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TOPICAL REVIEW
The 2019 mathematical oncology roadmap

Russell C Rockne!??®, Andrea Hawkins-Daarud®®, Kristin R Swanson®*®, James P Sluka*,

James A Glazier”’, Paul Macklin*®, David A Hormuth I1°®, Angela M Jarrett®, Ernesto A B F Lima®,

] Tinsley Oden®, George Biros®, Thomas E Yankeelov®, Kit Curtius’, Ibrahim Al Bakir”*, Dominik Wodarz’,
Natalia Komarova'’, Luis Aparicio'', Mykola Bordyuh'', Raul Rabadan'', Stacey D Finley'”

Heiko Enderling'?, Jimmy Caudell'¥, Eduardo G Moros'*'*®, Alexander R A Anderson'®, Robert A Gatenby'S,
Artem Kaznatcheev'”'3, Peter Jeavons'’, Nikhil Krishnan'?, Julia Pelesko'’, Raoul R Wadhwa'”, Nara Yoon'?,
Daniel Nichol®, Andriy Marusyk'4, Michael Hinczewski*' and Jacob G Scott'®

' Department of Computational and Quantitative Medicine, Division of Mathematical Oncology, City of Hope National Medical Center,

Duarte, CA 91010, United States of America

Precision Neurotherapeutics Innovation Program, Mayo Clinic, Phoenix, AZ 85054, United States of America

> School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, United States of America

Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, United States of America

Biocomplexity Institute, Indiana University, Bloomington, IN 47408, United States of America

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX 78712, United States of America
Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, United Kingdom

8 Inflammatory Bowel Disease Unit, St. Mark’s Hospital, London HA1 3U]J United Kingdom

°  Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697, United States of America

10" Department of Mathematics, University of California Irvine, Irvine, CA 92697, United States of America

Department of Systems Biology, Columbia University, New York, NY 10032, United States of America

Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90089, United States of America
Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33647,

United States of America

!4 Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33647, United States of America
Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33647, United States of America
Center of Excellence for Evolutionary Therapy, Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL
33612, United States of America

Department of Computer Science, University of Oxford, Oxford OX1 3QD, United Kingdom

Department of Translational Hematology and Oncology Research, Cleveland Clinic, Cleveland, OH 44195, United States of America
School of Medicine, Case Western Reserve University, Cleveland, OH 44106 United States of America

Evolutionary Genomics and Modelling Lab, Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG,
United Kingdom

Department of Physics, Case Western Reserve University, Cleveland, OH 44106, United States of America

2 Author to whom any correspondence should be addressed.

>

o

Y

S

©

2

S

2

E-mail: rrockne@coh.org

Keywords: mathematical oncology, mathematical modeling, modeling and simulation, cancer, systems biology, computational oncology

Abstract

Whether the nom de guerre is Mathematical Oncology, Computational or Systems Biology,
Theoretical Biology, Evolutionary Oncology, Bioinformatics, or simply Basic Science, there is no
denying that mathematics continues to play an increasingly prominent role in cancer research.
Mathematical Oncology—defined here simply as the use of mathematics in cancer research—
complements and overlaps with a number of other fields that rely on mathematics as a core
methodology. As a result, Mathematical Oncology has a broad scope, ranging from theoretical
studies to clinical trials designed with mathematical models. This Roadmap differentiates
Mathematical Oncology from related fields and demonstrates specific areas of focus within this
unique field of research. The dominant theme of this Roadmap is the personalization of medicine
through mathematics, modelling, and simulation. This is achieved through the use of patient-
specific clinical data to: develop individualized screening strategies to detect cancer earlier; make
predictions of response to therapy; design adaptive, patient-specific treatment plans to overcome
therapy resistance; and establish domain-specific standards to share model predictions and to make
models and simulations reproducible. The cover art for this Roadmap was chosen as an apt metaphor
for the beautiful, strange, and evolving relationship between mathematics and cancer.

©2019 IOP Publishing Ltd


publisher-id
doi
https://orcid.org/0000-0002-1557-159X
https://orcid.org/0000-0002-6391-4155
https://orcid.org/0000-0002-2464-6119
https://orcid.org/0000-0002-9925-0151
https://orcid.org/0000-0002-9643-1694
https://orcid.org/0000-0001-6901-3692
https://orcid.org/0000-0003-1964-2460
mailto:rrockne@coh.org
http://creativecommons.org/licenses/by/3.0
http://creativecommons.org/licenses/by/3.0
http://crossmark.crossref.org/dialog/?doi=10.1088/1478-3975/ab1a09&domain=pdf&date_stamp=2019-06-19
https://doi.org/10.1088/1478-3975/ab1a09

10P Publishing

Phys. Biol. 16 (2019) 041005

“Two Beasts’ (2017)
Artist: Ben Day Todd. Acrylic, gouache on canvas

“Two Beasts’ is an exploration of form and colour. By adding and subtracting paint, pushing and pulling colour,

new information is found and previously unknown dialogues are recorded.
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1. Introduction to the 2019 Mathematical
Oncology Roadmap

Russell C Rockne!

! Department of Computational and Quantitative Medicine,
Division of Mathematical Oncology, City of Hope National
Medical Center, Duarte, CA 91010, United States of America

Mathematical Oncology—defined here simplyas the
use of mathematics in cancer research—has gained
momentum in recent years with the rapid accumula-
tion of data and applications of mathematical meth-
odologies. The purpose of this 2019 Mathematical
Oncology Roadmap is to provide a forward-looking
view of the field and to demonstrate specific areas of
focus within this unique field of research. The top-
ics presented here are not intended to be exhaustive,
but rather to feature emerging, high-impact areas
that have the potential to shape the direction of
Mathematical Oncology in the next 5-10 years. The
selected topics cover both theoretical and practical
issues.

The dominant theme of this Roadmap is the
personalization of medicine through mathematics,
modelling, and simulation. This is achieved primar-
ily through the use of patient-specific clinical data. In
this Roadmap, mathematical approaches are used to:
make individualized predictions of response to ther-
apy; present data and simulation standards with the
goal of creating reproducible models; and improve
cancer screening to detect cancer earlier. These
approaches are also used to predict and steer cancer
evolution to guide the design of adaptive, patient-
specific treatment plans that overcome therapy
resistance, with the goal of turning incurable cancers
into chronic, manageable conditions rather than fatal
diseases. Each contribution is summarized here in the
order it appears:

Personalizing medicine by merging mechanistic and
machine learning models

The role of Mathematical Oncology in the future of
precision or personalized medicine is demonstrated
through patient-specific mathematical modelling,
analysis of patient-specific clinical data, and patient-
specific adaptive therapies. Hawkins-Daarud and
Swanson demonstrate these principles by looking
towards a future merging of mathematical modelling
and machine learning, in which knowledge-based
mechanistic modelling is used to guide and inform
machine learning when data is sparse. Hawkins-Daarud
and Swanson highlight the potential and the challenges
of merging these fields of mathematical modelling and
machine learning with an application to primary brain
cancers and clinical imaging data such as MRL

Setting data and model standards
However successful a modelling or simulation method
may be, if it cannot be deployed or used by other groups,
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it is of limited value. For Mathematical Oncology
to achieve its highest impact, Sluka er al argue that
standards are needed for both data and mathematical
models, to ensure interoperability, to leverage and build
upon prior work, and ultimately to develop useful tools
that can be used to study and treat cancer. Of course,
the use of standards in science is not new, however, data
and model standardization in this domain face unique
challenges, particularly with respect to spatial models.
Sluka et al identify the central challenges and potential
advances afforded by the establishment of ‘FAIR’
(Findable, Accessible, Interpretable, and Reusable)
models in Mathematical Oncology.

Turning tumour forecasting into a rigorous predictive
science

In addition to the challenges of developing and
standardizing mathematical models of cancer growth
and response to therapy, lies the ‘grand challenge of
Mathematical Oncology’: to faithfully reproduce—
and predict—the spatiotemporal dynamics of tumour
growth. Similar to weather models that predict the
path of a hurricane, Hormuth et al call for the use of
families of models in which the optimal model (or
models) is selected with Bayesian methodologies and
used to update patient-specific predictions over time.
The goal of this approach is to establish a foundation
for tumour forecasting as a rigorous predictive science
through careful model selection and validation.

Modelling cancer screening and early detection
Benjamin Franklin famously stated that ‘An ounce of
prevention is worth a pound of cure’. Nowhere could
this be more true than in cancer; however, nowhere
else could this sentiment be more challenging to
implement. Many serious issues face the field of early
detection of cancer, including the risk of false negatives,
false positives, and the possibility of transient early-
stage cancers that are successfully defeated by the
body’simmune system. However, Curtius and Al Bakir
propose that mathematical models of carcinogenesis
can be used to evaluate and predict the efficacy of
screening strategies using multiscale approaches, with
the ultimate goal of producing clinically actionable
personalized cancer screening recommendations.

Analysing cancer dynamics and the evolution
of resistance

As cancer cells grow into a malignant lesion or tumour,
the cells evolve and accumulate mutations in their
DNA. The analysis of evolutionary dynamics using
mathematical models is a rich field that has many
applications to cancer. Wodarz et al identify the spatial
structure of the tumour cell population as a critical
challenge in modelling tumour evolution. In particular,
they suggest that novel computational methodologies
are required to simulate and predict tumour evolution
at realistically large population sizes with realistically
small rates of mutation. Here, Wodarz et al use
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mathematical modelling to predict the evolution of
resistant cells within the evolving cancer as a whole.

Applying a single-cell view to cancer heterogeneity and
evolution

In contrast to the view taken by Wodarz et al,
Aparicio et al consider tumour evolution at single-
cell resolution. Using single-cell genome sequencing
data, Aparicio et al present mathematical and
computational methods to analyse single-cell data
from a topological perspective. Low-dimensional
projections, or visualisations, that are used to study
high-dimensional single-cell sequencing data may
give a misleading representation of the relationships
between individual cells. Aparicio et al use machine
learning and algebraic topology to construct
simplified skeleton graphs as approximations for
the geometry of high-dimensional data. These
sophisticated methodologies enable the examination
of the heterogeneity of individual cells in a continuum
of states, from normal/healthy to cancerous. The
mathematics of topological data analysis combined
with single-cell sequencing technologies provide a
powerful tool to study fundamental aspects of cancer
biology at an unprecedented resolution.

Accurately
progression
Altered metabolism and metabolic reprogramming
are hallmarks of cancer and are associated with
cancer progression and therapeutic resistance. Due
to the many interconnected metabolites, enzymes,
regulatory mechanisms, and pathways, systems
biology approaches have been used to study cell
metabolism. Often, mathematical representations
of cell metabolism use a constraint-based formalism
that does not explicitly account for spatial-temporal
variations. Finley proposes a multiscale approach to
modelling kinetics and time-varying heterogeneities
that may arise in aberrant cell metabolism in cancer
due to environmental fluctuations. She also proposes
the use of patient-specific data and open source
computational platforms that support dataand model
standards, with the ultimate goal of using these models
to generate novel drug combinations and treatment
strategies.

representing  metabolism —in  cancer

Modelling and predicting patient-specific responses to
radiation therapy

Long before the rise of immunotherapy, the
three pillars of cancer treatment were surgery,
chemotherapy, and radiation therapy. Radiation
remains a definitive and curative treatment for many
cancers and is highly personalized, with radiation
fields and doses sculpted to an individual patient’s
anatomy and cancer. However, Enderling et al show
that radiation therapy outcomes may be predicted
and improved using simple mathematical models that
account for the growth rate of the cancer and introduce
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the ‘proliferation-saturation index (PSI)’. The authors
discuss challenges for the clinical adoption of this
mathematically-defined, patient-specific, predictive
response index, and consider the road ahead, which
includes prospective randomized clinical trials.

Pioneering evolutionary therapy

In contrast to the optimization of radiation therapy,
Anderson and Gatenby propose an entirely new
pillar of cancer treatment: evolutionary therapy.
In this paradigm, treatment schedule and dose are
mathematically designed to reduce the possibility of
treatment resistance. Instead of using the maximum
tolerated dose, evolutionary therapy aims to give the
minimum effective dose through repeated treatment
cycles to maintain tumour control over extended
periods of time. Early results from an evolutionary
therapy clinical trial in prostate cancer, designed by
the authors with in silico ‘phase i’ trials, suggest that
the length of treatment cycles is highly patient-specific
and may be predicted with mathematical modelling.

Exploring fitness landscapes and evolutionary game
theory

The principles of evolutionary therapy and therapeutic
resistance can be modelled mathematically using
evolutionary game theory (EGT), in which evolution
is determined by selection or optimisation of ‘fitness’.
A fitness landscape is a conceptual and mathematical
abstraction that enables predictions and interpretations
of the temporal process of evolution. However,
significant practical and theoretical challenges prevent
the measurement or inference of the exact geometry
of the fitness landscape. Kaznatcheev et al propose that
we reconsider the very concept of abstraction itself in
order to better understand and use the EGT framework
to guide evolutionary therapy, using algorithmic
computer science as a practical example.

In contrast to the theoretical considerations of
Kaznatcheev et al, Krishnan et al demonstrate a practi-
cal method to experimentally estimate the parameters
of an EGT model, with the goal of designing combi-
nation therapies that not only avoid therapeutic resist-
ance but are even able to steer cancer evolution on a
patient-specific basis. The authors hypothesize—and
demonstrate—how EGT-driven therapies can be
practically implemented in the clinic to overcome
therapeutic resistance in cancer treatment.

Summary

In summary, this 2019 Mathematical Oncology
Roadmap identifies three critical milestones along the
path to mathematically designed cancer treatment:
(1) obtaining accurate, rigorous, and reproducible
predictions of the spatial-temporal progression
of cancer; (2) avoiding and mitigating therapeutic
resistance; and (3) merging mechanistic knowledge-
based mathematical models with machine learning.
Surprisingly, despite the emergence of the era of ‘big
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data’, we are learning that we still lack the right kind
of data. Big data in cancer is often taken from a single
point in time and space, from only one biological
scale, or without an appropriate micro-environmental
context. The road ahead includes continued
development of knowledge-based mathematical
models and methods to bridge big data to the ideal of
personalized, predictive, adaptive therapy.

As we look towards the next 5-10 years in Math-
ematical Oncology, we note that government agencies
such as the federal drug administration (FDA) in the
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United States have begun to officially recognize model-
ling and simulation as forms of valid scientific evidence
in the review and approval process. From our perspec-
tive, with the support and adoption of government reg-
ulatory agencies that recognize these methodologies,
tumour forecasting, patient-specific adaptive therapies
with the use of in silico treatment scenarios, virtual clin-
ical trials, and mathematical modelling and simulation
have the potential to accelerate our scientific progress
in cancer research, and have the potential to transform
the way we detect and treat cancer in the clinic.
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2. The future of personalization in
mathematical oncology:a mathematical
merger of mechanisticand machine
learning models

Andrea Hawkins-Daarud' and Kristin R Swanson!?
' Mayo Clinic, Phoenix, Arizona
2 Arizona State University, Tempe, Arizona

Status

Cancer patient care is intrinsically multidisciplinary.
Tumor board is the clinical environment used to bring
together those different disciplines to make treatment
decisions, but, unfortunately, it is an agonizing
environment of doubt—Is the tumor progressing?
Is the optimal treatment A or B? All it takes is a brief
experience in a tumor board to feel the injustice of a
cancer diagnosis and the frustration of not knowing
the truly optimal treatment. Every patient is unique
and every patient will respond differently to the same
treatment protocol. Thus, the central tumor board
challenge is—how do we best integrate the unwieldy
multitude of dispersed data (imaging, tissue, blood,
molecular) to generate optimal clinical decisions for
each patient? The current strategy for grappling with
this complexity is to average over cohorts of seemingly
similar patients with similar diagnoses to select an
average treatment applied to an average patient with
average outcomes. Yet, it is empirically evident that
cancer is a complex evolving system that does follow
some rules that are known and can be modeled and
predicted mathematically in each patient. For instance,
we know that cancer is a proliferative process that
outcompetes the otherwise normal tissue to grow.
Cancer cells have the ability to engage and co-opt
their local environment to their benefit for growth
and invasion. While these cancer cells hack normal
rules of biology to their advantage, other known or
identifiable biological and physical rules drive and/or
constrain phenotypes. Based on these processes, the
seemingly unwieldy cancer process can be formalized
as mathematical equations which can be parametrized
for each patient’s data (e.g. imaging, molecular, tissue).
Every cancer patient deserves their own individualized
equation (TEDx: http://bit.ly/1p1pl8A),a personalized
parameterization of their disease evolution that can be
exploited to guide and optimize his or her care.

Current and future challenges

The potential machine learning (ML) or artificial
intelligence (AI) applications to healthcare have
recently received particular notice in the media
with IBM’s Watson, applications to radiology and
diagnoses aided by wearable technology amongst
many others. Each of these examples are exciting, but
the full promise of personalized medicine remains
unrealized. While theamount and types of clinical data
being generated for each cancer patient is increasing
dramatically, there are no holistic approaches or
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algorithms available that can incorporate all this data
to identify the best treatment for each individual
patient. There are, obviously, many reasons for this,
but a critical challenge is that cancer is a spatially
complex, adaptive process and the data being collected,
while vast, is quite limited in that it is showing, at best,
infrequent snapshots of extremely small regions of
the tumor. Ultimately, this means Al and ML models
will not be able to be trained on the right data to make
reliable predictions.

Mechanistic models can help. Cancer is fundamen-
tally a physical process subject to the same predictable
laws of nature studied in physics and chemistry. Of
course,itisalso abiological, multicellular evolvingeco-
system with critical events happening on an enormous
range of spatial and temporal scales from improper
DNA methylation to the alteration of an organ’s func-
tion. These complex interacting components compli-
cate the interpretation of data and experimental plan-
ning. While there are many fields of cancer research,
mathematical oncology, a field dominated by mecha-
nistic models, is arguably the best equipped to abstract
overarching principles and develop a deeper under-
standing of how the mechanisms driving cancer can
be exploited and shut down. To date, however, there
are few models that have bridged the scales necessary
to fully utilize all the data generated. Thus, these mod-
els provide insight, but are not necessarily adapted to
assimilate the breadth and depth of the data.

Advances in mathematics, technology, or data to meet
challenges

These two approaches, insightful mechanistic models
and the powerful black box of machine learning, are
highly complementary. A grand challenge of our day
is to develop methods leveraging both their strengths
to create a symbiotic modeling paradigm such that its
whole is greater than the sum of its parts—one that can
both leverage the vast data at our fingertips (machine
learning) but also the knowledge we already have gained
from that data (mechanistic models). We envision such
mergers can and will take many forms, such as those
outlined in the following and illustrated in figure 1.

1. Mechanistic Model Calibration via Machine
Learning A current challenge for mechanistic
models is the incorporation of the vast amount
of ‘omic’ data into parameters. ML approaches
could be used to identify gene or expression
signatures that best correspond with given
mechanistic model parameters utilizing cell
cultures and preclinical models. Once initial
signatures are found, correlations could be
validated with in vivo human data.

2. Mechanistic Model Outputs as Inputs to
Artificial Intelligence Models A critical
limitation for Al models is the relatively limited
amount (both spatially and temporally) of data
available for training. Mechanistic models can
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Figure 1. Illustrating the types of advances one might expect to see in the integration of mechanistic modeling into machine
learning methods (and vice versa) applied to the case of brain cancer. Mechanistic models, e.g. [ 1-5], and machine learning,
e.g.[6,7],can interact in multiple ways. (1) ML models can help mechanistic models make sense of multi-scale data to calibrate
parameters, e.g. [8,9]. (2) Mechanistic model predictions can be used as input into ML models to augment spatially or temporally
sparse data, e.g. [10] (3) Static outputs from ML models can be used as initial conditions for mechanistic models and (4) ML models
and mechanistic models can work together via data assimilation to create spatially and temporally resolved predictions over long

be used to create personalized extrapolations
of the provided data for utilization in the AI
models. This synthetic data could be used as a
regularizer or as fully weighted training data
and could enhance the model stability when
working with smaller sets of data.

3. Actionize Machine Learning Predictions with
Mechanistic Models Static outputs from ML
models could be leveraged as initial conditions
in dynamic mechanistic models to move the
ML prediction forward in time. If, for instance,
aML model could take information from the
transcriptome to predictlocal concentrations
of cellular constituents, this information could
provide an initial condition for models of cellular
interaction allowing the mechanistic model to
better incorporate data from many different scales.

4. Data Assimilation for Mechanistic Models
utilizing Machine Learning Outputs Building
on the previous method, if the appropriate data
for the ML model is anticipated to be available
for a series of discrete time points, such as MRIs,
the ML model output can be used within a data
assimilation framework to continuously correct
predictions from mechanistic models.

Concluding remarks

Science and data have always had a strong relationship,
but in the last decade or so, the term data science has
started taking on a specific meaning related to machine
learning and artificial intelligence which ironically
leaves behind the notion of the scientific method and
hypothesis testing. While there is no doubt that the
recent explosion of data cannot be fully exploited
without such AI methods, mechanistic models offer a
strong complementary, hypothesis driven, approach to
synthesizing meaning and strengthening predictions
that should not be ignored. This is particularly true in
the field of mathematical oncology, where the data is
often vast and deep but not representative spatially or
temporally. Creating fundamental mergers between
these two approaches is a critical step to fully realizing
the vision of targeted personalized therapy.
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3. Dataand model standards

James P Sluka'2, James A Glazier!?
and Paul Macklin"*
1

Intelligent Systems Engineering, Indiana University.
Bloomington, IN 47408, United States of America
Biocomplexity Institute, Indiana University. Bloomington,
IN 47408, United States of America

Invited author. macklinp@iu.edu

Status
Cancer presents a complex series of systems problems
involving  intracellular ~ dynamics, intercellular

interactions, and extracellular biochemical and
biophysical processes, embedded in a complex and
continually changing spatial context. Although single
laboratories can contribute important advances, they
cannot individually solve the large-scale problems of
cancer biology. As a result, consortia of experimental
labs, clinical centers, and computational groups are
increasingly pooling their specialized expertise to gain
new insights into the complexity of cancer [11]. This
pooling requires integration not only of heterogeneous
data collected by different groups, but also of scientific
hypotheses and deductive observations (knowledge
capture), and conceptual, mathematical and
computational models. Such integration is much more
efficient when data and knowledge representations are
standardized.

Difficulty in finding, accessing, interpreting, and
reusing data, knowledge, and models hinders collabo-
rative cancer research. A lack of standardized data and
knowledge representations, inconsistent metadata
(e.g. to describe experimental protocols), technical
and financial obstacles, and systemic cultural barri-
ers all discourage sharing [12]. Modern genomics and
proteomics demonstrate that widespread adoption of
data standards enables faster and more efficient scien-
tific progress.

Many biological research communities are devel-
oping standards to annotate and share concepts and
data. For example, the microarray and microscopy
research communities are developing standards for
sharing annotated data such as MGED [13] for micro-
arrays, OMERO [14] for microscopy, and the National
Cancer Institute’s ‘Common Data Elements for Can-
cer Research’ [15].

Currently a lack of standards impedes sharing of
many types of mathematical models and computer
simulations of cancer. While mathematical models can
elegantly express data-driven hypotheses, their reuse
and combination into larger-scale models requires
(currently lacking) standardized representations of
equations, model assumptions, and the rationale for
parameter estimates. The same problems apply to
computer simulations.

The systems biology markup language (SBML)
community has successfully developed standards to
describe dynamic biological network models and to
enable their translation into executable computer
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simulations [16]. The SBML standard not only defines
mathematical concepts and syntax, but also allows
annotation of model components with biological
terms (e.g. naming genes and biological processes).
Well-constructed SBML models retain their under-
lying biological descriptions and associated scien-
tific knowledge. Similar standards for representing
multicellular data, knowledge and models are critical
for cancer research, but they are presently less devel-
oped. The Cell Behavior Ontology [17] and multi
cellular data standard (MultiCellDS) [18] are steps in
this direction. Standards for general knowledge and
hypothesis representation are even less developed.

Current and future challenges

To maximize the value of mathematical models
and computer simulations of cancer to the research
community, funding agencies, and society, data,
knowledge, models, and simulations should be FAIR:
findable, accessible, interpretable and reusable [19].
Describing models and data using accepted biological
nomenclature and maintaining their links with their
underlying biological hypotheses would greatly facilitate
finding, accessing and interpreting their domain and
biological content, maximizing their value by capturing
their embedded scientific knowledge for reuse.

To enable sharing and reuse in future research, we
must record experimental, clinical, and simulation
data using community-driven standards, drawing
upon ontologies that precisely define biological terms
and relationships. These data must include metadata
such as descriptions of experimental and computa-
tional protocols that contextualize data and allow rep-
lication [12,19].

Beyond expressing raw data and models, the com-
munity must also develop annotations of biological
hypotheses, observations and insights (knowledge).
Researchers often communicate this information
using qualitative conceptual ‘mental models’ or ‘ver-
bal models’ that represent decades of expert learning.
Machine-readable, searchable representations of con-
ceptual biological knowledge would greatly facilitate
sharing [12].

Because sharing computational models is largely
limited to sharing source code with little documenta-
tion and no biological annotations (or worse, executa-
bles with no source code), simulations are often unre-
producible [19]. Future computational models (and
their parameter sets) must be biologically annotated to
facilitate their reuse in more comprehensive multiscale
simulations. Biological annotations would also make
computational models more accessible via search
engines, reducing the need for formal repositories and
driving further reuse.

Advances in mathematics, technology, or data to meet
challenges

Enabling FAIR research requires robust annotation
schemes for biological, clinical, mathematical, and
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computational data, including context, biological
assumptions, and knowledge gained. Relationships and
interactions between biological entities and processes
resemble graph structures in SBML network models.
However, ‘translating’ imaging data into biological
annotations will require machine learning approaches
that extend beyond present-day image processing
and feature extraction tools [12]. More broadly, tools
and utilities must develop alongside standards to
make standards-compliant science simple and user-
friendly, and to integrate it into existing experimental,
mathematical, and computational workflows.

We can learn from the SBML community’s experi-
ence to develop similarly robust and FAIR descriptions
of mathematical and computational models beyond
SBML’s interaction-network concepts. Representing
spatial effects is particularly challenging. Projects like
CellML [20] and MultiCellDS [18] require continued
effort to grow from white papers to widely-adopted
standards. Synergies are clearly possible. For example,
descriptions of microscopy imaging data and multi-
cellular simulation outputs have significant overlap
and should admita common description language.

We also need to harmonize the numerous data and
model standardization efforts across biotech and bio-
logical communities. These efforts need to coordinate
to ensure that emerging standards are consistent, par-
ticularly in the biological description of data, experiments,
models, and knowledge. Ideally, harmonized standards
should apply to many types of experimental observation
(e.g. high throughput microscopy), and generalize from
cancer to normal physiology and other diseases.

Standards should be designed so that they support,
rather than inhibit, creativity. Tools that make anno-
tation and standards compliance easy are critical to
voluntary adoption. Properly implemented and exten-
sible standards serve as a conduit to communicate new
ideas and allow better connectivity between models,
tools, and data.

Well-implemented standards provide value to
individuals in the form of increased access to data,
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models, and tools, and greater impact via reuse. We
must also ensure that standards are straightforward
to implement across computing languages and plat-
forms, particularly for scientists who focus on devel-
oping conceptual and mathematical models.

Concluding remarks

Sharing cancer data, models, and knowledge using
standardized formats and FAIR principles offers
substantial benefits. Stable standards will encourage
development of shared software that can import
annotated data, design models, execute them as
simulations,and analyze their outputs. As technologies
such as bioprinting advance, the same tools could
enable the direct translation of captured knowledge
into living experiments.

Technologies for sharing will help us create auto-
mated tools that systematically mine biological litera-
ture, databases, and knowledge repositories. Sharing
technologies and standardized data are essential if
machine vision and other learning approaches are to
automate the extraction of observational insights from
experimental, clinical, and simulation data [12].

Widespread adoption of standards and adherence
to FAIR principles will transform cancer research into
an ecosystem of mutually compatible concepts, data,
models, and tools. Such standardization will enable
community science that exceeds the sum of its parts
and accelerates progress in treating cancer.
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Status

While mathematical modelling of tumor growth
dynamics has a long history, current approaches are
limited in their practical applicability. There exist
three main reasons for this. First, tumor dynamics
are extremely complicated because of the underlying
physical and biological processes, as well as the
variability across individuals. Second, we cannot easily
conduct relevant experiments; we can, for obvious
reasons, only observe. Third, the data we do observe
is limited; we typically have few measurement
points via anatomical imaging or biopsy. Despite
those formidable challenges, there is hope. Several
imaging methods exist that can provide quantitative
information noninvasively, in three dimensions,
and at multiple time points. Magnetic resonance
imaging techniques can quantitatively characterize
vascular properties, cellularity, pH, and pO, [21].
Furthermore, positron emission tomography can
quantitatively characterize metabolism, proliferation,
hypoxia, and various cell surface receptors [22]. These
measurements can be made throughout therapy; thus,
imaging allows models to be constrained with patient
specific data rather than tabulations from theliterature
or animal studies.

In recent years, there have been increasingly suc-
cessful examples of integrating patient-specific infor-
mation with mechanism-based mathematical models
designed to predict the spatio-temporal development
of cancer. Successful efforts matching model predic-
tions with clinical observations have been realized in
cancers of the breast (figure 2, [23]), kidney [24], and
brain [25].

Current and future challenges

If a mathematical model could faithfully predict
the spatiotemporal evolution of an individual’s
tumor, then patient-specific hypotheses could be
tested in silico, thereby allowing the optimizing of
intervention for the individual patient using the
specific characteristics of their own unique situation.
Unfortunately, this vision is quite disconnected from
the current state-of-the-art, and remains a grand
challenge in mathematical oncology. Currently, the
response of solid tumor to therapy is monitored by
changes in tumor size as measured by physical exam
or anatomically-based, imaging; unfortunately, these
methods cannot determine response as anatomical
changes are often temporally downstream of
underlying physiological, cellular, or molecular
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changes. Early and accurate predictions would enable
replacing an ineffective treatment with an alternative
regimen, thereby potentially improving outcomes and
curtailing unnecessary toxicities. The development of
mechanism-based, predictive mathematical models
that could address this fundamental shortcoming
in cancer care would represent, without question, an
enormous improvement in the human condition.
The major challenges to achieving this goal can be
summarized by the following three questions:

1. Among the enormous number of models
covering a huge range of physical and biological
events, which models are the ‘best’ for
predicting quantities of interest?

2. How is the uncertainty in the predicted quantities
of interest quantified and how can the model
predictions significantly improve patient care?

3. How can one access data to inform
computational models and, at the same time,
cope with experimental noise and errors in the
systems used to collect and process data?

Advances needed to meet the challenges

The importance of accurately predicting eventual
patient response is difficult to overstate. The field of
numerical weather prediction provides an excellent
example of how practical, predictive oncology can
be achieved. Weather prediction employs satellites
to provide a diagnosis of the state of the atmosphere,
which is then evolved forward by meteorological
models to provide a prognosis (i.e. a ‘forecast’) of
the atmosphere’s future state. Similarly, imaging
provides a diagnosis of the state of a cancer, which
can then be evolved forward by mathematical tumor
models to provide a prognosis of the tumor’s future
development [26]. With this analogy in mind, we
discuss the advances that must be made to address the
three questions of the previous section.

It is imperative that the field constructs math-
ematical models based on the established principles
of physics and cancer [27]. While phenomenological
models can provide practical advances for predictive
oncology (e.g. the linear quadratic model of radiobi-
ology [28]), they are fundamentally limited in their
ability to describe the underlying biology and, there-
fore, the precise effects of any therapeutic interven-
tion. Unfortunately, this has proved to be a terribly
difficult undertaking as we do not yet have the F = ma
of cancer. In lieu of this fundamental relation, we have
advocated for developing families of models (reminis-
cent of the approach used in weather modelling), each
with its own set of biological and physical assumptions
[26,29]. These models are then calibrated with ration-
ally selected, patient-specific data, before being sub-
jected to a Bayesian methodology that both selects the
optimal model and then validates its ability to accu-
rately predict the spatiotemporal development of an
individual patient’s tumor.

10



Phys. Biol. 16 (2019) 041005

R CRockneetal

Early NAT Patient Data

Later NAT Patient Data

Scan |

Scan 2

After | cycle

of first NAT

Scan 4

Scan 3

After completion
of first NAT

Afier | cycle of
second NAT

Compare to clinical designations for
early evaluation of tumor response

1
:
i oo
| Calibrate
' Parameters
. 1
|
Drug Distribution Map '
lime of MOdel Time of
Scan 3 Prediction Surgery

Figure2. A breast cancer patient was scanned by magnetic resonance imaging at four points during neoadjuvant therapy (NAT).
The first two scans (left set of images) are used to calibrate model parameters for predicting response observed at the third time
point. The last two scans (right set) are used to update parameters for predicting response observed at the time of surgery.

Compare prediction to patient
pathological complete response status

The sentiment that we are ‘swimming in data’ is
often expressed, but it is a tremendous oversimplifi-
cation. While it is true that there are volumes of clin-
ical data available, it is not of the kind that is readily
integrated into mechanism-based models. We may
be swimming in data, but we are in the wrong pool.
Advances in biomedical imaging are now providing us
with the appropriate tools to quantitatively character-
ize cellular, molecular, and physiological processes that
can constrain the next generation of predictive models.

Concluding remarks

It must be stressed that building data-informed,
mechanism-based mathematical models of cancer
is a fundamentally different approach than relying
only on ‘big data’ [30]. This is not to dispute the fact
that statistical inference is of critical importance;

but rather, by its very nature it is based on statistical
properties of large populations in which conditions
that prevail in specific individuals are hard to detect.
That is, the ‘big data-only” approach cannot account
for subtle changes in the individual patient—indeed,
the very characteristics that make us individuals—
over an extended time. It is critical to unite such
population-based statistical data with patient-specific
measurements and with patient-specific mathematical
models that can predict patient-specific changes
associated with cancer initiation, progression, and
response to therapy. This transformation is inevitable.
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Status

Cancer screening aims to detect neoplastic changes
early for curative intervention. Current programmes,
however, suffer from both overdiagnosis of benign
lesions and underdiagnosis of dangerous lesions missed
by screening [31]. Consequently, improvement in
screening success is an important health policy research
area, and one primed for quantitative assessment. In this
Roadmap article we argue that mathematical modeling
of tumor evolution will underpin radical improvement
in the effectiveness of screening and surveillance.

For clarity within a varied literature, the term can-
cer screening refers to initial testing for the presence of
a specified neoplastic change of interest in the body
(e.g. detection of premalignant or malignant lesions).
Subsequent tests that are offered after an initial screen-
ing diagnosis are defined as surveillance screens. A
biomarker is a measurable, objective indication of a
biological state (e.g. aneuploidy or tumor size) associ-
ated with relevant preclinical disease states potentially
before symptoms develop.

The length of time between the early detection
of a preclinical state and the future clinical detection
is called lead time, which depends on the nature of
the biomarker measured. If the age at completion of
lead time surpasses patient lifetime, this patient will
be considered an overdiagnosed case for that cancer.
Lastly, risk stratification refers to prognostic sub-
grouping offered to patient groups based on screen
outcome.

Currently, screening design uses data from epi-
demiological studies but does not typically consider
tumor evolution, which ultimately determines disease
development timescales. From a biological perspec-
tive, early detection of biomarkers thatalert us to cellu-
lar changes along the path to cancer (e.g. premalignant
metaplasia detected in biopsy sample histology or cir-
culating tumor DNA present in liquid biopsies) is the
clinical manifestation of field cancerization, wherein
groups of cells have acquired some but not all of the
phenotypes necessary for clinical malignancy [32]. If
we determine the pattern and pace at which normal
cells become cancerized in their microenvironments,
we can utilize multiscale data within mathematical
models of carcinogenesis to evaluate and predict the
efficacy of screening strategies for early detection in
silico (figure 3).

The impact of this research will be to develop novel
methodology capable of (1) utilizing screen data to
assay the carcinogenic process in vivo, and (2) robustly
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assessing and refining screening practices using mech-
anistic forecasting to improve early detection and per-
sonalize clinical recommendations.

Current and future challenges

Current screening prevents cancer deaths but there are
many areas for improvement. Below we discuss a few
main challenges faced.

1. Defining success and introducing bias

To measure the efficacy of screening, investigators may
perform randomized control trials (RCT) to compute
relative risks of endpoints such as cancer incidence
and mortality between screened and unscreened
populations [31]. Although intended to reduce biases,
these studies are not designed to predict long-term
trade-offs in costs versus benefits between alternative
screening/lifelong  surveillance regimens, which
instead require decision modeling [33—39]. The choice
of metric for quantifying early detection-associated
costs (e.g. decreased patient quality of life or burden to
the healthcare system per overdiagnosed case) versus
benefits (e.g. life-years gained or cancer precursor
eradication per screen) will vary cost-effectiveness
results.

2. Choosing an appropriate computational model
Model selection for the established outcome
must capture the essential features of disease
progression from birth to death. These might include
epidemiological features such as patient smoking
history [33] and sampling modality such as tissue [34]
or blood [35] biopsies. Importantly, the relationship
between biomarker level and time (Fpiomarken figure 3)
is often sensitive to clinically unobservable events,
such as metastasis initiation [36] and false positive
diagnoses [37], potentially confounding reports from
medical exams and contributing to inaccuracy of
mathematical formulation.

3. Handling stratification and heterogeneity

Based on biomarkers measured from screens, patients
are stratified into ‘low’ and ‘high’ risk groups.
Prognostic cut-offs between groups are ultimately
arbitrary and can be subject to medical discretion.
Two common issues with this practice are that studies
rarely consider time-dependent implications (e.g. a
high-risk mutated cell may not survive long enough to
initiate tumorigenesis) and most rely on a small subset
of risk factors measured at a single time point rather
than a holistic view of diverse patient background (e.g.
family history of cancer, lifestyle, immune system’s
innate ability to eliminate mutated cells, adverse
mutations). Moreover, the challenge is to accurately
characterize the unique evolutionary trajectories of
individuals (figure 3(A)), while still recommending
useful screening programs that capture average
population behavior (figure 3(B)).
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Figure3. (A) Evolutionary trajectories of slow versus fast carcinogenesis correspond to longer versus shorter lead times for
potential clinical intervention, respectively. (B) Screening programme design aims to maximise positive biomarker yield in an

4. Testing and performing model validation

New technologies for early detection are rapidly
developing, but it remains costly to obtain large,
longitudinal cohort follow-up data to robustly assess
outcomes and validate screening recommendations
in those with an adverse biomarker state; such clinical
evidence will be required before altering the existing
screening regimens.

Advances in mathematics, technology, or data to meet
challenges

1. Collecting population data for research use

National health institutes are increasing support of early
detection studies obtained from prospective cohort
and large-scale population screening, which will better
inform parameters used in modeling such as disease
regression rates and more subjective measures like
quality-adjusted life-years used in economic evaluations.

2. Mathematical developments

Mathematical ~modeling  (stochastic ~ processes,
evolutionary theory, dynamical systems, differential
equations) is a framework that can help us to rigorously
answer the questions of ‘when’ to screen individuals for
cancer indications, and ‘who’ will benefit most from
particular surveillance regimes and clinical intervention.
There is a clear need for novel methods to combine
models with classical biostatistics commonly used in
cancer risk stratification studies for clinical translation.

Three current methodologies for assessing cancer
screening with modeling are shown in figure 4. These
include Markov chains for natural history of disease
transition [33, 37,38], biologically-based models that can
incorporateevolutionarydynamicslike clonal expansions
and biomarker shedding in diverse lesions [33-36, 39],
and biological event timing models that infer critical
genetic events during carcinogenesis [40]. Moreover,
biologically-based models could inform the transition
probabilities of the Markov approach. The aim of all these
models is to quantify long latency periods of premalig-
nancy on a patient’s forecasted evolutionary trajectory.
These periods provide a window for therapeutic inter-
vention when detected during effectively-timed screens.

3. Modern technologies for sensitive and specific early
detection biomarkers

Rapid advancements in multi-omic and optical imaging
technologies allow for the diagnoses of precancerous
and early cancer lesions at higher resolution and at
decreasing cost to the healthcare system. These will
provide researchers with better understanding of
patient-specific disease evolution, and ultimately result
in personalized prevention efforts becoming a clinical
reality. Taking a holistic view and studying disease
evolution at adequate power will require huge amounts
of well-annotated patient data, but with digitization of
medical records and large population cohorts currently
undergoing follow-up, we envisage this may be feasible
within the next 30 years.
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Lead time

4. Performing virtual trials in silico for rigorous model
selection and testing

Well-calibrated mathematical models provide a cost-
effective, ethical means for simulating virtual cohorts
of patient outcomes to judge the effectiveness of a
screening/surveillance regime both across a population
and in individuals. Bayesian approaches and deep
learning of large clinical datasets will also enhance
statistical inference of unobserved events that drive
carcinogenesis timing; such modeling will be necessary
in future early detection research as it is not technically
feasible to measure manyaspects of tumorigenesis (such
as single progenitor cell initiation) in the patient cohort
itself. Moreover, this dynamic, computational approach
is a straightforward method to continuously test and
recommend modifications to screening/surveillance
guidelines (e.g. to reflect subsequent technological
advances in endoscopic optical imaging), as opposed
to the current situation wherein such guidelines are
updated on average once per decade.

Concluding remarks

There is exciting potential for mathematical modeling
in addressing the challenges of cancer early detection,
alongside developments in biomarker discovery and

validation. Modeling cancer screening will allow
researchers to examine the underlying cause of the vast
inter- and intra-patient heterogeneity we currently
observe clinically during disease progression in a
robust and unbiased way. It will be possible to create
explicit formulations for the dynamics of biomarker
changes in the body and to formulate quantitative
functions for screening efficiency in order to optimize
cancer screening and surveillance scheduling.

In reality, all cancers form from a series of evo-
lutionary changes that may be detectable (and poten-
tially preventable) if we anticipate and seek such
changes during screening, and track them during sur-
veillance to direct clinical action. In our increasingly
integrated world, patients, doctors, policy-makers, and
mathematical modelers will be required to engage in
interdisciplinary science efforts to best answer ques-
tions about how to beat cancer early.
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Status

The development and progression of cancer is driven
in partby evolutionary processes within the underlying
tissue cell populations. Cells that are subject to
homeostatic regulation in healthy tissue acquire
mutations that can alter the properties of the affected
cell. Many such mutations can lead to a selective
disadvantage while others do not change the fitness of
the cell or confer a selective advantage. Accumulation
of one or more such driver (advantageous) mutations
can allow the cells to escape homeostatic regulation
and to proliferate out of control. These clonally
expanding cells can in turn accumulate further
mutations that result in increases in heterogeneity
in the cell population and in further progression of
the tumor. Such evolutionary processes are not only
crucial for the disease development, but can also
contribute to resistance against cancer therapies. It is
therefore crucial to gain understanding of both the
evolutionary principles according to which tumors
progress, and the mechanisms by which treatment
resistance evolves.

Mathematical models form an integral part in the
analysis of evolutionary dynamics in general, and the
same applies to evolutionary dynamics in the context
of tumors [41, 42]. Mathematical and computational
work has contributed insights both into aspects of
tumor initiation and progression, and into the princi-
ples of resistance evolution [43]. Important measures
that have been investigated include the probability that
mutantsresistantagainstagiven treatment regime exist
in the tumor cell population at the time when treat-
ment is started; the expected number of mutants that
are present at the time when treatment is started; the
probability that mutants with certain characteristics
become fixed in healthy tissue or an emerging tumor;
the time it takes for mutants to rise towards a certain
threshold level, etc. In the context of specific tumors,
it has been possible to measure some of the main
parameters underlying such models for individual
patients. One example is chronic lymphocytic leuke-
mia [44]. Division and death rates have been meas-
ured by administering deuterated water to patients,
radiological imaging has been used to estimate the
total tissue tumor burden, and model fitting to clini-
cal data has been used to estimate kinetic parameters
underlying treatment responses. With the knowledge
of such patient-specific parameters, the mathematical
modeling approaches can in principle be used to make
individualized predictions about treatment outcomes,
such as the time to resistance-induced relapse against

R CRockneetal

targeted therapies [45]. They can further be used to
explore alternative treatment options with the aim to
prolong the duration of tumor control.

Current and future challenges

Much of the work described so far has been
performed under the assumption that there is no
spatial structure in the cell population, i.e. that
cells mix well with each other. This might be a
reasonable approximation for some leukemias, but
is an unrealistic assumption for solid tumors, which
are characterized by complex spatial structures. A
variety of spatial computational models of tumors
have been developed to study different questions,
e.g. [46], notably mechanistic models of tumor
growth and vascularization have been successful.
Many aspects of the evolutionary dynamics of
mutant populations in spatial settings, however,
remain poorly understood. Interestingly, analyses
of spatial evolutionary processes performed so
far indicate that the dynamics can be significantly
affected by spatial structures, often in complex ways.
An example is the process of fitness valley crossing,
where an advantageous phenotype requires the
accumulation of two (or more) separate mutations,
each of which is individually deleterious or neutral.
Such evolutionary pathways have been documented
to occur in the context of many cancers. An example
is the inactivation of tumor suppressor genes, such as
the APC gene in colorectal cancer, where both copies
of the gene must lose function for the cell to become
advantageous. It turns out that the evolutionary
timing of fitness valley crossing depends on the exact
assumptions on the spatial dynamics [47] (figure 5).

In the spatial Moran process model that assumes
constant cell populations, spatial interactions were
found to accelerate the rate of fitness valley crossing. By
contrast, in contact processes that do not assume con-
stant cell populations, the rate of fitness valley crossing
could be accelerated or delayed, and there could even
be an optimal degree of mixing that maximizes the rate
of evolution.

Studies of single mutant dynamics in spatially struc-
tured cell populations have also shown that basic mutant
dynamics in space are different compared to well-mixed
scenarios [48]. The fate of mutants can depend on the
timing and the spatial location of mutant emergence.
Mutants that are generated relatively early and at the
surface of an expanding spatial cluster of cells can grow
to relatively large numbers (also referred to as ‘jackpot’
mutations). On the other hand, mutants can become
surrounded and encased by wild-type cells, which limits
their growth and introduces and element of competi-
tion between mutant and wild-type cells, even though
the tumor mass is characterized by unbounded growth.
A Detter understanding of how evolutionary processes
contribute to cancer development in such settings is
crucial for improving therapies. It is especially impor-
tant is to gain understanding of how mutants clones
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Figure5. Schematic illustrating the different effects spatial
restriction can have on the waiting time until a fitness valley
is crossed, in the Moran Process and the contact process.
Nearest neighbor interactions represent the strictest degrees
of spatial restriction, while mass action corresponds to
perfect mixing of cells.

defined by different susceptibilities to specific therapies
develop in such spatial scenarios, both in the presence
and in the absence of treatment.

Advances in mathematics, technology, or data to meet
challenges

As more information is obtained about the spatial
evolutionary dynamics of tumors, both experimentally
and theoretically, spatial computational models will
increasingly form the basis for simulating disease
progression and therapy outcome for specific scenarios
and individual patients. In contrast to investigating
basic principles of evolutionary dynamics, however,
these applied questions will require the simulation
of tumor growth and evolution at realistically large
population sizes. Because this brings with it significant
computational costs, the simulation of cell populations
that reach sizes between 10'° and 10" cells becomes
unfeasible. The problem lies in the fact that while the
overall tumor population size is very large, mutant
cell populations exist initially at very small numbers,
which requires stochastic simulations. The time step
in stochastic simulation algorithms decreases as the
overall population becomes large, thus rendering such
computer simulations impractically slow. One way in
which this problem has been dealt with is to assume
smaller cell populations and higher mutation rates,
hypothesizing that the dynamics scale in realistic ways.
It is, however, currently unclear whether this holds
true. Therefore, to be able to simulate and predict
tumor development and treatments at realistically
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large population sizes and at realistically small
mutation rates, novel computational methodologies
are required. To this end, a modeling approach
has been proposed which assumes that the tumor
consists of discrete microlesions; cells can migrate
from microlesions to establish new ones, which can
all grow over time, and new driver mutations can
be generated [49]. From this model, the average
behavior can be obtained analytically, which allows
simulation of tumor dynamics and evolution at large
sizes. In order to capture the stochastic dynamics of
various mutant types, however, methodologies need
to be developed that allow the stochastic description
of small mutant clones in a spatial setting in realistic
time frames. Deterministic partial differential
equation approximations of such spatial, stochastic
processes generally do not yield accurate time series.
In the context of mixed populations (where stochastic
dynamics are simulated e.g. with Gillespie’s method),
novel computational approaches have been developed
(e.g. the Next Reaction Method and Tau-Leaping
methods), which try to address these difficulties.
There is also an important push in the development
of hybrid stochastic-deterministic approaches, where
small populations are handled stochastically, while
larger populations are described deterministically.
Such approaches have been typically employed in the
field of physical chemistry but have not significantly
penetrated the studies of population dynamics and
evolution, presumably because they can rely on
theoretical concepts (e.g. Langevin’s equation), which
are not very common in these fields. At the same time,
such approaches would be very useful for the field of
mathematical oncology, as demonstrated by a recent
study [50]. Application of such methodology to
spatial dynamics, however, is a complicated extension,
the development of which will be as challenging as it
is important. The ability to simulate spatial tumor
evolution at realistic population sizes and mutation
rates will be central to the development of clinically
applicable computational models of tumor evolution,
which can be used for the personalization of therapy
regimes.

Concluding remarks

The importance of spatial genetic heterogeneity in
tumors has penetrated clinical and experimental
cancer research. In various cancers, data indicate that
atumor mass can consist of regions that are genetically
distinct and that contain different mutants that can
influence the susceptibility of these cell clones/spatial
regions to therapies. The emerging biological details
about evolutionary patterns in spatially structured
appropriate computational
models to make more accurate and clinically
relevant predictions regarding disease course and
treatment outcome, and the availability of efficient
computational methodologies will be of central
importance in this respect.

tumors will allow
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Status

A tumour is a dynamic disease of the cell that, through
alterations in its genome and epigenome, leads to
its uncontrolled proliferation. Tumours are found
to vary dramatically across patients (inter-tumour
heterogeneity) and across cells within a tumour (intra-
tumour heterogeneity). Heterogeneity has been found
to be a major factor in cell adaptation driving spread
and response to therapy [51].

With the advent of high throughput sequencing
[52], there has been a dramatic development in the
characterization of inter-tumour diversity. Large scale
efforts, like The Cancer Genome Atlas or the Interna-
tional Cancer Genome Consortium, have portraited
the molecular make up of thousands of tumours gen-
erating diverse large-scale biological datasets. The
need to extract useful biological and clinical knowl-
edge from these efforts have highlighted the necessity
for new mathematical and computational methods to
analyse and integrate them.

The past few years have witnessed the further
development of a variety of techniques enabling sin-
gle-cell molecular measurements, including sequenc-
ing the DNA of single cells, or measuring their mRNA,
methylation, chromatin state or protein levels [53, 54].
Single-cell RNA sequencing constitutes a powerful
technology to address the problem of intra-tumor het-
erogeneity, enabling the quantification of transcrip-
tome landscapes at single-cell resolution, and provid-
inga tool to observe the dynamics of tumor evolution.

However, single-cell sequencing data comes with
some unique analytical challenges. These challenges
can be appreciated in dynamic biological phenomena
like cell differentiation or tumor evolution, continuous
processes where traditional clustering methods may
not be suitable. While clustering tries to split data into
seemingly distinct sets, the analysis of dynamic pro-
cesses needs methods that can capture the continuous
relation between cellular states. Topology is a branch of
mathematics that studies continuous transformations
of geometrical objects. Topological data analysis (TDA)
adapts techniques of topology to extract information
from the geometric and topological data structure. This
makes TDA amenable to deal with continuous data
structures and therefore, to analyze single-cell data of
dynamic biological processes, including cancers.

Current and future challenges
Ambitiouslarge-scalesingle-cell projectsaim to provide
atlases of millions of cells pushing the analysis into the
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paradigmatic ‘Big-Data’, high-dimensional scenario.
The variety of single-cell platforms and associated
unique technological challenges bring an additional
layer of complexity into the analysis. Associated
technological problems vary across platforms and
include drop-out effects, big sparsity of the data (on
the order of 90% of the inputs) and noisy biological or
technological variability in gene expression (typically,
around 99% of the variability is associated with
the noise). On the other hand, the discovery of rare
subpopulations and transitional cell states, which
may amount only to a dozen per experiment, present
unique computational challenges. Here, we would
like to emphasize two mathematical properties of the
underlying processes, that are useful when analyzing
single-cell data [55]: the continuity, associated
with cell differentiation and the locality property,
important in identification of different branches of cell
differentiation and small subpopulations.

In figure 6, we highlight these two important
attributes and principles. In figure 6(A), we show the
schematics of cell differentiation at different time-
points. Traditional clustering techniques only provide
limited information about well-defined cell states,
failing to explore continuous nature of cell differentia-
tion processes. Topological representation of the pro-
cesses, depicted in figure 6(A)(bottom), captures both
continuous structure of the process and well-defined
states of cells, associated with clusters. In figure 6(B),
we illustrate the locality property, important in pre-
serving differences in cell populations, that otherwise
are disregarded in lower dimensions. If locality is not
preserved, close cell types in high-dimensional spaces,
but biologically distinct can be artifactually misrepre-
sented as close (even identical) points in the reduced
space. As an example (see figure 6(B)), we took a 3D
“Trefoil” curve, where every point is distinct in the orig-
inal space. Low-dimensional representations, as MDS,
PCA and t-SNE algorithm among many others, tend
to create artifacts, by breaking the continuity or failing
to separate distinct points. Topological representation
respects both continuity and locality of every point.

Advances in mathematics, technology, or data to meet
challenges

In the past decade, TDA has emerged as a new
discipline at the interface between machine learning
and algebraic topology. The goal of TDA is to extract
and represent information about the shape of data.
One can think of single-cell data as points (cells) in
a high-dimensional space, where the dimensions
correspond to the number of features (typically
genes). Most constructions of TDA consist of replacing
the original space by a mathematical object called
simplicial complex, that captures topological features.
Simplicial complexes can be seen as generalizations of
networks (see figures 6(A) and 7).
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One of these properties is the skeleton of the space
or Reeb space which informs us about the number
of connected components in the space or how many
holes of different dimensions exist. Mapper [56] is
an algorithm based on TDA which constructs simpli-
cial complexes as approximations to Reeb spaces. The
result, when applied to single-cell data, is a network
where nodes represent sets of cells with similar global
transcriptional profiles, and edges connect nodes that
have at least one cell in common. In figure 7, we show
an example of a topological representation for single-
cell RNA sequencing of glioblastoma corresponding
to a patient sequenced in [57]. In this case, TDA is not
only able to disentangle different tumor and stromal
cell populations (figure 7(A)), but also to capture
intra-tumor heterogeneity. Figures 7(C) and (E) show

a different distribution of astrocytes and oligodendro-
cytes within the tumor population. Interestingly, from
panels B and D one can extract a certain correlation
between the neural progenitor signature and the more
proliferative cells and more astrocyte-like markers.

Concluding remarks

Single-cell technologies are a powerful tool to
study fundamental aspects of cancer biology at
an unprecedented resolution. This is generating
an increasing explosion of molecular data and
consequently, the necessity of new mathematical
methods to analyse it. On the other hand, the
intrinsic features of single-cell datasets constitute a
challenge for traditional methods of analysis based
on combinatorics and clustering. TDA is a modern
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mathematical set of tools which has a potential to
predict the dynamics of intracellular. Remarkably,
algorithms based on TDA preserve locality and can
capture the continuous nature of the biological
phenomena that are analysed at a single-cell level
[58—60]. This is crucial to understand better tumour
progression and evolution. Future work applying TDA
techniques may shed light on key questions in cancer

studies like the structure and information contained in
the tumour heterogeneity.
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Status
Altered metabolism is a hallmark of cancer that
enables cancer cells to meet the high energetic burden
required to support their increased proliferation.
Such metabolic reprogramming mediates cancer
progression, influences treatment efficacy, and
contributes to drug resistance. Thus, it is imperative
to better understand tumor metabolism, including
metabolic networks in cancer cells specifically, and in
other cellsthatcomprise the tumor microenvironment.
Systems biology approaches, including computa-
tional modeling, are needed to obtain a global under-
standing of the interconnected metabolites, enzymes,
and regulatory mechanisms that characterize cellular
metabolism. Systems biology methods allow controlled
exploration of the roles of multiple cell types, molecular
species, and biochemical reactions in cellular metabo-
lism. Such approaches focus on how individual comp-
onents of biological systems contribute to system func-
tion and behavior, facilitate a deeper understanding of
complex biological processes, and provide opportuni-
ties to develop new hypotheses and interventions.
There is a substantial and productive history of
applying computational modeling to study cancer, from
initiation through metastasis [61]. This work demon-
strates that computational models, refined by exper-
imental results can reveal effective treatment strategies
and provide unexpected predictive insights. In fact,
systems biology modeling complements pre-clinical
and clinical studies of tumor metabolism. Specifically,
systems biology models of cancer metabolism [62]
provide quantitative insight into the dynamics of meta-
bolic pathways, are useful in investigating the metabolic
mechanisms driving the cellular phenotype and have
helped identify potential therapeutic strategies. Thus,
systems biology approaches provide new insights into
metabolism and can lead to novel therapeutic strategies.
When constructed and validated using experimental
measurements, systems biology models can be used to
perform in silico experiments to predict the effects of
perturbing the metabolic network. In this way, the mod-
els are a valuable alternative to wet experiments that can
be expensive and time-consuming.

Current and future challenges

Many published metabolic modeling techniques have
focused on constraint-based approaches in which certain
physical, chemical, or biological constraints are applied
to predict the metabolic phenotypes. These are time-
invariant stoichiometric models that predict reaction
fluxes, which remain difficult to measure experimentally
at the systems-level. Genome-scale metabolic models
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have been constructed to explore the interconnected
metabolic pathways documented to occur in an
organism, including cancer-specific models [63]. Such
models provide insight into how particular oncogenes
influence metabolism, and they help identify specific
drug targets and biomarkers. However, constraint-
based models are static and fail to capture the kinetic
aspects in the system or time-varying heterogeneities
that arise due to environmental fluctuations.
Additionally, ongoing work is aimed at integrating
high-throughput omics data into constraint-based
models for a more comprehensive view of the metabolic
landscape. Overall, constraint-based models are widely
used, and they contribute to our understanding of the
role of metabolism in cancer progression.

Kinetic modeling is an alternative to constraint-based
modeling. When considering processes that are inher-
ently transient, such as the effects of reprogramming
of cancer metabolism, kinetic modeling is required to
understand the dynamicrelationships between metabolic
fluxes, metabolite concentrations, and microenviron-
mental conditions. Therefore, models that represent the
metabolic pathways using a system of nonlinear ordinary
differential equations are useful. These kinetic mod-
els provide a mechanistic description of the transient
dynamics of the system and have been used to identify key
enzymes associated with tumor growth and malignancy
and predicted the effects of targeting those enzymes [64].

Though highly valuable, kinetic modeling also has
some drawbacks. One limitation is that these models
require many kinetic parameters in order to accurately
characterize the reaction rates. This can be overcome
by fitting the model to quantitative experimental data
and estimating the parameter values needed to best fit
the data. Another limitation is that while these models
predict the dynamics of intracellular processes, they
rarely account for downstream effects that occur at the
cellular and tissue level.

Indeed, multi-scale modeling is a challenge imped-
ing the successful application of systems biology
approaches to address clinically relevant questions
related to cancer metabolism. There are two aspects to
this challenge. The first is a need for robust computa-
tional tools to link mechanistically detailed, dynamic
models of intracellular metabolism to tumor growth.
Second, there is a need for multi-scale models that link a
detailed metabolic network model to cell proliferation/
apoptosis and account for the heterogeneous, multi-
cellular tumor microenvironment. It is well established
that the internal dynamics of metabolism directly influ-
ence cancer progression. In addition tumor-stromal
interactions play an important role in drug resistance.
However, there is a lack of spatiotemporal models that
address these critical aspects of cancer metabolism.

Advances in science and technology to meet challenges
The key to advancing systems biology models of
cancer metabolism is to take advantage of existing
computational tools for performing multi-cellular
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simulations and link them with detailed models of
intracellular metabolism with cell- and tissue-level
dynamics. There are many computational models of
cancer cell growth and progression, but few simulate how
the dynamics of intracellular metabolism drives tumor
growth. Our recent work links a detailed kinetic model of
intracellular metabolism to population-level cancer cell
proliferation [64] but does not simulate the dynamics
of individual cells. Ghadiri and coworkers integrate a
constraint-based model with an agent-based model of
tumor [65]; however, this model does not evaluate the
metabolic fluxes within each cell as time progresses.

Some computational models of cancer predict meta-
bolic interactions between tumor cells. In one example,
Robertson-Tessi et al incorporate a simplified metabolic
model with angiogenesis and tumor growth and predict
treatment outcome [66]. They developed a hybrid con-
tinuum/agent-based model in which glucose and oxygen
are metabolized inside of the cell and directly influence
cell growth. However, these models rarely account for the
interactions and dependencies between cancer cells and
other cells in the tumor microenvironment. Moreover,
these models lump together several metabolic reactions
and thus cannot predict how targeting specific metabolic
enzymes influences cell growth.

Opverall, there is a clear gap in the application of
multi-cellular modeling combined with mechanisti-
cally detailed models, particularly in the context of
cancer metabolism. Some tools exist that enable com-
putationally intensive simulations of multi-cellular
environments; however, future work is needed to com-
bine these tools with computational models of metab-
olism reaction networks. We highlight two particular
tools: CompuCell3D and PhysiCell.

e CompuCell3D employs lattice-based Glazier—
Graner—Hogeweg (GGH) stochastic modeling of
generalized cells to simulate tissue-scale behavior
[67]. The generalized cell’s behavior (such as
proliferation, an increase in volume, migration,
and cell-cell adhesion) is driven by its effective
energy. The probability that a behavior is performed
depends on how that behavior changes the cell’s

effective energy (i.e. whether the potential behaviors
increase or decrease the energy). Behaviors that
lower the cell’s effective energy are preferred.
CompuCell3D has been applied in many instances,
including incorporating intracellular signaling
dynamics that influence the cells’ behavior [68].
PhysiCell implements oft-lattice cell agents to
model multicellular systems within a biochemical
microenvironment [69]. Cell agents interact via
direct physical contact or by exchanging diffusible
biochemical signals. This tool has been applied to
model up to 10° cells in tissue volumes of ~10 mm?.
In addition, PhysiCell makes it possible to link
intracellular networks with cell behavior. For
example, a Boolean model of cell signaling has been
embedded within each cell to simulate the effects of
breast cancer treatment [70].

Concluding remarks

With multi-scale, multi-cellular models in hand, it
would be possible to predict the effects of molecularly
targeted metabolism-based therapies on cancer cells,
neighboring cells in the tumor, and overall growth
of the tumor tissue. Such multi-scale models that
include detailed metabolic reactions in combination
with cell-cell interactions can be used to identify novel
cancer treatment strategies, serving as a framework to
hypothesize optimal drug combinations and treatment
protocols. We can draw upon work that successfully
integrates models of intracellular signaling models with
the cell-level response. And in the future, multi-scale
models that incorporate both signaling and metabolism
networks can even be combined. In conclusion, detailed
modeling of cellular metabolism is a clinically relevant
application of systems biology modeling that has the
potential to significantly impact cancer treatment.
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Status

Radiation therapy (RT) is the single most commonly
used cancer treatment. More than 50% of patients
receive radiation at some point in their cancer care,
either as curative monotherapy, in combination
with surgery, chemotherapy, or immunotherapy, or
as palliative therapy. Current RT practice is based
on maximum tolerated dose (MTD) concepts
independent of patient-specific biology. Treatment
protocols have been derived from average outcomes
of long-term empirical practices or large clinical
trials and continue because they have produced
reasonable outcomes. Despite a long history of
medical physics and physical concepts centered
around radiation dose delivery technology and
safety, few inroads have been made to synergize
quantitative approaches with radiation biology and
radiation oncology methodologies to optimize RT and
treatment personalization. Integrating mathematical
modelling with radiation oncology may have an
immediate impact for a large number of patients, and
help revolutionize how we conceive of and clinically
prescribe radiotherapy in the precision medicine era.

Current and future challenges

RT is the most successful treatment in cancer care that
canbe given with theintent to cure, as palliative therapy,
or potentially with the intent to convert the tumor into
an in situ vaccine [71]. Whilst a wealth of radiation
biology data has been, and continues to be collected,
few biological concepts have impacted clinical
radiation oncology relative to physical conformality of
dose. Historically, dose-escalation trials have focused
on increasing log cell kill with acceptable toxicities to
provide as much loco-regional control as possible.
In current RT practice, the treatment protocol
parameters (total dose and dose fractionation) are
prescribed a priori based on tumor type, disease stage,
nodal status,and metastaticburden [72]. Whilst cancer
is reminiscent of a complex dynamic adaptive system
that may be best understood by perturbing it, to date
no concerted efforts have focused on collecting and
evaluating longitudinal tumor states to personalize RT,
and on identifying markers for treatment adaptation.
To fully embrace the clinical potential of RT for
the patient population as a whole—and individual
patients in particular—we need to (i) determine the
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optimal total dose to control an individual patient’s
tumors, (ii) identify optimal dose fractionation, (iii)
explore the synergy of radiation with the patient’s
immune system as well as with (iv) surgery, biological
agents or chemotherapeutics. To prospectively
determine individual treatment protocols, we must
be positioned to reliably predict patient-specific
treatment responses.

Advances in science and technology to meet challenges
Quantitative approaches have shown great promise
in retrospective analyses of radiation outcomes [73],
correlation of pre-treatment tumor growth dynamics
with radiation sensitivity [1], and optimization of
dose fractionation in pre-clinical models [74]. To
fully harness the potential benefits of integrated
mathematical oncology, a close dialog between both
mathematical and radiation oncology needs to be
fostered [72]. With few high-resolution measurements
on the cellular and sub-cellular level, hope lies in the
anticipated collection of longitudinal data to inform
differential equation and equation models to help
simulate tumor growth and RT response dynamics.

In a preclinical model of glioblastoma an inte-
grated, iterative approach of experimental data
informing a mathematical model, the model pre-
dicting optimal radiation schedules, and subsequent
experimental validation yielded novel radiation frac-
tionation protocols that significantly improve survival
in mice [74]. Due to the nature of the differential equa-
tion model, glioma stem cell division mechanisms
were identified as contributing to improved survival,
which will warrant further evaluation. Challenges for
translating preclinical models into the clinic include
the scalability from a total of 10 Gy radiation dose
in one week for a mouse to the patient who receives
routinely 50-60 Gy over many weeks, as well as the
logistics of scheduling irregular hyperfractionated
protocols vis-a-vis the increasing trend for stereotactic
radiation.

Deriving an optimal total dose for individual
patients was recently achieved by combining a molec-
ular index of radiosensitivity (RSI), derived from gene
expression analysis from pre-treatment biopsy tissue,
with a mathematical model to derive a genomically
adjusted radiation dose (GARD) [75]. To personalize
dose fractionation, mathematical modeling of pre-
treatment tumor growth between the diagnostic scan
and radiation CT simulation has identified a prolif-
eration saturation index (PSI, figure 9) [76, 77]. Based
on PSI, patients can be non-randomly stratified into
standard daily fractionation, hypofractionation, or
twice-daily hyperfractionation protocols to achieve
optimal tumor volume reduction. The estimation of
GARD and PSI from, respectively, one or two patient-
specific data points neglects the opportunity for mul-
tiple mathematical models to comparably simulate the
data but potentially predict different dose and dose
fractionations. Prospective clinical trials are necessary
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model biomarkers. newly derived data will help to iteratively improve the
The timeliest and arguably most challenging modeltoinform the next generation of clinical trials.
research question for radiation oncology is the opti-
mal dose and dose fractionation to induce robust Concluding remarks
antitumor immunity, and how to optimally sequence  RT'is part of the therapy of more than half of all cancer
immunotherapeutics to harness RT-induced immune  patients, yet little research is directed to personalize
responses. Few radiation protocols have been evalu- radiation in the precision medicine era. Improving
ated specifically for immune activation, and even radiation treatment outcomes by a small margin will
fewer protocols have been studied with limited help more patients than the small target groups for
immunotherapy agents in vivo. Evaluating all possi- novel clinical agents. We foresee a strong opportunity
ble treatment combinations at different timing and to integrate mathematical modeling with radiobiology
at different radiation and immunotherapy doses is and radiation oncology to address the immediate
experimentally and clinically impossible. Mathemati-  challenges for personalized RT. With a long history
cal modeling of tumor-immune interactions trained of successful physical models in radiation oncology,
to simulate available experimental and clinical studies  integration of mathematical modeling may be straight
and validated on independent data sets may providea forward with a potentially large payoft.
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Status

Despite major advances in cancer therapies, most
metastatic cancers remain fatal because tumor cells
have a remarkable capacity to evolve drug resistance,
both through genetic and non-genetic mechanisms. A
common maxim in cancer treatment is to ‘hit hard and
fast’ through dose-dense strategies that administer the
highest possible drug dose in the shortest possible time
period. The maximum tolerated dose (MTD) principle
has been the standard-of-care for cancer treatment for
several decades. In fact, all cancer drugs must go through
a Phase I trial in which the MTD is established. The
MTD strategy, however, only rarely cures patients with
common disseminated cancers. An evolutionary flaw
in this MTD strategy is the assumption that resistant
populations are not present prior to therapy. It is now
clear that resistant cancer cells are almost invariably
present in the diverse cancer cell populations prior
to treatment. This accounts for the consistent failure
of MTD treatments to cure metastatic cancers, but
the consequences are actually worse. MTD therapy, is
designed to kill as many cancer cells as possible, although
intuitively appealing, actually accelerates the emergence
of resistant populations due to a well-recognized
Darwinian phenomenon termed ‘competitive release’.
As illustrated in figure 10, when high doses of drug
are applied continuously, competitive release allows
rapid emergence of resistant populations because of
the combination of intense selection pressure and
elimination of all potential ‘sensitive’ competitors.
An alternative evolution-based strategy delivers the
minimum effective dose (MED) that deliberately
maintains a persistent drug-sensitive population.
Treatment is then discontinued. Although the cancer
population regrows, there is no selection for resistance
so that it remains equally sensitive (figure 10). Through
repeated treatment cycles, the tumor remains under
control for extended periods of time. In mathematical
models and early clinical trials, we have found the length
of each cycle is highly patient-specific and can range
from 4 months to 1.5 years, but very much depends on
the specific cancer under consideration.

We have termed this approach ‘adaptive therapy’
and the eventual goal is to continuously adjust drugs,
doses, and treatment schedules to prolong tumor con-
trol [79, 80].

Furthermore, adaptive therapy is only one exam-
ple of a larger class of evolutionary-enlightened thera-
peutic approaches. Critically, as complex systems that
span multiple spatial and temporal scales, these thera-
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peutic perturbations of cancers often elicit non-linear
dynamics so that outcomes can be predicted only using
rigorously-defined, biologically-parameterized, and
clinically-driven mathematical models. The Math-
ematical Oncology field must develop models that pre-
dict treatment responses in specific patients to enable
the next generation of precision cancer medicine [81].

Current and future challenges
Optimal treatment strategies, based on observed
molecular targets, have been a focus of ‘precision
oncology’ for some time. However, this approach has
ignored a key piece of clinical reality—tumours are
heterogeneous and evolve under the selection pressure
of treatment. Therefore, even highly targeted and initially
successful treatments almost inevitably fail as the cancer
cells evolve adaptive strategies. Several mathematical
techniques have been developed to model treatment
outcomes. Evolutionary game theoretic approaches focus
on the interactions between distinct subpopulations
under different selection pressures in a frequency
dependent manner [81, 84-86]. Ordinary Differential
Equation models can capture population dynamics
but often at the cost of over simplifying the interactions.
More complex approaches, that explicitly include space
[82, 83] or bridge multiple scales, have also been
developed. However, a significant challenge with these
approaches is how to calibrate them for a specific patient,
since some of the parameters are abstract, e.g. fitness
benefit or cost. Further, even for minimal models some
parameters may be impossible to measure in a patient.

Assuming a model can be calibrated to a given
patient, thereisstill a great deal of uncertainty regardinga
specific fit since the model is gross simplification of real-
ity. One approach to tackle this uncertainty is to develop
multiple distinct models of the same tumour and gener-
ate an ensemble or consensus treatment plan, similar to
hurricane prediction. Another is to deliberately consider
all possible model parameter fits for a given patient as a
cohort of patients that closely mimic the dynamics of
the real patient. The successful in silico treatment strat-
egies for the cohort then predict optimal therapy in the
real patient. This ‘Phase i trial” approach [87] allows us
to both run an exhaustive array of all possible treatment
options on the cohort but also allows for the cohort to
be further refined as additional response data is obtained
throughout the course of treatment. Phase i trials can
also serve to bridge the divide between homogenous pre-
clinical models and heterogeneous clinical reality as well
as allowing for optimal strategies to be developed and
tested before a drug ever reaches a patient.

This temporally changing treatment paradigm is
a fundamental departure from the traditional fixed,
one-size-fits-all strategy, and needs to be driven by
a constant dialogue between model prediction and
patient response. However, measuring and quantify
patient tumour burden as well as intratumoural evo-
lution during therapy using clinically-available patient
data remains a major challenge.
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Advances in mathematics, technology, or data to meet
challenges

There is a problem with big data in cancer. Its spatial
scale is entirely molecular, it averages the properties
of a large and heterogeneous population of cancer
cells, and it is both an invasive and destructive
procedure such that it is often only obtained at a
single time point. While genome scale data can direct
the choice of specific cancer drugs and potentially
classify patients into different categories, it is mostly
utilized in a correlative manner. If we hope to build
mechanistic predictive mathematical models, most
of ‘big data’ in cancer is the wrong data. It is not
longitudinal, not spatial, only from one scale, averaged
and homogeneous, not correlated or co-registered,
and not analyzed within an appropriate micro-
environmental context. There is an urgent need to
gather the right data that will allow us to better define
the cancer system and connect the scales of cancer,
bridging genotype to phenotype, cell to tissue, organ
to organism and individual to population. Because
of the complex and dynamic nature of cancer it will
not be sufficient to simply interpolate between data
over these diverse spatial and temporal scales, rather
we need to functionally integrate them through
mathematical and computational models.

For a cancer patient, the reality of monitoring dis-
ease burden over time with sufficient frequency and res-
olution is currently infeasible. New technologies need
to be developed that can readily monitor tumor burden
in non-invasive and cost-effective ways that will directly
facilitate the model prediction—treatment response
loop of evolutionary therapy. The right data will depend
on the potential treatments available, the specific cancer
under consideration, and the constrained reality of clin-
ical practice. Serum markers are currently our best can-
didates. However, not all cancers have a good surrogate
for burden (e.g. Prostate Specific Antigen). Circulating

DNA and circulating tumor cells are emerging areas of
intense investigation and hold significant promise but
these markers focus on molecular scale changes.

Thus, an additional challenge is linking mecha-
nistic mathematical models to the genomic as well as
the phenotypic scale. However, connecting the wealth
of quantitative genomic information from a patient
with functional cellular phenotypes remains an open
question. Some progress is being made using machine
learning approaches and mathematical models are
emerging of cancer evolution at the genomic scale [88].

Concluding remarks

There are currently 52 drugs approved for treatment of
metastatic prostate cancer. Yet, every man who develops
metastatic prostate cancer this year will not survive his
disease. Throughout the past century, cancer therapy
has focused entirely on the continuous development of
new and more effective drugs. However, this enormous
investment in time and resources has yet to significantly
reduce the mortality rate of most common, adult
metastatic cancers. Clearly, the drive to develop new
and more effective cancer treatments is necessary.
However, it is possible that the major impediment to
improved outcomes in many cancers is not the absence
of effective drugs but the absence of effective strategies.
Thus, we view a key role for Mathematical Oncology
is the development of patient calibrated mathematical
models that integrate evolutionary first principles into
cancer therapies to improve outcomes.
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Status

Somatic evolution is now recognized as a central
force in the initiation, progression, treatment, and
management of cancer. This has opened a new front
in the proverbial war on cancer: focusing on the
ecology and evolutionary biology of cancer. On this
new front, we are starting to deploy new kinds of
mathematical machinery: fitness landscapes and
evolutionary games.

A fitness landscape is a mathematical space where
each point is a possible genotype or phenotype; two
points are adjacent if they differ in a mutation or epimu-
tation at a single locus; and each point has an associated
fitness value. We often visualise evolutionary dynamics
as ‘climbing up the hill’ of fitness values—although in
high dimensional spaces it might be better to replace the
mountain metaphor by a maze metaphor [89].

A central feature of fitness landscapes is the
amount and kind of interactions between loci—such
interaction is called epistasis. Synthetic lethality is a
particularly important kind of epistasis for cancer
cells. If there are mutations at two loci which each
change the fitness in one direction when they occur
on their own, but in the opposite direction when they
both occur together—either bad + bad = good, or
good + good = bad—then the landscape is said to
have reciprocal sign epistasis. It has been shown that any
fitness landscape with more than one local peak must
have reciprocal sign epistasis.

Fitness landscapes conceptualize fitness as a single
scalar value—a number. But a scalar can only express
cell-autonomous effects, where fitness is inherent
to the properties of a single cell. But cancer displays
important non-cell-autonomous effects that allow fit-
ness to depend on a cell’s micro-environmental con-
text, including frequency of other cell types [90,91]. To
accommodate this, evolutionary game theory (EGT)
views these cell types as strategies, and models fitness
as a function, which depends on the abundance of
strategies in the population. On the surface, the games
perspective is more expressive, since scalars can be rep-
resented as constant functions.

But as always we pay for greater expressiveness by
a loss of analysis techniques. For example, when deal-
ing with fitness landscapes, we can often consider the
strong-selection weak-mutation limit, which allows
us to replace a population by a single point in the
landscape. In the case of evolutionary games, such an
approximation is unreasonable since it would elimi-
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nate the very ecological interactions that EGT aims
to study. This means that the strategy space that can
be analysed in an evolutionary game is usually much
smaller than the genotype/phenotype space consid-
ered in a fitness landscape. Typical EGT studies con-
sider just a handful of strategies (most often just two
[90, 92, 93]), while fitness landscapes start at dozens
of genotypes and go up to tens of thousands (or even
hyper-astronomical numbers of genotypes in theor-
etical work [89]). However, there is ongoing work on
adaptive landscapes that aims to combine the strengths
of fitness landscapes and game theory.

Game theory models have so far had more direct
impact in oncology than fitness landscape models.
The standard approach has been to develop a game
theory model from the bottom up, starting from a
reasonable reductive grounding and adding micro-
dynamic details. This is in keeping with the reduction-
ist tactics used on the old cell and molecular biology
front. For example, Basanta et al [92] studied motility
in cancer by defining two intuitive strategies: Go ver-
sus Grow. The first model included no spatial aspects;
later work built on this by adding minimal spatial
effects and considering the heterogeneity of spatial
structure in a tumour [93]. This progression to more
complicated and detailed models is a common pattern
among EGT models in oncology. The other common
aspect is that the games rely on biological or clini-
cal intuition; the exact game parameters are seldom
measured. This EGT perspective has helped oncolo-
gists to express a number of interesting theoretical
consequences of non-cell autonomous processes, but
has only recently started to be translated into direct
experimental work.

Current and future challenges

Compared to EGT, fitness landscapes have not
been as extensively used beyond mental models
in oncology. But they have been central to work in
understanding evolution of Escherichia coli and
yeast. The most notable example might be Lenski’s
long-term evolution experiment with E. coli that has
been propagating 12 initially identical populations
for over 70000 generations since 24 February 1988.
Another example is the study of the evolution of drug
resistance in microbes [94], which has direct parallels
to evolution of resistance in cancer.

The key difficulty in developing fitness landscape
models for oncology is that cancer cells are more com-
plex, and oncological experimental systems are less
well-controlled, than their microbial counterparts. In
particular, micro-dynamical foundations of somatic
evolution, reprogramming of human cells, and in vitro
mutation operators are less well understood. The tac-
tic from the old front of the molecular and cell biology
of cancer would be to study and classify these micro-
dynamics in more and more detail. On the new front of
somatic evolution, we have a more promising tactic—
abstraction.
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Figure 11. The same effective game [95] implemented by three different population structures and reductive games; from left to
right: inviscid population, random 3-regular graph, experimental in vitro non-small-cell lung cancer [91].
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For a computer scientist, abstraction is a way to
hide the complexity of a computer system. It is a way
to make programs that can be used and re-used with-
out having to re-write all the code for each new comp-
uter. In this sense an algorithm is an abstraction of the
actual sequence of bit flips that carry out the physi-
cal process that is computation. To turn it around:
the physical process carried out by your computer is
then an implementation of some abstract algorithm.
Abstraction and implementation are in some sense
dual to each other.

Using this kind of abstraction, the tools of theor-
etical computer science can be introduced into oncol-
ogy to reason rigorously about our models without
knowing all the details of the implementation. For
example, using computational complexity Kaznatch-
eev [89] conclude that there are ‘hard’ fitness land-
scapes where no evolutionary dynamic can find local
fitness optima in polynomial time. This is an abstrac-
tion over the micro-dynamical basis of evolution. If
such fitness landscapes occur in tumours, then—no
matter how complicated the (re)programming of the
cell or how strange and biased the mutation oper-
ator—the cancer cells will not reach a local fitness
peak and thus will always provide a moving target for
therapy. It becomes an empirical problem to find out
if such landscapes occur in cancer. And it becomes a
theoretical problem to discover other abstract prop-
erties of fitness landscapes that are robust under any
implementation of the evolutionary micro-dynamic.

Abstract objects or processes are multiply-realizable
by several concrete objects or processes. The concrete
objects might differ from each other in various ways,
but if the implementations are ‘correct’ then the ways
inwhich they differ are irrelevant to the abstraction. The
abstraction is less detailed than the implementation but
captures essential features precisely.

It might seem like connecting more closely to
experiment must always make a model less abstract.
But this is not always the case: the act of measurement

itself can be a way to abstract. This is achieved with
phenomenological or effective (instead of reductive)
theories, and is easiest to illustrate in a game theory
model. For example, Kaznatcheev et al [91] developed
agame assay based on the frequency and growth rate of
types (as opposed to the more standard view of fitness
of tokens or specificindividuals). The focus on abstract
types lets us absorb all the details of spatial structure,
interaction length-scales, reproductive strategies, etc
into the measurement of the type fitness [91, 95]. It is
nature that figures out the particular computation that
transforms token fitness into type fitness (see figure 11
for 3 examples) and we do not need to know it once we
are working at the level of the abstract effective game:
the abstract measurement is enough to derive the pre-
dictions of the model. A downside, of course, is that we
cannot describe the specific way token fitness is trans-
lated into type fitness in our system. But future work
can push the abstraction down, so that more details
of the implementation—such as the effects of spatial
structure—can be extracted [95]. This approach has
already led to both new theoretical frameworks and
new experimental techniques for analysing evolution-
ary games in microscopic cancer systems [91, 95], but
more focus on effective theories is needed—especially
for fitness landscapes.

Advances in mathematics, technology, or data to meet
challenges

Although games can be viewed as a generalization of
fitness landscapes, the game assay can only be used for
a small strategy space. The size of a fitness landscape,
however, is exponential in the number of loci, so it
quickly becomes impossible to explicitly measure and
record the fitness of every single possible genotype
(or strategy). This barrier cannot be overcome by
better technology or experiments. Instead, we need
to focus on fitness landscape models with compact
representations that are learnable from a polynomial
number of samples. These compact representations
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are akin to rules for genotype-phenotype maps (where
the relevant phenotype is fitness): they specify a rule
for computing the fitness value from the genotype (or
atleast the relative order of fitness), instead of explicitly
storing a fitness value for each genotype.

To find compact representations it is tempting to
turn to existing representations like oncogenetic trees
or cancer progression models (CBN and CARPI, in
particular), but these models cannot express the recip-
rocal sign epistasis that makes for interesting fitness
landscapes [96]. Instead, we need models that can repre-
sent gene-interaction networks with low-order epista-
sis (a classic example would be spin glasses) [89, 97].
These gene-interaction networks can express recipro-
cal sign epistasis. Most importantly, such networks can
be inferred from polynomially-sized local fitness land-
scapes: from fitness values just a couple of mutations
away from a wildtype, instead of measuring every pos-
sible combination of mutations. Such local landscapes
have been measured in yeast [98], similar measurement
techniques need to be developed for cancer systems.
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Concluding remarks

On this new front in the war on cancer that was
opened by somatic evolution, we not only need new
mathematical machinery, like fitness landscapes
and evolutionary games, but also new tactics, like
abstraction. To handle complex systems like cancer
where we do not know the detailed evolutionary
micro-dynamics we need abstract models that extend
the tools and techniques developed in microbiology
and ecology to handle multiple-realizability. The
lesson from computer science is that rigorous
abstraction provides great theoretical power. And
experimentally, we need to recognize that abstract
is not the opposite of empirical. Abstract models can
serve as phenomenological (or ‘effective’) theories
that use carefully defined measurements to account
for multiple-realizability from unknown micro-
dynamic details. Developing this approach will allow
us to better use the mathematical machinery of fitness
landscapes and evolutionary games for understanding
and treating cancer.
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Status

Predicting, detecting, and preventing drug resistance
is an enduring challenge in clinical oncology. The
initial development of targeted therapies provided
hope that targeting the unique molecular drivers of
a tumour would allow for more precise treatment
with fewer clinical side effects. However, in many
cases, after a transient killing of tumour cells, drug
resistance leads to therapeutic failure. Indeed, cancer
is an intrinsically evolutionary process in which
cell populations comprising the tumour adapt and
evolve in response to the selective pressures placed
upon them, particularly anti-cancer therapies [99].
Cancer treatment is subject to the same dilemma of
drug resistance that has complicated the treatment of
infections with antibiotics [100]. In both cancer and
infectious diseases, drugs apply a selective pressure
that yields higher frequencies of phenotypes better-
suited to survive in their environment. Even the most
advanced therapies are ultimately at the mercy of the
Darwinian principles of evolution.

When it comes to discerning the separated time
scales of this evolution of drug resistance, we have
found a singularly focused strategy to be insufficient.
As we strive for our work to tangibly affect clinical care,
the fields of population genetics, evolutionary and
adaptive dynamics, and statistical physics may offer
models and tools that provide an improved under-
standing of the temporal dynamics of resistance evo-
lution and the necessary timescales of potential inter-
ventions (figure 12). Two specific examples from the
emerging field of evolutionary therapy have demon-
strated how the marriage of disparate theoretical and
experimental tools have brought us closer toward the
goal of evolutionarily informed therapy.

One body of work utilizes evolutionary game
theory (EGT) to deliver insights into the qualitative
relationships between the ‘players’ in the tumour
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micro-environment. Another complimentary strategy
models cancer evolutionary dynamics on fitness land-
scapes and is more amenable to genomic sequencing
data and addressing tumour heterogeneity.

While we only discuss two models here with several
unanswered questions standing in the way of their full
potential, we believe they represent research strategies
that are ripe for the interdisciplinary scientific groups
and institutes of today and beyond.

Current and future challenges

Evolutionary game dynamics have been found to
describe diverse phenomena in cancer ranging
from IGF-II production in pancreatic tumours
to tumour-stroma interactions in prostate cancer
[101, 102]. While these models may yield insights
into the qualitative relationships between the players
in the tumour micro-environment, it is unclear if
the evolutionary game modelled in different cancers
is applicable to other cancers, or even every patient
with a given cancer. Furthermore, the payoff matrix
used to describe the games played in most models
of evolutionary games is not empirically derived,
but rather inferred from clinical intuition. It seems
that a means of measuring these micro-dynamic
interactions among tumour cells in any given tumour
is necessary.

An additional drawback of the EGT formalism is
the difficulty in using it to characterize the vast het-
erogeneity and mutational activity that are critical
components of the evolution of drug resistance. Cur-
rent biological methodologies may only allow for the
study of interactions between a few cell types. Studying
fitness landscapes may address this issue of account-
ing for tumour heterogeneity. Fitness landscapes are
a genotype-phenotype map, in which each allele is
assigned a corresponding fitness and set of neigh-
bouring alleles. Suggested first by Sewall Wright, in
the canonical model of fitness landscapes, each allele
can be represented as a string of ones and zeros corre-
sponding to mutated and wild-type alleles, respec-
tively. The entire landscape can be represented as a net-
work of these bit strings with a hypercubic topology.
Each node has its own fitness, and evolution proceeds
as a biased random walk through the winding maze of
genotype space, as it tends toward the most fit geno-
types available to it [103].

Any environmental condition (i.e. cancer thera-
pies) can apply a selective pressure to a population (i.e.
a tumour) that specifies a corresponding fitness func-
tion over the domain of genotype space (figures 13(C)
and (D)).

For fitness landscapes to be clinically useful there
are challenges to be overcome. These include, but are
not limited to: measurement, definition, and inference
of fitness landscapes in clinically-relevant contexts and
determination of appropriate time-scales of possible
interventions.
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molecular mechanisms that can be observed at the time of biopsy potentially confers finite drug sensitivity phenotypes.

Proposed research: identify
signatures of convergent
evolution of sensitivity

A B

0:100 20:80 40:60 60:40 80:20 0:100

000000 -

e 88

- 00! Alectind

C

© Fitness peak A
« Fitness peak B °
@ Branch point
o Wil Type

_ A
°
ssauly

Figure 13. (A) Diagram of experimental setup, with varying proportions up drug sensitive (red) and resistant (green) cells. (B)
Parameterization of the two-player game matrix, given the linear relationship between growth rate of drug resistant cells and
proportion of seeded sensitive cells. (C) 2D representation of a fitness landscape in which the x-y plane represents genotype, and
the landscape height represents fitness. From a single starting point of the wild-type genotype, diverging evolutionary trajectories
emerge from saddle points, ending at multiple possible local fitness optima. (D) A six locus landscape drawn as a directed graph,
in which each node is a genotype and each edge represents an evolutionary path between them. Arrows illustrate potential paths
through multi-dimensional genotype space, toward local fitness optima as shown in panel C.

Advances in mathematics, technology, or data to meet
challenges

We have recently suggested one method to
experimentally parametrize EGT matrices: the
evolutionary game assay. We observed in our cultures
of alectinib resistant and sensitive lung cancer cells a
linear frequency dependence of resistant cell growth
rate on the proportion of sensitive cells, allowing us
to represent the interactions in the four conditions
studied as a two-strategy matrix game and infer the
games played [91]. We showed thatin our experimental
system of drug resistant and sensitive cells, in the
presence of alectinib and stromal cells, a qualitatively
different game is being played (figures 13(A) and (B)).

Our evolutionary game assay is designed specifically to
capture the ‘effective’ game being played. Along with
work aimed at characterizing how spatial information
implies information about tumour-environment
interactions, our assay to empirically measure games
may be used to design clinical trials in any cancer type
(82,104].

To address our game theory assay’s inadequacy at
accounting for tumour genetic heterogeneity, we turned
to fitness landscapes. Our theoretical work has revealed
an interesting feature of an evolving population sub-
jected to sequential drugs: evolution through these
sequential drug landscapes is irreversible. Given com-
plete information of each fitness landscape, this feature
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allows for what we call ‘steering’ using drug sequences,
thatis, using drugs to purposely push the cancer cell pop-
ulation to states of sensitivity from which resistance isless
likely to be reached [94]. This steering of evolutionary
dynamics reveals yet another strategy for evolutionary
therapy. We propose that with the advent of computa-
tional methods to infer fitness landscapes on temporal
and genomic scales, one could design patient-specific
steering drug regimens to minimize drug resistance.
We have performed further high throughput evolution
experiments that suggest its feasibility [ 105].

Addressing the previously described challenges
of utilizing fitness landscapes to optimize treatment
sequence regimens may require exploiting the close
analogy between evolutionary fitness landscapes and
energy landscapes in other contexts. Techniques from
statistical physics that allow for the inference of prop-
erties of energy landscapes through experimental
probes or protocols that vary the stochastic dynam-
ics of these landscapes over time, can potentially be
adapted to the evolutionary context.

Concluding remarks

Our EGT assay and evolutionary steering method
provide examples of how understanding the evolutionary
dynamics of cancer through both theoretical and
molecular biological tools can lead to more effective
treatments for patients. In the future, this can lead to
treatment sequence regimens optimized to steer a tumor
away from resistance and treatments that alter the tumor
microenvironment to modulate the evolutionary game
being ‘played’ and decrease the resulting proportion
of resistant cells. As both frameworks highlighted
here have their advantages and drawbacks, it is only by
exploring them in concert and considering how they
may complement each other that we can apply them
most effectively. Fitness landscapes’ failure to address the
tumour micro-environment, for instance, motivations
exploration of EGT, which is well suited to examine such
interactions. To look forward we must look backward,
extending and blending these readily available tools.
The application of these well-established theories,
methodologies,and drugs, re-imagined and reconsidered
in novel ways is a promising path forward to overcome
therapeutic resistance in cancer.
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