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Learning sensorimotor control with neuromorphic
sensors: Toward hyperdimensional active perception
A. Mitrokhin*, P. Sutor*†, C. Fermüller, Y. Aloimonos

The hallmark of modern robotics is the ability to directly fuse the platform’s perception with its motoric ability—the
concept often referred to as “active perception.” Nevertheless, we find that action and perception are often kept in
separated spaces, which is a consequence of traditional vision being framebased and only existing in themoment and
motion being a continuous entity. This bridge is crossed by the dynamic vision sensor (DVS), a neuromorphic camera
that can see themotion.Wepropose amethodof encoding actions andperceptions together into a single space that is
meaningful, semantically informed, and consistent by using hyperdimensional binary vectors (HBVs).We usedDVS for
visual perception and showed that the visual component can be bound with the system velocity to enable dynamic
world perception, which creates an opportunity for real-time navigation and obstacle avoidance. Actions performed
by an agent are directly bound to the perceptions experienced to form its own “memory.” Furthermore, becauseHBVs
can encode entire histories of actions and perceptions—from atomic to arbitrary sequences—as constant-sized vec-
tors, autoassociative memory was combined with deep learning paradigms for controls. We demonstrate these prop-
erties on a quadcopter drone ego-motion inference task and the MVSEC (multivehicle stereo event camera) dataset.
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INTRODUCTION
In recent years, the limits of modern artificial intelligence (AI) and
learning have been thoroughly explored in a plethora of datasets,
learning architectures, general tasks to solve, and modalities of data. In
addition, focus is shifting to what AI can do for modern robotics and
what new forms of it are necessary. What is the science of putting
together the different cognitive modalities of an intelligent system, such
as vision, motoric actions, audio, and other various sensors? Currently,
there are no real theories on how to feasibly achieve this,mainly because
the representations and processing or learning techniques involved in
the different disciplines also differ greatly from each other. Each time
a new task is explored, scientists tend to start from the individual
components.

One of themore important facets ofmodern robotics is the notion of
integrating the sensory perceptions experienced by an agent with its
motoric capabilities—the actions it can perform—to facilitating active
perception (1, 2), which is considered vital to the existence of auton-
omous, learning agents that experience the world and are required to
interact with it to the best of their abilities (3, 4, 5). The issue of separa-
tion of modalities is present in this discipline; the perceptual space and
the action space are mainly kept separate, with a central learningmech-
anism to infer the action given the perception or vice versa. Likewise, the
various forms of perception themselves are largely learned or processed
separately, embedded into vector representations, and essentially con-
catenated together as input to the aforementioned central learning
mechanism. It is clear that we must do better than this. Ideally, the per-
ceptions and actions experienced in the moment and in the past should
influence the future actions of the agent and perhaps even bias its ex-
pectations for future perception. The main concern is how to integrate
the two vastly different modalities of action and perception together in
an effective way.

We propose starting with an integration constraint from the raw
data themselves, that is, from the beginning, we require that perception
and action need to eventually “bind” together. For this to happen, there
should be some currency through which the perceptual module will
interact with the control module or the planning module and so on.
This currency is the hyperdimensional vector, a vector that exists in an
extremely high-dimensional space. Here, we mainly concern ourselves
with hyperdimensional binary vectors (HBVs) and the notion of fa-
cilitating hyperdimensional active perception (HAP). Whether you are
an image, video, motion sequence, control sequence, concept, word, or
sound, you are represented by an associated HBV. Furthermore, if you
are a sequence of any of these modalities, then you are also an HBV of
equal dimension constructed by constituent elements of the sequence,
thereby existing in the same space as an encoding. Last, when considered
together, such as a mix of modalities or sequences of them, this is also
represented by an HBV constructed by binding each modality together,
with, yet again, equal dimension. The integration problem now acquires
newmeaning—all information is represented as long binary vectors that
are meaningfully constructed.

Although the philosophy of how to handle different modalities of
data is important to facilitate active perception, we must also consider
the “hardware” aspects. Some sensors are more suited to perceiving
information that we consider suitable for the problem. Classical vision
tends to focus on cameras that are red-green-blue (RGB) light intensity
based, although we find that biological organisms tend to interpret
signals in very particular ways. One example of this is motion. Motion
is not well represented in classical cameras and vision techniques—a
consequence of traditional vision being frame based and only existing in
the moment, whereas motion is a continuous entity. So-called neuro-
morphic cameras attempt to capture this notion of seeing motion. The
more recent development of the dynamic vision sensor (DVS) follows
these lines in an interesting way, seeing sparse events in time, as opposed
to pixels and intensities. With the introduction of such neuromorphic
hardware, we are ready to cross the bridge of frame-based vision and de-
velop a concept: motion-based vision. The event-based sensor provides
dense temporal information about scene changes, allowing for accurate,
fast, and sparse perception of the dynamic aspect of the world. When it
comes to the marriage of action and perception, the fast, asynchronous
events that the DVS sees are desirable for facilitating action. As of now,
there are no real standards for how to effectively learn from DVS in the
manner done for regular RGB cameras; it is all experimental.
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After recent accounts in the field (6), an “active perceiver knowswhy
it wishes to sense, and then chooses what to perceive, and determines
how, when and where to achieve that perception.” The “what” question
has to do with scene selection and fixation. The “when” question has to
dowith temporal selection, an instant in time and an extent (a history or
episodic memory). The “how” question has to do with mechanical
alignment, sensor alignment, and priming, and the “where” question
has to do with viewpoint selection and the relationships between agent
pose, sensor pose, and object pose.

All these questions can be addressed using our hyperdimensional
framework. The what question amounts to developing a scene model
from a series of fixations. Each fixation is characterized by “location”
and “content” (the image in a window around the fixation point). If
Xi is the hyper vector denoting the fixation location and Yi is the hyper
vector denoting the image around Xi, then by binding Xi to Yi and
summing up the hyper vectors for all fixations, we obtain ∑Xi*Yi, a
scene hyper vector based on fixations. Similarly, the when question
can be addressed with hyper vectors. If V(t) and M(t) are the visual
and motor signals during an action over time t, then for any t, the
binding of the hyper vectorV(t) withM(t) gives a new hypervector that
is an “instant.” Turning a sequence of such instants into a new hyper-
vector leads to a history vector. The same can be said about the rest of
the questions: For example, alignment problems amount to servoing of
different kinds, where servoing is viewed as a prediction of an action
with a goal. All of the above constitute future research goals.

Here, we focus on a simple problem that will allow us to evaluate our
approach in depth. Thus, we focus on the problemof three-dimensional
(3D) motion. First, we describe a framework for integrating multiple
modalities such as perception and action together into a single space
to produce features for learning in a manner that is desirable for active
perception. In addition, we show how the DVS can be used in such a
framework.We begin with some background information about HBVs
andwhat they are capable of.Next,wedescribe how recentwork onHBVs
can be used to effectively generate meaningful, semantically informed
HBVs and integrate them together to form representations for sequences
or sets of data. After that, a method for encodingmore complex signals,
such as images, is discussed.We then describe recent work onDVS that
was used to generatemotion-based perception and howHBV represen-
tations of this can be made. In addition, we describe a method for in-
tegrating action and perception into a single space and show how the
resulting HBVs could be used as “memories” of previous actions and
perceptions. We show results on the use of HBVs with DVS-based in-
formation and how it compares with amore traditional vision approach
to DVS signals to predict velocity and ego-motion. Last, we discuss our
results andhow they canbeused in future applications to further facilitate
the use of HAP and form amore coherent path to better AI in robotics.
RESULTS
In this section, we discuss the formalization of our HAP framework for
the integration of action and perception, and any background informa-
tion needed to understand it.We then provide experiments demonstrat-
ing the properties of this framework and how it can be used to facilitate
active perception and create memories using a neuromorphic camera.

Properties of HBVs
Much of the inspiration behind the ideas discussed in this paper comes
from Kanerva’s work on hyperdimensional computing (7). The basic
idea is to think about what sort of operations and information are com-
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
putable and encodable with vectors of extreme dimensions. In the case
of binary inputs, we find that there are several desirable properties in-
herent to the space ofHBVs.Wedescribe these properties in this section
to provide some necessary background.

Consider the case of a binary vector space of 10,000 dimensions,
containing a staggering number of unique vectors (exactly 210,000). It
is unlikely that any system will require so many unique vectors because
it would not even have enough time to enumerate all possibilities. The
space forms a very high-dimensional hypercube, with as many vertices
as unique points, and it is apparent that the distribution of points (ver-
tices) from the perspective of any one point (vertex) is always the
same. This is akin to how a cube looks the same from the perspective
of any corner. Thus, binary vectors are a way to create “arbitrary” re-
presentational vectors for computers.

Consider the Hamming distance (H) between two binary vectors
∣a*b∣, where * is the bitwise XOR operation and magnitude is the
number of 1’s in the result. The number of components of dis-
agreement between a and b is thus the distance between them. We
can normalize this value to be agnostic to the dimensions of the vectors.
If n is the dimension of the vectors, then H can be normalized to the
range of values between 0 and 1 by dividing the result by n, referred to as
normalized Hamming distance (Hn). By assuming that each binary
vector is equally likely, it is clear that the average Hn between vectors
is 0.5 (5000 bits), with an SD of 0.005 (50 bits), by a binomial dis-
tribution. The same is true for the distribution of distances from any
one point to any other point. However, straying from the average dis-
tance of 0.5 is very difficult. Because each increment 0.005 is an SD, it is
highly unusual for two random vectors to have a distance of 0.475 or
0.525, which is a whole 5 SDs. Even a distance of 0.333 is far too unlikely
to be random. As a result, HBVs are quite tolerant to noise in measure-
ment. A distance deviating a few SDs from 0 may as well be the same
vector inmost applications. Likewise, randomlydrawnvectors are nearly
guaranteed to be close to a distance of 0.5. As a consequence, HBVs are
very good candidates for encoding various forms of information into
constant-sized vectors.

Kanerva describes three particular operations that are well suited for
encoding information:

1) The XOR operation: Because XOR is an involution when one
operand is fixed, associative, and commutative, we have that c * a =
(a * b) * a = b. We can recover a or b exactly if we have one or the
other or approximately when noise is present.

2) The permutation P: This permutes a vector x’s components
into a new order by computing the product Px. If the permutation
is randomly generated for a long binary vector, then the new binary
vector is very likely to have a Hn ≈ 0.5. We can represent P as a
permutation of index locations 1 to n. The product simply swaps
components of x to the order in P.

3) The consensus sum, c+(A), over the set of vectors A, or simply
x+c y+c z: This sum counts 1s and 0s component wise across each
element of A and sets the component to the corresponding value
with the bigger count. Ties, only possible in a sum of an even number of
elements, can be broken by randomly choosing 0 or 1.

Other options exist for encoding, but these three are of particular
concern to this paper. Note that mapping by XOR or permuting pre-
serves distances. For a given mapping a

Hða*x; a*yÞ ¼ ∣a*x *a*y∣ ¼ ∣a*a*x *y∣ ¼ ∣x *y∣

HðPx;PyÞ ¼ ∣Px*Py∣ ¼ ∣Pðx*yÞ∣ ¼ ∣x *y∣
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The permutation example, in particular, is due to permutations
distributing across XOR and the fact that permutations do not change
the number of 1s or 0s in the result of an XOR.

With the three operations above, we can now represent more
complex data structures entirely with HBVs:

1) A set can be represented as follows: Given {C1, C2,…, Cn} and
a mapping of each element to HBVs z1, z2,…, zn, we encode the set
as the XOR of each HBV or as

z ¼ z1 *z2 *…*zn

Nomatter the order of each Ci, the representation will always be the
same, thus imitating a set. There are some limits to this representation.
For example, although testing equivalency is simple (check whether
XOR is the 0 vector), testing membership and enumeration cannot
be done without having another binary vector representation in place
specifically for this. Furthermore, adding the same element has the effect
of removing it, and care must be taken to prevent that from occurring.

2) Similarly, for an ordered pair (A, B), we can choose a random
permutation P and encode the pair as c = Pa *b, where a and b are
the HBVs associated with A and B, respectively. The permutation P
thus encodes the data type of the ordered pair as well. Given c and
knowing P and one of the pairs, the other can be found.

3) Sequences can be interpreted as a succession of ordered pairs.
Thus, a sequence C1, C2,…Cn is equivalent to

c ¼ Pn�1c1*P
n�2c2*…*cn

where ci is the corresponding HBV. ThePi refers to a permutation that
has applied itself to itself i times, before being applied to theHBV’s com-
ponents. Note that XORing two separate sequences will remove any
patterns they both share. Furthermore, sequences can be shifted by per-
muting the vector againwithP tomove further backward (to add a new
part of the sequence), or these can be shifted forward in time by apply-
ing P−1 or the depermutation.

4) Data records are referred to by Kanerva as a method for storing
object-like properties. For example, a data record could consist of name,
age, and sex. Each of these is given a random identifier ri, and the data
record format can be represented as a matrix R = [r1r2…rn]. To bind a
value to each identifier, we can XOR the value with the corresponding
identifier. Thus, given i values, vi, a particular data record is repre-
sented as

R*V ¼ ½r1r2…rn�½v1v2…vn�T ¼ r1 *v1þcr2 *v2þc…þcrn *vn

where the bracket notation defines a “matrix” of vectors, with multi-
plication ofmatrices after the typical notation, but with XOR and con-
sensus sum replacing multiplication and addition of elements. To
isolate the value of a field, we simply compute R * ri or R * vi if we wish
to find the data type that a value is associated with. This is due to the
fact that each term in the consensus sum will produce random noise
(as distributing the XOR across the data record will yield random-
ness), but the term containing the value will be significant. You will
get an approximately similar result, that is, the nearest neighbor will
be, with high likelihood, the corresponding value or identifier.

With these simple structures, data records, sets, and sequences can be
combined to encode and represent allmanner of data in a consistentway.
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
Numerical values versus categorical values
One of the simplest and most necessary forms of data is that of raw
numerical values. How should the distance H between vectors repre-
senting numbers correlate to their objective value? One simple answer
is to directly embed the linear relationship between numbers in a higher-
dimensional space as a line or a curve in that space. This is possible
with binary vectors, although some care should be taken to ensure that
these values make sense in their distances. For example, for a given
value X, the values X − 1 and X + 1 should be nearest neighbors to
X but on roughly opposite locations in space from X.

With categorical values, we are unsure of what the appropriate dis-
tance from them should be. For example, what is the distance between
“a” and “b”? For this, we must rely on distributional semantics, where
the distributional properties of how these values occur and co-occur in
data resolve their semantic meaning toward each other. Values that ap-
pear in similar distributions of data are taken to be closer in meaning. It
is clear that both numerical and categorical data are important in AI.
The real difficulty in representing them comes into play when we con-
sider that they have to exist in the same space.

Representing both numerical and categorical data in the
same space
In previous work (8), a method for encoding multiple modalities was
developed to both create HBVs for observations of data, using distribu-
tional semantics, and give a framework for forming more complex
sequences and sets of differing modalities, with potential for their
own distributed semantics. Although this is not the particular subject
of this paper, it is worth remarking on this process because we used
the numerical representations of it in our experiments.

Consider that you have multiple modalities, such as vision, audio,
text, etc. Each of these has a finite number of unique values to represent
an atomic piece of information. Consider the special case where the
atomic piece of information does not actually have any distance asso-
ciated with it. This is true for characters because any meaning ascribed
to them is purely distributional (how these values are distributed in re-
lation to others). Pixel intensity and related measures all have inherent
meaning in their values, directly tied to the distance between each value
(e.g., red channel intensity of 55 versus 123). Thus, we desire the ability
to encode both distributional and nondistributional values in a
framework for HBV representation of multiple modalities.

Taking characters as an example for convenience, we could find
distributionally meaningful HBVs for the space of characters by the
method described in (8). First, assign every character a randomly selected
HBV.Then, obtain distributional counts of howoften twocharactersmay
co-occur. The distributional counts could be naturally represented as a
graph, where the vertices are characters and the directed edges are co-
occurrences. This is similar to systems such as word2vec (9) or GloVe
(10). Each character has a “mass” of how often it is seen and an edge
weight determined by how often that occurrence occurs. A good choice
of HBVs for each character would make sure that characters that co-
occur often are nearer than those that do not. This is referred to as a
geometric interpretation of semantics. To find such vectors, we can
simulate amodel that characterizes energy in the current systemofHBVs.
LetX(k) be amatrix of current HBVs, withm being rows per vertices and
n being columns per bit length. The problem is formulated as

argmin
X

T XðkÞ þ X
� �� �
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Here, T is a function that measures
the total energy in the system described
by a given matrix. Our goal is to find a
perturbation of 1s and 0s, referred to as
X, that minimizes the energy measure by
T. Then, X(k + 1) = X(x) + X becomes our
new set of vectors.We repeat this process
until the energy is minimized. The energy
is computed as

TðAÞ ¼ ∑
m

i
∑
n

j
max

�
FconnðA; i; jÞ þ

FproxðA; i; jÞ; 0
�

This formula expresses the sum of all
unresolved forces in thematrixA, given a
graph of co-occurrences. The functions
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Fconn and Fprox represent the connective and proximal forces of the sys-
tem. Together, they enumerate the force being applied on the bit at row i
and column j to switch its value. The connective force for a vertex is the
resultant force across all co-occurrence pairs of that vertex. An edge’s
weight (co-occurrence likelihood) dictates its force. The connective
force is computed by the following equation, where Mi is the relative
mass of vertix i and Wi, k is the edge weight between vertices i and k
(note that the weight is 0 if a connection does not exist)

FconnðA; i; jÞ ¼ ∑
m

k≠i
MiWi;kCconnðAi;j;Ak;jÞ

The proximal force is caused by the proximity of a vertex to a vertex
that it shares a co-occurrence edge with. The force that each vertex gen-
erates scales with itsmass (occurrence likelihood). The proximal force is
computed by the following equation, where Hn(a, b) is the normalized
Hamming distance between vertices a and b

FproxðA; i:jÞ ¼ ∑
m

k≠i

MiMk

HnðAi;AkÞ
CproxðAi;j;Ak;jÞ

The functions Cconn and Cprox are simply functions that determine
whether the bit in question wants to change or not, given its current
state and the state of its incident vertex

Cconnða; bÞ ¼ �1; if a ¼ b
1; if a ≠ b

Cproxða; bÞ ¼ 1; if a ¼ b
�1; if a ≠ b

��

Techniques exist for minimization of T and are stochastic in nature,
involving gradual flipping of bits to minimize energy, often using
simulated annealing. As shown in (8) and here again in Fig. 1, for
convenience, the energy of the same system generated by random
graphs of equal number of vertices with and without proximal force
only reaches exact 0 when the proximal force is off.

Encoding images as HBVs
To be able to encodemore complex structures as HBVs, such as images,
care must be taken to preserve the meaningfulness of both the values of
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
pixel intensity and location. How can this be done with the basic
structures we can encode? First, we describe how pixel intensity is re-
presented with HBVs. Consider the case of a single-channel, gray-scale
image. We have 256 unique values across the space of intensities, all
evenly spaced from one another. To reconstruct this with vectors, we
first require 256 vectors and then require them to be spaced such that
the nearest neighbors of a particular intensity vertex are the closest in-
tensities in reality. Likewise, intensities that are further away in value
should have a furtherH orHn distance proportionally. A proportionally
similar distance should be found for pixels in lesser or greater intensities.
Essentially, the intensities, which are naturally visualized as a 1D line,
are embedded into a higher-dimensional space as a curve or a line of
vectors.We can visualize this by taking a particular vertex and connect-
ing it to each other vertex, requiring that the edge weights decrease pro-
portionally to the difference in intensity between the vertices, evenly
spaced out. Applied to every vertex, we arrive at the realization that a
fully connected graph (apart from vertices connected to themselves) is
required. Thus, every vertex should have a vector that satisfies the prop-
erties of the intensity scale. Figure 2 shows how that this is visualized on
a small scale. When this graph is minimized with the technique de-
scribed in the previous section, the result forms a distancematrix similar
to the one shown in Fig. 3. As we can see, the distances increase away
from the diagonal entry, similar to what intensities do in a single
channel, from the perspective of a particular intensity value.

With representations for the intensities, we can now focus on
representing location. Permutations hold the positional semantics for
sequences of HBVs; a particular permutation is attached to a sequence
of a single data type. This is movement through sequences in a one di-
rectional sense. For 2Ddata such as images, we require two permutation
operations, one for the row and one for the column location. For each
location, we permute the intensity representations appropriately. Con-
sider a single such pixel; we can place it in the proper location in an
image by permutations before XORing with other pixels—the concept
of which is shown in Fig. 4. As a small example, consider a 3 by 3 image
I. Let Iij be the pixel intensity representation at row i and column j. Then,
the HBV representation of the image is constructed as follows

ðX00 *CX01 *C2X02Þ*
RðX10 *CX11 *C2X12Þ*
R2ðX20 *CX21 *C2X22Þ

8<
:

Fig. 1. Tension minimization. An example of how tension is minimized in a graph represented the co-occurrences
of vertices. As the total energy in the system decreases with each iterations, the positions of the HBVs associated
with each vertex are in geometrically “better” locations, relative to each other. When proximal force is turned off, the
system is enabled to reach a singularity state, and thus, the tension will naturally reach 0. However, when the
proximal force is present, it is unlikely that a state that fully minimizes the oscillations will be found, and the min-
imization will converge at a nonzero solution.
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This simple but powerful formulation allows us to encode an image
of arbitrary dimensions in meaningful ways. Similar to their role in se-
quences, permutations of the resultingHBVwill shift the image in space
accordingly, and entire sections of the image can be removed or concat-
enated with others by XORing with the sections to be removed from
and to be added to the full image as shown in Fig. 5.

Creating memories with HBVs
With the ability of HBVs to combine with other HBVs to encode more
and more information but in the same vector length, we have a natural
method to create semantically significant and informed memories. As
an example, a series of images can be “remembered” by forming a data
record with HBVs of each image, where a particular vector is taken to
signify the location in time of the image. When presented with a par-
ticular image, its existence inside of amemory can be checked by simply
XORing thememory with the image. The nearest neighbor of the result
will be the location in time of the image. Likewise, when interested in the
image at a particular location, the same process will reveal what the
nearest matching image will be.

Using neuromorphic visual information
The DVS (11) is one of the few currently available bioinspired (also
often referred to as “neuromorphic”) vision sensors. This camera is
an asynchronous differential sensor: Each pixel acts as a completely
independent circuit that tracks the light intensity changes. As soon as
the light intensity changes by a certain predefined percentage (called
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
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sensitivity), the pixel sends the current 32-bit timestamp (with the
clock synchronized across all independent pixels) to the common
asynchronous bus. The sent data record—a triple (x, y, t), where x
and y are pixel coordinates and t is the timestamp—is called an event.

Given this, one can see the challenges in processing event-based
data: The video “stream” contains no classical frames, but instead it is a
stream of 3D events.Moreover, the events can only be triggered by light
intensity changes, which means that they only happen on the object
edges or textured regions. Nevertheless, the event-based sensors are
not devoid of advantages—the extremely high temporal resolution of
DVS allows capturing an equivalent of roughly 10,000 frames per sec-
ond and literally seeing the motion of the objects, with their trajectories
being smooth and continuous, not interrupted by the frame rate. DVS
and similar sensors are becoming increasingly valued in the robotics
and vision community, and some of the recent works (12, 13, 14) have
describedmethods of processing event data.We argue that event-based
neuromorphic cameras are indispensable formotion-related tasks (such
as navigation, obstacle avoidance, and tracking), where traditional
appearance-based vision requires costly frame-to-frame matching,
and the lack of intensity information does not prevent motion pat-
tern analysis.

We extracted themotion information from the event timestamps by
building a “time image” (13): In a given time slice of the (x, y, t) space
(that is, for a small interval of time), the events are projected on the
image plane and the timestamps of the events that fall on the same pixel
are averaged out, so the pixel intensity is a function of time t. This repre-
sentationhas several benefits: It is easy to compute, is robust towardnoise,
allows for asynchronous data analysis (because the time image can be
computed at anymoment in time), andpreserves themotion information
stored within the event stream. An example of the time image, together
with the corresponding “classical” frame, can be seen in Fig. 6.

Learning from event stream classically versus with HBVs
To test how well visual data can be encoded by HBVs when compared
to classical techniques, we set up an experiment where a classical con-
volutional neural network (CNN) architecture, inspired by NVIDIA
PilotNet (15), was trained on theDVS event stream to predict velocities.
The input layer of the CNN accepted time images as described in the
previous section, essentially interpreted as a single-channel image.
 5, 2019
Both the event stream and velocities
were collected via an autonomous
robotic platform that was tracked
by theVICONMotionCapture Sys-
tem. The magnitudes of the velo-
cities were in the order of 1m/s, and
the DVS camera experienced 6D
motion. With this setup, the CNN
was able to achieve an accuracy of
up to 7 cm/s, amounting to 7% of
the velocity magnitude, despite the
sparseness of the event data.

Likewise, the time image data
were also converted into HBV en-
codings in a fashion similar to how
image codes are constructed. This
was achieved by first constructing
an intensity space consisting of
255 HBVs of length 8000, each
corresponding to one of the 255
Fig. 2. Intensity minimization. A visualization of intensity minimization. We
start with random vectors for four intensities ranging from 0 to 3 (A). A complete
graph is formed, connecting each vertex to each other, with decreasing weight in
proportion to the intensity difference. When minimization is performed, the result
forms a line or semicircle of appropriate distances (B).
Fig. 3. Hamming distance visualization of intensities. Visualization of the Hamming distance between intensity values
in the range of 0 to 25. Note the increasing distances away from the diagonal, as one would expect. For DVS or images, a
full 256-intensity range can be easily developed with the same properties.
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intensity values of the time image and minimizing it to generate ap-
propriate HBV representations. When visualized, this space is simi-
lar to what is shown in Fig. 3 with 25 intensity values.We only used 255
HBVs because the intensity value of 0 indicates no event and thus
does not need to be encoded into the HBV. These representations
are then used to generate sequences encoding the pixel intensities
and their locations in each time image into a single HBV. Because
of the fact that bits in HBVs do not necessarily correlate to neighboring
bits, it does not make sense to use a similar CNN-based network for
HBVs as we did in our first experiment. As a result, a fully connected,
six-layered neural network was used with a similar number of param-
eters. When trained, HBV-based learning achieved an error of about
9 cm/s. Although slightly worse than the CNN, this result is impressive
because the size of the input was naturally compressed as HBVs, from
the DVS’s resolution of 346 × 260 (about 90,000 pixels) to 8000 bits.
Inspired by these results, we then investigated the HBV’s ability to
encode sequences of frames as data records and binding the velocity
vectors to the frame vectors.

Perception to action binding with HBVs
The HBV vectors allow any amount of data of any type to be repre-
sented in a fixed length of bits, up to the informational capacity
provided by the binary space. We would expect HBVs to be able to
create data records from different modalities to bind them together in a
single representational space—ideally, binding perception to action as a
single data record. We constructed an experiment where, given the
visual input, the system was able to remember the action it needed to
take in the form of a velocity vector.

First, we describe how to represent a 3D velocity vector as an HBV.
We construct HBV representations of each component individually,
that is, we run vector space minimization three times with different
starting seeds for random HBVs. We then create a data record from
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
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the three spaces for a single velocity. To do this, we must select three
random binary vectors as identifiers for the X, Y, and Z components
of velocity to construct the data record with. We will refer to these as
X, Y, and Z. Because these are random, they are nearly unrelated, with
distances close to 4000 bits from each other (for consistency, we use
8000-bit vectors in all our experiments). When component values are
bound to the identifiers, they each create three separate uncorrelated
HBVs. This velocity data record is extended with an entry for the as-
sociated time image HBV encoding. Likewise, this encoding is bound
to a randomly selected identifier for time images, referred to as T. The
resultant data record thus exists in an action perception space and can
be considered a memory.

To create many such memories, we take a DVS recording with cor-
responding motion ground truth and create a memory of each time
image and velocity. Our experiment: Given a time image, find the cor-
rectly associated velocity using only memories. To isolate the time
image in the data record of the memory, we XOR T with the memory
m and find the nearest neighbor to the input time image encoding.
Afterward, we XOR the candidate memory with X, Y, and Z to retrieve
individual velocity components. In all our experiments, we achieved
100% accuracy. This means that the information capacity of the data
record with 8000 bits far exceeds the requirements to store the time
image and velocities encoded within.

Information capacity of HBVs
A natural next experiment would be to see how much information can
fit into 8000-bit vectors. Because each time image contains quite a bit of
information, we chose to encode entire sequences of time images in a
single data record, with randomly generated HBV identifiers Ti tied to
each frame position in the sequence. We then tested the ability of data
records to localize the given image in the memories containing only
time image sequences.

Figure 7 shows our findings. We conducted the experiments for se-
quences of up to 700 frames in length andmeasured the Hamming dis-
tance of the input frame HBV to the closest match in memory of
sequences. Naturally, the longer the sequence, the more information is
contained within every data record. Thus, we expect that the Hamming
distances will grow even closer to 4000, which corresponds to completely
uncorrelated vectors.Our results confirm this trend and show thatwe can
safely code up to around 200 frames without worry of false positives.
However, the likelihood of errors is small even after this point. In con-
clusion, a single 8000-bit HBV can provide for huge information den-
sity, without needing any learning.
Theoretical limits on capacity
of HBVs
Although we have empirical results on
how well information can be encoded
into HBVs, we can arrive at more practi-
cal bounds for this in relation to the ac-
curacy of recall. Regardless of the length
of the HBVs, the odds of a particular bit
being 0 or 1 is 0.5, assuming that the vec-
tors are randomly generated. Suppose we
have performed a consensus sum on a
number of data points using random
vectors as a basis for identifying eachdata
point (i.e., a data record). The result can
be thought of as a memory consisting of
Fig. 4. Moving pixels spatially. A pixel p is relocated from the origin position to
row 2 and column 4 by performing a permutation R2C4p.
Fig. 5. Composing image encodings. A simple example of how an image encoding can be manipulated. The
reference pixel can be arbitrarily moved through permutations as shown in (A) by permutating the current encoding
appropriately [in the case of (B), this is a permutation of R−8]. A new image (C), aligned on a similar reference pixel
(the origin here); the two images can be composed to construct an arbitrary image (D).
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these data points. Letm be the memory, then (with the right-most side
as shorthand notation)

m ¼ x1 *aþc x2 *bþc x3 *c… ¼ x1aþ x2bþ x3cþ…

When we test for the presence of a particular value, say, d, we first
compute m * d. The result should be close to a particular xi, if d is
present. Naturally, to determine this, we compute the distance H.
This involves another XOR with each xi individually. Consider the
following example

∣m*d*x1∣ ¼ ∣x1adx1 þ x2bdx1 þ x3cdx1 þ…∣
¼ ∣ad þ x1x2bd þ x1x3cd þ…∣

When computing the Hn distance, the above becomes the prob-
ability of each bit being 1 in this vector. Because we are computing a
consensus sum, the above is equivalent to tossing a coin the same
number of times as you have terms in the sum and setting the con-
sensus to whichever side landed more often. This is true because we
know that, if the vectors are random, then the XOR of two random
vectors yields a random vector. However, if a = d, then the term ad = 0
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
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or the zero vector. This would create a bias; one of our coin tosses will
now always be the same. More generally, let the probability of 1 for the
term ad be p. This bias is what causes our consensus sum to give a Hn

that is different in a statistically significant way than the expected value
of 0.5. Given n vectors in a consensus sum and p, the probability for a bit
in ∣m * d * x1∣ being 1 is

ð1� pÞ ∑
n�1

k¼n=2

ðn� 1Þ!
2n�1k!ðn� k� 1Þ!þ p ∑

n�1

k¼n=2�1

ðn� 1Þ!
2n�1k!ðn� k� 1Þ!

Sensorimotor representation through binding visual and
motor information
To demonstrate an example application of our framework, we applied it
to the task of ego-motion estimation in the autonomous vehicle setting.
Weused themultivehicle stereo event camera (MVSEC) (16) dataset for
our experiments. TheMVSECdataset featuresDAVIS240 event record-
ings together with ground truth velocity, taken from a car driving dur-
ing the day and night. The MVSEC dataset has recently gained
popularity for evaluation on event-based self-driving car data. We
formed a separate memory for each degree of freedom (rotation and
x/y translation) using the first 15 s of the “outdoor day 1” sequence
and then demonstrated the performance on the rest of the sequences
(two during the day and three during the night). We compute the
memory as follows, for each degree of freedom

m ¼ v1ða1 þ a2 þ…Þ þ v2ðb1 þ b2 þ…Þ þ…þ vnðz1 þ z2 þ…Þ

Here, the vectors vi are basis vectors for our velocity space, that is,
every vector represents a particular range of velocities with a certain
step. In our experiments, 0.001 was used as the step. The distinct letters
in ai,…, zi represent groups of images by their ground truth velocity
class. Conceptually, the memory m is just a consensus sum of every
image vector bound to every corresponding 1D velocity represented
as an HBV. See text S1 for more details on how the image vectors
 August 5, 2019
and velocity vectors are formed
in this experiment.

Similar to the “Theoretical lim-
its on capacity of HBVs” section,
given anunseen image d, we com-
pute the probability of it being
associated with each of the basis
velocity vectors vi.We then choose
the vi yielding the highest prob-
ability, equivalent to the smallest
H between mvi and d.

The MVSEC dataset has been
used previously in a number of
neural network-based estimation
algorithms. Typically, learning
approaches (14, 16, 17) use the
“outdoor day 2” sequence (12,196
ground truth samples) for training
and test on outdoor day 1 (5134
ground truth samples), trained
for 30 to 50 epochs. We want to
emphasize the ability of our pipe-
line to train in a single pass in our
Fig. 6. An example of DVS data visualization. On the left, a time image is
shown, in which green is the average timestamp, and the positive/negative per
pixel event counts are shown in red/blue. On the right, the corresponding gray-
scale image of the scene is shown. Note the motion blur on the classical frame.
Fig. 7. Hamming distance decay in data records. The decay in nearest neighbor matches of Hamming distance as the
number of time images in a memory increases. As more frames of motion are put into the encoding, more noise is intro-
duced, making the deviation caused by a match less and less statistically significant. At 700 frames, we are still about 3 to 4 SDs of
likelihood away from random vectors.
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Fig. 8. Results for HBVs on outdoor day 1 in the MVSEC dataset. Qualitative results on the outdoor day 1 subset of the MVSEC dataset. Results are split into the
angular and linear speed inference. The probability plots show the likelihood of each velocity class being correct across all inferences, with a light-green color indicating
the higher probabilities. One can see that the light green forms the path of predictions across the probability field.
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019 8 of 10
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experiments, with only 500 samples, taken from outdoor day 1, while
producing comparable results on this and other sequences. Neural
approaches tend to use a much higher ratio of training to test set. We
present the qualitative results of our ego-motion estimation in Fig. 8 on
outdoor day 1, as well as the other subsets, with detailed analysis and
explanation in text S1. We also provide quantitative results in Table 1.
The binning of velocity sizes is directly proportional to our inference
time. For 500 velocity classes, we perform at an average of 572 infer-
ences per second (time slices per second). If we halve the number of
velocity classes (250), then the inference rate approximately doubles
(1084). Training time is extremely fast and proportional to the number
of training frames, requiring only 0.5 and 2 s for 500 and 1500 frames,
respectively. Retraining on the fly is possible, and training can be done
in an online fashion. We received these results on a regular laptop with
central processing unit, running at 3GHz, onPythonic code (apart from
the pyhdc library).
st 5, 2019
DISCUSSION
Our results show promise for the use of HBVs in machine learning and
AI. It gives an alternative method to normalize what the input of a
learning system should look like and is capable of being agnostic to
the data modality. We have shown that a learning system can still learn
from HBVs, although they inherently hide the raw data in their encod-
ings.We surmise that the reason this is possible is that the distributions
of 1s and 0s inHBVs have very stark, statistical properties, fromwhich a
learning system can still learn. Furthermore, HBVs can be used to store
memories of all kinds, including those both action and perception, as
shown in our results. Moreover, the tolerance of this system to how
much data can be encoded while still having statistically significant
Hamming distances is impressive. Furthermore, combining this with
the neuromorphic DVS camera shows that hyperdimensional percep-
tion can be achieved with even nonstandard data representations, such
as event clouds.

We believe that further investigationmust be done into the realm of
motion-based vision with HBVs and the potential to be used in regular
vision as well. Further research must be done on the power to integrate
Mitrokhin et al., Sci. Robot. 4, eaaw6736 (2019) 15 May 2019
multiple forms of perceptionwith both neuromorphic sensors and clas-
sical vision. One of the main weaknesses of the use of HBVs lies in the
density of the data to represent. For example, traditional vision is far
better suited to the traditional vision techniques than HBVs currently
are, because of the density of information provided by traditional,
frame-based RGB cameras. The prevalence of CNNs and their power
to learnN-dimensional data is also anotherweakness ofHBVs, which as
of yet have no such formulation for processing data in the method that
window-based convolutions provide. It is theoretically possible to
imitate CNNwindow-based processing ofHBVs; however, it seems that
appropriate neural networks/alternate learning structures need to be
discovered to make full use of the power of HBVs. These areas will
be subjects of future work in the still early field of HBVs.
MATERIALS AND METHODS
To performour experiments, we have developed an open-source library
for Python for accelerated manipulations with long binary vectors
(pyhdc). The library supports vector lengths of up to ~8000 bits and
is capable of performing 1.4 × 105 permutations per second and 3.0 ×
10−7 XORs per second on a modern laptop in a single thread. The
code is available online: https://github.com/ncos/pyhdc.

In our first experiment, we used the CNN with an architecture
similar to (15) but replacing the output layer with a three-node fully
connected layer instead of one to account for three dimensions in the
velocity vector. The fully connected neural network used with HBVs
has 8000, 4000, 1000, 200, 50, and 10 nodes in its dense layers. For
both networks, the L2 norm was used as a loss function, with the
Adam optimizer set to a learning rate of 0.001.

In all experiments, we used a dataset collected using DAVIS 346b
and DAVIS 240b sensors (with event resolutions of 346 by 260 and
240 by 180, respectively). Only the DVS parts of the sensors were used,
whereas the corresponding gray-scale images were ignored. To record a
reliable and realistic dataset, we used a customized Qualcomm Flight
quadrotor platform fitted with one of the cameras (fig. S6). The plat-
form was tracked indoors via the VICON Motion Capture System,
capable of providing a positioning resolution of up to 0.3 mm at an
Table 1. Quantitative results for the MVSEC dataset across the five subsets. The table gives the number of frames in each subset, length in seconds, the size
of the angular and linear bins used for HBVs, number of vectors in the rotation, X and Z, and the average endpoint error (AEE), average relative pose error
(ARPE), and the average relative rotational error (ARRE).
MVSEC subset
 Outdoor day 1
 Outdoor day 2
 Outdoor night 1
 Outdoor night 2
 Outdoor night 3
Frames
 5134
 12196
 5133
 5497
 5429
Length (s)
 128.325
 304.875
 128.3
 137.4
 135.7
Ang. bin (rad/s)
 0.02
 0.02
 0.02
 0.02
 0.02
Lin. bin (m/s)
 0.08
 0.08
 0.08
 0.08
 0.08
Rotation (clusters)
 104
 101
 40
 74
 87
X (left-right, clusters)
 47
 44
 24
 40
 33
Z (front-back, clusters)
 119
 311
 244
 251
 228
AEE
 0.810
 1.03
 0.933
 1.16
 0.940
ARPE
 0.122
 0.225
 0.243
 0.0948
 0.0831
ARRE
 0.0994
 0.108
 0.0632
 0.116
 0.121
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