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1. Introduction
1.1. Background and previous results

The behavior of eigenfunctions of the Laplacian on an arithmetic surface I'\H is a rich
subject with connections to analytic number theory and spectral geometry. One of the
motivating questions in the area is the Quantum Unique Ergodicity (QUE) conjecture
of Rudnick and Sarnak [27]. The QUE conjecture is now a theorem of Lindenstrauss
[22] (complete in the compact setting), with input by Soundararajan [31] to treat non-
cocompact congruence subgroups. Arithmetic cases of the QUE conjecture are known to
be nearly equivalent to subconvexity for certain L-functions, via Watson’s formula [34].
This is one well-known example of a nontrivial connection between quantum chaos and
the analytic theory of L-functions. We refer the reader to the survey articles [29] [30] for
more background and motivation.

The QUE conjecture concerns the equidistribution of eigenfunctions restricted to Jor-
dan measurable sets. A more advanced question is to study the behavior of restrictions
of eigenfunctions to lower-dimensional submanifolds. For instance, one may fix a curve
on T'\H, and study the analytic behavior of the eigenfunctions restricted to the curve.
Such questions were initially raised by Reznikov [26] who used representation theory
techniques for their study. Later, Ghosh, Reznikov, and Sarnak [8] obtained estimates
(both upper and lower bounds) for the L? norm of a Maass form along special curves
such as horocycles or geodesic segments, with the application of counting sign changes of
the Maass form along the curve (see also work of J. Jung [18] for further progress in this
direction). Marshall [24] has used the amplification method to bound from above the L?
norm of a Maass form restricted to an arbitrary geodesic segment, with a power saving
over the “local” bound (which is the universal bound of [3] holding for a general compact
Riemannian manifold). Toth and Zelditch [32] and Dyatlov and Zworski [7] have shown
a quantum ergodic restriction theorem that in particular holds on a generic geodesic in
a compact hyperbolic surface.

The author [35] recently showed that the Eisenstein series Er(z) = E(z,1/2+iT) for
T' = SLy(Z) equidistributes along the geodesic connecting 0 and ico (this is an analog of
QUE but along the curve). The Eisenstein series is a good test case for more advanced
questions since it behaves in many respects like the cusp forms, yet is more explicit and
easier to handle. In this paper, we study the behavior of the Eisenstein series restricted
to a geodesic segment of the form {z +iy: 0 < a <y < S}.

To get our bearings, we quote two results from the literature. Suppose that ¢ :
SLo(Z)\H — R is smooth and compactly-supported. Luo and Sarnak [23] showed QUE
for Eisenstein series on SLo(Z)\H, that is,

SENEr P = Slog1/a+ 1) [ o) Yt oogT), (L)

SLo(Z)\H SLay(z)\H
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as T — oo. The interested reader may find a full main term with a power saving error
term for (1.1) in [35, (4.13)]. We also mention that Jakobson [17] proved QUE for Eisen-
stein series on the unit tangent bundle SL2(Z)\SL2(R). Suppose that ¢ is a smooth
function with support on [a, §]. Define

r d
/1/)2 )| Br (o +iy) 22, (1.2)
; )
The author [35] showed
3 2 i 2, 1Y
I,(0,T) :2;10g(1/4+T ) [ (y)?Jro(logT). (1.3)

Again, one has a fully developed main term with a power saving error term in (1.3).
Comparing (1.1) and (1.3), note the Eisenstein series (squared) is twice as large on the
distinguished geodesic = 0 as it is on any fixed disk in SLo(Z)\H.

1.2. The main asymptotic result

Our main result is an asymptotic for I,(z,T') for arbitrary x. The shape of the main
term depends on rational approximations to 2x. By the Dirichlet approximation theorem,
for each real @) > 1, there exist integers a, q so that

2= g +0, where (a,q)=1, 1<¢<Q, ¢ <Q " (1.4)

Theorem 1.1. Let z € R and T > 1. Choose Q = Q(T) so that T? < Q < T/37° (where
0 > 0 is fized), and let a,q, 8 satisfy (1.4). Then, as T — oo, we have

0

Iy(x,T) = 310g 1/4+T2) /¢2 1+ B,(1, T)Jo(y)nﬂomogﬂsw), (1.5)
0

where By(s,T) is a finite Euler product defined by (3.16) below, and Jy(z) is the Bessel
function of the first kind. The implied constant is uniform in x.

We now discuss in detail the behavior of the right hand side of (1.5). If = 0, then
0=0,qg=1, B,(1,T) = 1, and Jo(0) = 1, so this recovers the main term from (1.3).
More generally, if « is rational and T (hence Q) is sufficiently large, then § = 0, and we
see a family of generalizations of the main term appearing in (1.3). However, one should
observe that B,(1,T) fluctuates as a function of T'; for instance, if ¢ = p is prime, then
B,(1,T) simplifies as
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B,(1,T) = (1+2cos(Tlogp) —p~t). (1.6)

p+1
This fluctuation shows that the Eisenstein series does not satisfy restricted quantum
ergodicity (not to mention, QUE) on rational geodesics with ¢ > 1. Note 2 cos(7 log p)
is the eigenvalue of the Hecke operator T}, applied to Er.

We show in Section 7.2 below that |B,(1,T)| < 1for all ¢ > 2, and it is well-known that
|Jo(z)] <1 for all real z, so the secondary main term with B, (1,T)Jo(y~0T) is never
larger than the first main term. In fact, it is easy to show the bound By(1,T) < ¢~ *=.

For almost all z, in a strong sense, the secondary term may be omitted in (1.5), as
we now explain. Note that if ¢ > (logT)'/36, then this secondary term of magnitude
< ¢ logT is smaller than the error term. As for the Jo-Bessel aspect, if [T >
(log T)¢, then repeated integration by parts shows [ 1?(y JO(HT/y) Y <« (logT)~1%,
and again we see that this secondary term is smaller than the error term This analy51s
shows that, for a given large T > 1, and each rational number a/q with ¢ < (log T')'/3,
there is a small interval surrounding a/q of radius ~ T~! so that the secondary main
term is relevant. Outside of these small intervals, the secondary term may be absorbed
into the error term. Precisely, for each large T there exists a set £ C [0, 1] of measure

< w, so that if € [0,1] \ €, then
3 oo
Iy(e,T) = Zlog(1/4+7%) [ w(5) % + O(og 7)),
0

This is the “generic” case where x does not have a close approximation by a rational
with small denominator. Here &£ consists of intervals of radius 7~!(log T')¢ around each
rational a/q € [0,1] with ¢ < (log T)/36.

It may also be instructive to compare the special cases * = 0 and x = 2710 (say),
in an informal manner. Intuitively, it should be clear that for small values of T, then
I,(0,T) ~ I,(27190T). Since E7 is an eigenfunction of the Laplacian with eigenvalue
1/4 + T2, it is expected to remain roughly constant on the Planck scale (or de Broglie
wavelength) of 1/T (see [12, p.289]). We therefore expect that once T is roughly of
size 2109 then I,,(0, T') should be uncorrelated with I,,(27!%1, T"). Now let us examine the

—101

statement of Theorem 1.1 with x = 2 . For small values of T, then @ is also small, and

this forces the rational approximation of 2z to be a/q = 0/1, whence § = 2z = 27199, By
the remarks on the behavior of the Jy-Bessel aspect from a previous paragraph, when T
is somewhat larger than 2!%°, then the secondary main term is small, as expected. Once

100" which invokes a change

2100><36)

Q > 27199 the rational approximation a/q must become 2~
in the value of B,4(1,T), as well as 6. Note that it is only when T is roughly exp(
that the secondary term with Baioo (1, T) is potentially larger than the error term of (1.5).

It is also interesting to classify irrational z’s for which there are arbitrarily large
values of T so that ¢ < (logT)%, and |§T| < 1. These are, essentially, the properties on
z that require the presence of the secondary term with B, (1,7)Jo(y~*0T) in (1.5) for
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arbitrarily large values of T'. These conditions are equivalent to the existence of integers
1< ¢ <ge <... sothat

dn
|97LQn| < RN
eXP(qn/ )
where 2x = ‘;—" + 6,,. One can easily construct such x by a continued fraction expansion
2x = [by; b1, ba, . ..], where by, 11 > exp(q,l/é).

1.3. Sign changes of the Eisenstein series

In [19], a variant on (1.3) was proven, where the test function ¢ was allowed to have
support shrinking with 7', and also the product of the Eisenstein series at two slightly
shifted points was averaged. As a consequence, it was shown that Ex(iy) (here E%
is real-valued and has the same absolute value as Er) changes sign > T times for
1 <y <3 for fixed 0 < v < 1/51, and sufficiently large T'. It is a special property of
the geodesic x = 0 that sign changes along this curve produce nodal domains (see [8] for
details). We are naturally led to consider a variant on Theorem 1.1 but with the product
of two shifted Eisenstein series. See Theorem 7.1 for the statement of this result, whose
proof is a small modification of that of Theorem 1.1. As a consequence we have:

Corollary 1.2. Fiz 0 < a < 3. There exists a large Ty depending on «, 8 only so that if
T > Ty, then EX(xz +iy) changes sign at least once for a <y < (.

Hence, the nodal set of E7. intersects every geodesic segment of the form x + iy : o <
y < B, provided T is sufficiently large. We emphasize that T is independent of .

In Corollary 1.2, compared to the result of [19], the gain in generality in z has a
tradeoff in that the number of sign changes is no longer a power of T'. Since the error
term in Theorem 1.1 saves a small power of logT, one would expect that, with extra
technical work, one could obtain a lower bound for the number of sign changes growing
as a small power of logT'. As it stands, Corollary 1.2 implies that for each n, there exists
T large enough (compared to n) so that EX(z + iy) changes sign at least n times for
a < y < . This follows by cutting the interval (o, 8) into n disjoint subintervals, and
applying Corollary 1.2 to each one.

1.4. Conjectures for Maass cusp forms

The techniques used in this paper are, by and large, not applicable to Maass cusp
forms. One should keep in mind that the restricted QUE problem is more difficult than
the “standard” QUE conjecture, which in turn is known, but with no rate of convergence
(however, the generalized Lindelof hypothesis would give an optimal rate of convergence).
Nevertheless, it is natural to conjecture an analog of Theorem 1.1 for Maass forms
(the case * = 0 was conjectured in [35]). Let u; be a Hecke-Maass cusp form, with
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Laplace eigenvalue 1/4 + sz. Suppose that A, (m) is the m-th Hecke eigenvalue of u;,
and that w;(—z + iy) = d;u;(z + iy), where §; = 1. Moreover, normalize u; so that
S I3 (2) 2428 = vol(T\H) = 5

Conjecture 1.3. Let conditions be as in Theorem 1.1. Then as T — oo, we have

T 0T;\7 dy
0/¢2 Y)|u;(z + iy)|? /¢ 1—1—5 B, (1, uj),]o( " )]? (1.7)

Here By(s,u;) is a finite Euler product given by (8.1).

Remark. We refrain from guessing an explicit error term, but we expect that the asymp-
totic is uniform in x. We also extend a conjectural version of Corollary 1.2. There is
a small adjustment needed to cover odd Maass forms, which all vanish along the lines
z € Z and = € % + Z. We therefore need to restrict x to not lie within a distance
O(T~1(log T)%) of one of these lines.

Suppose that M is a compact Riemannian manifold with ergodic geodesic flow. In [7]
and [32], it is proven that for a generic compact geodesic segment v C M,

. 2 _
Jim fJugll7z() = length(y) (1.8)

holds for a density 1 subsequence of eigenfunctions. Until now, the only known example
where (1.8) fails is when there exists a symmetry on the ambient manifold M that fixes
~. In this case, approximately half of the eigenfunctions vanish identically on v, and the
other half are expected to satisfy

. 2 _
Jinn [luglza () = 2length(y).

Conjecture 1.3 indicates that, for any rational value of 2x = % with ¢ > 1, the limit
lim; ||u |22 () does not exist. The reason for the lack of convergence is that the quantities
By(1,u;) fluctuate with ;. Analogously to (1.6), if ¢ = p is prime then

Bp(lauj) = (1+/\uj(p) _pil) (1'9)

i
The distribution of the values of A, (p), with p a fixed prime, was determined by Sarnak
[28], and is given by the p-adic Plancherel measure. As a consequence, for any interval
(a,b) C [~2,2], there exists a positive-density subsequence of u;’s with Ay, (p) € (a,b). In
fact, Sarnak proved a joint equidistribution statement for the values Ay, (p1), - - -, Au; (Px)
for any finite set of primes pi,...,pg, which may be used to constrain the values of
B,(1,u;) for any g.
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1.5. Overview

We gather some notation from [35]. Let Ef.(z) = %Eﬂz), where 6(s) =

7 °T'(s)((2s), so E} is real-valued for z € H. The Fourier expansion of E}. is

Bilo+in) = T 4 (1) 5 T ). (110
n#0
Here p*(1) = (2/m)"2|0(1/2+4T)| ", p = gafziipyy Vey) = iKir(y), and 7z (n) =

Zab:w (a/b)"

There are two main differences in the generalization from x = 0 (as in [35]) to arbi-
trary z. The most important difference is that when x = 0, the coefficients e(nz)mr(n)
of . are multiplicative, while for general x € R they are not. This causes some crucial
aspects of [35] to break down. The other significant difference comes from an asymmetry
between n > 0 and n < 0 in (1.10). Note that the K-Bessel function in the Fourier ex-
pansion only depends on |n|, which has the following practical effect. When one considers
a y-integral of |E%(z + iy)|?, analyzed by squaring out and integrating the Fourier ex-
pansion term-by-term, there will be diagonal terms and off-diagonal terms. The diagonal
parts will include a sum with say n, = no as well as terms with ny = —no, the latter of
which will then lead to sums of the form Y, |77(n)|?e(2nz). It is also necessary to treat
the opposite sign off-diagonal terms of the form 3, 3=, 7or(n)7ir (n+ h)e((2n + h)z).
It is difficult to estimate such sums because the weight is highly oscillatory (although,
not for x = 0, for instance).

To continue the discussion, we describe the earliest stages of analysis of I;(z,T'). By

a use of Parseval’s formula (in the Mellin transform setting), I, (x,T) decomposes as

_ 1 Ji 1\ |2
Iw(x,T)—QW / |F(it)|“dt, (1.11)
where
7 s .\ dy
F(s) = Fonr(s) = [ 00 Eio+ i) L. (1.12)
0

The size of Im(s) is the most important basic parameter in the analysis of I, (x,T).
We will then insert the Fourier expansion (1.10) and calculate the y-integral in terms
of gamma functions (see (2.1) below). One arrives at an integral of the form

T
. _ TZT 2
vz [ DS e k(o1
-T
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as well as some other terms of lesser importance. Here k is an innocuous weight function,
which restricts the support of n to |n| < (1 + (T2 — 2))*/2. The integral naturally
decomposes into pieces of the form T — |t| < A where 1 < A = o(T), as well as the
“bulk” range with [t| < T(1 — o(1)). The behavior of F(it) depends strongly on the size
of A, and our method of proof breaks up into cases.

The mean value theorem for Dirichlet polynomials (see Lemma 2.2 below) leads to
a bound of O(logT) for each dyadic segment T F ¢ =< A. Since there are O(logT) such
dyadic segments, this leads to the “trivial” bound I (z,T) < log?T.

The main term in Theorem 1.1 comes from the bulk range, [t| < T — o(T). This
main term arises, after squaring out, from the diagonal terms m = n and the opposite
diagonal terms, m = —n. In the bulk range, the mean value theorem gives an upper
bound of the same order of magnitude as the main term, which means that any savings
in the off-diagonal terms will be sufficient towards Theorem 1.1. For this reason, we apply
Holowinsky’s sieve method for bounding shifted convolution sums with absolute values.
This dodges any problems with estimating the shifted convolution sum ) 77 (n)7ir(n+
h)e((2n + h)x) with oscillatory weight e((2n + h)z), but still requires an asymptotic for
>, |Tir(n)|?e(2nz). This approach leads to the following

Proposition 1.4. Let n = n(T) satisfy (logT)™° < n < 4§, for some 0 < § < 2/3. Then

dt 3 T 0T\ dy
2 4t 2) 2( ay
[F(i)]? 5 = = log(1/4+1?) /¢ 1+B W1, T)JO( g )} ,
<1 n(T)T 0
+ O(n~3?(1og T)¥/°F= 4+ /2 10g T). (1.13)

Proposition 1.4 implies a sharp lower bound on I (x,T'), using the positivity in (1.11).

Holowinsky’s method of bounding the off-diagonal terms with absolute values is able
to save, at best, a small fractional power of logT. Since the trivial bound on Iy (z,T)
is O(log2 T), while the main term is of size log T, this method unfortunately cannot be
used to completely prove Theorem 1.1 (since one needs to save an entire factor of log T').
This is a qualitative difference between QUE and restricted QUE.

Having accounted for the main term with Proposition 1.4, it suffices to bound from
above the contribution from the remaining ranges of ¢. For this reason, we can apply the
simple inequality |3, . an|* < 2|30, 50anl®> + 23, g an|? to [F(it)[>. This has the
significant effect of avoiding all the difficulties with the terms with opposite sign. The
problem then reduces to understanding > 77 (n)7r(n + h) which in certain ranges we
can quote earlier work [35]. This leads to the following

Proposition 1.5. Suppose that § > n(T) > (logT)~? for some fized small § > 0, and
TH+ < A <n(T)T. (1.14)

Then for some §' > 0, we have



1174 M.P. Young / Advances in Mathematics 340 (2018) 1166—-1218

1/2

A
|F(it)|?dt < Tz log T+ 1" " 4 8, (1.15)
LALST—|t|<A
where Sa is a nonnegative quantity satisfying
Y Saxl (1.16)
1<ALT
dyadic

Here S arises as an off-diagonal main term that is surprisingly difficult to estimate.
Note that Proposition 1.5 implies

|F(it)[2dt < n*/*log T + 1. (1.17)

T25/27+e <«T— |t\<<7]T

For a fixed A, the trivial bound is Sa < 1, so the bound (1.16) amounts to a saving of
log T on average over the dyadic segments, since there are O(log T') such dyadic segments.
One sees that the bound (1.16) is crucial, since the individual bound Sa < 1 would only
lead to a bound of logT in (1.17).

When A is somewhat smaller than T', which means that N = v/AT is somewhat
larger than A, the problem may be interpreted as estimating the mean value of a “long”
Dirichlet polynomial. The shifted divisor sum approach from [35] breaks down for A <
T25/27 and different techniques are needed to cover all the sizes of A.

An approach to the problem is to open up the divisor function 7;r(n) = >, _, (a/b)*T,
and use the sums over a and b asymmetrically. Arguments in this vein appear in Section 5.
By a dyadic partition of unity, and Cauchy’s inequality, we have

Y
n1/2+zt

T—|tI <A n=<N

e(abx) 2
<ot [ SN | 09
deadichMxA axAbxB

‘ 2

where AB = N (observe that once b is localized by b < B, then automatically a < N/B).
We use a variety of methods depending on the sizes of A and B.

One fruitful option is to apply Poisson summation in either a or b, prior to any analysis
of the t-integral. It turns out that if B > T/2%¢ then one can get savings from Poisson
summation on b inside the square (and prior to any ¢-integration), which can then be
combined with savings from the ¢-integral. See Lemma 5.3 for the result obtained by this
idea. Similarly, if A > A/2+¢ then there is a saving effect from Poisson on the a-sum,
for which see Lemma 5.4. Since AB = N = (AT)Y?2, this means A = A'/2+°(1) and
B = T'/?%°(1) i5 the main region of interest.
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Another approach is to open the square and evaluate the t-integral, leading to a shifted
convolution sum of the form

1
A Z e(hx) Z (ara2b1bs) /2 (by Jbg)2 T (1.19)

A _ —
‘h|<<TB a1by —asba=h

Duke, Friedlander, and Iwaniec [6] [5] have studied general sums of this form, and ob-
tained satisfactory results in the case that A > B'~° for some (small) § > 0 (note also
there is recent work of Bettin and Chandee [1] that can improve the size of §). Based
on the locations of A and B established from the previous paragraph, we see that this is
satisfactory only for A > T~ for some (small) 8" > 0, yet we require all A < T'25/27+e
The first step in the method of [6] is to solve the equation a;1b; —asbs = h by interpeting
it as a congruence a; = —hb; (mod by), and then applying Poisson summation in a,
(mod by). Since B is larger than A, one obvious approach is to reverse the roles of the
a; and the b; in the [6] approach. The problem with this is that the oscillatory factor
(b1 /by)~%T causes a loss of efficiency in Poisson summation (the trivial bound on the
dual sum is worse than the trivial bound on the original one). There is a way to partially
circumvent the problem arising from this oscillation, which is to note that the equation
a1by — a2be = h means that by /by is approximately as/a;. Precisely,

(b1/b2)*" = (az/a1)*" (1 + L)%T. (1.20)

azbo

In terms of by, this is much less oscillatory than before, since

(1+£>2nzexp<i¢£§>, and %<< %

After these initial algebraic manipulations, we may then solve the equation a1b; —agbs =
h by by = —azh (mod aq). It is better to interpet this equation as a congruence modulo
a7 instead of by, because A is smaller than B, and moreover, b; was already eliminated
from the right hand side of (1.20). The Poisson summation argument leads to a dual
sum which when bounded trivially is just barely not satisfactory (at least, in the relevant
ranges A = Al/2te() B — 71/2+e(1)) However, the gain is that the dual sum has a
phase (still of rough magnitude %, but no longer linear in h). We may thus obtain some
cancellation in the h-sum using classical bounds for exponential sums. See Lemma 5.5
for the result using this idea.

There is also a technical problem to treat small values of b. Heuristically, if b is
large then there should be significant cancellation from the b-sum appearing in (1.18),
but for b small this may not be true. It turns out that these terms lead to the same
type of off-diagonal main term that was discussed earlier in the context of the shifted
convolution problem with A > T25/27+¢_ Qur approach to these terms is to solve the
shifted convolution sum in (1.19) by Poisson summation in @ modulo by, as in [6], for

which see Lemma 5.6
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Taken together, the above ideas lead to the following

Proposition 1.6. Fiz 0 < § < 1/4. Then

|F(it)2dt <5 1. (1.21)

TOLT—|t|KT1=8

For technical reasons, the very smallest values of |T" F ¢| require a slightly different
proof, and we claim this estimate with

Proposition 1.7. We have

|F(it)|?dt <. (logT)*. (1.22)

|T:Ft‘<<T1/1OO

Propositions 1.4, 1.5, 1.6, and 1.7, along with an easy fact that the contribution from
[t| > T+ T1/190 i5 very small (for which see Section 2.3), altogether imply Theorem 1.1,
taking n = (log T)’l/ls. The proof of Proposition 1.4 appears in Sections 3 and 4. The
main part of this paper is in proving Proposition 1.6, which appears in Section 5. Finally,
we show Proposition 1.7 in Section 6.

The proof of Corollary 1.2 appears in Section 7, and discussion of Conjecture 1.3
occurs in Section 8.

1.6. Remarks on Conjecture 1.3

The outline of Theorem 1.1 given in the previous subsection does not apply to
Conjecture 1.3, for a number of reasons. One important reason is that the proofs of
Propositions 1.4 and 1.5 rely on a solution of the shifted convolution problem which is
intertwined with the QUE problem on T'\H (see [8, Appendix A] for more discussion).
We currently do not have a quantitative QUE theorem (e.g. with power-saving error
term). Another problem is that the proof of Proposition 1.6 opens the divisor function
as the Dirichlet convolution of smooth functions, which is not available for general Maass
cusp forms.
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2. Notation and initial developments
2.1. Notation

Recall Vr(y) = /yKir(y). By a well-known formula for the Mellin transform of the
K-Bessel function, we have

1/2+s+iT)F(l/2+s—iT

L r s@_ —3/2,_—s
e (1/2 + 5) .O/VT(27ry)y =2 r( > > ) (2.1)

It is also helpful to recall the Rankin—Selberg L-function

Z(s, Er) = Z TiTn(:l) _ ((s — %T)EE;—; 2iT)((s) ' (2.2)

2.2. Miscellaneous lemmas

Here we collect some basic tools used throughout this paper.

Lemma 2.1 (Vinogradov-Korobov). For some ¢ > 0 and for any large |t| > 1, 1 —

Wﬁaél,wehwe

C(o 4 it)t < (log [t])?/3Fe, (2.3)

and

/

%(1 +it) < (log |23+, (2.4)

For a reference, see [16, Corollary 8.28, Theorem 8.29]. As a corollary to Lemma 2.1,
it follows from standard methods from [4] (see [11, Lemma 2.1] for more details) that

> p " =log¢(1+it) + O(1), (2.5)

p<z

provided log z > (log [t])?/3+=.
We also need the mean value theorem for Dirichlet polynomials of [25].

Lemma 2.2 (Montgomery—Vaughan). Let a,, be an arbitrary complex sequence. We have

U
/‘ Z ann~ " 2du = Z lan|?(U 4+ O(n)).

n<N n<N
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More generally, if A1, ..., g are distinct real numbers, and 0, = ming, |\, — As|, then

U
/’ Z aperrt 2du < Z la,|?(U + 376, 1). (2.6)
0

r<R r<R

We require the following change of basis formula from additive characters to multi-
plicative.

Lemma 2.3. Suppose that c,, is a finite sequence of complex numbers, ¢ > 1 is an integer,

and (a,q) = 1. Then

an 1 —
;cne(q)—z Hp > T3 eunx(n) (2.7)

X (mod q/d)

The proof follows from [16, (3.11)], letting d = (n, q).
We will also have need of the following

Proposition 2.4 (Jutila-Motohashi [20]). Let 1 < U <V, and let q be a positive integer.
Then

> (/2 + i, x)*du < g (U + V) (2.8)

V<lu[<v4u X (mod a)

This is a generalization of a result of Iwaniec [15], corresponding to the case g = 1.
We will also frequently refer to results in the literature on exponential integrals and
exponential sums. Textbook references include [10] [14] [16].

2.3. Initial developments
We will calculate Fy . 7(s) = F(s) here, and then perform some easy approx-

imations Inserting (1 10) into (1.12), using (2.1) and the Mellin inversion formula
=L Joy ¥(=w)y*du, we obtain

F(s) = ip(1/2 + 5 + iT) +mZ(1/2 +5—iT)

p*(l) 7-zT u
+ Z |n\1/2+5 27” /¢ w)|n| " vy (1/2 + s + u)du. (2.9)
n#0

(2m)°

Next we develop some simple approximations. First, note that

WP 2x
cosh(7T)  [C(1+ 24T)[2" (2.10)
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By (2.1) and Stirling’s bound, combined with (2.10), the integral appearing in (2.9) is
exponentially small if [Im(s+u)—T| > (log T). Since 1/1 has rapid decay in the imaginary
direction, we have that F(it) < (1 + [t|)72T~1%9 say, for |¢t| > T + T*.

We can simplify F(s) in the range [Im(s)| <7T — T=. Let

7ir(n)e(nz) o |5 +iT1]s — iTl), (2.11)

[nft/2+s 2m|n]

Fo(s) = p"(Dyve (1/249)

n#0

Lemma 2.5. For each € > 0 there exists § > 0 so that

P (it)[2dt = / \Foit)[2dt + O(T ). (2.12)

|t|<T—T* |t|<T—T<

As a consequence of Lemma 2.5, in the statements of Propositions 1.4, 1.5, and 1.6,
we may freely replace F' by Fy. We will do so systematically in the rest of the paper,
with no further mention.

Note that if s = it, 0 < t < T, the function ¢ appearing in (2.11) is supported on
In| < TY2(T — t)'/2,

Proof. In the range [t| < T — T¢, Stirling’s formula gives

F(1/2+52+uiiT> NF(1/2+25iiT)(1/2+QSiiT>u/2<1+§%),

where P; 1 is a polynomial, and where the meaning of ~ here is as an asymptotic

expansion. Therefore, since |s 4 iT| > T¢, we can truncate the expansion at j =< 2

with a very small error term. By (2.1), we have
Wi (1/24 s+ ) ~ (2m) Vs +4T| 2 |s =T F v (1/2 + 5) E[(HJZ S:I:ZT )
Therefore, for s = it, [t| < T — T*,

n#0
i [P0 O T T el o

The leading term in the u-integral is calculated exactly via (2.11), so that

= Y FE(s)+0(T 1),

0<I<e—2
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say. The lower-order terms in the asymptotic expansion with [ > 1 involve linear
combinations of derivatives of v in place of v, and multiplied by factors of the form
(s+4T) 71 (s—iT) 772, and are hence all of the same essential shape yet smaller by these
Hl<T—T* |Fy(it)|2dt < T<', using only the
mean value theorem for Dirichlet polynomials (Lemma 2.2), and by similar reasoning,

for j > 1, we have flt\<T 7o |Fj(it)|2dt < T7°, for some § > 0. O

additional factors. In fact, one can show that f|

Next we smoothly decompose the t-integral into pieces of the form T"— |¢| < A where
T¢ < A < T (it will also be necessary to treat the integral of |F(it)|? with T — |t| < T*¢
for which see Section 6 below). As a first-order approximation, we mention that for such
t, we have

k

L d . _
t d—kCObh(wT)|7VT(1/2+zt)|2 < (AT)™Y? k=0,1,2,.... (2.13)

For the purposes of calculating diagonal terms, it is convenient to record the following

Lemma 2.6. Let w be a fized smooth, compactly-supported function. Suppose log N >
(log T)2/3%3 | for some fized 6 > 0. Then

Z |71 (1 (N) = W[@(l)NlogN + O(N(log T)?/3+9)]. (2.14)

Proof. By Mellin inversion and (2.2), the sum on the left hand side of (2.14) is

) ) (@)

271

(2

ds.

We evaluate the integral by the standard method of moving the contour, in this case to
Re(s) =0 =1-—
s = 1. Using

W, for some constant ¢ > 0. We first calculate the residue at

NS =1+ (5 — 1)10gN+O((5 - 1)2)7

C(s — 2T)C¢(s 4 2iT) = [¢(1 + 2¢T)|*(1 + (s — 1)2Re%(1 +2iT) + O((s — 1)?),

and the Vinogradov—Korobov bound (Lemma 2.1), one calculates that the residue at
s = 1 is consistent with the right hand side of (2.14). The residues at s = 1 £ 2iT are
negligible because w has rapid decay in the imaginary direction.

Finally we bound the integral along the line o. We use the Vinogradov-Korobov bound
again, which leads to an error of size N (logT)*? exp(—c (lolggw) which is bounded by
the error term appearing in (2.14). O
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We directly quote the following.

Proposition 2.7 (/35], Theorem 8.1). Suppose that w(x) is a smooth function on the
positive reals supported on'Y < x < 2Y and satisfying w(j)(x) < (P/Y)? for some
parameters 1 < P < Y. Let § = 7/64, and set R = P + % Then for m # 0,
R < T/(TY)?, we have

> rir(m)mir(n+m)w(n) = MT.+ E.T., (2.15)

nez
where

. 2 0
T R)
max(0,—m)

and

ET. < (Im/’T5Y?R*+ TsYiR?)(TY)". (2.17)

Furthermore, with R = P + %, we have

Y |ET|< (MT3YZR?+ MTSYiR?)(TY)". (2.18)
1<|m|<M

Remark. The bound (2.18) roughly means that the Ramanujan—Petersson conjecture,
i.e., 8 =0, holds on average over m.

3. The bulk range: extracting the main term

The purpose of this section is to show Proposition 1.4.
3.1. First steps

For shorthand, set n = n(T). Let W (¢) be a nonnegative function that is 1 on [¢| <
T —cinT, and 0 on |t| > T — conT, where WU (t) < (nT)~7, and where ¢; > cp > 0 are

fixed positive constants.
We have

2 cosh(nT |mn|1/2

m,n

7 * 2 r(m)mr(n)e((n —m)x
/W(t)|F0(it)|2ﬂ: ‘P (1)| )Z zT( )ZT( ) (( ) )J(m,n), (31)

where
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oo

] T2 — 2
J(m,n) = / W(t)hVT(l/Q+zt)|zcosh(7rT)w(7V||)
27|n|
—0o0
|72 — 2|\ /|m]\ i dt
— =) = 3.2
<o 2efm] )(|n|) o (82)
In the right hand side of (3.1), write
r , dt
/ W ()| Fo(it)|? 5 = =MT. + E(z,T), (3.3)
where M.T. corresponds to the terms with |m| = |n| and E(z,T) are the terms with

|m| # |n|. We will bound E(z,T) with absolute values. We then have

* 2 i (n 2
MT. = c|(fsh((73|T) Z [7ir(n)] J(n,n)(1+ e(2nz)), (3.4)

and

T)| < [¢(1 4 2iT)|~2 [rir (. HTiT(nJrh)'Jn,nJrh.
|E(2,T)| < |¢( )|~ };; TR | J( )|

We will show that
3 T 0T\ dy
M.T. = Zlog(1/4+T%) /zp? 1+B (1, T)Jo( ; )}? L oMY 10gT),  (3.5)
0

and that
E(z,T) < n~%?(og T)%+=. (3.6)
At this point we can also explain how to remove the smoothing factor W. We have

/ | Fo(it)|2dt < /W+(t)|F0(it)|2dt

t|<T—nT —o0
/ | Fy(it)2dt > / W_(t)|Fo(it)|?dt,
[t <T—nT —o0

where W, and W_ satisfy the same properties as W, but with different choices of
constants ¢;. Since the approximations of M.T. and E(z,T) are independent of the
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choice of W, we can claim the same asymptotic for fl | Fo(it)|?dt, showing that

t|<T—n(T)T
Proposition 1.4 follows from (3.5) and (3.6).

Now we analyze J(m,n). Note that m and n are supported on
n'2T < |ml,|n| < T.

By Stirling’s approximation (see (2.13)), we have that J(m,n) = fix;oj(m,n,t,T) X
(|m|/|n])dt, where j is a function satisfying %j(m, n,t,T) < n~ 2T~ (nT)~*. Thus
by standard integration by parts, if |m| # |n|,

—1/2

n _
J(m,n) < T Toa(m DT k=0,1,2,.... (3.8)

3.2. The off-diagonal terms
By [13, Theorem 1.2], we have

Z [7ir(n)Tir(n + h)| < z(hlog ) Pir(x)?,

n<x
where
1 |7ir (D)
P; = 14+ —).
(@) log x H( + P )
p<z
We claim
Pip(T) < (log T)Y3(¢(1 + 20T)|7/°|¢(1 + 4iT)|~1/°. (3.9)

To see this, we begin with the elementary inequality

1
o] < g8+ 11faf* =[], (3.10)

valid for any x € [~2,2]. Applying this with z = 7;7(p) = p'T + p~*T, we deduce

1 . . . .
rir ()| < 55 (24 TGT +p73T) = (T 4 p7 ),

which implies in turn

Pip(z) < (logz) ™! H (1 > H ‘ 1+22T‘ H ‘ 1+4ZT‘

p<z

1/9

Of course, [[,.,(1+p~") < logz. Finally, using (2.5) gives (3.9).
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Using (3.8), we conclude

7773/2 (log T)2/3+6

E(z,T)| < . 3.11

B, )| |C(1+2iT)|5[C(1 + 4iT)|3 (8:11)
Lemma 3.1. Fort > 1, we have

IC(1 +it)|72¢(1 + 2it)|~F < (logt) e, (3.12)

Lemma 3.1 completes the proof of (3.6).
Note that a naive application of the Vinogradov—Korobov bound would only give
(logt)**¢ in (3.12), leading to a bound on E(z, T) that is worse than trivial.

Proof of Lemma 3.1. Using (2.5), we have

5 —2cos(tlogp) — cos(2tlogp) gy

log (\g(1+z’t)l‘2|€“(1+2it)\_1) = P

p<z

where logz =< (log )2/3+5 Note that —2cos# — cos(20) < 2 for all § € R, since 3 +
2cos 0 + cos(20) = 1(1 4 2cos@)?. Thus

log (\<(1 )| 21+ 2it)\_1) < 3loglogz + O(1).
Simplifying completes the proof. O

One may apply many other inequalities in place of (3.10), leading to alternative forms
of (3.11). We made no attempt to optimize the error term in (3.6).

3.83. The diagonal terms

According to (3.4), write M.T. = MTy + MT,, say. It suffices to study MT,, since
MTy is the special case z = 0. By a rearrangement, we have

MT, =

)2 A e (n)]2
c(i,h((173|T) Z | ZTé ) (e(2nzx) + e(—2nx))J (n, n).
n=1

Using the Dirichlet approximation theorem, we have

M = cosh 7rT Z |T%T Jn.m) {e(%)e(@n) + e(_;m)e(_en)],

where (a,q) = 1, ¢ < Q, and |fg| < Q1. Here @ is a parameter at our disposal to be
chosen later.
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Converting to Dirichlet characters via Lemma 2.3, we obtain

()2
cosh(7nT)

-~ Ti n)|>x(n
Zw/ S Y rona 3 EE g e span).
n=1

* x (mod g/d)

MT, =

Let Jyg(x) = e(£0z)J(z,z). It follows from the definition (3.2) that

d? 4
@J (x,z) <z,
Next, define the Mellin transform

(o}

jie(u) = /Jig(x)l‘ud?z.

0

Note %Jig(l‘) <L x77(1+|0T)7). Therefore, repeated integration by parts shows

J. : 7o (14—
|00 +iv)| <4 ( +1+|9T|) ;
which we will use for 07| <« T=. If |§T| > T*=, then a stationary phase argument (see
[2, Proposition 8.2]) shows

1+

|J:|:9(O'+Z’U)| < W( ‘H—T|

T |v| )7100

We may combine the two cases with the single bound

5 . To+e . v ~100
| ie(a+w)|<<l+|9T|1/2< +T8+|0T|) .

By the Mellin inversion formula, we have

MT, = cosh 7rT Z ¢ q/ Z Z T(@X(ia)% / jie(s)dflfsﬁd(l + s)ds,

(mod g/d) (2)

where
(9= 3 mrdnixt, (5.13)

By a variation on (2.2), one may readily derive that
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La(s) = L(s,x)*L(s +iT,x)L(s — iT, x) Aa(s),

where A4(s) is given by an absolutely convergent Euler product for Re(s) > 1/2, sat-
isfying a bound A4(s) <, d, for Re(s) > o > 1/2. Moreover, L4(s) is analytic in this
same region except for poles at s = 1,1+ ¢7T" only when x is the principal character.

Now let MT., denote the contribution to M T, from x nonprincipal. To estimate M T,
we shift the contour to the line —1/2 4+ €. The bound we obtain from these terms is

MT <7 Y g

d
T YD | od )
/ |L[9(—1 + o +)||L(o +iv, X)*L(o + iv + 4T, x) L(o + iv — iT, x)|dv.

By Hélder’s inequality and Proposition 2.4, we deduce
MT! <« T=Y2Heg/2(T2/3 4 10T|)V/? < (T7Y0QY2 + Q= V/)T=. (3.14)

Any choice of Q with T° <« Q < T'/3°, for some ¢ > 0, shows MT/ < T—9", for some
8 > 0.

Finally, consider the contribution from y = xg, denoted MT?. Using 7(xo) = pu(q/d),
we see that

wrg = L0 S L [ Rz, 45105, (3.15)
+

(e)

where

& ()P ple/ ()
Za5) = 2 T e )

By (2.2), we derive

¢(5)¢(s +iT)¢(s — iT)

Zy(s) = ) By(s.T),
where
o) [ T S R o
BT 52, it | .
Now we shift the contour to 0 = —1/2 + ¢, picking up residues at s = 0 as well as

+4¢T. The poles at +iT give small residues, due to the decay of j;(s) at this height
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(since || < T'~¢, which is implied by Q > T°). The contribution on the new contour
is obviously no larger than the one obtained with (3.14). This discussion now shows

* 2 .
MT, — %Ress_o ( zi: Teo($)Z,(1+ ) + O(T/°Q1 +- @ V/*)T%),

3.4. FEvaluation of the residue

First we examine the Dirichlet series aspect of the residue. By the Vinogradov—
Korobov bound (Lemma 2.1), we have

<2<s><<s+iT><<s—z'T>:|<<1+2z‘T>|2(1 O((log T)*/**¢) )
¢(2s) (2) 52 5 )

Of course, By(s,T) = By(1,T) + B/,(1,T)s + O(s*), and a calculation shows B,(1,T)
and B/ (1,T) are O(g~'*¢). Finally, we claim that Jp(0) = O(loglog T'), and

- n? T HT d
> ig(0) = lo T/W yy + 0 ?log T). (3.17)
+ 0

Taking these claims on j:tg for granted, we may then derive

_ P ¢+ 2T)?
MT, = 2 cosh(7T)  ((2)

r 0T d
By T)1ogT [0 (0)0a(%) % + 0 log ),
) Y
(3.18)
where we have used n'/2log T > (log T')%/3*¢. Evaluation of the constant shows this is

consistent with (3.5).
Now we prove the claims on Jy. We have

oo

Jh(0) = /e(Gx)J(ac,x) logxd%, (3.19)

0

and likewise j];(O) is given by the same integral, but without the logx factor. Trivially
bounding the integral shows J5(0) = O(loglog T), since J(z) is supported on n/?T <«
z < T, and log(1/n) < loglogT.

Moreover, logz = logT + O(loglogT), on the support of J(z). Then inserting the
definition of J and applying some changes of variables, we obtain

oo o0

Ty0) =togT [ 6| [ Wt (1/2+ i) cosh(aT)e

0

2rl y’
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plus an error of size O(loglogT).
Stirling’s formula implies cosh(7T)|yy,. (1/2 +it)|> = %(T2 —t3)712(1 4+ 0(T~1+9)),
for t in the support of W. Hence

2 T T VT dt ] d
Ty(0) = S 1o T/wz [/W(t)( £2)7 120 | +0G0g10g 7). (3.20)
mly
0 —o0
It is not difficult to see that
0o T
\/Tﬁft2 /T2 2
/W(t)( ) 1/2 60 di = (TQ ) 1/2 i0 dt—|—0( 1/2logT)
-T

By the change of variables ¢t = T cos(y) and [9, 8.411.1], we have
f VT? — 2 0T
-t
/(T2 —12)712 cos (9—)dt = 7TJ0( )
I ) Y

Putting all the calculations together, we derive (3.17), which completes the proof of
Proposition 1.4.

4. Large values of A via shifted divisor sum

Having extracted the main term in Section 3, we may make a small notational sim-
plification by restricting attention to ¢ > 0 only. The same bound holds for ¢ < 0 by
symmetry.

The goal of this section is to prove Proposition 1.5. We begin with some simplifications
of a general nature.

Lemma 4.1. Suppose that T° < A < n(T)T, where 0 < n(T) < § for some small § > 0.
Then

|C(1 + 2iT)|~2

| Fo(it)|2dt < I(A,T, 2z, N) + 77109 (4.1)
VAT
LA<T—t<A
where
B 7 T—t Tir(n)e(nz) n\ |2 B
I(A,T,x,N)_/wl( - )’nzl et wg(N>‘dt, N =VAT, (4.2)

and wy,ws are certain fixed smooth weight functions with compact support on the positive
reals.
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Proof. The essential part of the proof is a separation of variables argument. We will need
variations on this argument in other parts of the paper, so we provide full details here.

Using Stirling’s approximation (2.13), and the inequality | 3=, . an|* < 2|32, - an [+
2| 3,50 a—nl|?, we obtain

/ | Fo(it)[dt < % / ’ Z TZTn1/2+zt ( :I;r; t2) ‘2dt'

IA<T—t<A IA<T—t<a ™21

The support on ) means that the n-sum is supported on n < N, where
N =VAT. (4.3)

This integral is not yet quite in the form I(A,T,z, N). For this, we multiply ¥ by a
redundant factor we(n/N), such that wy(n/N) = 1 for all n in the support of ¢, yet
such that wsy is smooth of compact support. Then we use ¥(y) = 2%” f(o) {/;(fu)y“du,
and apply the Cauchy—Schwarz inequality to the u-integral, obtaining

‘ZW/J(\/* <</|¢W\‘Zan “iul” gu, (4.4)

using the fact that [° l(iv)|dv < 1 (the reader may recall that ¢ was fixed at the
beginning of the paper and is independent of all relevant parameters).

In our application, we may truncate the u- 1ntegral at |u| < 100, leading to an error
that is at most O(T~190), using the rapid decay of 1/), and the fact that A > T9. That
is,

|3 e ([
1/2+zt 2,

LA<ST—t<A nzl

TZT n 2 -
/ / “Z 1/2+zt+w 2(N>’ dtdu + O(T 1),

LAST—t<A |u|<55

Next we change variables ¢ — ¢t — u and over-extend the t-range of integration to
100A <j-T| < %géA, which is valid due to the positivity of the integrand. In this
way the variables v and t are separated, and the u-integral can be bounded again using
S w)lde < 1.

Finally, by attaching a smooth weight function wi(Z5t) supported on the positive
reals, we obtain the desired result. 0O

Proof of Proposition 1.5. The basic approach is similar to that of Proposition 1.4, in
that we will solve a shifted divisor problem. In light of Lemma 4.1, we need to show
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I(A,T,2,N) < [C(1+ 2iT)[>(Alog T + NT~% 4+ NSa), (4.5)
for A > T?5/27+¢ and some &’ > 0. Opening the square and integrating in ¢, we obtain

I(A,T,z,N)

= Z TiT(m)TiT(n)e((m—n)x)M\/%(%) /w1<TA_t)(%)itdt. (4.6)

m,n>1 oo

By Lemma 2.6, the terms with m = n contribute to I(A, T, x, N) an amount
< AIC(1 4 2iT)|? log T,
which leads to the first bound in (4.5).

Our main job is to bound the terms with m # n, in which case we set m = n + h. By
simple estimations, these terms contribute to I(A, T, z, N) an amount

% Z e(hx) Z Tir(n)Tir(n + h)K(n, h),

h#0 n
where
Cwa( ) wa(BH) o+ h\—T__ A n+h
Kn.h) = 51 nth o n ) (- %log( n )

In particular, K (n, h) is supported on n < N and satisfies

ol L Alv|\—4 )

. J N\~ 24 _

K (u,v) < RN (1+ ~ ) . j=0,1,2,...,
with A > 0 arbitrary, and where

R=A'T. (4.7)

Proposition 2.7 gives

A 1 1 1 3 1
< 2 elha) ( S rir(n)rir(n+h)K (n, h) —M.T.) < TH*N3R? L T3 NIRE, (4.8)
h#0 n

where M.T. is a main term (off-diagonal) to be discussed presently. A short calculation
shows that the two error terms in (4.8) are O((AT)Y2T %) for A > T3¢ It turns out
that the main terms are surprisingly difficult to estimate with uniformity in z, and we
next turn to this problem.
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The off-diagonal main term is defined by

. 2 e
MT. =" %ol (h) / (y + )T Ty T K (y, h)dy.
+ max(0,—h)

These two terms then give to I(A, T, z, N) an amount

CO+2ATIE A~y

[ wald) wa(4) i
O/Ev%z)iv/z U;JJ\F]h;Vl/Z(y‘;h> T;Twl(*%log(%h))dy.

When the choice of sign makes the exponent of (y + h)/y be —2¢T', then a simple inte-
gration by parts argument shows that

[

Hence this off-diagonal term contributes to I(A,T,z, N) an amount that is

“ Zlﬁ

() s (12 (o T

2“2 w

h|T N
< [¢(1 + 2T Z N(l + L) < ¢+ %T)'QAT < |¢(1 4 2iT) A,

h;eo

since N <« T, which is more than satisfactory for (4.5). The other main term is more
subtle, and gives

C(1+2i1)]2 A
MTop = R0 ~ hééoe(hx)al(h)
[wa() w0 Ay
X wi| — —log | =——))d 4.9
O/(%)l/z uthyiy2 1( o ( y )) (4.9)
We will show here
MTop < |[¢(14 2iT)[*(Alog T 4+ NSa), (4.10)

where Sa is a function satisfying (1.16). It is quite easy to show with a trivial bound
that MTop < |¢(1+ 2iT)|?>N, so (4.10) amounts to a logarithmic saving with the sum
over A in dyadic segments (there are of course O(logT) such values of A over which to
sum). As a first simple approximation step, by taking Taylor expansions we have that
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_ /oowz(%)zﬂ)\l( _ 2A7T—Z)dy + O(|h|(1 + %)_100)
0

and hence by a trivial estimate on the h-sum, we have

e+ 20T [ws(w)? ¢ Ah
MTop = TA;%e(hsv)ff—l(h)0/ Y wl(_ 27rNy)dy

N
+O<Z|C(1+2iT)|210gT>. (4.11)
This error term is certainly O(NT %), since A >> T25/27+¢ By changing variables, we

have

T 2 A Ah
MT, 1+ 2T)[2N LV =50 b1 (— — NT).
on < [¢(1+2T) O/wz(%) 17y 2 -0t ey + ONT )

We need to control the sum over h, on average over A running over dyadic segments.

We pause our estimations of MTpp to state the following.

Lemma 4.2. Let wy be a smooth function supported on the positive reals, and for x € R
and H > 1, define

R(z,H)=H > o i(h)e(ha)wi(h/H). (4.12)
h#0
Then
> IR(z, H)| <1, (4.13)
1<K H<o
Hdyadic

where the implied constant depends only on wy and is uniform in x.

Remark. The assumption that w; is supported on the positive reals, so in particular
w1 (0) = 0, is used crucially in the proof. More generally, if w; is some fixed Schwartz-class
function, then it is not hard to see that R(z, H) <, 1.

Lemma 4.2 suffices to show (4.10), as H = y% = yzi—ﬁz, and A runs over dyadic
segments. This means that H can be partitioned into two classes of dyadic segments
(taking even powers and odd powers separately, for example).

Having accounted for all the terms, the proof of Proposition 1.5 is complete. 0O
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Proof of Lemma 4.2. We open o_1(h) as a Dirichlet convolution, obtaining
_ _ __rab
R(x,H)=H™! Za ! Z e(abx)wy (E)
a>1 b#0
For larger values of a, say a > K > 1, we estimate trivially, obtaining

H_lz _12 abxw1< ><<%

a>K b#£0

For a < K, we apply Poisson summation, getting

17 o Setaii(G) = 2o (S 4 (- ).

a<lK b#0 a<lK vEZL

Thus

Rz,H) =Y a 2Zw1( x——))+0( %)

a<K vEZL

Suppose that w; is supported on [a, §] where 0 < a < B. If we assume that K < eH

for et

> 203, then the sum over v will capture at most one value of v, which must
be the integer nearest ax. More precisely, we have that the sum over v vanishes unless
a < [laz||£ < B, where |Jaz|| denotes the distance from ax to the nearest integer. For
each a, there are at most 1 + log,(8/«) dyadic values of H such that the sum over v

does not vanish. Thus

Z Z‘wl( x——)>‘<< 1. (4.14)

H>e ' veEZ
H dyadic

We set K = ¢H, and by reversal of order of summation combined with (4.14), we derive

Y D oa 22‘“}1( x——)‘<<Za < 1.

H>ec 'a<eH VEZ
dyadic

For H < 7! we use only the trivial bound Q(z, H) < 1, which needs to be used O(1)
times. Thus we obtain that (4.13) holds. O

5. The medium sizes of A
5.1. Statement of results

The goal of this section is to collect some results which together prove Proposition 1.6.
Recall I(A,T,z,N) is defined by (4.2). One of the main results of this section is
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Proposition 5.1. Suppose T° < A < T'~°, for some 6 > 0. Then
I(A,T,2,N) < NIC(1 + 2iT)*((log T) ™ + Sa), (5.1)
where Sa has the properties described in Proposition 1.5.

Proposition 5.1 then implies Proposition 1.6, via Lemma 4.1.

The methods in this section rely on opening the divisor function 7;r(n) =
> upn(a/b)T and do not rely on the spectral theory of automorphic forms but rather
abelian harmonic analysis. The relative sizes of a and b play a major role in our estima-
tions, and so we wish to localize a and b at this early stage. To this end, define

= [ S et (a(p) @ o

— 00

where A, B > 1, and wy, f, g are fixed smooth functions supported on the positive reals.
For small values of b, it is better to not use a dyadic partition. Instead, let By < T for
some small 0 < o < 1/4, and let go be a smooth function such that go(y) = 1 for y < 1,
and go(y) = 0 for y > 2. Then set

o0

Tp, = / < )’Z 1/2— ztbcllj);i_ng ltgo(go)wz(aﬁb)rdt. (5.3)

— 00

We elucidate a connection between I(A,T,z,N), I4 g, and Ip,, with the following

Lemma 5.2. With certain w, f, g, go, By as above, and with AB < N = AT, we have

NlogT
I(A,T,2,N) < Ip, + 1ogT( ) IA,B) + 0 (5.4)
By BEN
yadic

Proof. In the definition of I(A,T,z, N) (that is, (4.2)), write 7y7(n) = >, (a/b)'T,
and then apply a partition of unity to the b-sum. In this way, we have

[e'e) b b b 2
I(A,T,.r,N)Z / ( )‘ZZ 1/2— ?tbxl/gimzf ztw2<aﬁ)‘ dt’

where g; are elements of the partition.

First we choose go(b/By) to be one element of the partition of unity. Next we simply
apply Cauchy’s inequality to separate this part of the partition from all the other terms.
This explains the presence of Ip, in (5.4); the main point here is we did not lose the
factor log T'.
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We may assume that go is such that 1 — go(y/By) equals a dyadic partition of unity
(meaning, each g;(b) = ¢(b/B), say with b < B, where AB = N, and B runs over a
dyadic sequence), since we could start with a dyadic partition of unity of this type, and
then write gy as a sum of elements of this dyadic partition. Having located b < B with
g(b/B), a is automatically localized by a =< A by the support of wy. We are then free to
multiply by f(a/A) where f is smooth of compact support, and such that f(a/A) =1
for all a in the support of g(b/B)ws(ab/N). In all, this shows that we may write

o0

10N < I, + [wn(E)] Sy AL, )y,

Bo<KBLKN a,b
B dyadic

— 00

Applying Cauchy’s inequality shows an estimate almost of the form (5.4), the only dif-
ference being that instead of /4, g, we have an expression of the form

| (3)|Z e e () o

That is, we have a weight function of the form f(a/A)g(b/B)ws2(ab/N), and we would
like to omit ws in order to separate the variables further. Using a method very similar
to that in the proof of Lemma 4.1, we can do this, at the cost of an error term of size
AT1ON]ogT. O

In the application to I(A,T,z,N) with A > T¢, we have AB = N = (AT)Y/2.
However, for some technical reasons, when A < T¢, we need a minor generalization of
the range of A, B. For this reason, in the rest of this section we let

AB =M, where TY?7°* « M < T'¢. (5.5)

For ease of reference, we collect a few lemmas together, deferring the proofs until later
in this section.

Lemma 5.3 (Poisson in b). Suppose 1 < A < T'=9, and T'/? < B < T'~?, for some
0> 0. Then

MT
Inp < (A + ﬁ) log T (5.6)

Lemma 5.4 (Poisson in a). Suppose (logT)'** < A < T'=° and B > T° for some
0 > 0. Then

Tap < M|C(1 4 2iT)*(log T)~%° + A B logT + AlogT. (5.7)
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Lemma 5.5 (Determinant equation, Poisson in by ). Suppose that T° < A < T'~° and
TY2=0 <« M < T =9 for some 6 > 0. Then

M A% (AT)V/4 AN 1/12
Iap < AlogT + — +T°— (AT) (AT)I/Z(T> .

A A MZ (5.8)

Finally we require a result valid for B < T°©.

Lemma 5.6 (Determinant equation, Poisson in as). Suppose that By = T, for some fized
0<a<1/4, and (logT)'° < A < T, for some § > 0. Then with Sa satisfying the
same properties as in Proposition 1.5, we have

I, < M|C(1+ 2iT)|*((log T) ™% + SpA) + AlogT. (5.9)

Remark. For later discussions in Section 6, it is helpful to describe how the conclusion
of Lemma 5.6 is affected when we only assume that w; has support on R instead of the
positive reals. In this case, a bound of the form (5.9) still holds, but we may only claim
that Sa < 1, instead of the stronger condition (1.16).

Before proceeding to the proofs of these lemmas, we describe how they combine to
prove Proposition 5.1. We need to bound all the terms on the right hand side of (5.4).
Lemma 5.6 treats Ip, with an acceptable bound. Next we analyze I4 p. In the case
T* <« B < TY?7¢, we apply Lemma 5.4. In the case B > TV?t¢ ie., A < AY2T—¢,
we may apply Lemma 5.3. Finally, in the case TV/?2~¢ « B <« T/?+<, ie AT «
A < AY2T% then we apply Lemma 5.5. We have therefore covered all the ranges of B,
showing Proposition 5.1.

5.2. Proof of Lemma 5.3

The basic idea is that Poisson summation in b inside the absolute square gives a
saving by reducing the length of summation (provided B is slightly larger than T 2.
Furthermore, this process is compatible with the savings from the t-integration.

We have

abzx)
Zb1/2(+22T wd Z/ ax“‘kl“_gbgu) ~29(u/B)du
b

€2 7,

Write the phase here as ¢(u) = (az + [)u — 22= log u, which satisfies

2T — ¢t
2ru

¢'(u) = (az +1) —

We first claim that the integral is small unless there is a stationary point. The second

term in the derivative of the phase is =< %, and repeated integration by parts (see [2,
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Lemma 8.1]) shows that the integral is small (say, O(T~'%)) unless (az +1) < Z. By
periodicity, we may as well assume |z| < 1/2, in which case a|z| < a < 4 = o(T/B)
(recall (5.5)), and therefore this means l = T . We think of [ 4+ az as a perturbation of [.
HM By [14, Lemma 5.5.6] or [2, Proposition 8.2]
(taking only the first term in the asymptotic expansion), we get an asymptotic formula

The stationary point occurs at 2mrug =

in the form

o7t (2T —t)
bx) e 2T —t _
; bl/Q(fIZZ‘1 zt ( ) zl: l(+2a:c )1/2 QZTJF”P(B(Z—FCL]})) +O((BT) 1/2)7

where P is a function supported on v < 1, satisfying P(j)(v) <, 1. In fact, P is a
constant multiple of g. The phase here takes the form

et (t,T)

(I + az)it—2T’
for some function ¢ independent of a and [. Altogether, this shows

o

B(lJraac))f(a) 2 AA
Tap < / ( )‘Z al/2=it(] y qg)1/2-2T+it dt""O(ﬁ)‘
— 0o
Note that this error term is M =4 T Wthh is acceptable.
Since % << ¥ind and % T = T < T79, we can take Taylor expansions

to obtain
Patrran) = ()~ Sra(E)(7) () +oa

where P;j, is a finite linear combination of derivatives of P, with j + k > 1, and the
total number of terms in the sum bounded by a function of §. By Cauchy’s inequality,
we then have

o0

IA,B<</ ( )’Z 1/2=it( :;35)(1%2) 2T+t

— 00

o)

dt+0(

where by abuse of notation, P is meant to represent P or one of the P;; (of course the
case of P is the hardest for us to estimate, as the terms with j + k& > 1 will be smaller
than this by a factor < T~¢, so the notation is not that abusive after all).

Change variables a — da and ! — dl where now (a,l) = 1. Define the coefficients

© p(2Lyr(ad
o= Y PEDIE),
d=1
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so that
Tt i AA
Inp < /wl(z)‘(z) AT )T dt+O<BT) (5.10)
oo a,l)=

Note that v,; = 0 unless a =< % We have the trivial bound |v,;| < 1, and so
2
Dal el < 1ogT. To finish the proof, we will apply (2.6) to (5.10). Here r corre-

al

sponds to the pair (a,l), and A\, = A\ = log(l*%). Here we have

l —ay(l li —aql
Aarts = Aag | = ‘log (1 + aall + a12) — ally +a2x))’ > lazh — arby|

al(lg + CLQl‘) ails ’
and 50 |Aay 1, = Aag 15| > o > -2 under the assumption (ai,l1) # (a2, l2). Therefore,
(s ) < (a4 75
IAB<< + > N o) < (A&+ 55 )losT. (5.11)

(a,l)=1

5.8. Proof of Lemma 5.

The initial steps of the proof are quite similar to that of Lemma 5.3, except that
we apply Poisson summation in a instead of b. The later steps are different because we
encounter a more difficult counting argument in this problem. We have

> A fafd) =Y / (b — g+ o logu)u™ /2 (u/ A)du
a=1 qEeZ_"

By [2, Lemma 8.1], the integral is O(A'/2A~10) unless |bz — ¢ < £, that is,

(5.12)

Here we are using the fact that w; has support on [1,2], so that ¢ < A. Assuming
(5.12) holds, the integral can be asymptotically evaluated using stationary phase. The
conditions of [2, Proposition 8.2] are not quite met if A is small compared to A. Instead,
we may quote [14, Lemma 5.5.6] (the reader may also try to derive a weighted version
of [16, Corollary 8.15]). In this way, we have

<, ) p(m) AL/2
> AT FaA) = W) Y e O3 ):

a=1 qEZ

where as in the proof of Lemma 5.3, P(v) is a smooth function supported on v =< 1,
satisfying PU)(v) < 1 (in fact, P here is a constant multiple of f). Hence
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it + O(ABA™?). (5.13)

b/B A( : ba:))
Iy K / ( )‘Z pl/2+2iT— it(q _qu)l/%ﬂt

—00

The error term is satisfactory.

By analogy with (5.11), one might expect that 14 5 < (A + £2)T°, and note 22 =
ABﬁz = M% (and if M = N = /AT, this is NBT ). However, there are some differences
so this guess is not entirely reliable, yet partially hints at the truth.

Next we perform some simplifications, towards separation of variables. Write (b, q) =
d, and set b = dby, ¢ = dgo where now (qo,bg) = 1. In the summation, we enforce the
condition (5.12) (of course ¢/b = qo/bg), which is redundant to the support of P. We
then obtain

e o 3 i)
A,B TUA 1+2iT 1/2+2iT—i .
S AT o=t b2 (o — bom) /2t
\w——\ M~1A
+O(ABA™?).

By the same separation of variables method as in the proof of Lemma 4.1, we can remove
the weight function P by a Mellin transform. Let us say that the integration variable
attached to P is v. Changing variables ¢ — t — v, and letting 27" = 2T + v, we obtain,
for some smooth, nonnegative, compactly-supported function ws,

[ ( 1 g(dbo/B) 2
Iyp <  max /U)g(—)’ —— T —| dt
‘T,,T|<<Aioo A zd: J1+2iT (bO%:)_l bg+2zT —zt(qo B box)%“t
\a:fg—g|xM_1A
M
+ Az (5.14)

Define the following coefficients oy by

an — b—QiT’ g(db/B)

JLI+2iT
so with this notation
b t Qap 2 M
Iap < max /w;;(—)‘ . 0 dt + —.
lT/_T‘<<AE—oo A (bo;o) 1 bl/Qﬂt(Qo — box)!/2H o
|m——| M~A
Note the trivial bound «ap < 1. We also have that
B
ap < (logT) 1 for b ——o— (5.15)

(10g T)2/3+5 ’
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by using a Mellin transform, and the Vinogradov—Korobov bound (Lemma 2.1).

We also choose a nonnegative wy so that ws < wy and wy has compact support (cf.
[33]).

Next we open the square and perform the integration. For notational simplicity, we
drop the max over T’ by assuming that 7’ is chosen to maximize the expression. Then

we obtain
E |y, |
Inp <A )
(b1,q1)=1 (by(q1 — byz))1/2
‘.’E—g_} xM*lA
E |ab2| —~ A b2(q1 — blx)
1 02(q1 — 01x)
X ot — 2oy (57 % (5 =) )

(b2,92)=1
—p—1
le—32 =M ~1A

plus O(MA~?). Using

log (M> =log (1 + M)’

b1 ((JQ — bg{L‘) b1 (QQ — bg.%’)
and the compact support of wy, we may further restrict attention to integers by, ba, q1, g2
satisfying
o ‘1_2’ < ML (5.16)
b1 b
Therefore, we have
M * |Ozb Qp, |
I —+ M —L = 5.17
AB < A2 + Z Z biby ( )
(b1,91)=1 (b2,92)=1

- —1 - —1
lp— L [<MT'A -2 |xM 1A

where the star denotes that (5.16) holds.
Consider the diagonal contribution to (5.17), that is, the terms with ¢; = g2 and
b1 = ba. These terms contribute to I4 g an amount that is

2. Ab
<M \021,2\ (1+57):
B

Using oy, < 1, the part with £2 contributes O(AlogT'). On the other hand, using the
trivial bound oy, < 1 for b > (logT)!%°, and with o, < (logT)~1% for b < (log T)%9,
we obtain that

MY b2 < M(log T) ™% < M¢(1 + 2iT)[* (log T) .
b B
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Thus the diagonal terms are bounded in accordance with Lemma 5.4.

Now consider the off-diagonal terms where q;/b; # g2/ba. Let us restrict to say by <
X, and by =< Xs, where the X; range over dyadic segments, with 1 < X; < B. We
first claim the number of solutions in (q1,b1) to (5.12) with by < X7 is < 1 + Aﬁf.
see this, note that the term “1” accounts for a potential solution (this certainly cannot

be improved for arbitrary z since given ¢,b there exist = satisfying (5.12)). Once such
a solution is found, we can estimate the number of others by noting that the spacing
between two reduced fractions of denominator of size X; is > X; 2, so the total number
of such fractions that can be packed into an interval of length L is bounded from above
by 1+ LX?%. This proves the claim. By a similar argument, for each choice of (q1,b1),
the number of (g2, bp) with 0 < | — B < M~ is < o

Thus the bound on the off-diagonal terms is

AX2\ 1 X1 X AB2
> M(1 1) (1 T )1 T,
< _ o ) xx, . SUest ) es
X1,X2 dyadic

which completes the proof.
5.4. Proof of Lemma 5.0

When b is very small (and so a is very large) then we treat the problem in a similar
way to the early steps of [6]. We go back to the original definition (5.3), open the square,
and execute the integral, obtaining

DI CON (ANCY R

wo (
=A
Bo o aQZbl.bg (a1a2b1b2)t/2(by /by)2iT

<~ gy e )

Our plan is to solve the equation ai1b; — asby = h # 0 via Poisson summation in as
(mod by). The contribution to I, from h = 0 is O(AlogT'), by a trivial bound. Let I
be the contribution to Ip, from h # 0. First we extract the greatest common divisor
d = (b1, bs) which necessarily divides h. In this way we obtain

D) o] w(#h)o (%)

= TR (db1)1/2+2zT(db2)1/2—2iT

R(b1,ba, h), (5.18)

where

R(bi,bsh) = 3 w2<%)w2(%) A(

(a1a2)1/2 w1

A h/d
aibi—azbr="4 Cor log (1 + K/bz))
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We next re-interpret the equation a1b; — a2b2 d as a congruence as = —bo bl d (mod by),

~+asb
and replace every occurrence of a; with db—f2. Therefore by Poisson summation in as
(mod by), we have

R(by, ba, h) = %;4%)

w2 h+drbz 2(%)A<Abg (1+L/d)>e(fll)dr,

h+drb2 r)L/2 w1 2 by by

Here the 1ntegra1 is of the form q(y) = [ q(r)e(—ry)dr where q is a function supported on
r = @ > B_o’ satisfying ¢U) (1) < (%) i- 1 and with y = —1. Thus ¢(y) <; (IZLT) ,
by integration by parts. Now we have, with y = [/by, that

lylM M

d
MT™ 204
dbs ~ dbiby > |l\ > |l

and since we assume M > T'/27¢ and o < 1/4, if | # 0, then g(1/b1) < (IT)~'% which
is very small. For this reason, we only need to consider [ = 0.

Remark. Here b is small enough that Poisson summation conveniently leads only to the
zero frequency, i.e., [ = 0. As in [6, proof of Theorem 1], one can certainly consider
larger values of b which lead to nonzero frequencies. However, if b is large compared to
a, we should apply Poisson summation in b. These arguments are used in the proof of
Lemma 5.5.

Now we return to the proof. We have

db, dbs
IBO —AZ (hx) Z Z 1/(2+212 (Bo/z 2iT

h£0 dlh (b1,ba)= ) (
! OOU)Z h+drb2 2(%> w1 A I 1 h/d d 5.19
by h+drb2 S wl(_ﬁog( +r2)) " (5-19)
0

plus a small error of size O(T~'%). By changing variables 7 — -, we obtain that (5.19)
equals

db, dby
sy iyt mE(E)

h#0 a4 =1
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Fus(fr)ua(t) o a0
o - =1 (1 —))d. 5.20
< et (- gy oe (14 7))ar (5:20)
0
At this point, the integral is independent of b; and bs. Note that if we restrict attention
tod > D > 1, then by a trivial bound, we obtain

M
A E Ed_AIOg B0<<—10g T.
d>D

We set D = Bl/ 2 , so that this error term is satisfactory.
Next we claim that ifd< D= Bé/2, then

b\, (dba :
5 90( )90(30) |<(1+21T)|2+Oc((logT)*C), (5.21)

b%+21Tbé—2iT - 4(2)

where C' > 0 is arbitrarily large. For this, we simply apply a double Mellin transform,
obtaining that the left hand side of (5.21) equals

// 51+32~ _ C(1+2iT+81)<(1—2iT—|—82)d8d
2m e

90(31)90(82) C(2+31 +$2)
(1) (1)

Integrating by parts once, we have that for Re(s) > 0,

I B
is) = = [ gyl
0

Since gg is identically 1for 0 < < 1, go has a pole at s = 0 (and nowhere else). Further-
more, Ress—ogo(s fo go(x)dx = 1. We move the s; integral to o1 = fW,
some a > 0, followed by the same process for the sy integral. By the rapid decay of go,
the residues at s; = —2iT and sy = 2¢T are very small. Using Lemma 2.1 (Vinogradov—

Korobov), we obtain that the left hand side of (5.21) equals

|C(1+ 2¢T)?

log By
@ )

4/3 _ o220
+0((log TP exp (= B S ).
for some constant 3 > 0. Since we assume By > T°, this error term is O((log T')~) for
C > 0 arbitrary.

Applying (5.21) to (5.20) and extending the d-sum back to all the divisors of h (without
making a new error term), we obtain for arbitrary C' > 0
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h

PRUIEE".s 2/2 iy 2GR sy,

2 (r(r + ) 172

+Oc<ﬁ).

At this point we can use Taylor expansions (think of % < %, even though this is not
literally true), giving now

, e+ 2im)? Ah M|C(1 + 2iT)[?
5, =4 0 / };U 1(h)e(hz) wl( 27er)dr+O( (log T)100 )
0

By comparison to the expression for MTop given by (4.11), we have shown that these
terms equal M - Sa plus a satisfactory error term. We already showed that if w; has
support on the positive reals, then S satisfies (1.16). If w; has support on R, then we
have Sa < 1, by the remark following Lemma 4.2. This completes the proof.

5.5. Proof of Lemma 5.5
We return to the definition of 14 g as

=7 [ (IS s () (5)

— 00

where g1 () = 272g(z), and f;(x) = 27 /2 f(z). We square out the sum and perform
the t-integral, obtaining

A w1 (7 log (1 + azbz)) bl bg
Tap = 37 el ()52 (F) ()
AB = 47 > e(ha) Y 1 70 2T fi fi )9\ 5
hEZ ai,az,by,bs
alblfazbzzh
From the term h = 0, we easily derive a bound of size O(AlogT'), consistent with (5.8).
Let IX% denote the terms from h > 1. By symmetry, it suffices to bound these terms.
Let d = (a1, az2), which necessarily divides h, and change variables a; — da;, h — dh,
giving

=G S Y)Y il (,i‘jbe;Z“@))fl(‘{;ﬁ)
trE ek,

(G (5)a(3)
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Note that the terms with h > %Tﬁ may be bounded by O(T~1%), from the rapid

decay of w. Next we interpet the equation a1b; — asbs = h as a congruence by = —azh

asbas+h
ay

(mod ay), where we need to substitute by = wherever it appears. To aid in this,

we observe that

(b_l)ziT _ (ﬂ)—QiTe%T log(14 =2)
by as '

Therefore, we have

19% = %[ Z Z (a1/a2)2in1(%)f1(%) Z e(dhx)

d< A (a,a2)=1 1§h<<%T€

: __/=A h ba + h b
Z 6721T10g(1+02hb2)w1( log (1 4 ))91(02 2 + )91 (_2”
e 2 a2b2 CL1B B
bQEf 2h (rnod al)

+ O(T—lOO)-

(azbz-‘rh)

We clean this up a bit by the approximations g1 gl(‘fllg) + O(alhB

_ 2 _
(g e (14 ) = (o) + oG (4 ) )

The error terms in these approximations contribute at most O(%) to I 5. We also

), and

apply a dyadic partition of unity to the sum over h, with a generic piece denoted by
ws(h/H), where H runs over dyadic numbers < 247

Now define
0 = (5o (1250 () ws (37)

which is supported on v < H, y < B, and therein satisfies the bounds

zmynU(m’n) (Ua y) Km,n 1,

uniformly in the auxiliary variables a1, as,d, A, T, H, . ... In the terminology of [21], this
means that U forms a 1-inert family of functions.
Therefore,

RSO D SN SR LI

d< A (a1,a2)=1 H dyadic
ale/d

“o%)

where
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Dayasa= Y.  eldhz) 3 e~ 2T 180 5501 (h, by).
1<h< M T< be=—azh (mod a;)

We now turn to the estimation of D, where the first step is applying Poisson summa-
tion in by. We obtain

1 —vhay r —2T log(1+ ) —2mi £L
Da a = dhx)— ( ) ' ¢ o2t Tta h,t dt.
Lan.d Z e( x)alze o /e 2 1U(h,t)
1§h<<%T5 vEZ —0

Write the phase above as

h t
o(t) = —2Tlog (1+ — ) —2r =,
azt a1
and note
2Th v 2Th h v
= 2T 2T o(RY) g
o) t(ast + h) 7ra1 ast? + as B Wal
We have
h Te Th T
— — d B—— — o,
wB SaA ™ B2~ M

Taken together, these bounds show that B|¢/(t)| > T° for all ¢ in the support of G
unless

_TH
~ B

v

(5.22)

so in particular v > 0. By [2, Lemma 8.1], the condition B|¢’(t)| > T?° is sufficient to

—100) "by repeated integration by parts, so from

show that the integral is small, say O(T
now on we suppose (5.22) holds. Our plan is to apply stationary phase analysis to the

integral. Note that

_ THd

_ ATh
n ~ MB?’

—¢"(t) = —3(1+ O(A™'T"))

a2t3

Moreover, ¢’ is monotone with a unique zero for ¢t < B given by

hT(Il

fo — 1 /2 _ 1/2 5.23
0=\ Tl )2 =) (5.23)
where
mhy
Mo

- 4Ta1a2 '
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Note that 1y < A~2T%. It is not hard to see that for j > 1, ¢ (t) < LHL We may
then apply [21, Main Theorem] with ¥ = THd ,Z =DB,X,=H. Since Y > T° (using
hd > 1 and M < T'7%), the conditions to apply stationary phase are in place. For
forthcoming steps, we need to analyze ¢(tg).

Observe

2Tha1
27Tl/t0

h
log (1 + %> = log(asty + h) — log(asty) = log ( ) — log(aaty),

which simplifies as —2log(y/1 + 79 — /7)0). Similarly, we have

oLty = 4T /0.
ai
Therefore, we have

@(to) = 4T log(\/1 4+ 1o — /1m0) — 4T/no (/1 + 1m0 — /0)

= —STUé/ (1 + 01770/ + cano + C3770/ +..0),

for certain constants c;.
By [21, Main Theorem], we conclude that

(oo}

/ —2iT log(1425)— 2’”'5*;U(h,t): BvM 81T771/2(1+-~)U1(h)+O(T*2°0), (5.24)
THd

— 00

where Uy (h) = Uy (h,v, a1, ag, . ..) satisfies the derivative bounds
U™ () < 1, (5.25)

with uniformity in all auxiliary variables. One could alternatively apply, say, [14, Lemma
5.5.6] to obtain an asymptotic in (5.24), with a weaker (but sufficient) error term, and
a weight function of the form cU(h,ty), for some constant ¢. One would then need
to manually check (5.25), which is a somewhat tedious exercise. In the same vein, |2,
Proposition 8.2] develops a full asymptotic expansion for (5.24), but does not directly
give the bounds on Uy (h) with respect to h (however, [21, Main Theorem] builds on this
work in a crucial way).
We insert (5.24) back into D, obtaining

Dy, as.d Z Z dhx —8iTng > (1+... )U1(h)+O<T_1OO)_

B2

To track our progress, note that the trivial bound applied to D now shows D <« JX;?; Te,

while the original trivial bound is D < %8BT (assuming B > A). In the case of interest
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to us, when A ~ VA and B ~ /T, these bounds are equalized. However, the new
formula for D is more accessible to understand the dependence on h.
Consider the exponential sum

Z —8iTng/?(14... )+2midh
e~ 81Tmo (1+4...)+27e xUl(h),
h=<H

where the phase is of the form
h) = =8T\/voh(1 4+ c1\/oh + ca(voh) + ...) + 2wdhz,
where hvyy = 19. For each j7 > 2, we have

o0 (1) = TYIR (4 4 aD oy 2 ),

for certain constants, with déj ) # 0. We conclude that

TyH _ dHT/M

() -
o ()] = -

By partial summation, and Weyl’s method (see [16, Corollary 8.5] and check that the
frequency dHT /M is larger than the length H of summation, since, dHT > HTY), w
conclude that

.dTH BvM
Da1 az d <<
) s A B2 /T d

HY2(dHT/M)Y/6 + 77100 « T° <A>2/3 (X)UQ'

Hence,

A2 (AT)1/4 (AT)1/2 <é>1/12.

€
<T* X ha

§|l>

<Z Y. D Duaa

A (a1,a2)=1 H dyadic
ale/d

This completes the proof of Lemma 5.5.
6. The smallest values of A

In this section we show Proposition 1.7, that is,
|F(it)|?dt < (logT)". (6.1)
|t—T‘<<T1/100

The analysis from Section 2.3 does not cover all of this range because Stirling’s asymp-
totic is no longer applicable (one of the gamma factors making up vy, (1/2 + it) is
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evaluated at imaginary part ~ |T — t|). Instead, we go back to the original definition
(2.9). Obviously,

/ 1p(1/2 + it +iT)|?dt < 1,

—00

so that by Cauchy—-Schwarz, we have

|F(it)|2dt < 1+ K(A,T,z), (6.2)

: )
Ca+anP |

— 1/100
lt=T|<T dyadic

where

TzT 2
K(AT,7) / pages /M (n,t,T)] dt,
[t—T|=A n>1

and where with ¢ > —%, we have

k(n,t,T) = QLTI"L / O(—u)n "% cosh(nT/2) vy, (1/2 + it + u)du.
(o)

When A < 1, we need to re-interpret |t — T| < A as |t — T| < 1, but we do not make
new notation for this range.

Next we split the n-sum into three intervals: n < Ny, Ny < n < NS', and n > NS',
where

(AT)1/2

0 = (og )2 N = (AT)Y?(log T)®.

Let us call these three intervals A, ¢ = 1,2, 3, respectively. To simplify the analysis,
we suppose that these three ranges are detected by a smooth partition of unity, say
v1 + v2 + 793 = 1, with 4; respective to N;.

Our goal is to relate K (A, T, z) to expressions to which we may apply the results of
Section 5. To this end, we have

Lemma 6.1. Suppose that A > (logT)¢. Then

Z Tir(n)e(nz)ye(n) 2dt n [C(1 + 2iT)?

K(AT,z) < / (AT)™> i/t ~ (logT)?

[t—T|=A Ny «n< Ny

(6.3)

If A <« (logT)e, then
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s mrlenm) e,

_1
K(A T, z) < / "> nl/2+it

[t—T|< (log T)¢ Ny <n<Ng

(1 + 2iT)2
(logT)? -

(6.4)

The error terms here contribute < (log T') ™! to (6.1), after summing over the O(logT)
values of A in (6.2), which is satisfactory.

Proof. By Cauchy’s inequality, it suffices to bound the three ranges N; separately. For
n < Ny (that is, i = 1), we take o1 = —%, and for n > N (i = 3), we take o3 = 1/>
(large). In each n-range, we then move the u-integral outside and apply Cauchy—Schwarz
in the following form (similarly to (4.4) above):

TiT nx ’71 . 2
/‘ Z (n )1§2+1t 5 / Y(—uw)n~ " cosh(nT/2) vy (1/2 + it + u)du| dt
t

neN; (O'L)

<</ /|¢ )| cosh(mT) |y (1/2 + it + v)] dv)

t (o4)

<( [ 1o |yzm’ e 1) . (65)
(04)

We next argue that
/ [ (—v)| cosh (AT vy (1/2 + it + 0)[2dv < (14 [t — T)"=3(1 + [t + T))"%. (6.6)
By Stirling’s approximation, the left hand side of (6.6) is bounded by
[ 190 =il + e+ T+ o)1+ fe =T+ o)

—00

The main range of the integral is [y| < 1+ 1|t — T'|, which by a trivial bound leads to
the claimed bound. If |y| > 14 £|t — T'|, then the rapid decay of ¥ can be used to show
that this part of the integral is negligible by comparison. Hence

K(A,T,z)

TZT nx fyl( ) 2
< Z / (AT)” / Ih(—0; — iy |’ Z n1/2+gl+zt+zy dydt. (6.7)

=Hi—T|=A
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To focus on the important parts here, we shall apply the mean value theorem for
Dirichlet polynomials (combined with Lemma 2.6) in some ranges where this is accept-
able. In (6.7), with i =1 (so 01 = —1/4), we have the bound

|C(1 4+ 2iT)|?
(logT)?

) [rir(m)] (A+n) _ [¢(1+2iT)logT

ni/? (AT)3/4 (AT)3/4 (A(ZVO_)l/2 + (NO_)?’/Q) <

n< Ny

consistent with Lemma 6.1. A similar (even stronger) bound holds for N3, and we omit
the details as it is even easier than the above case (it saves an arbitrary power of logT).
Therefore,

nl/2+it+iy

K(AT,z) < / (AT) 2 / |1Z(—iy)\‘ 3 Tir(n)e(na)ya(n) 2dydt

[t—T|=<A Ny «<n< N

|C(1+ 2iT)|?

T (6.8)

If A > (logT)®, then we can use an argument as in the proof of Lemma 4.1 to truncate

ﬁA, and then over-extend the t-integral slightly, which is valid by the

the y-integral at
positivity of the integrand. The error term obtained in this way saves an arbitrarily large
power of log T" which is acceptable for these values of A. This proves (6.3).

Next suppose A < (logT)¢. In this situation, we truncate the y-integral at (logT)®,
which by the rapid decay of {Z introduces an error term that saves an arbitrarily large
power of logT over the trivial bound, which is satisfactory. We then use a simple over-

estimate in the following shape:

@rye [ ojpwpasTe [ P
[t—T|=A [t—T|< (log T)e
At this point, the t-integral has the same length as the y-integral, so we can again change

variables t — t—y and double the length of ¢-integration to separate the variables ¢t and y.
This proves (6.4). O

Now we are ready to prove the bound (6.1). First, we claim

(AT)"z rir(n)e(na)yz(n) 2
> / m’ 2 i/ dt

(log T) ' KALT /10 _pi<a Ny <n<Ng
dyadic

< (logT)e. (6.9)

In order to apply the results from Section 5, we apply a dyadic partition of unity within
the n-sum, and apply Cauchy’s inequality. Since log(N; /Ny ) < loglogT, there are
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at most O(loglogT') such dyadic pieces to consider. We then open the divisor function
ir(n) = Y -, (a/b)T, and apply a partition of unity to the a- and b-sums, leading
to a similar decomposition as in Lemma 5.2. One small difference is that now n < M,
where Nj < M < NJF . We apply Lemma 5.6 to satisfactorily bound Ip,, choosing
By = T'3/%6, The factor (logT)¢ arises because % < (logT)¢. Now we consider
14, where B > Tss. By [10, Theorem 2.9], with ¢ = 3,Q = 8, and partial summation,
we have

yo cabn) T
b1/2+2zT B1/6
b=xB

Therefore, trivially summing over a and integrating over t, we obtain

T1/15 )
Iy K ABA < ABT100+15 f6s — )T —1/1400

Since this gives a power saving, it is easily seen to be satisfactory. This shows (6.9).
Next, consider the terms with (log7T)° < A < (logT)%, as well as A < (log 7). In
both cases, we reduce to O((logT)¢) instances of expressions of the form

dt.

(log T')* ’ Z Tir(n)e(nz)ws(n/M) |2
M|C(1+ 2iT)|? n1/2+u:
[t—T|< (log T') 100

n
Again, we decompose this as in Lemma 5.2, with By = T'3/56. The I4 p parts are
bounded as in the previous paragraph, giving a power saving. The Ip, part is bounded
with Lemma 5.6. The remark following Lemma 5.6 indicates that in the present setting,
where w; has support on, say, [—10, 10], we may only claim Sx < 1. This is acceptable,
because there are only O((logT)¢) such instances of these expressions. This completes
the proof.

7. Corollary 1.2
7.1. Shifted QUE

The main tool in proving Corollary 1.2 is the following more general version of The-
orem 1.1. Let a be a fixed (small) real number, and define the shifted restricted QUE
integral:

Ipo(z,T) /¢ VEr(z +iy)Y(y(1+ T 'a)) Ex(z + iy(1 +T_1a))i—y-
0
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Theorem 7.1. Let conditions be as in Theorem 1.1. Then

5

Iya(z,T) = %log(l/ﬁl + T2)/¢2(y) [Jo(a) + Bq(l,T)JO(]%T +ia
0

+ O((log T)35/36+%), (7.1)
The implied constant depends continuously on a, and is independent of x.

To deduce Corollary 1.2, we let @ = ap = 3.831... be the location of the global
minimum of Jyo(x) for > 0. Then Jy(ag) = —0.4027. .., and |Jo(x)| < |Jo(aop)| for all
x > ag. Hence |Jo(ly=10T + ia|)| < |Jo(ao)| (with equality iff § = 0, i.e. = is rational).
We also claim that |B,(1,T)| < 1, for all ¢ > 2, which we prove in Section 7.2 below.
Of course, By(1,T) =1 for ¢ = 1. In any event, we may deduce that I, o,(z,T) < 0 for
all z € R and T sufficiently large. Therefore, there must exist y in the support of ¥ so
that Ex(z + iy) and E5(z + iy(1 + T~ 'ag)) have opposite signs, and hence also a zero
in-between.

Now we embark on the proof of Theorem 7.1. Since many of the details are nearly
identical to those in the proof of Theorem 1.1, we will be brief in those instances. We
also refer to [19] for more in-depth explanations in certain locations. In place of (1.11),
we instead have

—it
Ipa(a,T) = /|th (1+2 ) dt,

for which see [19, (5.5)]. Therefore, any already-proven upper bound on an integral of
|F(it)|? over some interval immediately implies the same bound here. In particular, the
proof of Theorem 1.1 gives that

1 . a —it
Lya(@,T) = 5 / |F(it)|? (1 + T) dt +O0(n'?1ogT),
[t|<T—nT

where 7 is some fixed small negative power of logT. We may also freely replace F' by Fj
in the above approximation.

Now we follow some of the steps from [19] to handle this new weight (1 +71a)~%.
By [19, Lemma 5.4], we have

(+2)" -5 (7)) +ouon

uniformly for || < T and a in some fixed compact set. We pick L = loglog T, with an
implied constant large enough so that 10~%log T < n'/?log T'. Hence
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< it
_ - ", N2 1/2
Ija(x,T) =Y a o / ( , >T |Fo(it)[2dt + O(n*/? log T).

For ¢ > 1, the contribution from [t| < T'/2 (say), is O(T~/2%¢), On the other hand,
when [t| > T'/?, then we have

<_Z't> _( gt) 1+ O(|t|1¢2)),

which is a small error term. After applying this approximation, we may then extend the
integral back to |t| < T'/? with an error that is absorbed by the existing error term.
Thus,

~

ENG 2 1/2
Iy o(z,T) = (f) |Fo(it)|*dt + O(n*/=logT).

\tIST*nT

£=0

Now we carry through the arguments from Section 3. Essentially the only difference
is that J(m,n) is altered by the presence of the factor (t/T)¢ in (3.2). It is easy to
see that the k-th derivative bound on the new J is altered by multiplication by at most
O(f*) < (loglog T')*. These factors are easily absorbed by a factor (logT')¢. We therefore
obtain the same error term stated in (3.6). The main term changes in an interesting way,
however, so we now focus on that aspect.

The analog of the formula (3.20) for jé(()) is now of the form

¢ o VT2 dt 1 d
—logT/d)Q / ) (T2 —t2)*1/2e’9TTf}i/.
2wl y
[t|<T
For ¢ odd this integral vanishes, while for £ even we have from [9, 8.411.6] and gamma
function identities, that

[ () i eos (0T 2oy = 2 Ol (U7 (1)
t|<T

This has the effect that the term Jo(y~10T) appearing in Theorem 1.1 is now replaced
by

i 1)%a? ( 25) 2_21’( /2) " g (u),
=0

where v = y~'0T. Technically, the sum we obtain is truncated at 2¢ < L, but may be
extended to oo with an error that is absorbed by the existing error term. We claim
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S = Jo(Ju + ial).
To see this, we insert the power series expansion of (u/2)~%J,(u), which gives
- 20 (—1)ku? 2%k
S = 2 —27 .
> Z EINCETESY

£=0

Letting k + ¢ = m, this neatly simplifies with the binomial theorem to give

o0 ( m
2
S= Z 22mm|2 a +u )m’

m=0
which is precisely the power series expansion of Jy(v/a? + u2), as claimed. This completes
the proof of Theorem 7.1.

7.2. Bounding B,(1,T)

It is clear that B,(1,T) < ¢~ '*¢, but it is pleasant to claim a clean bound valid for
all ¢, which allows for the uniform statement in Corollary 1.2 (with no exceptions near
rationals with small denominators).

If ¢ = p% with p prime and ¢, > 1, then

Y+ X
B,(1,T
o(1,T) = Z+X’
where Y = —(p — 1)7'p @ Vrp(p=1)? X = Y2 pIlmr())?, and Z =

;bo p~I|Tir(p?)|?. It is easy to see By(1,T) < 1, since Y < 0 < Z. It is also easy

to see =Y < Z, whence B,(1,T) > ’ZZ;S?( > —1. Thus, each local factor making up

B,(1,T) has absolute value strictly less than 1, and so |By(1,T)| < 1 for all ¢ > 2.

8. Maass cusp forms

Here we provide some discussion of Conjecture 1.3. Begin by writing the Fourier
expansion in the form

Ay, (n)e(nz)
WVTj(27T‘n|y)'

i +iy) = p;(1) Y

n#0

Here p;(1) is determined by the normalization of u;. The initial developments from
Section 2.3 carry over with minimal changes. We expect that the main term comes from
the interval |t| < T — o(T'), which is the range of ¢ studied in Section 3. Moreover, we
expect that there is cancellation in shifted convolution sums with Hecke eigenvalues, and
so the main term should come from the diagonal, as in (3.4). It is easy to formally carry
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through the argument from Section 3.3. The main difference is that £4(s) now takes the
form

= A, (dn)x(n)

Ed(s) = Z ) ns

n=1

This Dirichlet series has a pole iff x is principal, and moreover the pole is simple (for
comparison, in the Eisenstein series case, the pole is double).
The contribution from y = xo is then analogous to (3.15), but with

> u] w(q/(n, q))

e((a/(n,q))

= Zl(s)Bq(s’uj)7

n=1

say, where

S ® /(0" p™))
By(s,u;) = H k=0 p’“ 90((  /(p*.p??)) (8.1)
’ u k)2 : *
p|lq Zk 0 p(fi
By standard Rankin—Selberg calculations, we have that Co’;il(i?T)Resq 1Z1(s) equals an

absolute constant. We indirectly work out the constant of proportionality at the end.

In Section 3.4, we bounded Jy(0), and asymptotically evaluated Doy j’ie(O). In the
cusp form case there is no reason to analyze ji(,(O), since the Dirichlet series only has
a single pole, and instead we need to asymptotically evaluate ), jig(O). Luckily, we
may re-use the calculations from Section 3.4, since in (3.19) we used the approximation
logz ~ log T (with now T' = T}). Hence, the main term of ), jig(O) is simply log T
times the main term of ), J+6(0), for which one may then consult (3.17).

Putting everything together, we obtain the main term as in the right hand side of
(1.7), but multiplied by some absolute constant of proportionality, which we claim is 1.
One can check this by comparison with [35, Conjecture 1.1}, by specializing ¢ = 1.
Alternatively, one may integrate both sides of (1.7) over 0 < z < 1, in which case the
result must be consistent with the QUE theorem of Lindenstrauss and Soundararajan.
As discussed in the introduction, the term with B,(1, uj)Jo(%) is negligible except on
a set of  of measure 0.

It may also be worth commenting on the presence of the factor d;, which is only
implicitly visible in Theorem 1.1, since the Eisenstein series is even. This §; factor arises
from studying the “opposite” diagonal terms (those terms with m = —n), which are
precisely those terms leading to the secondary main term with B, and the Jp-Bessel
function.

We also extend Conjecture 1.3 into an analog of Theorem 7.1 in the obvious way.
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