
Metaconcepts: Isolating Context in Word Embeddings

Peter Sutor Jr.
Department of Computer Science

University of Maryland

College Park, MD 20742, USA

psutor@umd.edu

Cornelia Fermüller
Department of Computer Science

University of Maryland

College Park, MD, 20742, USA

fer@umiacs.umd.edu

Yiannis Aloimonos
Department of Computer Science

University of Maryland

College Park, MD, 20742, USA

yiannis@cs.umd.edu

Douglas Summers-Stay
U.S. Army Research Labs Adelphi

Adelphi, MD 20783, USA

douglas.a.summers-stay.civ@
mail.mil

Abstract— Word embeddings are commonly used to measure
word-level semantic similarity in text, especially in direct word-
to-word comparisons. However, the relationships between words
in the embedding space are often viewed as approximately
linear and concepts comprised of multiple words are a sort of
linear combination. In this paper, we demonstrate that this is
not generally true and show how the relationships can be better
captured by leveraging the topology of the embedding space.
We propose a technique for directly computing new vectors
representing multiple words in a way that naturally combines
them into a new, more consistent space where distance better
correlates to similarity. We show that this technique works well
for natural language, even when it comprises multiple words,
on a simple task derived from WordNet synset descriptions and
examples of words. Thus, the generated vectors better represent
complex concepts in the word embedding space.

I. INTRODUCTION

Vector embeddings serve to embed semantic relationships

into discrete points in (typically) high-dimensional spaces.

Word embeddings have become more popular recently thanks

to the successes of word2vec [13] and GloVe [18]. Word

embeddings are attractive due to their ability to measure

similarity in the semantic sense between words and phrases

by measures such as cosine similarity on the vectors and

linear combinations of them. Generally speaking, words that

are close to each other are related in a contextual sense. In

particular, these word embedding models are interesting due

to how well they model analogies between words, such as

the famous king+woman−man ≈ queen example, shown

for convenience in Figure 1.

However, cosine similarity may not be the optimal mea-

sure of semantic similarity, or linear combinations of vectors

the best representation for phrases. While it works well

enough in practice, there is no reason to assume these vectors

should be linearly nor angularly related. Although they are by

no means deep learning, word2vec and GloVe both learn

Fig. 1. The classical king + woman − man ≈ queen example of
neural word embeddings, in 2D. It must follow that king − man ≈
queen − woman, and we can visually see that in the red arrows. There
are 4 analogies one can construct, based on the parallel red arrows and their
direction. This is slightly idealized; the vectors need not be so similar to
be the most similar from all word vectors. The similar direction of the red
arrows indicates similar relational meaning.

their vectors from corpora in self-supervised ways using

neural networks, and thus it stands to reason that the vectors

generated from these neural networks exist as samples on a

more complex manifold.

Furthermore, since word vectors are static, they do not fair

well in contextualization. All of the senses and contextual

meaning of a word are balled up into a single, static vector,

and thus it is difficult to disentangle the components of

each sense of a word from its vector representation. Instead,

averaging vectors for a phrase serves to try and reconcile this

weakness in phrase-level contextualization by assuming the

average of vectors will land near the actual average of their

meaning, though it is not clear that each word should have

equal weight regardless of the context in which it is used.

In this paper we investigate the idea of estimating the

contextual components of word vectors given a context in

which they are used. We directly utilize the word embedding

544

2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR)

978-1-7281-1198-8/19/$31.00 ©2019 IEEE
DOI 10.1109/MIPR.2019.00110

model and its properties to create such contextual vectors,

without the use of any learning mechanism. We further

generalize this to handle phrases and sentences, while still

confining the output to the same space. Measuring similarity

on these vectors is more natural than measuring similarity on

averages. To see how well the context is preserved with this

technique, we devise a challenging experiment on WordNet
synsets that is tailored to the task of context disambiguation

for a given word or phrase.

II. RELATED WORK

There is much existing work in contextualization of word

embeddings [12], [10], [17], though this is mostly confined

to the realm of machine learning, with the goal being to

adapt an existing vector set into a contextualized one, to

aid in a downstream task. Other methods attempt to enrich

vectors with context by learning them together in an end-

to-end fashion, typically with a neural network as well [19],

[20]. We differ from such methods in that we do not use

any sort of learning but isolate context directly from word

vectors. The improvements we observe come for free by

replacing normal cosine similarity with our technique. Our

method can thus be used in conjunction with such neural

network based approaches as well.

More in line with our approach are those that avoid neural

networks altogether, such as with latent and/or probabilistic

models. For example, measuring similarity in context based

on a priori, out of context likelihood for senses of words [5].

There have also been attempts to address the issue of singular

word vectors’ weaknesses at contextualizing and capturing

meaning across phrases [7]. However, they differ from us

by imposing a structure on word order and co-occurrence.

We simply try to find a better way to use the existing

vectors themselves. To the best of our knowledge, there

is no definitive work on improving the similarity functions

for word embeddings directly to take context into account,

but we do take inspiration from some of the similarity

measurements proposed by [11].

III. BACKGROUND INFORMATION

In this section we review the necessary background in-

formation about word embeddings and the popular neural

network based models word2vec [13] and GloVe [18],

and simple operations on these embeddings.

A. Word Embeddings

The basic premise behind word vectors is to form a vector

representation of a word based on co-occurrence statistics.

By predefining a context window, usually of the number of

words around the target word, the co-occurrence counts are

obtained by counting how often a word occurs within the

context of another word. Each row in the resultant matrix

forms a distribution of co-occurrence counts. The row is

then a vector representation of the word. This approach is

based on the famous quote “you shall know a word by the

company it keeps” by linguist John Rupert Firth [9], an

observation that has held true in even the modern forms of

word embeddings. The generalization of this technique is

often referred to as distributional statistics and for semantic

word vectors distributional semantics.

The distributional technique for word vectors suffers from

dimensionality issues, as the matrix is a square matrix of size

equal to the vocabulary of words, which can be hundreds of

thousands, or even millions, of words. To mitigate this, the

vector set formed by the vocabulary is embedded into a lower

dimensional, real-valued vector space. Since the vectors in

the original matrix tend to be very sparse, as many words

never appear in the contexts of others, little information is

lost in these compressions. One of the earliest examples of

this is matrix factorizing through Singular Value Decom-

position (SVD) and truncating the resulting factorizations.

This technique is referred to as Latent Semantic Analysis

(LSA) [6].

In recent times, neural models for generating word embed-

dings have been shown to be more effective at capturing the

semantic relationships between words [3]. In particular, these

more successful models attempt to predict contexts of words

from co-occurrences, as opposed to directly relying on the

counts in the matrix. We will use these for our experiments,

as we are particular interested in the relational properties

between word vectors. However, this is not to say that count-

based neural network or even non-neural network models are

strictly inferior at modeling word vectors, as shown by [11]

- they are better at optimizing the hyper-parameters.

Such neural models are closely tied to neural language

models, which try to learn a probability distribution over

words in a vocabulary and predict words in a sequence. This

is done by discretizing a corpus into occurrences of N -grams,

or subsequences of words of length N (mixed-gram models

can incorporate multiple values of N , typically from 2 to

5), and passing these through a feed-forward network which

learns to predict future words given a context. The soft-max

layer that performs this optimization outputs embeddings as

a result for each word, as observed by Bengio, et al. in [4].

B. Skip-Gram Neural Word Embeddings

We now describe word2vec, specifically focusing on the

Skip-Gram model with negative sampling, as we use the pop-

ular and massive Google negative sampled 300 dimensional

vector model of 3 million unique words, discussed in [14].

Loosely speaking, the Skip-Gram model [13] tries to predict

the context around a given word. Given a word wt and the

sequence (context) around it:

Ct = wt−n, ..., wt−1, wt+1, ..., wt+n

the Skip-Gram objective is to maximize the sums of the log

probabilities across all T words:

T∑
t=1

log(P (Ct|wt)) (1)

The logarithmic term in Equation 1 can be further reduced:

545

logP (Ct|wt) =
n∑

j=−n

log(P (wt+j |wt)) (2)

This is a soft-max operation, and is asymptotically pro-

portional to the number of words, as noted in [14]. The

hierarchical soft-max [16] is instead performed to handle this

operation efficiently, in logarithmic time.

The takeaway here is the observation in Equation 2. It’s

often surmised that the compositionality of word2vec’s

vectors comes from the maximization across the sum of

these log prediction probabilities. If two words occur in

each other’s context’s often, the model will generate a larger

response to that in order to maximize the log probabilities of

their overlapping contexts. However, it is also clear that the

context window necessitates a strict cut-off in the extent to

which word2vec will do this. Moreover, statistics on longer

n-grams also decrease rapidly, so enlarging the context

window does not help the curse of dimensionality.

C. GloVe Neural Word Embeddings

GloVe [18] is a special mix of traditional matrix factor-

ing approaches for word embeddings and word2vec style

word embeddings. A co-occurrence matrix X is obtained in

largely the usual way, and turned into word co-occurrence

probabilities. Words far away relative to the context window

decay in value. The GloVe model defines the constraint:

wT
i wj + bi + bj = log(Xij) (3)

on each word pairing in X , where i is the current word,

and j is a word appearing in context, with bias terms bi and

bj for each. The bias terms absorb unrelated bias in the log

probabilities of their co-occurrence, and the linear product of

the word’s weights preserve the linear relationship between

their co-occurrence. Thus, it stands to reason that minimizing

Equation 3 minus log(Xij) for each pair will produce a close,

log-linearly related approximation to X - this is done by a

neural network that optimizes the following objective:

∑
i,j

f(Xij)(w
T
i wj + bi + bj − log(Xij))

2 (4)

where f(Xij) is a weighing function that down scales

the importance of common words by their probability and

keeps infrequent words at a constant weight. Once again,

the logarithmic and linear relationship between co-occurring

words is maintained. Under the right parameters, GloVe can

perform just as well as word2vec, and vice versa [3].

D. Common Operations

Here we describe some of the relevant and common

operations performed with word vectors, for reference.

Similarity: The most common method of measuring the

semantic similarity between two vectors is with cosine:

scos(u, v) = 1− dcos(u, v) (5)

where dcos is the cosine distance:

dcos(u, v) =
a · b

‖a‖2‖b‖2 (6)

Analogy: Analogical reasoning can be performed on word

vectors by finding the closest (non-trivial) word vector d to:

a+ (b− c) (7)

where a is to b, as c is to d. Furthermore, one can measure

the strength of an analogical relationship by:

scos(a− c, d− b) (8)

or with one of the other 3 analogy variants. Refer to Figure 1

for an example.

Average: Averaging word vectors is performed the usual way

by summing over a set of word vectors and dividing by the

number of vectors:

a =
∑
k∈A

ak (9)

Weighted versions of this also exist.

IV. METACONCEPTS OVER WORDS

In this section we describe our method of contextualizing

word vectors. We will refer to contextualized versions of

vectors as metaconcepts from here forth, as they are formed

through combining self-referential projections of nearest

neighbors of constituent words or phrases.

A. Contexts of Contexts

As mentioned in the Skip-Gram word2vec and GloVe
sections, word embeddings typically strive to maintain linear

relationships between their representations for word vectors.

However, it is evident that this mostly applies up to and near

the pre-defined context window and any overlapping context

windows for words. As such, the word vectors closest to

another vector are the most confident in similarity to that

vector. Consequently, it is expected that the local topology

of clusters of words is nearly linear.

Consider the set of k nearest neighbors Uk to a word

vector u. Projecting u onto each element will isolate the

components of u that best relate to that element. This is what

happens when distance is measured between word vectors.

If the cosine distance using Equation 6 is employed, the

magnitude of a vector is irrelevant. Furthermore, when cosine

distance is positive, there is at least some correlation in the

correct direction between the projected components and the

vector being projected on. Vector u is nearly guaranteed to

have all nearest k neighbors to be positive, though this is not

strictly true. The average of all positive vectors then tends

to point in the same direction as u. Let:

z =
1

|Su(v)|
∑

s∈Su(v)

s (10)

be the context average of a vector v, where Su(v) is the

subset of Uk with positive cosine similarity to v. Cu = Uk

546

Fig. 2. An example of the context averaging described in Equation 10.
The 3 thin vectors are nearest neighbors to u. The context average CA(v)
for a vector v excludes the indicated vector as it cannot project on it with
a positive scalar value. The other two are valid, and so CA(v) becomes
their average. A joint context average differs only in that v is projected on
its own neighbors as well, and is averaged with u’s projection on v and its
own neighbors. Then their vectors are averaged in a weighted fashion.

is referred to as the context of u. The average of a vector

across Uk is then the context average over Uk of the vector.

The result of a context average is interpreted as a good subset

of nearest neighbors to average over; a best fit location of

v in the local topology of u. Figure 2 shows how context

averaging affects a vector v in relation to u. Note that if v
is far from u, the context average can still land very close

to u, perhaps even being equal to it, so long as there is at

least some correlation in many of the same context elements.

Now, consider the case where we have two words u and v
with two different contexts Cu and Cv . We can consider their

union Cu,v = Cu ∪ Cv to be a joint context. Consider the

vector:

z =
1

|Su(v)|+ |Sv(v)|

⎛
⎝ ∑

s∈Su(v)

s+
∑

s∈Sv(v)

s

⎞
⎠ (11)

where Su and Sv are the set of positive cosine similar vectors

to the joint context for u and v, respectively, referred to as

the joint context average. This represents the best weighted

context average to Cu,v , by performing a weighted average

across the contexts averages of each vector to the context.

Now consider the situation where we wish to cast v into

the context provided by u. For example, if v is “bank” and

u is “river”, then we want a new vector vu such that it

captures bank in the context of river (that is to say, the bank

of a river). Our strategy is as follows: compute Equation 11,

calling it vjoint, then Equation 10 for u with context Cu,v ,

calling it ujoint. In other words, we compute the joint context

average, and then the regular context average for u, but on

the joint context. Geometrically, the ideal scenario here is

that the relationship between u, ujoint, v, and vjoint is anti-

analogical: v is to vjoint as ujoint is to u, i.e., they point to

each other. Figure 3 visualizes this relationship. We compute

the following cosine similarity to measure the contextual

association between v and the contextualized vu = vjoint:

Fig. 3. An example of the relationship between u, v, ujoint, and vjoint.
The orange / orange-purple points represent nearest neighbors of v, where
the orange-purple ones signify their inclusion in the joint context average.
The same is true of the blue / teal-purple points for u. The ujoint and
vjoint vectors are the result of the joint context averages on u and v,
respectively. The average and line of potential weighted averages (dotted
line) of u and v is shown, along with the true geodesic (black line) along
an unknown manifold (green). Averages can deviate far from the manifold.

scos(v − vjoint, ujoint − u) (12)

B. Recursive Metaconcepts

We can generalize our technique to work across not only

pairs of single words but multi-word sets. To do this, we

perform an additional step before computing the contextual

association, where we find context averages for each set

of words being compared. This is done recursively by

grouping words in a set together, combining their contexts,

and computing Equation 12, with vjoint being computed

the same as ujoint, using Equation 10 on the joint context.

Whichever pair has the highest contextual similarity is voted

to be merged into a single unit (a single metaconcept) by

computing Equation 11. This repeats until only a single

metaconcept is left, the vector and context of which is used

as a word vector and its context normally would.

V. EXPERIMENTS

In this section we detail our experiments for testing the

efficacy of metaconcepts.

A. The Problem Setup

Since the primary role of metaconcepts is to generate

contextualized vectors from word embeddings, we design our

experiment testing this aspect. We formulate our experiment

in the form of a task that is designed to be difficult for word

embeddings to solve with just common operations on their

vectors. This task is word sense disambiguation in the form

of a free-form matching problem. For example, if we have

a word with 5 senses, and each sense has a definition that is

available to us, we wish to match the sense definition with the

correct usage of it in an example sentence. Say the word is

“ride” and the sense we are considering is “using something

as a form of transportation”. The sentence “I hitched a ride

on a friend’s car this morning” must be correctly matched

with this sense of “ride”. The problem is made more difficult

by making each decision independently, so that process-of-

elimination techniques cannot be used to narrow down the

547

S ≥ Method w2v (U) GloVe (U) w2v (W) GloVe (W)
2 baseline 0.387 0.304 0.304 0.177
2 average 0.440 0.367 0.361 0.246
2 meta5 0.536 0.518 0.470 0.459
2 meta10 0.553 0.494 0.482 0.457
2 meta20 0.574 0.534 0.505 0.536
2 meta50 0.590 0.514 0.514 0.495
3 baseline 0.251 0.202 0.206 0.132
3 average 0.321 0.278 0.273 0.205
3 meta5 0.428 0.419 0.393 0.371
3 meta10 0.449 0.436 0.403 0.403
3 meta20 0.481 0.538 0.432 0.540
3 meta50 0.494 0.444 0.436 0.446
4 baseline 0.193 0.154 0.163 0.108
4 average 0.271 0.231 0.232 0.181
4 meta5 0.390 0.281 0.363 0.247
4 meta10 0.401 0.421 0.365 0.371
4 meta20 0.451 0.474 0.401 0.498
4 meta50 0.468 0.333 0.403 0.375
6 baseline 0.121 0.125 0.108 0.092
6 average 0.172 0.200 0.157 0.165
6 meta5 0.419 0.367 0.354 0.391
6 meta10 0.384 0.390 0.328 0.395
6 meta20 0.414 0.373 0.347 0.391
6 meta50 0.373 0.333 0.312 0.352

TABLE I

Table of results for the WordNet sense disambiguation task comparing the

random baseline, benchmark (average word vectors), and metaconcepts

approaches. The number after “meta” is the number of nearest neighbors

used. We show results across increasing lower bounds for the minimum

number of senses (S) for both word2vec (w2v) and GloVe, showing

both the unweighted (U) and weighted (W) results. Underlined entries are

maximal in their row and bolded entries are maximal in their column.

number of remaining sentences and senses to be matched.

As examples for a set of senses of a word come in, we

do not know at any given point if we’ve already matched

a particular sense. We can only choose the highest score

among all possibilities each time. If the contextualization

does not work correctly, the highest score may either choose

the wrong matching outright or repeatedly choose to match

certain senses since it has not rid itself of the bias of other

senses. We expect that word embeddings will not fare well

in this regard without the use of metaconcepts.

B. Using WordNet as a Dataset

We obtain exemplar words, senses, definitions and exam-

ples from WordNet’s synsets, and use WordNet’s matching as

the correct answer. WordNet [15], [8] is a lexical database

for English and is divided into synonym sets (synsets) for

words, which represent the sense of a word being used. For

any given word with n senses, we select one example of

each sense and the definition of a sense, and treat this as a

mapping to one another.

For each pairing, we compute a score of contextual relat-

edness on their sentences. Since we are not supposed to know

the categories we selected as we choose the best scores, we

always take the top n scores in the resulting n by n matrix of

scores. In this sense, we are treating the scoring as a ranking
across all pairs. We perform this on each word, and tally the

number of times we were correct and the number of times

we were wrong to compute our accuracy. Since some words

have more senses than others, we reflect the challenge of this

by computing another, weighted score, where the number of

possible senses is the weight on that correct answer. We then

divide by the total number of possibilities across all answers.

We also try restricting the least number of senses in various

experiments to try and get a sense of how the score changes

as the overall experiment becomes harder and harder.

C. Scoring the Association of Pairs
For vanilla word embeddings, we tried a mix of averaging

the words in the sentences and comparing (thus, not knowing

the actual word) and including the word in the average of the

sentences to naı̈vely influence the context behind the usage

of each sentence (both by averaging with the average at the

end, and simply including it in the average). We found that

including the word in the average always yielded inferior

accuracy, so we stick to simple averaging of sentences and

computing the cosine similarity between them. This serves

as a benchmark for vanilla word embeddings’ ability to infer

the context. We also compute the score that one would get by

random guessing as the baseline for the problem. Depending

on the least number of senses we allow for a word, the

baseline changes, getting smaller and smaller rapidly.
To benchmark our metaconcept technique, we first start

by performing metaconcept recursion on each sentence in

the pair, and on the WordNet word. The resulting vectors

and contexts for the description and the example sentences

are used with the WordNet word to compute Equation 11,

or the joint context average with the word. This generates

two vectors djoint and ejoint for the description and example

sentences. These have been contextualized with the WordNet

word. Finally, we compute vectors d and e by via the context

average on djoint and ejoint with the union of their set of

contexts. We use these values for the cosine similarity on the

analogical relationship between them with Equation 12.

D. Experimental Results
As shown in Table 1 in IV-B, word embeddings only

slightly outperform the baseline when simple averaging is

used, while metaconcepts can hit over 50% accuracy when

all words with at least two senses are considered. Because

no learning mechanism was used, the improvement is solely

due to the technique used to generate metaconcepts. When k
is small, the results suffer, but our experimentation showed

little improvement after k = 50; we recommend considering

this many neighbors. As the number of senses increases, the

difficulty of the classification problem does as well, as the

number of options grow quadratically. However, our method

seems to not feel the effects of this nearly as much as the

average does, in relation to the baseline. This is because

the contextualization via metaconcepts has better ranking

properties, and does not suffer from the growing number

of possible classes to choose from.

VI. DISCUSSION

It should be noted that our metaconcept technique requires

careful consideration during implementation, as computing

548

the k nearest neighbors to a vector is expensive. A naı̈ve

implementation would run in O(kdn) time, where k is the

number of nearest neighbors, d is the model dimension, and

n is the number of vectors. However, O(log(n)) methods

exist for approximating nearest neighbors [2], [1]. They can

also be precomputed for a known vocabulary. We brute

forced this process and computed all nearest neighbors for

each word embedding model for 200 nearest neighbors.

When precomputed, the nearest neighbors become a non-

issue, as our algorithm is purposefully designed to not

require the nearest neighbors to a novel vector. However,

our method’s runtime is directly dependent on the number of

nearest neighbors to consider, and the number of recursive

levels needed for metaconcept recursion. Our experiments

showed that 50 nearest neighbors are more than sufficient.

Without using high-performance computing techniques, it

can be an expensive operation, though still largely real time.

Our results indicate that metaconcepts provide good con-

textualized versions of word embeddings and can potentially

be good features for contextualization in other learning sys-

tems. Furthermore, it works well for longer units of language.

It may be possible to use metaconcepts as features in word

vector based learning of document and phrase level vectors.

More research is required to investigate how incorporating

metaconcepts affects results on other tasks, and is a natural

next step for future work. As our experiment shows that even

single words can be confidently compared to more complex

phrases, metaconcepts can be used as a bridge between

tags obtained from meta-data or classification in images /

other multi-media, and natural language. Another interesting

line of future work is utilizing metaconcepts to measure

association between multi-media where tags to words in

natural language are available, in order to rank how relevant

a piece of multi-media is to a certain topic.

VII. CONCLUSION

We have proposed a novel, non machine-learning method

of using word vectors to both give context to other vectors

and express more complicated units of language and their

relationships. We have empirically shown that our proposed

metaconcept strategy works far better than standard word

vector operations for providing context to vectors by boosting

the accuracy of word embeddings on a difficult sense classifi-

cation problem on WordNet words. Our results increase the

efficacy of contextualization from the baseline several-fold

when compared to simple averaging.

ACKNOWLEDGMENT

The views, opinions, and/or findings expressed are those

of the authors’ and do not represent the official views or poli-

cies of the Department of Defense or the US Government.

Approved for public release, distribution unlimited.

Thank you to Dr. Reza Ghanadan, Dr. Hava Siegelmann,

and Boston Engineering Corporation for advice and support

on this topic. Special thanks to David Shane of Boston Engi-

neering for numerous discussions and his advice on research

direction and testing. This research has been supported in

part by Boston Engineering Corporation through DARPA

contract number W31P4Q-13-C-0136.

REFERENCES

[1] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms
for approximate nearest neighbor in high dimensions. In Foundations
of Computer Science, 2006. FOCS’06. 47th Annual IEEE Symposium
on, pages 459–468. IEEE, 2006.

[2] Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman,
and Angela Y Wu. An optimal algorithm for approximate nearest
neighbor searching fixed dimensions. Journal of the ACM (JACM),
45(6):891–923, 1998.

[3] Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t count,
predict! a systematic comparison of context-counting vs. context-
predicting semantic vectors. In Proceedings of the 52nd Annual
Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 238–247, Baltimore, Maryland, June 2014.
Association for Computational Linguistics.

[4] Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic
Morin, and Jean-Luc Gauvain. Neural Probabilistic Language Models,
pages 137–186. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[5] Georgiana Dinu and Mirella Lapata. Measuring distributional similar-
ity in context. In Proceedings of the 2010 Conference on Empirical
Methods in Natural Language Processing, EMNLP ’10, pages 1162–
1172, Stroudsburg, PA, USA, 2010. Association for Computational
Linguistics.

[6] Susan T. Dumais. Latent semantic analysis. Annual Review of
Information Science and Technology, 38(1):188–230, 2004.

[7] Katrin Erk and Sebastian Padó. A structured vector space model
for word meaning in context. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, EMNLP
’08, pages 897–906, Stroudsburg, PA, USA, 2008. Association for
Computational Linguistics.

[8] Christiane Fellbaum. WordNet. Wiley Online Library, 1998.
[9] J. R. Firth. A synopsis of linguistic theory 1930-55. 1952-59:1–32,

1957.
[10] Eric H Huang, Richard Socher, Christopher D Manning, and Andrew Y

Ng. Improving word representations via global context and multiple
word prototypes. In Proceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long Papers-Volume 1,
pages 873–882. Association for Computational Linguistics, 2012.

[11] Omer Levy, Yoav Goldberg, and Ido Dagan. Improving distributional
similarity with lessons learned from word embeddings. Transactions
of the Association for Computational Linguistics, 3:211–225, 2015.

[12] Bryan McCann, James Bradbury, Caiming Xiong, and Richard Socher.
Learned in translation: Contextualized word vectors. In Advances in
Neural Information Processing Systems, pages 6297–6308, 2017.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Ef-
ficient estimation of word representations in vector space. CoRR,
abs/1301.3781, 2013.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases and
their compositionality. In Advances in neural information processing
systems, pages 3111–3119, 2013.

[15] George A Miller. Wordnet: a lexical database for english. Communi-
cations of the ACM, 38(11):39–41, 1995.

[16] Andriy Mnih and Geoffrey E Hinton. A scalable hierarchical dis-
tributed language model. In Advances in neural information processing
systems, pages 1081–1088, 2009.

[17] Siddharth Patwardhan and Ted Pedersen. Using wordnet-based con-
text vectors to estimate the semantic relatedness of concepts. In
Proceedings of the Workshop on Making Sense of Sense: Bringing
Psycholinguistics and Computational Linguistics Together, 2006.

[18] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove:
Global vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language processing
(EMNLP), pages 1532–1543, 2014.

[19] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner,
Christopher Clark, Kenton Lee, and Luke Zettlemoyer. Deep con-
textualized word representations. CoRR, abs/1802.05365, 2018.

[20] Stefan Thater, Hagen Fürstenau, and Manfred Pinkal. Contextualizing
semantic representations using syntactically enriched vector models.
In Proceedings of the 48th Annual Meeting of the Association for Com-
putational Linguistics, pages 948–957. Association for Computational
Linguistics, 2010.

549

