2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)

Metaconcepts: Isolating Context in Word Embeddings

Peter Sutor Jr.
Department of Computer Science
University of Maryland
College Park, MD 20742, USA
psutor@umd.edu

Yiannis Aloimonos
Department of Computer Science
University of Maryland
College Park, MD, 20742, USA
yiannis@cs.umd.edu

Abstract— Word embeddings are commonly used to measure
word-level semantic similarity in text, especially in direct word-
to-word comparisons. However, the relationships between words
in the embedding space are often viewed as approximately
linear and concepts comprised of multiple words are a sort of
linear combination. In this paper, we demonstrate that this is
not generally true and show how the relationships can be better
captured by leveraging the topology of the embedding space.
We propose a technique for directly computing new vectors
representing multiple words in a way that naturally combines
them into a new, more consistent space where distance better
correlates to similarity. We show that this technique works well
for natural language, even when it comprises multiple words,
on a simple task derived from WordNet synset descriptions and
examples of words. Thus, the generated vectors better represent
complex concepts in the word embedding space.

I. INTRODUCTION

Vector embeddings serve to embed semantic relationships
into discrete points in (typically) high-dimensional spaces.
Word embeddings have become more popular recently thanks
to the successes of word2vec [13] and GloVe [18]. Word
embeddings are attractive due to their ability to measure
similarity in the semantic sense between words and phrases
by measures such as cosine similarity on the vectors and
linear combinations of them. Generally speaking, words that
are close to each other are related in a contextual sense. In
particular, these word embedding models are interesting due
to how well they model analogies between words, such as
the famous king+woman —man =~ queen example, shown
for convenience in Figure 1.

However, cosine similarity may not be the optimal mea-
sure of semantic similarity, or linear combinations of vectors
the best representation for phrases. While it works well
enough in practice, there is no reason to assume these vectors
should be linearly nor angularly related. Although they are by
no means deep learning, word2vec and GloVe both learn

Cornelia Fermiiller
Department of Computer Science
University of Maryland
College Park, MD, 20742, USA
fer@umiacs.umd.edu

Douglas Summers-Stay
U.S. Army Research Labs Adelphi
Adelphi, MD 20783, USA
douglas.a.summers—-stay.civ(@
mail.mil

Queen =1[0.3, 0.9] Queen =[0.3, 0.9]

King =[0.5, 0.7] A

an=[0.3, 0.4] Woman =[0.3, 0.4]

lan =[0.5, 0.2] Man =[0.5, 0.2]

-
>

b
r

Fig. 1. The classical king + woman — man =~ queen example of
neural word embeddings, in 2D. It must follow that king — man =
queen — woman, and we can visually see that in the red arrows. There
are 4 analogies one can construct, based on the parallel red arrows and their
direction. This is slightly idealized; the vectors need not be so similar to
be the most similar from all word vectors. The similar direction of the red
arrows indicates similar relational meaning.

their vectors from corpora in self-supervised ways using
neural networks, and thus it stands to reason that the vectors
generated from these neural networks exist as samples on a
more complex manifold.

Furthermore, since word vectors are static, they do not fair
well in contextualization. All of the senses and contextual
meaning of a word are balled up into a single, static vector,
and thus it is difficult to disentangle the components of
each sense of a word from its vector representation. Instead,
averaging vectors for a phrase serves to try and reconcile this
weakness in phrase-level contextualization by assuming the
average of vectors will land near the actual average of their
meaning, though it is not clear that each word should have
equal weight regardless of the context in which it is used.

In this paper we investigate the idea of estimating the
contextual components of word vectors given a context in
which they are used. We directly utilize the word embedding

978-1-7281-1198-8/19/$31.00 ©2019 IEEE
DOI 10.1109/MIPR.2019.00110

544

IEEE
computer
psoaety

model and its properties to create such contextual vectors,
without the use of any learning mechanism. We further
generalize this to handle phrases and sentences, while still
confining the output to the same space. Measuring similarity
on these vectors is more natural than measuring similarity on
averages. To see how well the context is preserved with this
technique, we devise a challenging experiment on WordNet
synsets that is tailored to the task of context disambiguation
for a given word or phrase.

II. RELATED WORK

There is much existing work in contextualization of word
embeddings [12], [10], [17], though this is mostly confined
to the realm of machine learning, with the goal being to
adapt an existing vector set into a contextualized one, to
aid in a downstream task. Other methods attempt to enrich
vectors with context by learning them together in an end-
to-end fashion, typically with a neural network as well [19],
[20]. We differ from such methods in that we do not use
any sort of learning but isolate context directly from word
vectors. The improvements we observe come for free by
replacing normal cosine similarity with our technique. Our
method can thus be used in conjunction with such neural
network based approaches as well.

More in line with our approach are those that avoid neural
networks altogether, such as with latent and/or probabilistic
models. For example, measuring similarity in context based
on a priori, out of context likelihood for senses of words [5].
There have also been attempts to address the issue of singular
word vectors’ weaknesses at contextualizing and capturing
meaning across phrases [7]. However, they differ from us
by imposing a structure on word order and co-occurrence.
We simply try to find a better way to use the existing
vectors themselves. To the best of our knowledge, there
is no definitive work on improving the similarity functions
for word embeddings directly to take context into account,
but we do take inspiration from some of the similarity
measurements proposed by [11].

III. BACKGROUND INFORMATION

In this section we review the necessary background in-
formation about word embeddings and the popular neural
network based models word2vec [13] and GloVe [18],
and simple operations on these embeddings.

A. Word Embeddings

The basic premise behind word vectors is to form a vector
representation of a word based on co-occurrence statistics.
By predefining a context window, usually of the number of
words around the target word, the co-occurrence counts are
obtained by counting how often a word occurs within the
context of another word. Each row in the resultant matrix
forms a distribution of co-occurrence counts. The row is
then a vector representation of the word. This approach is
based on the famous quote “you shall know a word by the
company it keeps” by linguist John Rupert Firth [9], an
observation that has held true in even the modern forms of

545

word embeddings. The generalization of this technique is
often referred to as distributional statistics and for semantic
word vectors distributional semantics.

The distributional technique for word vectors suffers from
dimensionality issues, as the matrix is a square matrix of size
equal to the vocabulary of words, which can be hundreds of
thousands, or even millions, of words. To mitigate this, the
vector set formed by the vocabulary is embedded into a lower
dimensional, real-valued vector space. Since the vectors in
the original matrix tend to be very sparse, as many words
never appear in the contexts of others, little information is
lost in these compressions. One of the earliest examples of
this is matrix factorizing through Singular Value Decom-
position (SVD) and truncating the resulting factorizations.
This technique is referred to as Latent Semantic Analysis
(LSA) [6].

In recent times, neural models for generating word embed-
dings have been shown to be more effective at capturing the
semantic relationships between words [3]. In particular, these
more successful models attempt to predict contexts of words
from co-occurrences, as opposed to directly relying on the
counts in the matrix. We will use these for our experiments,
as we are particular interested in the relational properties
between word vectors. However, this is not to say that count-
based neural network or even non-neural network models are
strictly inferior at modeling word vectors, as shown by [11]
- they are better at optimizing the hyper-parameters.

Such neural models are closely tied to neural language
models, which try to learn a probability distribution over
words in a vocabulary and predict words in a sequence. This
is done by discretizing a corpus into occurrences of /V-grams,
or subsequences of words of length N (mixed-gram models
can incorporate multiple values of N, typically from 2 to
5), and passing these through a feed-forward network which
learns to predict future words given a context. The soft-max
layer that performs this optimization outputs embeddings as
a result for each word, as observed by Bengio, et al. in [4].

B. Skip-Gram Neural Word Embeddings

We now describe word2vec, specifically focusing on the
Skip-Gram model with negative sampling, as we use the pop-
ular and massive Google negative sampled 300 dimensional
vector model of 3 million unique words, discussed in [14].
Loosely speaking, the Skip-Gram model [13] tries to predict
the context around a given word. Given a word w; and the
sequence (context) around it:

Ct = Wiy, vy W—1, Wi 15 +o5 Witn

the Skip-Gram objective is to maximize the sums of the log
probabilities across all 1" words:

T
> log(P(Cylwy)) eh)

The logarithmic term in Equation 1 can be further reduced:

log P(Cylwy) =) log(P(weijlw))

j=-n

(@)

This is a soft-max operation, and is asymptotically pro-
portional to the number of words, as noted in [14]. The
hierarchical soft-max [16] is instead performed to handle this
operation efficiently, in logarithmic time.

The takeaway here is the observation in Equation 2. It’s
often surmised that the compositionality of word2vec’s
vectors comes from the maximization across the sum of
these log prediction probabilities. If two words occur in
each other’s context’s often, the model will generate a larger
response to that in order to maximize the log probabilities of
their overlapping contexts. However, it is also clear that the
context window necessitates a strict cut-off in the extent to
which word2vec will do this. Moreover, statistics on longer
n-grams also decrease rapidly, so enlarging the context
window does not help the curse of dimensionality.

C. GloVe Neural Word Embeddings

GloVe [18] is a special mix of traditional matrix factor-
ing approaches for word embeddings and word2vec style
word embeddings. A co-occurrence matrix X is obtained in
largely the usual way, and turned into word co-occurrence
probabilities. Words far away relative to the context window
decay in value. The G1oVve model defines the constraint:

wiij + b; + bj = log(X,-j) 3)

on each word pairing in X, where ¢ is the current word,
and j is a word appearing in context, with bias terms b; and
b; for each. The bias terms absorb unrelated bias in the log
probabilities of their co-occurrence, and the linear product of
the word’s weights preserve the linear relationship between
their co-occurrence. Thus, it stands to reason that minimizing
Equation 3 minus log(X;;) for each pair will produce a close,
log-linearly related approximation to X - this is done by a
neural network that optimizes the following objective:

S F(X) (] wy + bi + by — log(Xi5))?

i,

“

where f(X;;) is a weighing function that down scales
the importance of common words by their probability and
keeps infrequent words at a constant weight. Once again,
the logarithmic and linear relationship between co-occurring
words is maintained. Under the right parameters, GloVe can
perform just as well as word2vec, and vice versa [3].

D. Common Operations

Here we describe some of the relevant and common
operations performed with word vectors, for reference.

Similarity: The most common method of measuring the

semantic similarity between two vectors is with cosine:

(&)

scos(u; U) =1- dcos(ua U)

where d..s is the cosine distance:

546

_a-b
llall2/[0l2

Analogy: Analogical reasoning can be performed on word
vectors by finding the closest (non-trivial) word vector d to:

deos(u,v) (6)

)

where a is to b, as c is to d. Furthermore, one can measure
the strength of an analogical relationship by:

a+(b—rc)

Scos(a — ¢, d —b) (8)

or with one of the other 3 analogy variants. Refer to Figure 1
for an example.

Average: Averaging word vectors is performed the usual way
by summing over a set of word vectors and dividing by the
number of vectors:

(€))

E:Zak

keA

Weighted versions of this also exist.

IV. METACONCEPTS OVER WORDS

In this section we describe our method of contextualizing
word vectors. We will refer to contextualized versions of
vectors as metaconcepts from here forth, as they are formed
through combining self-referential projections of nearest
neighbors of constituent words or phrases.

A. Contexts of Contexts

As mentioned in the Skip-Gram word2vec and GloVe
sections, word embeddings typically strive to maintain linear
relationships between their representations for word vectors.
However, it is evident that this mostly applies up to and near
the pre-defined context window and any overlapping context
windows for words. As such, the word vectors closest to
another vector are the most confident in similarity to that
vector. Consequently, it is expected that the local topology
of clusters of words is nearly linear.

Consider the set of k£ nearest neighbors Uj to a word
vector u. Projecting w onto each element will isolate the
components of u that best relate to that element. This is what
happens when distance is measured between word vectors.
If the cosine distance using Equation 6 is employed, the
magnitude of a vector is irrelevant. Furthermore, when cosine
distance is positive, there is at least some correlation in the
correct direction between the projected components and the
vector being projected on. Vector u is nearly guaranteed to
have all nearest k neighbors to be positive, though this is not
strictly true. The average of all positive vectors then tends
to point in the same direction as u. Let:

> s

s€Sy(v)

1
 [Su(v)]

z

(10)

be the context average of a vector v, where S, (v) is the
subset of U}, with positive cosine similarity to v. C,, = Uy,

NOT
INCLUDED

&
<

v

Fig. 2. An example of the context averaging described in Equation 10.
The 3 thin vectors are nearest neighbors to u. The context average C' A(v)
for a vector v excludes the indicated vector as it cannot project on it with
a positive scalar value. The other two are valid, and so C A(v) becomes
their average. A joint context average differs only in that v is projected on
its own neighbors as well, and is averaged with «’s projection on v and its
own neighbors. Then their vectors are averaged in a weighted fashion.

is referred to as the context of u. The average of a vector
across Uy, is then the context average over Uy of the vector.
The result of a context average is interpreted as a good subset
of nearest neighbors to average over; a best fit location of
v in the local topology of w. Figure 2 shows how context
averaging affects a vector v in relation to u. Note that if v
is far from u, the context average can still land very close
to u, perhaps even being equal to it, so long as there is at
least some correlation in many of the same context elements.
Now, consider the case where we have two words « and v
with two different contexts C',, and C',. We can consider their
union C,,, = C, U C, to be a joint context. Consider the
vector:

1

1S ()] + 152 (0)] (ah

z = ZS+ZS

SESL(v) s€S, (v)

where S, and S, are the set of positive cosine similar vectors
to the joint context for w and v, respectively, referred to as
the joint context average. This represents the best weighted
context average to C, ,, by performing a weighted average
across the contexts averages of each vector to the context.
Now consider the situation where we wish to cast v into
the context provided by u. For example, if v is “bank” and
u 18 “river”, then we want a new vector v, such that it
captures bank in the context of river (that is to say, the bank
of a river). Our strategy is as follows: compute Equation 11,
calling it vj,in¢, then Equation 10 for u with context C,, ,,
calling it w;y;n¢. In other words, we compute the joint context
average, and then the regular context average for u, but on
the joint context. Geometrically, the ideal scenario here is
that the relationship between u, Ujoint, v, and vjon¢ i anti-
analogical: v iS t0 Vjoint aS Ujoint 1S tO u, i.€., they point to
each other. Figure 3 visualizes this relationship. We compute
the following cosine similarity to measure the contextual
association between v and the contextualized v, = Vjoins:

547

ujoint

Fig. 3. An example of the relationship between u, v, Ujoint, and Vjoint-
The orange / orange-purple points represent nearest neighbors of v, where
the orange-purple ones signify their inclusion in the joint context average.
The same is true of the blue / teal-purple points for u. The w;in¢ and
Vjoint Vectors are the result of the joint context averages on u and v,
respectively. The average and line of potential weighted averages (dotted
line) of w and v is shown, along with the true geodesic (black line) along
an unknown manifold (green). Averages can deviate far from the manifold.

(12)

Scos (U — Vjoint; Ujoint — U)

B. Recursive Metaconcepts

We can generalize our technique to work across not only
pairs of single words but multi-word sets. To do this, we
perform an additional step before computing the contextual
association, where we find context averages for each set
of words being compared. This is done recursively by
grouping words in a set together, combining their contexts,
and computing Equation 12, with v;4,; being computed
the same as ;oin¢, using Equation 10 on the joint context.
Whichever pair has the highest contextual similarity is voted
to be merged into a single unit (a single metaconcept) by
computing Equation 11. This repeats until only a single
metaconcept is left, the vector and context of which is used
as a word vector and its context normally would.

V. EXPERIMENTS

In this section we detail our experiments for testing the
efficacy of metaconcepts.

A. The Problem Setup

Since the primary role of metaconcepts is to generate
contextualized vectors from word embeddings, we design our
experiment testing this aspect. We formulate our experiment
in the form of a task that is designed to be difficult for word
embeddings to solve with just common operations on their
vectors. This task is word sense disambiguation in the form
of a free-form matching problem. For example, if we have
a word with 5 senses, and each sense has a definition that is
available to us, we wish to match the sense definition with the
correct usage of it in an example sentence. Say the word is
“ride” and the sense we are considering is “using something
as a form of transportation”. The sentence “I hitched a ride
on a friend’s car this morning” must be correctly matched
with this sense of “ride”. The problem is made more difficult
by making each decision independently, so that process-of-
elimination techniques cannot be used to narrow down the

S > Method w2v (U) GloVe (U) w2v (W) GloVe (W)
2 baseline 0.387 0.304 0.304 0.177
2 average 0.440 0.367 0.361 0.246
2 meta5 0.536 0.518 0.470 0.459
2 metalQ 0.553 0.494 0.482 0.457
2 meta20 0.574 0.534 0.505 0.536
2 meta50 0.590 0.514 0.514 0.495
3 baseline 0.251 0.202 0.206 0.132
3 average 0.321 0.278 0.273 0.205
3 meta5 0.428 0.419 0.393 0.371
3 metalQ 0.449 0.436 0.403 0.403
3 meta20 0.481 0.538 0.432 0.540
3 meta50 0.494 0.444 0.436 0.446
4 baseline 0.193 0.154 0.163 0.108
4 average 0.271 0.231 0.232 0.181
4 meta5 0.390 0.281 0.363 0.247
4 metal0 0.401 0421 0.365 0.371
4 meta20 0.451 0.474 0.401 0.498
4 meta50 0.468 0.333 0.403 0.375
6 baseline 0.121 0.125 0.108 0.092
6 average 0.172 0.200 0.157 0.165
6 meta5 0.419 0.367 0.354 0.391
6 metalQ 0.384 0.390 0.328 0.395
6 meta20 0.414 0.373 0.347 0.391
6 meta50 0.373 0.333 0.312 0.352

TABLE I

Table of results for the WordNet sense disambiguation task comparing the
random baseline, benchmark (average word vectors), and metaconcepts
approaches. The number after “meta” is the number of nearest neighbors
used. We show results across increasing lower bounds for the minimum
number of senses (S) for both word2vec (w2v) and GloVe, showing
both the unweighted (U) and weighted (W) results. Underlined entries are
maximal in their row and bolded entries are maximal in their column.

number of remaining sentences and senses to be matched.
As examples for a set of senses of a word come in, we
do not know at any given point if we’ve already matched
a particular sense. We can only choose the highest score
among all possibilities each time. If the contextualization
does not work correctly, the highest score may either choose
the wrong matching outright or repeatedly choose to match
certain senses since it has not rid itself of the bias of other
senses. We expect that word embeddings will not fare well
in this regard without the use of metaconcepts.

B. Using WordNet as a Dataset

We obtain exemplar words, senses, definitions and exam-
ples from WordNet’s synsets, and use WordNet’s matching as
the correct answer. WordNet [15], [8] is a lexical database
for English and is divided into synonym sets (synsets) for
words, which represent the sense of a word being used. For
any given word with n senses, we select one example of
each sense and the definition of a sense, and treat this as a
mapping to one another.

For each pairing, we compute a score of contextual relat-
edness on their sentences. Since we are not supposed to know
the categories we selected as we choose the best scores, we
always take the top n scores in the resulting n by n matrix of
scores. In this sense, we are treating the scoring as a ranking
across all pairs. We perform this on each word, and tally the
number of times we were correct and the number of times

548

we were wrong to compute our accuracy. Since some words
have more senses than others, we reflect the challenge of this
by computing another, weighted score, where the number of
possible senses is the weight on that correct answer. We then
divide by the total number of possibilities across all answers.
We also try restricting the least number of senses in various
experiments to try and get a sense of how the score changes
as the overall experiment becomes harder and harder.

C. Scoring the Association of Pairs

For vanilla word embeddings, we tried a mix of averaging
the words in the sentences and comparing (thus, not knowing
the actual word) and including the word in the average of the
sentences to naively influence the context behind the usage
of each sentence (both by averaging with the average at the
end, and simply including it in the average). We found that
including the word in the average always yielded inferior
accuracy, so we stick to simple averaging of sentences and
computing the cosine similarity between them. This serves
as a benchmark for vanilla word embeddings’ ability to infer
the context. We also compute the score that one would get by
random guessing as the baseline for the problem. Depending
on the least number of senses we allow for a word, the
baseline changes, getting smaller and smaller rapidly.

To benchmark our metaconcept technique, we first start
by performing metaconcept recursion on each sentence in
the pair, and on the WordNet word. The resulting vectors
and contexts for the description and the example sentences
are used with the WordNet word to compute Equation 11,
or the joint context average with the word. This generates
two vectors djoint and e;,:,¢ for the description and example
sentences. These have been contextualized with the WordNet
word. Finally, we compute vectors d and e by via the context
average on djoint and €;oin; With the union of their set of
contexts. We use these values for the cosine similarity on the
analogical relationship between them with Equation 12.

D. Experimental Results

As shown in Table 1 in IV-B, word embeddings only
slightly outperform the baseline when simple averaging is
used, while metaconcepts can hit over 50% accuracy when
all words with at least two senses are considered. Because
no learning mechanism was used, the improvement is solely
due to the technique used to generate metaconcepts. When &
is small, the results suffer, but our experimentation showed
little improvement after £ = 50; we recommend considering
this many neighbors. As the number of senses increases, the
difficulty of the classification problem does as well, as the
number of options grow quadratically. However, our method
seems to not feel the effects of this nearly as much as the
average does, in relation to the baseline. This is because
the contextualization via metaconcepts has better ranking
properties, and does not suffer from the growing number
of possible classes to choose from.

VI. DISCUSSION

It should be noted that our metaconcept technique requires
careful consideration during implementation, as computing

the k£ nearest neighbors to a vector is expensive. A naive
implementation would run in O(kdn) time, where k is the
number of nearest neighbors, d is the model dimension, and
n is the number of vectors. However, O(log(n)) methods
exist for approximating nearest neighbors [2], [1]. They can
also be precomputed for a known vocabulary. We brute
forced this process and computed all nearest neighbors for
each word embedding model for 200 nearest neighbors.

When precomputed, the nearest neighbors become a non-
issue, as our algorithm is purposefully designed to not
require the nearest neighbors to a novel vector. However,
our method’s runtime is directly dependent on the number of
nearest neighbors to consider, and the number of recursive
levels needed for metaconcept recursion. Our experiments
showed that 50 nearest neighbors are more than sufficient.
Without using high-performance computing techniques, it
can be an expensive operation, though still largely real time.

Our results indicate that metaconcepts provide good con-
textualized versions of word embeddings and can potentially
be good features for contextualization in other learning sys-
tems. Furthermore, it works well for longer units of language.
It may be possible to use metaconcepts as features in word
vector based learning of document and phrase level vectors.
More research is required to investigate how incorporating
metaconcepts affects results on other tasks, and is a natural
next step for future work. As our experiment shows that even
single words can be confidently compared to more complex
phrases, metaconcepts can be used as a bridge between
tags obtained from meta-data or classification in images /
other multi-media, and natural language. Another interesting
line of future work is utilizing metaconcepts to measure
association between multi-media where tags to words in
natural language are available, in order to rank how relevant
a piece of multi-media is to a certain topic.

VII. CONCLUSION

We have proposed a novel, non machine-learning method
of using word vectors to both give context to other vectors
and express more complicated units of language and their
relationships. We have empirically shown that our proposed
metaconcept strategy works far better than standard word
vector operations for providing context to vectors by boosting
the accuracy of word embeddings on a difficult sense classifi-
cation problem on WordNet words. Our results increase the
efficacy of contextualization from the baseline several-fold
when compared to simple averaging.

ACKNOWLEDGMENT

The views, opinions, and/or findings expressed are those
of the authors’ and do not represent the official views or poli-
cies of the Department of Defense or the US Government.
Approved for public release, distribution unlimited.

Thank you to Dr. Reza Ghanadan, Dr. Hava Siegelmann,
and Boston Engineering Corporation for advice and support
on this topic. Special thanks to David Shane of Boston Engi-
neering for numerous discussions and his advice on research
direction and testing. This research has been supported in

549

part by Boston Engineering Corporation through DARPA
contract number W31P4Q-13-C-0136.

REFERENCES

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 459—468. IEEE, 2006.

Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman,
and Angela Y Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. Journal of the ACM (JACM),
45(6):891-923, 1998.

Marco Baroni, Georgiana Dinu, and German Kruszewski. Don’t count,
predict! a systematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 238-247, Baltimore, Maryland, June 2014.
Association for Computational Linguistics.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic
Morin, and Jean-Luc Gauvain. Neural Probabilistic Language Models,
pages 137-186. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
Georgiana Dinu and Mirella Lapata. Measuring distributional similar-
ity in context. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’10, pages 1162—
1172, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

Susan T. Dumais. Latent semantic analysis. Annual Review of
Information Science and Technology, 38(1):188-230, 2004.

Katrin Erk and Sebastian Pad6. A structured vector space model
for word meaning in context. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP
’08, pages 897-906, Stroudsburg, PA, USA, 2008. Association for
Computational Linguistics.

Christiane Fellbaum. WordNet. Wiley Online Library, 1998.

J. R. Firth. A synopsis of linguistic theory 1930-55. 1952-59:1-32,
1957.

Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y
Ng. Improving word representations via global context and multiple
word prototypes. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1,
pages 873-882. Association for Computational Linguistics, 2012.
Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional
similarity with lessons learned from word embeddings. Transactions
of the Association for Computational Linguistics, 3:211-225, 2015.
Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
Learned in translation: Contextualized word vectors. In Advances in
Neural Information Processing Systems, pages 6297-6308, 2017.
Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pages 3111-3119, 2013.

George A Miller. Wordnet: a lexical database for english. Communi-
cations of the ACM, 38(11):39-41, 1995.

Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical dis-
tributed language model. In Advances in neural information processing
systems, pages 1081-1088, 2009.

Siddharth Patwardhan and Ted Pedersen. Using wordnet-based con-
text vectors to estimate the semantic relatedness of concepts. In
Proceedings of the Workshop on Making Sense of Sense: Bringing
Psycholinguistics and Computational Linguistics Together, 2006.
Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language processing
(EMNLP), pages 1532-1543, 2014.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep con-
textualized word representations. CoRR, abs/1802.05365, 2018.
Stefan Thater, Hagen Fiirstenau, and Manfred Pinkal. Contextualizing
semantic representations using syntactically enriched vector models.
In Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 948-957. Association for Computational
Linguistics, 2010.

=
ot

[3

[t

[4

=

(11

[12]

[13

[14]

(15

[17

(18]

[19]

[20

