abstraction.
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For a computer scientist, abstraction is a way to 
hide the complexity of a computer system. It is a way 
to make programs that can be used and re-used with-
out having to re-write all the code for each new comp
uter. In this sense an algorithm is an abstraction of the 
actual sequence of bit flips that carry out the physi-
cal process that is computation. To turn it around: 
the physical process carried out by your computer is 
then an implementation of some abstract algorithm. 
Abstraction and implementation are in some sense 
dual to each other.

Using this kind of abstraction, the tools of theor
etical computer science can be introduced into oncol-
ogy to reason rigorously about our models without 
knowing all the details of the implementation. For 
example, using computational complexity Kaznatch-
eev [89] conclude that there are ‘hard’ fitness land-
scapes where no evolutionary dynamic can find local 
fitness optima in polynomial time. This is an abstrac-
tion over the micro-dynamical basis of evolution. If 
such fitness landscapes occur in tumours, then—no 
matter how complicated the (re)programming of the 
cell or how strange and biased the mutation oper-
ator—the cancer cells will not reach a local fitness 
peak and thus will always provide a moving target for 
therapy. It becomes an empirical problem to find out 
if such landscapes occur in cancer. And it becomes a 
theoretical problem to discover other abstract prop-
erties of fitness landscapes that are robust under any 
implementation of the evolutionary micro-dynamic.

Abstract objects or processes are multiply-realizable 
by several concrete objects or processes. The concrete 
objects might differ from each other in various ways, 
but if the implementations are ‘correct’ then the ways 
in which they differ are irrelevant to the abstraction. The 
abstraction is less detailed than the implementation but 
captures essential features precisely.

It might seem like connecting more closely to 
experiment must always make a model less abstract. 
But this is not always the case: the act of measurement 

itself can be a way to abstract. This is achieved with 
phenomenological or effective (instead of reductive) 
theories, and is easiest to illustrate in a game theory 
model. For example, Kaznatcheev et al [91] developed 
a game assay based on the frequency and growth rate of 
types (as opposed to the more standard view of fitness 
of tokens or specific individuals). The focus on abstract 
types lets us absorb all the details of spatial structure, 
interaction length-scales, reproductive strategies, etc 
into the measurement of the type fitness [91, 95]. It is 
nature that figures out the particular computation that 
transforms token fitness into type fitness (see figure 11 
for 3 examples) and we do not need to know it once we 
are working at the level of the abstract effective game: 
the abstract measurement is enough to derive the pre-
dictions of the model. A downside, of course, is that we 
cannot describe the specific way token fitness is trans-
lated into type fitness in our system. But future work 
can push the abstraction down, so that more details 
of the implementation—such as the effects of spatial 
structure—can be extracted [95]. This approach has 
already led to both new theoretical frameworks and 
new experimental techniques for analysing evolution-
ary games in microscopic cancer systems [91, 95], but 
more focus on effective theories is needed—especially 
for fitness landscapes.

Advances in mathematics, technology, or data to meet 
challenges
Although games can be viewed as a generalization of 
fitness landscapes, the game assay can only be used for 
a small strategy space. The size of a fitness landscape, 
however, is exponential in the number of loci, so it 
quickly becomes impossible to explicitly measure and 
record the fitness of every single possible genotype 
(or strategy). This barrier cannot be overcome by 
better technology or experiments. Instead, we need 
to focus on fitness landscape models with compact 
representations that are learnable from a polynomial 
number of samples. These compact representations 

Figure 11.  The same effective game [95] implemented by three different population structures and reductive games; from left to 
right: inviscid population, random 3-regular graph, experimental in vitro non-small-cell lung cancer [91].
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are akin to rules for genotype-phenotype maps (where 
the relevant phenotype is fitness): they specify a rule 
for computing the fitness value from the genotype (or 
at least the relative order of fitness), instead of explicitly 
storing a fitness value for each genotype.

To find compact representations it is tempting to 
turn to existing representations like oncogenetic trees 
or cancer progression models (CBN and CARPI, in 
particular), but these models cannot express the recip-
rocal sign epistasis that makes for interesting fitness 
landscapes [96]. Instead, we need models that can repre-
sent gene-interaction networks with low-order epista-
sis (a classic example would be spin glasses) [89, 97]. 
These gene-interaction networks can express recipro-
cal sign epistasis. Most importantly, such networks can 
be inferred from polynomially-sized local fitness land-
scapes: from fitness values just a couple of mutations 
away from a wildtype, instead of measuring every pos-
sible combination of mutations. Such local landscapes 
have been measured in yeast [98], similar measurement 
techniques need to be developed for cancer systems.

Concluding remarks
On this new front in the war on cancer that was 
opened by somatic evolution, we not only need new 
mathematical machinery, like fitness landscapes 
and evolutionary games, but also new tactics, like 
abstraction. To handle complex systems like cancer 
where we do not know the detailed evolutionary 
micro-dynamics we need abstract models that extend 
the tools and techniques developed in microbiology 
and ecology to handle multiple-realizability. The 
lesson from computer science is that rigorous 
abstraction provides great theoretical power. And 
experimentally, we need to recognize that abstract 
is not the opposite of empirical. Abstract models can 
serve as phenomenological (or ‘effective’) theories 
that use carefully defined measurements to account 
for multiple-realizability from unknown micro-
dynamic details. Developing this approach will allow 
us to better use the mathematical machinery of fitness 
landscapes and evolutionary games for understanding 
and treating cancer.
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Status
Predicting, detecting, and preventing drug resistance 
is an enduring challenge in clinical oncology. The 
initial development of targeted therapies provided 
hope that targeting the unique molecular drivers of 
a tumour would allow for more precise treatment 
with fewer clinical side effects. However, in many 
cases, after a transient killing of tumour cells, drug 
resistance leads to therapeutic failure. Indeed, cancer 
is an intrinsically evolutionary process in which 
cell populations comprising the tumour adapt and 
evolve in response to the selective pressures placed 
upon them, particularly anti-cancer therapies [99]. 
Cancer treatment is subject to the same dilemma of 
drug resistance that has complicated the treatment of 
infections with antibiotics [100]. In both cancer and 
infectious diseases, drugs apply a selective pressure 
that yields higher frequencies of phenotypes better-
suited to survive in their environment. Even the most 
advanced therapies are ultimately at the mercy of the 
Darwinian principles of evolution.

When it comes to discerning the separated time 
scales of this evolution of drug resistance, we have 
found a singularly focused strategy to be insufficient. 
As we strive for our work to tangibly affect clinical care, 
the fields of population genetics, evolutionary and 
adaptive dynamics, and statistical physics may offer 
models and tools that provide an improved under-
standing of the temporal dynamics of resistance evo
lution and the necessary timescales of potential inter-
ventions (figure 12). Two specific examples from the 
emerging field of evolutionary therapy have demon-
strated how the marriage of disparate theoretical and 
experimental tools have brought us closer toward the 
goal of evolutionarily informed therapy.

One body of work utilizes evolutionary game 
theory (EGT) to deliver insights into the qualitative 
relationships between the ‘players’ in the tumour 

micro-environment. Another complimentary strategy 
models cancer evolutionary dynamics on fitness land-
scapes and is more amenable to genomic sequencing 
data and addressing tumour heterogeneity.

While we only discuss two models here with several 
unanswered questions standing in the way of their full 
potential, we believe they represent research strategies 
that are ripe for the interdisciplinary scientific groups 
and institutes of today and beyond.

Current and future challenges
Evolutionary game dynamics have been found to 
describe diverse phenomena in cancer ranging 
from IGF-II production in pancreatic tumours 
to tumour-stroma interactions in prostate cancer  
[101, 102]. While these models may yield insights 
into the qualitative relationships between the players 
in the tumour micro-environment, it is unclear if 
the evolutionary game modelled in different cancers 
is applicable to other cancers, or even every patient 
with a given cancer. Furthermore, the payoff matrix 
used to describe the games played in most models 
of evolutionary games is not empirically derived, 
but rather inferred from clinical intuition. It seems 
that a means of measuring these micro-dynamic 
interactions among tumour cells in any given tumour 
is necessary.

An additional drawback of the EGT formalism is 
the difficulty in using it to characterize the vast het-
erogeneity and mutational activity that are critical 
components of the evolution of drug resistance. Cur
rent biological methodologies may only allow for the 
study of interactions between a few cell types. Studying 
fitness landscapes may address this issue of account-
ing for tumour heterogeneity. Fitness landscapes are 
a genotype-phenotype map, in which each allele is 
assigned a corresponding fitness and set of neigh-
bouring alleles. Suggested first by Sewall Wright, in 
the canonical model of fitness landscapes, each allele 
can be represented as a string of ones and zeros corre
sponding to mutated and wild-type alleles, respec-
tively. The entire landscape can be represented as a net-
work of these bit strings with a hypercubic topology. 
Each node has its own fitness, and evolution proceeds 
as a biased random walk through the winding maze of 
genotype space, as it tends toward the most fit geno-
types available to it [103].

Any environmental condition (i.e. cancer thera-
pies) can apply a selective pressure to a population (i.e. 
a tumour) that specifies a corresponding fitness func-
tion over the domain of genotype space (figures 13(C) 
and (D)).

For fitness landscapes to be clinically useful there 
are challenges to be overcome. These include, but are 
not limited to: measurement, definition, and inference 
of fitness landscapes in clinically-relevant contexts and 
determination of appropriate time-scales of possible 
interventions.
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Advances in mathematics, technology, or data to meet 
challenges
We have recently suggested one method to 
experimentally parametrize EGT matrices: the 
evolutionary game assay. We observed in our cultures 
of alectinib resistant and sensitive lung cancer cells a 
linear frequency dependence of resistant cell growth 
rate on the proportion of sensitive cells, allowing us 
to represent the interactions in the four conditions 
studied as a two-strategy matrix game and infer the 
games played [91]. We showed that in our experimental 
system of drug resistant and sensitive cells, in the 
presence of alectinib and stromal cells, a qualitatively 
different game is being played (figures 13(A) and (B)). 

Our evolutionary game assay is designed specifically to 
capture the ‘effective’ game being played. Along with 
work aimed at characterizing how spatial information 
implies information about tumour-environment 
interactions, our assay to empirically measure games 
may be used to design clinical trials in any cancer type 
[82, 104].

To address our game theory assay’s inadequacy at 
accounting for tumour genetic heterogeneity, we turned 
to fitness landscapes. Our theoretical work has revealed 
an interesting feature of an evolving population sub-
jected to sequential drugs: evolution through these 
sequential drug landscapes is irreversible. Given com-
plete information of each fitness landscape, this feature 

Figure 12.  Correspondence of research strategies to the process of tumour evolution: Tumour heterogeneity is driven by clonal 
populations traversing evolutionary trajectories, the interactions between them, and the diversification that results. The milieu of 
molecular mechanisms that can be observed at the time of biopsy potentially confers finite drug sensitivity phenotypes.

Figure 13.  (A) Diagram of experimental setup, with varying proportions up drug sensitive (red) and resistant (green) cells. (B) 
Parameterization of the two-player game matrix, given the linear relationship between growth rate of drug resistant cells and 
proportion of seeded sensitive cells. (C) 2D representation of a fitness landscape in which the x-y  plane represents genotype, and 
the landscape height represents fitness. From a single starting point of the wild-type genotype, diverging evolutionary trajectories 
emerge from saddle points, ending at multiple possible local fitness optima. (D) A six locus landscape drawn as a directed graph, 
in which each node is a genotype and each edge represents an evolutionary path between them. Arrows illustrate potential paths 
through multi-dimensional genotype space, toward local fitness optima as shown in panel C.
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allows for what we call ‘steering’ using drug sequences, 
that is, using drugs to purposely push the cancer cell pop-
ulation to states of sensitivity from which resistance is less 
likely to be reached [94]. This steering of evolutionary 
dynamics reveals yet another strategy for evolutionary 
therapy. We propose that with the advent of computa-
tional methods to infer fitness landscapes on temporal 
and genomic scales, one could design patient-specific 
steering drug regimens to minimize drug resistance. 
We have performed further high throughput evolution 
experiments that suggest its feasibility [105].

Addressing the previously described challenges 
of utilizing fitness landscapes to optimize treatment 
sequence regimens may require exploiting the close 
analogy between evolutionary fitness landscapes and 
energy landscapes in other contexts. Techniques from 
statistical physics that allow for the inference of prop-
erties of energy landscapes through experimental 
probes or protocols that vary the stochastic dynam-
ics of these landscapes over time, can potentially be 
adapted to the evolutionary context.

Concluding remarks
Our EGT assay and evolutionary steering method 
provide examples of how understanding the evolutionary 
dynamics of cancer through both theoretical and 
molecular biological tools can lead to more effective 
treatments for patients. In the future, this can lead to 
treatment sequence regimens optimized to steer a tumor 
away from resistance and treatments that alter the tumor 
microenvironment to modulate the evolutionary game 
being ‘played’ and decrease the resulting proportion 
of resistant cells. As both frameworks highlighted 
here have their advantages and drawbacks, it is only by 
exploring them in concert and considering how they 
may complement each other that we can apply them 
most effectively. Fitness landscapes’ failure to address the 
tumour micro-environment, for instance, motivations 
exploration of EGT, which is well suited to examine such 
interactions. To look forward we must look backward, 
extending and blending these readily available tools. 
The application of these well-established theories, 
methodologies, and drugs, re-imagined and reconsidered 
in novel ways is a promising path forward to overcome 
therapeutic resistance in cancer.
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