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Neuromorphic computers could overcome efficiency bottlenecks inherent to
conventional computing through parallel programming and readout of artificial neural
network weights in a crossbar memory array. However, selective and linear weight
updates and <10-nanoampere read currents are required for learning that surpasses
conventional computing efficiency. We introduce an ionic floating-gate memory array
based on a polymer redox transistor connected to a conductive-bridge memory
(CBM). Selective and linear programming of a redox transistor array is executed in
parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight
readout with currents <10 nanoamperes is achieved by diluting the conductive
polymer with an insulator to decrease the conductance. The redox transistors endure
>1 billion write-read operations and support >1-megahertz write-read frequencies.

T
he increasing collection and availability of
data over the past decade have led to a
surge of interest in developing artificial
neural networks (ANNs) to tackle prob-
lems across diverse fields, such as image

and natural language processing, autonomous
driving, finance, and bioinformatics (1). How-
ever, because of the decline of complementary
metal oxide semiconductor (CMOS) scaling, in-
novative approaches to computing are needed
to address the rapidly growing computation den-
sity and efficiency requirements (2). One approach
is to use large crossbar arrays of synaptic memory
elements to execute ANN algorithms. The con-
ductance, or state, of each synaptic element is
first tuned during learning with a training data
set and then used to process new information
during inference (e.g., recognition and classifica-
tion). By executing learning and inferencewithin
memory, neuromorphic computers circumvent
energy-costly data movement between processor
andmemory, thus reducing both power consump-
tion and computation time. However, to realize
clear advantages over digital approaches (3, 4),
neuromorphic computers must execute a large
number of analog operations—for example, sum-
mations, multiplications, and so on—in parallel
and without data movement (5). For efficient
and parallel execution of learning and inference,
crossbars should be large (>1000 synapses by

1000 synapses), and devices should have linear
and symmetric conductance tuning, low-current
write-read operations, fast switching speeds, and
high endurance (5).
Despite compelling demonstrations of in-

ference using crossbars based on a variety of
synaptic devices, efficient learning remains a
challenge owing to the nonideal electrical char-
acteristics of synaptic devices. For example, two-
terminal devices, such as memristors based on
phase-changememory (PCM) (6) or filament form-
ing metal oxides (FFMO) (7), typically exhibit a
superexponential dependence of the current on
the applied voltage during writes. This is because
the device must be driven out of thermal equi-
librium to overcome a large energy barrier to
change the electronic conductance state (i.e.,
melting or oxygen vacancy motion). The re-
sulting nonlinear and asymmetric conductance
tuning rapidly degrades ANN accuracy (8). Im-
proved linearity and symmetry can be realized
by programming with current and using state
resetting procedures, but these schemes cannot
be used for parallel programming to accelerate
learning: Instead, memristor arrays require time-
and energy-costly element-by-element program-
ming (Fig. 1A) (9).
Furthermore, crossbar approaches to infer-

ence (e.g., classification) hinge upon summing
“trickle currents” from each synaptic element
along crossbar columns in order to execute
enough “summations” (through an analog dot
product) to beat digital approaches in latency
and energy. However, two-terminal memristors
draw more than a trickle, with currents greater
than a microampere during reads and writes
that notably reduce accuracy in large arrays.
The problem arises because the currents flowing
through individual synapses sum along inter-
connecting wires, and the resulting total current

grows beyond the wire capacity as the array is
scaled to many elements. For example, currents
flowing through interconnects lead to large voltage
drops across the parasitic crossbar wire resist-
ance that increasingly reduce write-read accuracy
as these wires are scaled to <100 nm in width
(9, 10). For these reasons, existing neuromorphic
computing demonstrations with two-terminal
devices have been limited to relatively small ar-
rays (<100 by 100) and large wires (>1 mm width),
and dot product efficiencies below convention-
al approaches (e.g., Google TPU and NVIDIA
Xavier) (5).
Recently developed redox-transistor memory

is a promising approach to circumvent existing
memristor technology limitations. The three-
terminal redox transistor decouples the write
and read operations using a “gate” electrode to
tune the conductance state through electrochemical
reactions involving Li+ or H+ ion injection into the
channel electrode through a solid electrolyte (see
Fig. 1, C and D). The insertion of cations into the
bulk of the channel acts to dope the material
through a gradual compositionmodulation that
leads up to thousands of finely spaced conduct-
ance levels with near-ideal analog behavior. For
example, redox transistors based on inorganic
and organic materials have been recently dem-
onstrated with conductance tuning occurring
at potentials of just a few millivolts and sym-
metrically programmable conductance states that
enable near-ideal accuracy in neural network
simulations (11–15). However, redox-transistor
memory has not been demonstrated in an array,
which requires some way of addressing each
element in parallel during write operations as
well as ensuring state retention after write opera-
tions. Without a way to address these memory
devices in parallel and preserve their conduct-
ance state they cannot execute efficient learning.
Furthermore, high read currents inhibit their use
in any neuromorphic computing implementation.
Here we enable parallel programming and

state retention by integrating a polymer-based
redox transistor (12) and a volatile conductive-
bridge memory (CBM) (16) to produce a non-
volatile, addressable synaptic memory we call
ionic floating-gate memory (IFG). The three-
terminal design allows the channel to be en-
gineered for ultralow-current read operations
without sacrificing analog performance through
diluting the conductive polymer in a polymeric
insulator, whichwe discuss in detail later. Figure 1,
C and D, is an illustration of the IFG device
concept with the gate terminal of a redox trans-
istor electrically connected to the CBM. The redox
transistor is composed of a semiconducting
polymer blend poly(3,4-ethylenedioxythiophene):
poly(styrene sulfonate) (PEDOT:PSS) (dark blue)
separated by a solid electrolyte (light blue). The
synaptic weight is stored as the transistor source-
drain conductanceG. The CBMmediates electronic
coupling to the redox transistor gate during
and after programming. During programming,
electron injection (extraction) through the CBM
into the top PEDOT:PSS gate results in the re-
versible electrochemical oxidation (reduction) of
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the bottom PEDOT:PSS channel, thereby increas-
ing (decreasing) G.
Figure 1E shows G modulation during IFG

programming with voltage pulses sent to the
CBM terminal. A programming voltage of VW =
±650 mV results in analog tuning through 50
conductance states, whereas programming with
VW = ±1 V achieves the same number of states
but with higher (2×) modulation (light blue).
Similarly, hundreds of conductance states can
be achieved through adjusting the write pulse
duration and/or amplitude (12, 17). Although
the ON/OFF ratio is smaller compared with that
of memristors, this is a desirable feature for neu-
romorphic computing. Unlike for digital logic,
a smaller contrast between ON and OFF pre-
vents large currents from saturating neurons (e.g.,
stuck ON pixels for PCM), although at lower ON/
OFF ratios, reducing noise becomes increasingly
important to network accuracy. To fully account
for noise, nonlinearity, and asymmetry in pro-
gramming, we acquire a statistical distribution
of IFG conductance levels from more than 5000
switching events (see fig. S1). The resulting write
linearity, symmetry, and signal-to-noise ratio of
DG2/s2 = 91, where s is the standard deviation of
the conductance update, meet the requirements
for high ANN training accuracy when executing
updates (8).
To enable state retention, we designed our

redox transistors to operate as concentration
cells to eliminate large built-in voltages observed
in previously reported devices due to the differ-
ences in chemical potential between the gate and
channel [i.e., Si and LixCoO2 in (11)]. Here, the
gate and channel have been symmetrically doped
with polyethyleneimine (18) to lower the built-in
voltage below the CBM ON threshold V th and
allow the CBM device to transition to the OFF
state after write operations. After write opera-
tions, when jVW j ≪ jV thj, the conductive bridge
dissolves and the device switches to the OFF state,
in which case charge neutrality and the absence
of an electronic pathway between the redox-
transistor gate and channel preserve the redox-
transistor conductance state (Fig. 1D). The CBM
device is based on a Pt/Ag/SiOxNy/Ag/Pt stack
(purple) that is similar to previously reported
devices (16). As with flash memory, the CBM
allows current injection only above a threshold
with jVW j > V th ¼ T400mVand not during the
OFF state (Fig. 1C). Therefore, IFG operates as
a floating-gate memory similar to flash, but
with more than an order of magnitude lower
voltage operation and with near-perfect linear
characteristics.
To demonstrate parallel addressing with IFG,

we programmed two cells with conductance G11

and G12 electrically connected in a crossbar array
as schematically illustrated in Fig. 1F. In this
scheme, a weight update is encoded by voltages
applied along the rows VW

i and columns VW
j .

The elements G11 or G12 program when the total
cell voltage is greater than the CBM threshold
jVW

i � VW
j j > V th . This scheme can be used to

execute parallel writes to memory during su-
pervised learning (e.g., backpropagation) through

encoding the outer-product vector values Vi

and Vj as ANN weight updates (19). Figure 1G
demonstrates selective addressing by subjecting
one of the crossbar elements to 50 weight up-
dates without disturbing the other element.
The highly selective and parallel addressing is
enabled by the nearly 1-mV/decade slope and

large ON/OFF ratio (1010) of the CBM (20). Al-
though a silicon field-effect transistor could
support sequential, nonvolatile programming of
a redox transistor, its gradual ≥60-mV/decade
subthreshold slope and limited ON/OFF ratio of
106 make it inferior for parallel selectivity and
state retention compared with the CBM.
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Fig. 1. IFG memory device characteristics. (A) Sequential programming of an N-by-M element
resistive memory crossbar array has a latency of O(N × M) write cycles, where N and M are the number
of array elements along a row and column, respectively, and O denotes the number of operations
required to program the array. (B) Using parallel programming, the array is updated within a single cycle,
resulting in an O(N × M) advantage. (C) An IFG cell consists of a CBM that mediates electron injection in
and out of a redox transistor. Selective programming occurs when VW is greater than the ON threshold
V th for Ag filament formation. During electron injection (extraction) into the top PEDOT:PSS gate, the
PEDOT:PSS channel is oxidized (reduced), increasing (decreasing) the electronic conductance between
the source (S)–drain (D) electrodes GSD. (D) Below the programming threshold, that is, for VW << V th,
the Ag filament ruptures, resulting in a high-resistance OFF state that prevents further electronic
coupling to the redox transistor and enables nonvolatility. The state of the redox transistor is read out
by applying a read voltage VR across the source-drain electrodes. (E) Programming of an IFG cell
at two different write voltages, VW = ±0.65 and ±1.00 V, with 1.5× and 2× modulation of GSD, respectively.
(F) Schematic of a 1-by-2 IFG resistive memory array. Programming is carried out by applying voltages

VW
i and VW

j along the rows and columns, respectively. (G) Selective addressing by subjecting G11 or

G12 to 50 weight updates without disturbing the adjacent element.
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As arrays scale to more than 1000 elements
by 1000 elements, read currents must be <10 nA
to reduce voltage losses below 1% across scaled
wires at 10-nm half-pitch. The IFG three-terminal
cell and polymer-based weight storage medium
provide an opportunity to lower read currents
without the loss of linear or symmetric program-
mability or the introduction of write noise. To
lower the read current, we adjusted the PEDOT:
PSS formulation to 1:41 monomer ratio (PEDOT
to PSS), lowering the average channel conduct-
ance to <100 nS (i.e., read current <10 nA at
100-mV read voltage) while maintaining a high
signal-to-noise ratio during nearly linear and
symmetric programming (Fig. 2A). The com-
bined low noise, low current, and near-linear
conductance tuning observed in Fig. 2A has
not been achieved by other resistive memories.
Although some devices have been engineered
to operate at <50 nA (21), they either are binary
or suffer from write noise that severely reduces
ANN accuracy (22).
Previously reported polymer-based redox tran-

sistors required at least a 6-ms write pulse to

change conductance state, which is too slow for
practical neuromorphic computing (12). How-
ever, on the basis of the measured proton
mobility in PEDOT:PSS (23), substantially faster
operation is expected for downscaled devices
(see fig. S2). To investigate the limits of PEDOT:
PSS devices, we have scaled both the channel and
gate dimensions down to 45 mm by 125 mm,
which enables <1-ms write operations. Figure 2B
shows complementary data for the time-resolved
conductance response to 200-ns programming
voltage pulses and subsequent 500-ns readout
voltage pulses, resulting in a total write-read
duration of <1 ms. Volatile CBMs, similar to de-
vices in this study, have demonstrated ON and
OFF transition times of 7.5 and 20 ns, respec-
tively (24), that should support IFG write times
of <1 ms. Although the OFF transition time may
contribute to memory loss owing to discharge,
programming is possible so long as the write
times exceed the OFF transition time leading to
a net charge injection.
The programming current required to mod-

ulate the channel conductance scales with de-

creasing channel area, and, using a previously
reported model (17), we project that further
downscaled devices will enable <100-ns switch-
ing (Fig. 2C). The write speed is estimated to
further improve by replacing the lateral geom-
etry used here with a vertical stacking of redox-
transistormaterials (fig. S2). However, aggressive
scaling also introduces an increased sensitivity to
environmental effects and leakage through the
CBM, which can affect state retention, as was
found in a previous study (18). For relevance to
applications beyond learning acceleration (i.e.,
embedded dot-product engines), improvements
to device encapsulation processes and the CBM
OFF resistance will be required.
Endurance is another important criterion for

neuromorphic computing technology. In batteries,
parasitic reactions associatedwith solid electrolyte
interface formation and cathode dissolution limit
endurance to ~1000 charge-discharge cycles (25).
By contrast, redox transistors demonstrated here
operate near 0 V with considerably improved en-
durance. We observed that a redox transistor ex-
hibited no degradation after 109 binary write-read
operations (fig. S3) and 108 write-read operations
sampling the entire device range (Fig. 2D). It is
noteworthy that the endurance of our organic
device is several orders of magnitude greater
than that reported for flash memory, which is
subject to oxide stresses (26).
To further demonstrate the feasibility of our

proposed approach, we executed parallel infer-
ence and weight update operations using a
3-by-3 prototype array illustrated in Fig. 3A. The
IFG cell array was programmed in parallel and
without feedback circuits through the outer-
product vector values Vi and Vj, similar to the
two-device case (Fig. 1F). Four examples of
programming patterns are shown in Fig. 3B,
with the relative change in conductance DGij =
Gij – G0 indicated explicitly for every cell in the
array and the corresponding outer-product
vector values indicated at row and column edges.
The average update in the cells is 53 mS with a
standard deviation of 11 mS, whereas the un-
selected cells remain mostly undisturbed during
programming.
Until now, accurate and scalable parallel

weight updates have remained elusive. For ex-
ample, previous demonstrations have imple-
mented parallel programming of elements along
a crossbar column to accelerate learning (27).
However, the nonlinear dependence of theweight
update DGij on the previous conductance state
G0 rendered the approach less generalizable to
many classification problems, whereas program-
ming currents greater than amicroampere prevent
scaling to large arrays. Compared with the two-
device case (Fig. 1F), we attribute the greater
update variance in the IFG array in Fig. 3B to
not-yet-perfected channel and electrolyte pro-
cessing. Reducing device-to-device variability is
critical to realizing working neuromorphic com-
puters, and the update variance should be re-
duced to <1% of the average update for high
accuracy. It should be noted that for redox tran-
sistors that rely upon bulk ion insertion, device
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Fig. 2. Redox-transistor low-current operation, speed, scaling, and write-read endurance
(without CBM). (A) Programming at a small channel current (ISD) of 5 to 10 nA (50 to
100 nS). The high-impedance redox transistor is enabled by the engineered channel formulation of
PEDOT:PSS (1:41 monomer ratio). (B) Time-resolved source-drain conductance of a PEDOT:PSS
redox-transistor channel (125 mm by 45 mm) programmed with 200-ns write pulses. The bottom
panel is the entire source-drain conductance trace, and the top panel is a magnified section
of the bottom panel highlighting the conductance changes between write-read operations. Blue
shading indicates the write duration, and green shading indicates the read duration. (C) Estimated
(dashed line) and measured (open squares) redox-transistor switching speed scaling with channel
area. Switching times correspond to the required write pulse duration to span the total device
conductance range (0.5 mS) using 100 pulses (Vpulse = 2 V), that is, each write pulse corresponds
to 1% device conductance change (DG = 5 mS). The equivalent circuit model from (17) (dashed
trace) describes the redox transistor as a charging capacitor under pulsed bias. (D) Demonstration
of >108 write-read operations (cycling between the low- and high-conductance state) without
deterioration of device properties. The red arrows indicate the conductance change direction.
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variability represents a distinctly different chal-
lenge than controlling, for example, nanoscale
filament formation in FFMO devices. These
uniformity challenges can be overcome by appro-
priate process control, as demonstrated by the
organic light-emitting diode (OLED) industry (28).
In addition to accelerating the weight update

step, we demonstrate inference after mapping
the “exclusive or” (XOR) function to a two-layer
neural network using a 3-by-3 IFG array (Fig.
3C). The ability to classify the XOR function is a
basic demonstration of nonlinear functionmap-
ping, which is required for general purpose ANN
computation. For this demonstration, neurons
are chosen to fire on the basis of summing cur-
rents Ij along the columns using a transimpe-
dance amplifier circuit followed by passing the
resulting sum to the sigmoidal activation func-
tion (implemented in software). To visualize
network performance, the state of each element
is read out during classification and plotted in
Fig. 3D. Here, an input example X = [1, 0] (blue)
is fed to the first layer of the network (orange),
whereas the output YT = [1, 1], where T denotes
matrix transpose, is sent to the last layer (green).
The final output of the network correctly clas-
sifies X = [1, 0] as ZT = [1] according to the XOR
truth table in Fig. 3C. The network is found to
classify all XOR inputs with 100% accuracy.
Our crossbar is used to execute analog dot pro-
ducts during inference (Fig. 3D) and analog
outer-product updates during write operations
(Fig. 3B); however, all other calculations are ex-
ecuted entirely in CMOS following the design
of a hybrid analog-digital accelerator that was
reported previously (5).
Finally, we simulate the performance of a

1024-by-1024 IFG array implemented in a hybrid
IFG-digital accelerator (see “Architectural Simu-
lations” section in the supplementary text). We
evaluate the network performance in classifi-
cation of the Modified National Institute of
Standards and Technology (MNIST) handwritten
digit dataset based on the experimentally mea-
sured statistical distribution of IFG noise, non-
linearity, and asymmetry (fig. S1). The resulting
network achieves ideal accuracy (Fig. 3E), far
better than similar simulations of PCM (6) or
FFMO crossbars (29). Recently, two-terminal de-
vices based on Agmigration in etched dislocations
were found to have similar accuracy in network
simulations, owing to improved linearity and
symmetry in programming (30). However, there
has been no demonstration of both low currents
and low noise with these devices.
We modeled the overall energy, latency, and

area of a 1024-by-1024 hybrid IFG-digital ac-
celerator by modifying the architectural level
analysis in (5). Our model takes into account
devices (area = 300 nm by 300 nm; thickness =
200 nm) with read and write currents <10 nA
based on our polymer dilution process and pre-
vious experimental projections of write current
scaling (12). With reduced currents, the energy
of a learning accelerator becomes dominated by
the circuit overheads owing to analog-to-digital
conversion of the analog integrator output. Tak-

ing these overheads into account, an IFG ac-
celerator is projected to provide energy, latency,
and area advantages of 476×, 16×, and 9.5×, re-
spectively, when compared directly with an op-
timized eight-bit static random-access memory
(SRAM) accelerator using a 14- to 16-nm tech-
nology node (Fig. 3, F to H). Although these
advantages are attractive for learning acceler-

ators, notable challenges remain in integrat-
ing the organic polymer and Ag-based devices
with Si CMOS, owing to the strict temperature
and contamination requirements. However,
alternative CMOS integration pathways (i.e., chip-
to-wafer bonding) and newmaterials (e.g., Cu-
based CBM) are being explored to improve such
compatibility.
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Fig. 3. Parallel programming, XOR mapping, and simulations of an IFG neuromorphic array.
(A) Schematic of a 3-by-3 prototype IFG array divided into a two-layer neural network, as indicated
by orange and green. Network inputs Vi

R are applied across the source-drain rows, while programming

inputs VW
i and VW

j are applied along the gate row and drain column, respectively. An amplifier is used

to read the currents along the crossbar columns.The amplifier output is read using an analog-to-digital
converter and passed to a sigmoidal activation function to dictate whether the neurons Y1, Y2, and
Z1 will fire. A read-select transistor (RS) in every cell is switched globally between read andwrite operations
to prevent sneak currents without loss of parallelism. (B) Four examples of parallel updates executed
on the IFG crossbar, with grayscale indicating update strength.The corresponding programming vectors

VW
i and VW

j are indicated at the edges of the rows and columns, respectively (purple). (C) The IFG array

is mapped to a two-layer neural network used to classify XOR logic. (D) XOR classification of the input
X = [1, 0].The conductance state of each element Gij is plotted explicitly using grayscale.The input
X = [1, 0] values are shown in blue.The output of the first layer YT = [1, 1] (orange), where Tdenotesmatrix
transpose, is sent to the second layer.The final layer output Z = [1] is shown in green. (E) Simulated
ANN accuracy for MNIST handwritten digit classification for 1024-by-1024–sized IFG array (black) and
ideal device accuracy (green). (F to H) Simulated energy (F), latency (G), and area (H) for a hybrid
IFG-CMOS accelerator with eight-bit, four-bit, and two-bit accuracy shown in orange, blue, and green,
respectively.The IFG array is compared directly with an optimized SRAM-based digital accelerator using
a 14- to 16-nm technology node.
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Most critically, IFG prototype networks dem-
onstrate that low-voltage electrochemical systems
can be engineered to execute highly efficient
learning and inference in memory. The scalable
electrical characteristics of IFG open a path to-
wardneuromorphic computers that could surpass
their digital counterparts with a projected nearly
three orders ofmagnitude improvement in energy
efficiency. Such highly efficient neuromorphic
computers could extend ANN learning to new
low-power environments such as edge comput-
ing (e.g., mobile and wearable devices) or sup-
port adaptive neural algorithms that enable
continuous learning through the life cycle of
a product. The proposed IFG memory con-
cept can be generalized to a wide variety of
electrochemical systems (i.e., metal oxide cath-
odes, new semiconducting polymers, Cu-based
CBM, and so on) that could provide even greater
performancewith improved CMOS compatibility
and that are yet unexplored for analog memory
applications.
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 write-read cycles.9symmetric weight updates in parallel over an entire crossbar array at megahertz rates over 10

terminal of a redox transistor electrically connected to a diffusive memristor. This low-power device enabled linear and 
 developed an integrated device, ionic floating-gate memory, that has the gateet al.scale to large array sizes. Fuller 

memory elements represent a low-power alternative, but most devices cannot update the synaptic weights uniformly or
processing, but are too energy intensive for many applications. Analog circuits that use large crossbar arrays of synaptic 

Digital implementations of artificial neural networks perform many tasks, such as image recognition and language
Ionic floating-gate memories
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