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Abstract We derive explicit formulas for some Kloosterman sums on �0(N ), and
for the Fourier coefficients of Eisenstein series attached to arbitrary cusps, around a
general Atkin–Lehner cusp.
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1 Motivation

Many problems in analytic number theory rely on the spectral theory of automor-
phic forms for GL2. For instance, it is desirable to obtain cancellation in sums of
Kloosterman sums, a goal first achieved by Kuznetsov [12] for

∑
c≤X

S(m,n;c)
c with

the key tool being his famous spectral decomposition of sums of Kloosterman sums.
For arithmetical applications, one typically encounters Kloosterman sums with addi-
tional constraints. As an example, for the problem of estimating the fifth moment of
modular L-functions in the level aspect [11], we encounter
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392 E. M. Kıral, M. P. Young

∑

(c,N )=1
c≡0 (mod q)

S(Nm, n; c) f (c), (1.1)

where f is a smooth function on the positive reals with sufficient decay.
Deshouillers and Iwaniec [4] greatly generalized Kuznetsov’s arguments and in

particular calculated Sab(m, n; c) for a variety of pairs of cusps a, b for�0(N ). In order
to apply the powerful spectral methods to a sum ofKloosterman sums (such as (1.1)), it
is necessary to recognize S(Nm, n; c) as an Sab(m, n; c) for some congruence group
and choices of cusps. Moreover, the arithmetical conditions on c need to correspond to
the lower-left entries occurring in the corresponding double coset decomposition (as
in [8, Sect. 2.5]). There is no obvious way to directly solve this recognition problem,
and the only known method is to calculate many examples of Sab(m, n; c). In an
unpublished paper, Motohashi [13] showed that (1.1) can be realized as the sum of
Kloosterman sums associated to the pair of cusps ∞, 1/q for the group �0(Nq). One
goal of this paper is to generalize this calculation, thus providingmore flexibility in the
sums of Kloosterman sums that one can treat using spectral theory. Our Kloosterman
sum formula appears as Theorem 2.7 below.

The Kloosterman sum Sab(m, n; c) implicitly depends on the scaling matrices one
chooses for the cusps a, b (see Sect. 2.1 for definitions). Moreover, on the spectral
side of the Bruggeman–Kuznetsov formula, the Fourier coefficients also depend on the
choice of scalingmatrices.Anice feature ofMotohashi’s formula for S∞,1/r (m, n; c) is
that he chooses Atkin–Lehner operators as scaling matrices. This is important because
it means that for an eigenform of the Atkin–Lehner operators, the Fourier coefficients
around the cusp 1/r are proportional to the Fourier coefficients around the cusp ∞.

For more advanced problems in analytic number theory, it is often important to
prove extra cancellation after the usage of the Bruggeman–Kuznetsov formula, aided
by additional summation variables involving some combination of m, n, N , q. In the
context of the fifth moment problem of [11], we encountered sums over m and n
weighted by the divisor function. One is therefore led to study the Dirichlet series∑

n τ(n)ρa(n)n−s , where τ(n) is the divisor function, and ρa(n) are the Fourier coef-
ficients of a cusp form around the cusp a. In turn, to relate this Dirichlet series to
L-functions, one would like ρa(n) to be multiplicative and to be related to ρ∞(n).
In case a is equivalent to ∞ under an Atkin–Lehner operator, and provided the cusp
form is an eigenform of the Atkin–Lehner operators, then these goals are accom-
plished. This property was crucially used in [11] when studying (1.1). Motivated by
this, we systematically choose Atkin–Lehner operators as scaling matrices.

Another problem in this theme is the explicit evaluation of Fourier coefficients of
Eisenstein series attached to general cusps a on �0(N ). These quantities appear on
the spectral side of the Bruggeman–Kuznetsov formula, and for some applications
(e.g., [11], where the sum (1.1) was spectrally decomposed) one needs rather precise
information on these Fourier coefficients. In (3.21) below, we give a fairly compact
formula for the Fourier coefficients. However, in analogy to the Dirichlet series men-
tioned in the previous paragraph, it is preferable to work with multiplicative Fourier
coefficients. To this end, we change basis using Dirichlet characters, which leads to
Theorem 3.4. Although it is an admittedly large expression, it is nevertheless useful
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Kloosterman sums and Fourier coefficients of Eisenstein series 393

for our intended application in [11]. Much of the work leading up to the derivation of
Theorem 3.4, such as Lemma 3.5, should be useful in more general contexts.

This is a companion paper to [11] which relies on the results in this paper. The
problem studied in [11] is to estimate

∑
f L(1/2, f )5, where f runs over a Hecke

basis of modular cusp forms with fixed small weight and varying prime level. This is
an example of a moment that is one larger than the “barrier” moment. In this family,
the fourth moment is relatively easy, following from the large sieve inequality for
modular forms, and gives back the convexity bound after dropping all but one term.
There are very few results in the literature on families of L-functions where a sharp
bound on a moment is produced that is one larger than the barrier moment. Notable
examples include the cubic moments in [3] and [7], and some generalizations.

We expect that variants of the fifth moment problem will lead to more general sums
of Kloosterman sums than in (1.1). Such variants could potentially include products
of L-functions of the form L(1/2, f ⊗ χ) for a fixed Dirichlet character χ , or forms
f with nontrivial nebentypus. We therefore hope our results on explicit calculation of
Kloosterman sums will be of independent interest.

2 Kloosterman sums

2.1 Definitions

We mostly follow the notation of [9]. Let N be a positive integer and � = �0(N ).
An element a ∈ P

1(Q) is called a cusp. Two cusps a and a′ are equivalent under � if
there is a γ ∈ � satisfying a′ = γ a. Let a be a cusp and �a = {γ ∈ � : γ a = a} be
the stabilizer of the cusp a in �. A matrix σa ∈ SL2(R), satisfying

σa∞ = a, and σ−1
a �aσa = {± (

1 n
0 1

) : n ∈ Z
}

(2.1)

is called a scaling matrix for the cusp a.

Remarks For two equivalent cusps a and a′ = γ a, with γ ∈ �, the stabilizers of the
cusps are conjugate subgroups in�, namely,�a′ = γ�aγ

−1. Furthermore, σa′ = γ σa
is a scaling matrix for the cusp a′. The matrix σa is not uniquely defined by the above
properties: for any α ∈ R,

σa
(
1 α
0 1

)

also satisfies (2.1). The choice of the scaling matrix σa is important in what follows.

Definition 2.1 Let f be a Maass form for the group �. The Fourier coefficients of f
at a cusp a, relative to a choice of σa, and denoted ρ f (σa, n), are defined by

f (σaz) =
∑

n �=0

ρ f (σa, n)e(nx)W0,i t j (4π |n|y), (2.2)

where
W0,i t j (4πy) = 2

√|y|Kit j (2πy).
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394 E. M. Kıral, M. P. Young

Remark If σa is replaced with σa
(
1 α
0 1

)
, then the Fourier coefficients relative to the

new scaling matrix are given by

ρ f (σa
(
1 α
0 1

)
, n) = e(nα)ρ f (σa, n).

If the Fourier coefficients of f at a cusp a are multiplicative with respect to σa,
then for another scaling matrix as above, the Fourier coefficients will typically not be
multiplicative. We found the reference [6] useful for its discussions in this context.

Fourier coefficients at equivalent cusps, however, behave more predictably. If a′ =
γ a and we choose the scaling matrix as σa′ = γ σa, then due to �-invariance of f , we
have

ρ f (σa′ , n) = ρ f (σa, n).

When the scaling matrix σa is understood, we may write ρ f (σa, n) = ρa, f (n).
We now define Kloosterman sums with respect to a pair of cusps, and for general

nebentypus. Let χ be a Dirichlet character modulo N . We extend χ to � via

χ : � −→ S1

γ = (
a b

Nc d

) 
→ χ(d).

If χ(−1) = (−1)k , then χ can be seen as a multiplier system on � of weight k. Let λa
be defined by σ−1

a λaσa = (
1 1
0 1

)
. We say that the cusp a is singular for χ if χ(λa) = 1.

Definition 2.2 For a and b singular cusps for χ , the Kloosterman sum associated to
a, b and χ with modulus c is defined as

Sab(m, n; c; χ) =
∑

γ=
(

a b
c d

)
∈�∞\σ−1

a �σb/�∞

χ(sgn(c))χ(σaγ σ−1
b )e

(
am + dn

c

)

. (2.3)

Remarks This definition of the Kloosterman sum slightly differs from that of
[9, (2.23)], in that the roles of m and n are reversed, but agrees with [8, (3.13)].
The presence of −I ∈ �∞ means that the lower-left entry, c, is only defined up to ±
sign, and the factor χ(sgn(c)) accounts for this.

The map γ → γ ′ = −γ −1 gives a bijection between �∞\σ−1
a �σb/�∞ and

�∞\σ−1
b �σa/�∞, fixing the lower-left entry, which implies

Sab(m, n; c;χ) = χ(−1)Sba(n, m; c;χ). (2.4)

This corrects a formula in [9, p. 48] which omitted the complex conjugation.

Definition 2.3 The set of allowed moduli is defined as

Cab =
{
γ > 0 : ( ∗ ∗

γ ∗
) ∈ σ−1

a �σb

}
. (2.5)
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Notice that if |γ | /∈ Cab then the Kloosterman sum of modulus γ is an empty sum.
The definition (2.3) is natural, as it occurs in the Fourier expansion around the cusp

b of the Poincaré series defined by

Pa
n (z, s;χ, k) =

∑

γ∈�a\�
j (σ−1

a γ, z)−kχ(γ )�(σ−1
a γ z)se(nσ−1

a γ z), (2.6)

where Pa
n (z, s;χ, k) is �-automorphic of weight k and nebentypus χ (to be clear, it

transforms by f (γ z) = χ(γ ) j (γ, z)k f (z)). See [8, Section 3.2] for more details.

Remark The Kloosterman sum associated to the pair of cusps a, b depends on the
choice of pair of scaling matrices σa and σb (so it might be better to denote it as
Sσa,σb(m, n; c)). If one changes the choice of the scaling matrix, the Kloosterman
sum also changes by

S
σa

(
1 α
0 1

)
,σb

(
1 β
0 1

)(m, n; c;χ) = e(−αm + βn)Sσa,σb(m, n; c;χ). (2.7)

This corrects a formula of [9, p. 48] which has α in place of our −α. Changing
the cusps a and b simultaneously to equivalent ones does not alter the Kloosterman
sum, provided one also changes the scaling matrices accordingly. More precisely, if
a′ = γ1a and b′ = γ2b for γ1, γ2 ∈ �, then

Sγ1σa,γ2σa(m, n; c;χ) = χ(γ1)χ(γ2)Sσa,σb(m, n; c;χ).

If one applies the Bruggeman–Kuznetsov formula to sums of Kloosterman sums
associated to the choice of scaling matrices σa, σb, then the Fourier coefficients at
cusps a, b appearing on the spectral sidemust also be computed using the same scaling
matrices.

2.2 Atkin–Lehner cusps and scaling matrices

Assume that N = rs with (r, s) = 1. We then call a cusp of the form a = 1/r an
Atkin–Lehner cusp. The Atkin–Lehner cusps are precisely those that are equivalent to
∞ under an Atkin–Lehner operator, justifying their name. In Proposition 3.3 below,
we calculate the stabilizer of a general cusp a, which when specialized to an Atkin–
Lehner cusp shows that �1/r is generated by ±( 1−N s

−r N 1+N ). In particular we see that
an Atkin–Lehner cusp is singular with respect to any Dirichlet character χ (mod N ).

Definition 2.4 Let N = rs with (r, s) = 1 as above, and let W = Ws be the Atkin–
Lehner operator defined by

W = Ws =
(

xs y
zN ws

)

, (2.8)

with det(Ws) = s. On automorphic forms of (even) weight κ , the Atkin–Lehner
operator is defined by ( f |W )(z) = det(W )

κ
2 j (W, z)−κ f (W z).
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396 E. M. Kıral, M. P. Young

Any two choices of Atkin–Lehner operators Ws , for the same value of s, differ by an
element of �0(N ). Therefore, if the nebentypus χ is trivial then f |Ws is independent
of the choices of x, y, z, w. For general nebentypus, one may ensure that f |Ws is
independent of the choices under the assumptions x ≡ 1 (mod r) and z ≡ 1 (mod s).

Thematrix can be normalized to have determinant 1, without changing the operator,
via

1√
s

Ws =
(

x
√

s y/
√

s
zr

√
s w

√
s

)

=
(

x y
zr ws

) (√
s 0
0 1/

√
s

)

.

Here the determinant condition is xws − r zy = 1. We have the freedom to choose
x = z = 1, and then if s is any integer that satisfies ss ≡ 1 (mod r), put w = s and
y = (ss − 1)/r . Therefore the matrix

σ1/r = τrνs with τr =
(
1 (ss − 1)/r
r ss

)

, νs =
(√

s 0
0 1/

√
s

)

, (2.9)

is an acceptable choice for an Atkin–Lehner operator Ws . Note τr ∈ �0(r) (in par-
ticular, it has integer entries and determinant 1). From the theory of Atkin–Lehner
operators, a newform f of weight 0 and trivial nebentypus will satisfy

f (σ1/r z) = ηs( f ) f (z), (2.10)

where f |Ws = ηs( f ) f with ηs( f ) = ±1.
One may check directly that σ1/r also satisfies the conditions in (2.1), i.e., it is a

scaling matrix for the cusp 1/r and that λ1/r = ( 1−N s
−r N 1+N ). If f is a Maass form

satisfying (2.10) then its Fourier coefficients at the cusp a with respect to the choice
(2.9) for its scaling matrix has the Fourier coefficients

ρ f (σ1/r , n) = ±ρ∞, f (n).

For an application in [11], we need a more general version of this, which takes into
account the translates f |�(z) := f (�z).

Lemma 2.5 Suppose a is an Atkin–Lehner cusp of �0(N ), and f ∗ is a newform
of trivial nebentypus and level M with L M = N. Then the set of lists of Fourier
coefficients {(ρa f ∗|� (n))n∈N : �|L} is, up to signs, the same as the set of lists of Fourier
coefficients {(ρ∞ f ∗|� (n))n∈N : �|L}.

Proof Suppose that p is prime, p|N , pα||N , pβ ||L (so pα−β ||M), and pγ ||�. Let
Wpα be the Atkin–Lehner involution for �0(N ) for the prime p. Then the key fact we
need is

( f ∗|�)|Wpα = ηpα−β ( f ∗) f ∗|�′, (2.11)

where �′ is defined by �′ = pβ−γ h where � = pγ h, (so (h, p) = 1). Note that the
map � → �′ is an involution, permuting the divisors of L . Taking (2.11) for granted
for a moment, we may complete the proof of Lemma 2.5, by noting that the Fourier
coefficients of f ∗|� at an Atkin–Lehner cusp a are equal to the Fourier coefficients of
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Kloosterman sums and Fourier coefficients of Eisenstein series 397

( f ∗|�)|WD for some Atkin–Lehner involution with D|N , which is a composition of
Wpα ’s. The lemma follows from repeated usage of (2.11).

Now we prove (2.11). First suppose γ ≤ β/2, and let �′ = pβ−2γ � = pβ−γ h.
Then by [1, Lemma 26],

( f ∗|�)|Wpα = ( f ∗|W ′
pα−β

)|�′ = ηpα−β ( f ∗) f ∗|�′, (2.12)

where W ′
pα−β is the Atkin–Lehner involution on�0(M) (technically, they worked with

holomorphic forms but their proof works equally well for Maass forms). This proves
the claim under the condition γ ≤ β/2. If γ > β/2, then one may reverse the roles
of � and �′ and apply Wpα to both sides of (2.12) to give the result. ��

2.3 Kloosterman sums using Atkin–Lehner scaling

Proposition 2.6 Let N = rs with (r, s) = 1, and choose σ1/r as in (2.9). Then the
set of allowed moduli for the pair of cusps ∞, 1

r is

C∞,1/r = {
γ = c

√
s > 0 : c ≡ 0 (mod r), (c, s) = 1

}
, (2.13)

and for such γ = c
√

s ∈ C∞,1/r , the Kloosterman sum to modulus γ is given by

S∞,1/r (m, n; c
√

s) = S(sm, n; c), (2.14)

where the S(a, b; c) on the right denotes the ordinary Kloosterman sum.

Remark This is the same Kloosterman sum as [13, (14.8)], but differs from the com-
putation in [8, Sect. 4.2] by the presence of an additive character. This difference is due
to the differing choices of the scaling matrices. Motohashi’s choice of scaling matrix
corresponds to the Atkin–Lehner operators as in Sect. 2.2 above. Proposition 2.6 is a
special case of the following more general Theorem 2.7, which evaluates the Kloost-
erman sum that is associated to the pair of Atkin–Lehner cusps 1/r1 and 1/r2 and
with a character χ (mod N ). The evaluations should prove useful for other works.

Theorem 2.7 Let N = pquv with p, q, u, v all pairwise coprime. Put r1 = pu, s1 =
qv and r2 = pv, s2 = qu. The set of allowed moduli for the pair of cusps 1/r1, 1/r2
is given as

C1/r1,1/r2 = {
γ = c

√
uv > 0 : c ≡ 0 (mod pq), (c, uv) = 1

}
. (2.15)

Let χ be a Dirichlet character modulo N, and factor it as χ = χpχqχuχv , where χp

is a character modulo p, χq is a character modulo q, etc. The Kloosterman sum for
this pair of cusps and character χ with modulus γ = c

√
uv ∈ C1/r1,1/r2 is given as
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398 E. M. Kıral, M. P. Young

S1/r1,1/r2(m, n; c
√

uv;χ) = fχu(c)χv(c)
∑

a,d (mod c)
ad≡1 (mod c)

χp(d)χq(a)e

(
auvm + dn

c

)

,

(2.16)
where

f = f(p, q, u, v, χ) = χv(−1)χpχv(u)χqχu(v)χu(pq)χv(pq). (2.17)

Remarks One may directly verify that the explicit formula given by (2.16) and (2.17)
also satisfies (2.4), which is a nice consistency check. Also, both cusps 1/r1, 1/r2 are
Atkin–Lehner cusps, and hence singular with respect to χ .

Proof Our proof closely follows that in [13]. Consider the double coset σ−1
1/r1

�σ1/r2 ,
and recall the definitions of τr and νs from (2.9). We firstly claim

τ−1
r1 �τr2 =

{(
xv yq
zp wu

)

∈ SL2(Z) : x, y, z, w ∈ Z

}

. (2.18)

By reducing the entries of the product of matrices implicit in the left-hand side of
(2.18) modulo p, q, u, and v respectively, one sees that in each case the lower-left,
upper-right, lower-right, and upper-left entries vanish, respectively. Hence the left-
hand side of (2.18) is contained in the set on the right-hand side. For the opposite
inclusion, we have

τr1

(
xv yq
zp wu

)

τ−1
r2 =

(
1 s1s1−1

r1
r1 s1s1

) (
xv yq
zp wu

)(
s2s2

1−s2s2
r2−r2 1

)

.

Again by reducing modulo p, q, u, and v (the reader may find it easiest to reduce prior
to performing matrix multiplication), one obtains an upper triangular matrix in each
case, whence the product is an element of �0(N ) = �0(pquv).

Multiplying with the width-normalizing matrices νs , we get

σ−1
1/r1

�σ1/r2 =
{(

x
√

uv y/
√

uv

zpq
√

uv w
√

uv

)

∈ SL2(R) : x, y, z, w ∈ Z

}

.

The determinant condition reads as xwuv − zpqy = 1, and for this to be satisfied one
needs (z, uv) = 1. This shows that (2.15) indeed gives the allowable set of moduli.

Next we wish to decompose this double coset according to the action of �∞ on
both the left and right, as in [9, Theorem 2.7]. A full set of coset representatives for
�∞\σ−1

1
r1

�σ 1
r2

/�∞ with a given lower-left entry zpq
√

uv is given by

(�∞\σ−1
1

r1

�σ 1
r2

/�∞) ∩ {( ∗ ∗
zpq

√
uv ∗

)}

=
{(

x
√

uv ∗
zpq

√
uv w

√
uv

)

∈ SL2(R) : x, w ∈ (Z/zpqZ)∗
xwuv ≡ 1 (mod zpq)

}

.

(2.19)

123



Kloosterman sums and Fourier coefficients of Eisenstein series 399

Here the condition xwuv ≡ 1 (mod zpq) determines w in terms of x , and automati-
cally implies (xw, zpg) = 1.

Because of the presence of a character, we need to know the lower-right entry
of an element of � in terms of the integers x, w, z from this double coset. Given

ρ =
(

x
√

uv y/
√

uv

zpq
√

uv w
√

uv

)
, we compute the lower-right entry of

( ∗ ∗∗ d

) = σ 1
r1

ρσ−1
1

r2

by

brute-force calculation as

d = (1 − s2s2)

r2
(puxv + s1s1zp) + puqy + us1s1w

= (1 − ququ)(ux + qqvz) + puqy + uqvqvw.

Reducing this in each of the moduli p, q, u, v, we obtain

d ≡ wu (mod p), d ≡ ux (mod q),

d ≡ zv (mod u), d ≡ ypuq ≡ −zpq puq ≡ −zu (mod v).

Alternatively, one may reduce the matrices prior to the matrix multiplication.
The Kloosterman sum is then given by

S 1
r1

,
1
r2

(m, n; zpq
√

uv;χ)

=
∑

( x
√

uv ∗
zpq

√
uv w

√
uv

)
∈�∞\σ−1

1
r1

�σ 1
r2

/�∞

χp(uw)χq(ux)χu(zv)χv(−zu)e

(
xm + wn

zpq

)

.

Using (2.19) and a change of variables x 
→ xuv, and with some simplifications, we
obtain (2.16). ��
Examples Specializing Theorem 2.7 to r1 = N , r2 = 1, we obtain

S∞,0(m, n; c
√

N ;χ) = χ(c)S(Nm, n; c), (2.20)

with (c, N ) = 1. More generally, we have

S∞, 1r
(m, n; c

√
s;χ) = χr (s)χs(r)χs(c)

∑

a,d (mod c)
ad≡1 (mod c)

e

(
asm + dn

c

)

χr (d), (2.21)

with r |c and (c, s) = 1, and additionally

S0, 1r
(m, n; c

√
r;χ) = χr (−1)χs(r)χr (s)χr (c)

∑

a,d (mod c)
ad≡1 (mod c)

e

(
arm + dn

c

)

χs(a),

(2.22)
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400 E. M. Kıral, M. P. Young

with s|c and (c, r) = 1. These formulas should be contrasted with [8, p. 58] or [5,
Lemma 4.3], which use a different choice of scaling matrices. In (2.20) the occurrence
of the factor χ(c) with the modulus of the Kloosterman sum is a nice feature of the
pair of cusps ∞, 0 as opposed to the case

S∞,∞(m, n; c;χ) =
∑

ad≡1 (mod c)

e

(
am + dn

c

)

χ(d). (2.23)

Remark A simple application of (2.20) is that for (a, q) = 1 we have

∑

c≡a (mod q)

S(m, n; c) f (c) = 1

φ(q)

∑

χ (mod q)

χ(a)
∑

(c,q)=1

χ(c)S(qqm, n; c) f (c)

= 1

φ(q)

∑

χ (mod q)

χ(a)
∑

(c,q)=1

S∞,0(qm, n; c
√

q;χ) f (c).

(2.24)

The sum over (c, q) = 1 is the set of all allowed moduli for the group �0(q) and
the ∞, 0 cusp pair, so one may directly apply the Bruggeman–Kuznetsov formula to
this type of sum. The analysis of (2.24) was first undertaken by Blomer and Milićević
[2]. Their method makes use of S∞,∞(m, n; c;χ), but they require the use of twisted
multiplicativity of Kloosterman sums, and the fact that S∞,∞(m, 0; c;χ) is a Gauss
sum of the character χ with twist m, in order to spectrally decompose (2.24).

3 Fourier coefficients of Eisenstein series

3.1 Definitions

Let c be an arbitrary cusp for �0(N ). The Eisenstein series attached to c (a singular
cusp for the nebentypus χ ) is defined by

Ec(z, s;χ) =
∑

γ∈�c\�
χ(γ ) Im(σ−1

c γ z)s . (3.1)

The Fourier expansion around the cusp a takes the form

Ec(σaz, u;χ) = δacyu +ρac(0, u, χ)y1−u +
∑

n �=0

ρac(n, u, χ)e(nx)W0,u− 1
2
(4π |n|y).

(3.2)
Consulting [9, Theorem 3.4], we have

ρac(n, u, χ) =
{

φac(n, u, χ) πu

�(u)
|n|u−1, if n �= 0

δacyu + φac(u, χ)y1−u, if n = 0,
(3.3)
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where

φac(n, u, χ)

=
∑

(γ,δ) such that

ρ=
( ∗ ∗

γ δ

)
∈�∞\σ−1

c �σa/�∞

χ(σcρσ−1
a )

1

γ 2u
e

(
nδ

γ

)

=
∑

γ∈Cca

Sca(0, n; γ, χ)

γ 2u
,

(3.4)

and φac(u, χ) = φac(0, u, χ). Note that our ordering of the cusps in the notation
ρac, φac is reversed from that of [9], and also that [9, (3.22)] should have Sac(n, 0; c)
in place of Sac(0, n; c) to be consistent with [9, (2.23)]. In case χ is principal, we
shall drop it from the notation.

The goal of this section is to evaluate φac(n, u) in explicit terms, for which see
Theorem 3.4.

3.2 Cusps, stabilizers, and scaling matrices

First we write down representatives from the set of �-equivalency classes of cusps.
An explicit parametrization may be found in [8, Proposition 2.6]; however, we prefer
a different choice as follows.

Proposition 3.1 Every cusp of �0(N ) is equivalent to one of the form b = 1/w with
1 ≤ w ≤ N. Two cusps of the form 1/w and 1/v are equivalent to each other if and
only if

(v, N ) = (w, N ), and
v

(v, N )
≡ w

(w, N )

(

mod

(

(w, N ), N
(w,N )

))

. (3.5)

A cusp of the form p/q is equivalent to one of the form 1/w with w ≡ p′q (mod N )

where p′ ≡ p (mod (q, N )) and (p′, N ) = 1.

Proof Let b = p/q be a cusp.Wemay take (p, q) = 1. Using Bezout’s lemma choose
a, b ∈ Z such that ap + bq = 1, and (a, N ) = 1. Let γ = (

a b
c d

) ∈ �0(N ). This
ensures that γ · b is a rational number with numerator equal to 1. Replacing c by
c + aNt and d with d + bNt , we have

(
a b

c + aNt d + bNt

)

· b = ap + bq

(c + aNt)p + (d + bNt)q
= 1

cp + dq + Nt
.

Hence the denominator may be chosen to lie in the interval [1, N ]. Further note that
the denominator is congruent to dq modulo N . From

d ≡ a (mod N ) and a ≡ p (mod q),

wededuce that d ≡ p (mod (N , q)). Thuswe get the last statement in the proposition.
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We have established that any cusp is equivalent to one of the form 1/w with 1 ≤
w ≤ N . Now suppose 1/v and 1/w are equivalent. Elements of the group � send
relatively prime integer pairs to other such pairs, so if

(
a b

Nc d

)

· 1

w
= 1

v
,

then switching the signs on a, b, c, d if necessary, we have

a + bw = 1 and Nc + dw = v. (3.6)

The latter equation implies (v, N ) = (dw, N ). Since (d, N ) = 1, we get that

(v, N ) = (w, N ). (3.7)

The first equation in (3.6) implies a ≡ 1 (mod w), which means that a ≡ 1
(mod (w, N )). Since the matrix has determinant 1, then ad ≡ 1 (mod N ), and hence
ad ≡ 1 (mod (w, N )). Therefore

d ≡ 1 (mod (w, N )). (3.8)

The second equation in (3.6) gives that dw ≡ v (mod N ), equivalently

d
w

(w, N )
≡ v

(v, N )

(

mod N
(w,N )

)

.

Then (3.8) implies

w

(w, N )
≡ v

(v, N )
(mod

(
(w, N ), N

(w,N )

)
). (3.9)

Thus we have shown if 1/w and 1/v are equivalent, then (3.5) holds.
Now suppose that w, v satisfy (3.5). Let

v′ = v

(v, N )
, w′ = w

(w, N )
, N ′ = N

(w, N )
.

Then v′ ≡ w′ (mod (N ′, (N , w))), and (wv′, N ′) = (w, N ′) = ((N , w), N ′). There-
fore there exist b, c ∈ Z so that v′ − w′ = bwv′ + cN ′. That is, v − w = bwv + cN .
Define a = 1 − bw, d = 1 + bv, and let γ = (

a b
cN d

)
, where one may check that γ

has determinant 1, so γ ∈ �0(N ). Finally, one may directly verify that γ · 1
w

= 1
v
.

��
In the notation of Proposition 3.1, call (w, N ) = f , and w = u f .

Corollary 3.2 A complete set of representatives for the set of inequivalent cusps of
�0(N ) is given by 1

u f where f runs over divisors of N , and u runs modulo ( f, N/ f ),
coprime to ( f, N/ f ), and where we choose u so that (u, N ) = 1, after adding a
suitable multiple of ( f, N/ f ).
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The cusp 0 is equivalent to 1/1 and ∞ is equivalent to 1/N , furthermore 1/u f is
equivalent to the cusp u/ f provided u is coprime to N .

Remark It is not true that cusps of the form u/ f and 1/u f are always equivalent, even
if (u, f ) = 1. For example, let N = 72, and f = 3. We have 2

3 ��
1
6 ; however, it is

true that 2
3 ∼�

5
3 ∼�

1
15 .

We need to compute the stabilizers of various cusps.

Proposition 3.3 Let c = 1/w be a cusp of � = �0(N ), and set

N = (N , w)N ′ w = (N , w)w′, N ′ = (N ′, w)N ′′. (3.10)

The stabilizer of 1/w is given as

�1/w =
{
±λt

1/w : t ∈ Z

}
, where λt

1/w =
(
1 − wN ′′t N ′′t
−w2N ′′t 1 + wN ′′t

)

, (3.11)

and one may choose the scaling matrix as

σ1/w =
(
1 0
w 1

)(√
N ′′ 0
0 1/

√
N ′′

)

. (3.12)

Remark This is not the choice of scaling matrix we made in Section 2.2 for an Atkin–
Lehner cusp. When computing the Fourier coefficients of Ec(σaz, u), with a = 1/r
Atkin–Lehner and c arbitrary,wewill choose (3.12) forσc, and (2.9) forσa. In addition,
one should observe that N |w2N ′′ to see that λ1/w ∈ �0(N ). As an aside, note that N ′′
is the width of the cusp 1/w.

Proof Taking γ = (
a b

cN d

) ∈ �0(N ) so that γ · 1
w

= 1
w
means that a + bw = ±1, and

cN + dw = ±w (with the same choice of ± sign). Consider the + sign case, the −
sign following by symmetry. The former equation determines a in terms of b, and the
latter is equivalent to cN ′ + dw′ = w′. Since (N ′, w′) = 1, we have w′|c, so define
c = w′r . Then d = 1 − r N ′. Finally, the condition that γ has determinant 1 means
bw = −r N ′, which means b = N ′′t (say) and r = − w

(w,N ′) t , giving that γ takes the
form as stated in (3.11). One may conversely check that any matrix of the form stated
in (3.11) stabilizes 1/w.

To show the final statement, one easily calculates that σ−1
1/wλ1/wσ1/w = ( 1 1

0 1 ), so
(2.1) is satisfied. ��

3.3 Statement of result

We compute the Fourier coefficients of Ec(z, u) at an Atkin–Lehner cusp a = 1/r
with rs = N , (r, s) = 1. Write c = 1

w
= 1

v f where f |N and (v, N ) = 1. Let

N ′ = N

f
, N ′′ = N ′

( f, N ′)
, (3.13)
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and write
fr = ( f, r), fs = ( f, s), r = fr r ′, s = fss′. (3.14)

In addition, write

fr = f ′
r f0, where ( f0, r ′) = 1, and f ′

r |(r ′)∞,

and similarly
s′ = s′

f s0, where (s0, fs) = 1, and s′
f | f ∞

s .

Theorem 3.4 Let notation be as above. Then φac(n, u) = 0 unless

n = f ′
r

( f ′
r , r ′)

s′
f

(s′
f , fs)

k,

for some integer k. In this case, write k = kr ks�, where

kr = (k, ( f ′
r , r ′)), ks = (k, (s′

f , fs)).

Then

φac(n, u) = S(�, 0; s0 f0)

(N ′′s f 2r )u

f ′
r

( f ′
r , r ′)

s′
f

(s′
f , fs)

∑

d|k
(d, fsr ′)=1

d1−2u 1

ϕ(
( f ′

r ,r ′)
kr

)

1

ϕ(
(s′

f , fs )

ks
)

∑

χ (mod ( f ′
r ,r ′)
kr

)

∑

ψ (mod
(s′f , fs )

ks
)

× (χψ)(�)τ (χ)τ(ψ)

L(2u, χ2ψ2χ0)
(χψ)(s0 f0d2v)χ(−ks(s′

f , fs))ψ(kr ( f ′
r , r ′)),

(3.15)

where χ0 is the principal character modulo fsr ′.

The proof of Theorem 3.4 takes up the rest of the paper.

3.4 Double cosets

To begin, we obtain an explicit formula for the double coset appearing in (3.4).

Lemma 3.5 Let c = 1/w be any cusp of � = �0(N ) and a = 1/r an Atkin–Lehner
cusp. Let the scaling matrices be as in (2.9) and (3.12). Then

σ−1
c �σa =

{( A
N ′′

√
N ′′s B

N ′′
√

N ′′/s
C

√
N ′′s D

√
N ′′/s

)

:
(

A B
C D

)

∈ SL2(Z),
C ≡ −wA (mod r)

D ≡ −wB (mod s)

}

.

(3.16)
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Proof Let us call τc = (
1 0
w 1

)
, and νc =

(√
N ′′ 0

0 1/
√

N ′′

)

, so σc = τcνc. Let τrνs

denote the decomposition of the scalingmatrix in (2.9). Take
(

a b
Nc d

) ∈ � and compute

(
A B
C D

)

= τ−1
c

(
a b

Nc d

)

τr =
(

1 0
−w 1

)(
a b

Nc d

)(
1 ss−1

r
r ss

)

∈ SL2(Z). (3.17)

Note that

ν−1
c

(
A B
C D

)

νs =
( A

N ′′
√

N ′′s B
N ′′

√
N ′′/s

C
√

N ′′s D
√

N ′′/s

)

.

Considering the product modulo r gives

(
A B
C D

)

≡
(

1 0
−w 1

) (
a b
0 d

) (
1 ∗
0 1

)

≡
(

a ∗
−aw ∗

)

(mod r),

and hence C ≡ −wA (mod r). Reducing modulo s, we obtain

(
A B
C D

)

≡
(

1 0
−w 1

) (
a b
0 d

) (
1 −r
r 0

)

≡
(∗ −ar

∗ war

)

(mod s),

so D ≡ −wB (mod s).
Nowwe check that given

(
A B
C D

)
satisfying the conditions in (3.16), then it is covered

by the products of the form in (3.17). For that purpose we compute

τc

(
A B
C D

)

τ−1
r =

(
1 0
w 1

) (
A B
C D

) (
ss 1−ss

r−r 1

)

.

Modulo r , the lower-left entry of this product is congruent to wA + C ≡ 0 (mod r),
and also congruent to −Brw − Dr = −r(Bw + D) ≡ 0 (mod s). This implies that
the lower-left entry is divisible by N . ��

The next step towards evaluation of (3.4) is to work out representatives for
�∞\σ−1

c �σa/�∞. As a consistency check, note that the action of �∞ on both the left
and right does not affect the congruences linking A to C and B to D, which ultimately
follows from w2N ′′ ≡ 0 (mod N ). We need to find the set of pairs C , D with C > 0,
(C, D) = 1, D (mod sC), for which there exist integers A, B with AD − BC = 1
and so that C ≡ −wA (mod r) and D ≡ −wB (mod s).

Before stating the result, we develop some notation. Suppose that A, B, C, D are as
in the right-hand side of (3.16). Recall the notation from (3.13), (3.14), recallw = v f ,
(v, N ) = 1, and note f = fr fs . From (A, C) = 1 andC ≡ −wA (mod r), we derive
(C, r) = (w, r) = fr . Similarly, (D, s) = (w, s) = fs . Write

C = fr C ′, r = fr r ′, D = fs D′, s = fss′, (3.18)
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where (C ′, r ′) = 1 = (D′, s′). Then we have

C ≡ −wA (mod r)

D ≡ −wB (mod s)
⇐⇒ A ≡ −(w/ fr )C ′ (mod r ′)

B ≡ −(w/ fs)D′ (mod s′). (3.19)

The equivalence of congruences in (3.19) only uses the assumptions (A, C) =
(B, D) = 1.

From AD − BC = 1, we have D ≡ A (mod |C |), which combined with the
right-hand side of (3.19) gives

D ≡ −C ′ w
fr

(mod ( fr , r ′)),

using (C, r ′) = ( fr C ′, r ′) = ( fr , r ′). Similarly, we have B ≡ −C (mod |D|), so
D′ ≡ C w

fs
(mod ( fs, s′)).

Lemma 3.6 With notation as in Lemma 3.5 and its following discussion, we have the
disjoint union

�∞\σ−1
c �σa/�∞ = δca�∞

∪
{( ∗ ∗

C
√

N ′′s D
s

√
N ′′s

)

: (C, r) = fr
(D, s) = fs

,
D ≡ −C ′ w

fr
(mod ( fr , r ′))

D′ ≡ C w
fs

(mod ( fs, s′))

}

,
(3.20)

where in addition we have the restrictions C > 0, (C, D) = 1, and D runs over
representatives (mod sC). Here δca�∞ denotes �∞ if c is equivalent to a, and
denotes the empty set if c is not equivalent to a.

Proof The discussion preceding the statement of the lemma shows that any matrix
given on the right-hand side of (3.16) with C > 0 gives rise to a double coset of the
claimed form. It suffices to show that given integers C, D as in the second line of
(3.20), we may find A, B so that AD − BC = 1 and satisfying the congruences in
(3.19).

From (C, D) = 1, we may choose A0, B0 so that A0D − B0C = 1. From A0 ≡ D
(mod C), and the congruence on D given in (3.20), we have

A0 ≡ −(w/ fr )C
′ (mod ( fr , r ′)).

Hence, there exist integers x, y so that A0+C ′(w/ fr ) = fr x+r ′y. A similar argument
with B0 gives

B0 ≡ −(w/ fs)D′ (mod ( fs, s′)),

and so there exist integers X, Y so that B0 + D′(w/ fs) = fs X + s′Y .
We next want to find n ∈ Z so that A = A0 + nC = A0 + nC ′ fr and B =

B0 + nD = B0 + nD′ fs satisfies the right-hand side of (3.19). Gathering the above
formulas, we have
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A = A0 + nC = −(w/ fr )C
′ + fr (x + nC ′) + r ′y

B = B0 + nD = −(w/ fs)D′ + fs(X + nD′) + s′Y.

We may choose n so that n ≡ −C ′x (mod r ′) and n ≡ −D′ X (mod s′), since
(C ′, r ′) = 1 = (D′, s′) = (r ′, s′), and by the Chinese remainder theorem. With this
choice of n, then A and B satisfy the congruences on the right-hand side of (3.19). ��

Finally we can evaluate φac(n, u). First, note that the congruence D ≡ −C ′ w
fr

(mod ( fr , r ′)) is equivalent to D′ ≡ −C ′ fs
w
fr

(mod ( fr , r ′)), and that we can write

w = fr fsw
′, giving now D′ ≡ −C ′w′ (mod ( fr , r ′)). Similarly, the other congru-

ence in (3.20) is equivalent to D′ ≡ C ′w′ (mod ( fs, s′)).
Putting everything together, we have

φac(n, u) = 1

(N ′′s f 2r )u

∑

(C ′, fsr ′)=1

1

(C ′)2u

∑∗

D′ (mod s′ fr C ′)
D′≡−C ′w′ (mod ( fr ,r ′))
D′≡C ′w′ (mod ( fs ,s′))

e
( nD′

s′ fr C ′
)
. (3.21)

Now write
fr = f ′

r f0, where ( f0, r ′) = 1, and f ′
r |(r ′)∞,

and similarly
s′ = s′

f s0, where (s0, fs) = 1, and s′
f | f ∞

s .

Then ( fr , r ′) = ( f ′
r , r ′), and ( fs, s′) = ( fs, s′

f ), and so

φac(n, u) = 1

(N ′′s f 2r )u

∑

(C ′, fsr ′)=1

1

(C ′)2u

∑∗

D′ (mod s0 f0C ′ f ′
r s′

f )

D′≡−C ′w′ (mod ( f ′
r ,r ′))

D′≡C ′w′ (mod ( fs ,s′
f ))

e
( nD′

s0 f0C ′ f ′
r s′

f

)
.

By the Chinese remainder theorem, this factors as

φac(n, u) = 1

(N ′′s f 2r )u

∑

(C ′, fsr ′)=1

S(n, 0; C ′s0 f0)

(C ′)2u

×
( ∑∗

D′ (mod f ′
r )

D′≡−C ′w′ (mod ( f ′
r ,r

′))

e
(nD′s0 f0C ′s′

f

f ′
r

))

×
( ∑∗

D′ (mod s′
f )

D′≡C ′w′ (mod ( fs ,s′
f ))

e
(nD′s0 f0C ′ f ′

r

s′
f

))

.
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For the sum modulo f ′
r , note that (D′, f ′

r ) = 1 if and only if (D′, ( f ′
r , r ′)) = 1,

since f ′
r |r ′∞. Therefore, the congruence automatically implies (D′, f ′

r ) = 1, and so
this condition may be dropped. Then after changing variables, it becomes a linear
exponential sum which is easy to evaluate. A similar discussion holds for the modulus
s′

f . In this way, we obtain

φac(n, u) = 1

(N ′′s f 2r )u

f ′
r

( f ′
r , r ′)

δ
( f ′

r

( f ′
r , r ′)

|n
) s′

f

(s′
f , fs)

δ
( s′

f

(s′
f , fs)

|n
)

∑

(C ′, fsr ′)=1

S(n, 0; C ′s0 f0)

(C ′)2u
e
(−nw′s0 f0s′

f C ′2

f ′
r

)
e
(nw′s0 f0 f ′

r C ′2
s′

f

)
.

Now write

n = f ′
r

( f ′
r , r ′)

s′
f

(s′
f , fs)

k,

and note (
f ′
r

( f ′
r ,r

′)
s′

f

(s′
f , fs )

, C ′s0 f0) = 1 giving

φac(n, u) = S(k, 0; s0 f0)

(N ′′s f 2r )u

f ′
r

( f ′
r , r ′)

s′
f

(s′
f , fs)

×
∑

(C ′, fsr ′)=1

S(k, 0; C ′)
(C ′)2u

e
(−kw′s0 f0(s

′
f , fs)C ′2

( f ′
r , r ′)

)
e
( kw′s0 f0( f ′

r , r ′)C ′2
(s′

f , fs)

)
.

To complete the proof of Theorem 3.4, we perform the following straightforward
steps: we evaluate the Ramanujan sum S(k, 0, C ′) = ∑

d|(k,C ′) μ(C ′/d)d as a divisor
sum, and convert from additive to multiplicative characters (see [10, (3.11)]).
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