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1. Introduction

1.1. Background and previous results

The behavior of eigenfunctions of the Laplacian on an arithmetic surface Γ\H is a rich 
subject with connections to analytic number theory and spectral geometry. One of the 
motivating questions in the area is the Quantum Unique Ergodicity (QUE) conjecture 
of Rudnick and Sarnak [27]. The QUE conjecture is now a theorem of Lindenstrauss 
[22] (complete in the compact setting), with input by Soundararajan [31] to treat non-
cocompact congruence subgroups. Arithmetic cases of the QUE conjecture are known to 
be nearly equivalent to subconvexity for certain L-functions, via Watson’s formula [34]. 
This is one well-known example of a nontrivial connection between quantum chaos and 
the analytic theory of L-functions. We refer the reader to the survey articles [29] [30] for 
more background and motivation.

The QUE conjecture concerns the equidistribution of eigenfunctions restricted to Jor-
dan measurable sets. A more advanced question is to study the behavior of restrictions 
of eigenfunctions to lower-dimensional submanifolds. For instance, one may fix a curve 
on Γ\H, and study the analytic behavior of the eigenfunctions restricted to the curve. 
Such questions were initially raised by Reznikov [26] who used representation theory 
techniques for their study. Later, Ghosh, Reznikov, and Sarnak [8] obtained estimates 
(both upper and lower bounds) for the L2 norm of a Maass form along special curves 
such as horocycles or geodesic segments, with the application of counting sign changes of 
the Maass form along the curve (see also work of J. Jung [18] for further progress in this 
direction). Marshall [24] has used the amplification method to bound from above the L2

norm of a Maass form restricted to an arbitrary geodesic segment, with a power saving 
over the “local” bound (which is the universal bound of [3] holding for a general compact 
Riemannian manifold). Toth and Zelditch [32] and Dyatlov and Zworski [7] have shown 
a quantum ergodic restriction theorem that in particular holds on a generic geodesic in 
a compact hyperbolic surface.

The author [35] recently showed that the Eisenstein series ET (z) = E(z, 1/2 + iT ) for 
Γ = SL2(Z) equidistributes along the geodesic connecting 0 and i∞ (this is an analog of 
QUE but along the curve). The Eisenstein series is a good test case for more advanced 
questions since it behaves in many respects like the cusp forms, yet is more explicit and 
easier to handle. In this paper, we study the behavior of the Eisenstein series restricted 
to a geodesic segment of the form {x + iy : 0 < α < y < β}.

To get our bearings, we quote two results from the literature. Suppose that φ :
SL2(Z)\H → R is smooth and compactly-supported. Luo and Sarnak [23] showed QUE 
for Eisenstein series on SL2(Z)\H, that is,

∫
φ(z)|ET (z)|2 dxdy

y2 = 3
π

log(1/4 + T 2)
∫

φ(z)dxdy
y2 + o(log T ), (1.1)
SL2(Z)\H SL2(Z)\H
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as T → ∞. The interested reader may find a full main term with a power saving error 
term for (1.1) in [35, (4.13)]. We also mention that Jakobson [17] proved QUE for Eisen-
stein series on the unit tangent bundle SL2(Z)\SL2(R). Suppose that ψ is a smooth 
function with support on [α, β]. Define

Iψ(x, T ) =
∞∫
0

ψ2(y)|ET (x + iy)|2 dy
y
. (1.2)

The author [35] showed

Iψ(0, T ) = 2 3
π

log(1/4 + T 2)
∞∫
0

ψ2(y)dy
y

+ o(log T ). (1.3)

Again, one has a fully developed main term with a power saving error term in (1.3). 
Comparing (1.1) and (1.3), note the Eisenstein series (squared) is twice as large on the 
distinguished geodesic x = 0 as it is on any fixed disk in SL2(Z)\H.

1.2. The main asymptotic result

Our main result is an asymptotic for Iψ(x, T ) for arbitrary x. The shape of the main 
term depends on rational approximations to 2x. By the Dirichlet approximation theorem, 
for each real Q ≥ 1, there exist integers a, q so that

2x = a

q
+ θ, where (a, q) = 1, 1 ≤ q ≤ Q, |qθ| ≤ Q−1. (1.4)

Theorem 1.1. Let x ∈ R and T ≥ 1. Choose Q = Q(T ) so that T δ � Q � T 1/3−δ (where 
δ > 0 is fixed), and let a, q, θ satisfy (1.4). Then, as T → ∞, we have

Iψ(x, T ) = 3
π

log(1/4 + T 2)
∞∫
0

ψ2(y)
[
1 + Bq(1, T )J0

(θT
y

)]dy
y

+ O((log T ) 35
36+ε), (1.5)

where Bq(s, T ) is a finite Euler product defined by (3.16) below, and J0(z) is the Bessel 
function of the first kind. The implied constant is uniform in x.

We now discuss in detail the behavior of the right hand side of (1.5). If x = 0, then 
θ = 0, q = 1, Bq(1, T ) = 1, and J0(0) = 1, so this recovers the main term from (1.3). 
More generally, if x is rational and T (hence Q) is sufficiently large, then θ = 0, and we 
see a family of generalizations of the main term appearing in (1.3). However, one should 
observe that Bq(1, T ) fluctuates as a function of T ; for instance, if q = p is prime, then 
Bq(1, T ) simplifies as
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Bp(1, T ) = 1
p + 1(1 + 2 cos(T log p) − p−1). (1.6)

This fluctuation shows that the Eisenstein series does not satisfy restricted quantum 
ergodicity (not to mention, QUE) on rational geodesics with q > 1. Note 2 cos(T log p)
is the eigenvalue of the Hecke operator Tp applied to ET .

We show in Section 7.2 below that |Bq(1, T )| < 1 for all q ≥ 2, and it is well-known that 
|J0(x)| ≤ 1 for all real x, so the secondary main term with Bq(1, T )J0(y−1θT ) is never 
larger than the first main term. In fact, it is easy to show the bound Bq(1, T ) � q−1+ε.

For almost all x, in a strong sense, the secondary term may be omitted in (1.5), as 
we now explain. Note that if q � (log T )1/36, then this secondary term of magnitude 
� q−1+ε log T is smaller than the error term. As for the J0-Bessel aspect, if |θT | �
(log T )ε, then repeated integration by parts shows 

∫
ψ2(y)J0(θT/y)dyy � (log T )−100, 

and again we see that this secondary term is smaller than the error term. This analysis 
shows that, for a given large T � 1, and each rational number a/q with q � (log T )1/36, 
there is a small interval surrounding a/q of radius ≈ T−1 so that the secondary main 
term is relevant. Outside of these small intervals, the secondary term may be absorbed 
into the error term. Precisely, for each large T there exists a set E ⊂ [0, 1] of measure 

� (log T )1/18+ε

T , so that if x ∈ [0, 1] \ E , then

Iψ(x, T ) = 3
π

log(1/4 + T 2)
∞∫
0

ψ2(y)dy
y

+ O((log T ) 35
36+ε).

This is the “generic” case where x does not have a close approximation by a rational 
with small denominator. Here E consists of intervals of radius T−1(log T )ε around each 
rational a/q ∈ [0, 1] with q � (log T )1/36.

It may also be instructive to compare the special cases x = 0 and x = 2−101 (say), 
in an informal manner. Intuitively, it should be clear that for small values of T , then 
Iψ(0, T ) ≈ Iψ(2−101, T ). Since ET is an eigenfunction of the Laplacian with eigenvalue 
1/4 + T 2, it is expected to remain roughly constant on the Planck scale (or de Broglie 
wavelength) of 1/T (see [12, p.289]). We therefore expect that once T is roughly of 
size 2100 then Iψ(0, T ) should be uncorrelated with Iψ(2−101, T ). Now let us examine the 
statement of Theorem 1.1 with x = 2−101. For small values of T , then Q is also small, and 
this forces the rational approximation of 2x to be a/q = 0/1, whence θ = 2x = 2−100. By 
the remarks on the behavior of the J0-Bessel aspect from a previous paragraph, when T
is somewhat larger than 2100, then the secondary main term is small, as expected. Once 
Q > 2−100, the rational approximation a/q must become 2−100, which invokes a change 
in the value of Bq(1, T ), as well as θ. Note that it is only when T is roughly exp(2100×36)
that the secondary term with B2100(1, T ) is potentially larger than the error term of (1.5).

It is also interesting to classify irrational x’s for which there are arbitrarily large 
values of T so that q ≤ (log T )δ, and |θT | ≤ 1. These are, essentially, the properties on 
x that require the presence of the secondary term with Bq(1, T )J0(y−1θT ) in (1.5) for 
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arbitrarily large values of T . These conditions are equivalent to the existence of integers 
1 ≤ q1 < q2 < . . . so that

|θnqn| ≤
qn

exp(q1/δ
n )

,

where 2x = an

qn
+ θn. One can easily construct such x by a continued fraction expansion 

2x = [b0; b1, b2, . . . ], where bn+1 ≥ exp(q1/δ
n ).

1.3. Sign changes of the Eisenstein series

In [19], a variant on (1.3) was proven, where the test function ψ was allowed to have 
support shrinking with T , and also the product of the Eisenstein series at two slightly 
shifted points was averaged. As a consequence, it was shown that E∗

T (iy) (here E∗
T

is real-valued and has the same absolute value as ET ) changes sign � T ν times for 
1 ≤ y ≤ 3 for fixed 0 ≤ ν < 1/51, and sufficiently large T . It is a special property of 
the geodesic x = 0 that sign changes along this curve produce nodal domains (see [8] for 
details). We are naturally led to consider a variant on Theorem 1.1 but with the product 
of two shifted Eisenstein series. See Theorem 7.1 for the statement of this result, whose 
proof is a small modification of that of Theorem 1.1. As a consequence we have:

Corollary 1.2. Fix 0 < α < β. There exists a large T0 depending on α, β only so that if 
T ≥ T0, then E∗

T (x + iy) changes sign at least once for α < y < β.

Hence, the nodal set of E∗
T intersects every geodesic segment of the form x + iy : α <

y < β, provided T is sufficiently large. We emphasize that T0 is independent of x.
In Corollary 1.2, compared to the result of [19], the gain in generality in x has a 

tradeoff in that the number of sign changes is no longer a power of T . Since the error 
term in Theorem 1.1 saves a small power of log T , one would expect that, with extra 
technical work, one could obtain a lower bound for the number of sign changes growing 
as a small power of logT . As it stands, Corollary 1.2 implies that for each n, there exists 
T large enough (compared to n) so that E∗

T (x + iy) changes sign at least n times for 
α < y < β. This follows by cutting the interval (α, β) into n disjoint subintervals, and 
applying Corollary 1.2 to each one.

1.4. Conjectures for Maass cusp forms

The techniques used in this paper are, by and large, not applicable to Maass cusp 
forms. One should keep in mind that the restricted QUE problem is more difficult than 
the “standard” QUE conjecture, which in turn is known, but with no rate of convergence 
(however, the generalized Lindelöf hypothesis would give an optimal rate of convergence). 
Nevertheless, it is natural to conjecture an analog of Theorem 1.1 for Maass forms 
(the case x = 0 was conjectured in [35]). Let uj be a Hecke–Maass cusp form, with 
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Laplace eigenvalue 1/4 + T 2
j . Suppose that λuj

(m) is the m-th Hecke eigenvalue of uj, 
and that uj(−x + iy) = δjuj(x + iy), where δj = ±1. Moreover, normalize uj so that ∫
Γ\H |uj(z)|2 dxdy

y2 = vol(Γ\H) = π
3 .

Conjecture 1.3. Let conditions be as in Theorem 1.1. Then as Tj → ∞, we have

∞∫
0

ψ2(y)|uj(x + iy)|2 dy
y

∼
∞∫
0

ψ2(y)
[
1 + δjBq(1, uj)J0

(θTj

y

)]dy
y
. (1.7)

Here Bq(s, uj) is a finite Euler product given by (8.1).

Remark. We refrain from guessing an explicit error term, but we expect that the asymp-
totic is uniform in x. We also extend a conjectural version of Corollary 1.2. There is 
a small adjustment needed to cover odd Maass forms, which all vanish along the lines 
x ∈ Z and x ∈ 1

2 + Z. We therefore need to restrict x to not lie within a distance 
O(T−1(log T )ε) of one of these lines.

Suppose that M is a compact Riemannian manifold with ergodic geodesic flow. In [7]
and [32], it is proven that for a generic compact geodesic segment γ ⊂ M ,

lim
j→∞

‖uj‖2
L2(γ) = length(γ) (1.8)

holds for a density 1 subsequence of eigenfunctions. Until now, the only known example 
where (1.8) fails is when there exists a symmetry on the ambient manifold M that fixes 
γ. In this case, approximately half of the eigenfunctions vanish identically on γ, and the 
other half are expected to satisfy

lim
j→∞

‖uj‖2
L2(γ) = 2 length(γ).

Conjecture 1.3 indicates that, for any rational value of 2x = a
q with q > 1, the limit 

limj ‖uj‖L2(γ) does not exist. The reason for the lack of convergence is that the quantities 
Bq(1, uj) fluctuate with uj . Analogously to (1.6), if q = p is prime then

Bp(1, uj) = 1
p + 1(1 + λuj

(p) − p−1) (1.9)

The distribution of the values of λuj
(p), with p a fixed prime, was determined by Sarnak 

[28], and is given by the p-adic Plancherel measure. As a consequence, for any interval 
(a, b) ⊂ [−2, 2], there exists a positive-density subsequence of uj ’s with λuj

(p) ∈ (a, b). In 
fact, Sarnak proved a joint equidistribution statement for the values λuj

(p1), . . . , λuj
(pk)

for any finite set of primes p1, . . . , pk, which may be used to constrain the values of 
Bq(1, uj) for any q.
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1.5. Overview

We gather some notation from [35]. Let E∗
T (z) = θ(1/2+iT )

|θ(1/2+iT )|ET (z), where θ(s) =
π−sΓ(s)ζ(2s), so E∗

T is real-valued for z ∈ H. The Fourier expansion of E∗
T is

E∗
T (x + iy) = μy1/2+iT + μy1/2−iT + ρ∗(1)

∑
n �=0

τiT (n)e(nx)
|n|1/2 VT (2π|n|y). (1.10)

Here ρ∗(1) = (2/π)1/2|θ(1/2 + iT )|−1, μ = θ(1/2+iT )
|θ(1/2+iT )| , VT (y) = √

yKiT (y), and τiT (n) =∑
ab=|n|(a/b)iT .
There are two main differences in the generalization from x = 0 (as in [35]) to arbi-

trary x. The most important difference is that when x = 0, the coefficients e(nx)τiT (n)
of E∗

T are multiplicative, while for general x ∈ R they are not. This causes some crucial 
aspects of [35] to break down. The other significant difference comes from an asymmetry 
between n > 0 and n < 0 in (1.10). Note that the K-Bessel function in the Fourier ex-
pansion only depends on |n|, which has the following practical effect. When one considers 
a y-integral of |E∗

T (x + iy)|2, analyzed by squaring out and integrating the Fourier ex-
pansion term-by-term, there will be diagonal terms and off-diagonal terms. The diagonal 
parts will include a sum with say n1 = n2 as well as terms with n1 = −n2, the latter of 
which will then lead to sums of the form 

∑
n |τiT (n)|2e(2nx). It is also necessary to treat 

the opposite sign off-diagonal terms of the form 
∑

h�=0
∑

n τiT (n)τiT (n +h)e((2n +h)x). 
It is difficult to estimate such sums because the weight is highly oscillatory (although, 
not for x = 0, for instance).

To continue the discussion, we describe the earliest stages of analysis of Iψ(x, T ). By 
a use of Parseval’s formula (in the Mellin transform setting), Iψ(x, T ) decomposes as

Iψ(x, T ) = 1
2π

∞∫
−∞

|F (it)|2dt, (1.11)

where

F (s) = Fψ,x,T (s) =
∞∫
0

ψ(y)ysE∗
T (x + iy)dy

y
. (1.12)

The size of Im(s) is the most important basic parameter in the analysis of Iψ(x, T ).
We will then insert the Fourier expansion (1.10) and calculate the y-integral in terms 

of gamma functions (see (2.1) below). One arrives at an integral of the form

|ζ(1 + 2iT )|−2
T∫

(1 + (T 2 − t2))−1/2
∣∣∣∑
n �=0

τiT (n)e(nx)
|n|1/2+it

k(n, t, T )
∣∣∣2dt,
−T
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as well as some other terms of lesser importance. Here k is an innocuous weight function, 
which restricts the support of n to |n| � (1 + (T 2 − t2))1/2. The integral naturally 
decomposes into pieces of the form T − |t| � Δ where 1 � Δ = o(T ), as well as the 
“bulk” range with |t| ≤ T (1 − o(1)). The behavior of F (it) depends strongly on the size 
of Δ, and our method of proof breaks up into cases.

The mean value theorem for Dirichlet polynomials (see Lemma 2.2 below) leads to 
a bound of O(log T ) for each dyadic segment T ∓ t � Δ. Since there are O(log T ) such 
dyadic segments, this leads to the “trivial” bound Iψ(x, T ) � log2 T .

The main term in Theorem 1.1 comes from the bulk range, |t| ≤ T − o(T ). This 
main term arises, after squaring out, from the diagonal terms m = n and the opposite 
diagonal terms, m = −n. In the bulk range, the mean value theorem gives an upper 
bound of the same order of magnitude as the main term, which means that any savings 
in the off-diagonal terms will be sufficient towards Theorem 1.1. For this reason, we apply 
Holowinsky’s sieve method for bounding shifted convolution sums with absolute values. 
This dodges any problems with estimating the shifted convolution sum 

∑
n τiT (n)τiT (n +

h)e((2n + h)x) with oscillatory weight e((2n + h)x), but still requires an asymptotic for ∑
n |τiT (n)|2e(2nx). This approach leads to the following

Proposition 1.4. Let η = η(T ) satisfy (log T )−δ � η < δ, for some 0 < δ < 2/3. Then

∫
|t|≤T−η(T )T

|F (it)|2 dt2π = 3
π

log(1/4 + T 2)
∞∫
0

ψ2(y)
[
1 + Bq(1, T )J0

(θT
y

)]dy
y

+ O(η−3/2(log T )8/9+ε + η1/2 log T ). (1.13)

Proposition 1.4 implies a sharp lower bound on Iψ(x, T ), using the positivity in (1.11).
Holowinsky’s method of bounding the off-diagonal terms with absolute values is able 

to save, at best, a small fractional power of logT . Since the trivial bound on Iψ(x, T )
is O(log2 T ), while the main term is of size logT , this method unfortunately cannot be 
used to completely prove Theorem 1.1 (since one needs to save an entire factor of logT ). 
This is a qualitative difference between QUE and restricted QUE.

Having accounted for the main term with Proposition 1.4, it suffices to bound from 
above the contribution from the remaining ranges of t. For this reason, we can apply the 
simple inequality | 

∑
n �=0 an|2 ≤ 2| 

∑
n>0 an|2 + 2| 

∑
n<0 an|2 to |F (it)|2. This has the 

significant effect of avoiding all the difficulties with the terms with opposite sign. The 
problem then reduces to understanding 

∑
n τiT (n)τiT (n + h) which in certain ranges we 

can quote earlier work [35]. This leads to the following

Proposition 1.5. Suppose that δ > η(T ) � (log T )−δ for some fixed small δ > 0, and

T
25
27+ε � Δ ≤ η(T )T. (1.14)

Then for some δ′ > 0, we have
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∫
1
2Δ≤T−|t|≤Δ

|F (it)|2dt � Δ1/2

T 1/2 log T + T−δ′ + SΔ, (1.15)

where SΔ is a nonnegative quantity satisfying

∑
1�Δ�T
dyadic

SΔ � 1. (1.16)

Here SΔ arises as an off-diagonal main term that is surprisingly difficult to estimate. 
Note that Proposition 1.5 implies

∫
T 25/27+ε�T−|t|�ηT

|F (it)|2dt � η1/2 log T + 1. (1.17)

For a fixed Δ, the trivial bound is SΔ � 1, so the bound (1.16) amounts to a saving of 
log T on average over the dyadic segments, since there are O(logT ) such dyadic segments. 
One sees that the bound (1.16) is crucial, since the individual bound SΔ � 1 would only 
lead to a bound of log T in (1.17).

When Δ is somewhat smaller than T , which means that N =
√

ΔT is somewhat 
larger than Δ, the problem may be interpreted as estimating the mean value of a “long” 
Dirichlet polynomial. The shifted divisor sum approach from [35] breaks down for Δ �
T 25/27, and different techniques are needed to cover all the sizes of Δ.

An approach to the problem is to open up the divisor function τiT (n) =
∑

ab=n(a/b)iT , 
and use the sums over a and b asymmetrically. Arguments in this vein appear in Section 5. 
By a dyadic partition of unity, and Cauchy’s inequality, we have

∫
T−|t|	Δ

∣∣∣ ∑
n	N

τiT (n)e(nx)
n1/2+it

∣∣∣2

� log T
∑

B dyadic

∫
T−|t|	Δ

∣∣∣ ∑
a	A

∑
b	B

e(abx)
a1/2+it−iT b1/2+it+iT

∣∣∣2, (1.18)

where AB = N (observe that once b is localized by b � B, then automatically a � N/B). 
We use a variety of methods depending on the sizes of A and B.

One fruitful option is to apply Poisson summation in either a or b, prior to any analysis 
of the t-integral. It turns out that if B � T 1/2+ε, then one can get savings from Poisson 
summation on b inside the square (and prior to any t-integration), which can then be 
combined with savings from the t-integral. See Lemma 5.3 for the result obtained by this 
idea. Similarly, if A � Δ1/2+ε, then there is a saving effect from Poisson on the a-sum, 
for which see Lemma 5.4. Since AB = N = (ΔT )1/2, this means A = Δ1/2+o(1) and 
B = T 1/2+o(1) is the main region of interest.
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Another approach is to open the square and evaluate the t-integral, leading to a shifted 
convolution sum of the form

Δ
∑

|h|�AB
Δ

e(hx)
∑

a1b1−a2b2=h

1
(a1a2b1b2)1/2(b1/b2)2iT

. (1.19)

Duke, Friedlander, and Iwaniec [6] [5] have studied general sums of this form, and ob-
tained satisfactory results in the case that A � B1−δ for some (small) δ > 0 (note also 
there is recent work of Bettin and Chandee [1] that can improve the size of δ). Based 
on the locations of A and B established from the previous paragraph, we see that this is 
satisfactory only for Δ � T 1−δ′ for some (small) δ′ > 0, yet we require all Δ � T 25/27+ε. 
The first step in the method of [6] is to solve the equation a1b1−a2b2 = h by interpeting 
it as a congruence a1 ≡ −hb1 (mod b2), and then applying Poisson summation in a1
(mod b1). Since B is larger than A, one obvious approach is to reverse the roles of the 
ai and the bi in the [6] approach. The problem with this is that the oscillatory factor 
(b1/b2)−2iT causes a loss of efficiency in Poisson summation (the trivial bound on the 
dual sum is worse than the trivial bound on the original one). There is a way to partially 
circumvent the problem arising from this oscillation, which is to note that the equation 
a1b1 − a2b2 = h means that b1/b2 is approximately a2/a1. Precisely,

(b1/b2)2iT = (a2/a1)2iT
(
1 + h

a2b2

)2iT
. (1.20)

In terms of b2, this is much less oscillatory than before, since

(
1 + h

a2b2

)2iT
≈ exp

(2iTh
a2b2

)
, and Th

a2b2
� T

Δ .

After these initial algebraic manipulations, we may then solve the equation a1b1−a2b2 =
h by b2 ≡ −a2h (mod a1). It is better to interpet this equation as a congruence modulo 
a1 instead of b1, because A is smaller than B, and moreover, b1 was already eliminated 
from the right hand side of (1.20). The Poisson summation argument leads to a dual 
sum which when bounded trivially is just barely not satisfactory (at least, in the relevant 
ranges A = Δ1/2+o(1), B = T 1/2+o(1)). However, the gain is that the dual sum has a 
phase (still of rough magnitude Th

AB , but no longer linear in h). We may thus obtain some 
cancellation in the h-sum using classical bounds for exponential sums. See Lemma 5.5
for the result using this idea.

There is also a technical problem to treat small values of b. Heuristically, if b is 
large then there should be significant cancellation from the b-sum appearing in (1.18), 
but for b small this may not be true. It turns out that these terms lead to the same 
type of off-diagonal main term that was discussed earlier in the context of the shifted 
convolution problem with Δ � T 25/27+ε. Our approach to these terms is to solve the 
shifted convolution sum in (1.19) by Poisson summation in a modulo b1, as in [6], for 
which see Lemma 5.6.
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Taken together, the above ideas lead to the following

Proposition 1.6. Fix 0 < δ < 1/4. Then

∫
T δ�T−|t|�T 1−δ

|F (it)|2dt �δ 1. (1.21)

For technical reasons, the very smallest values of |T ∓ t| require a slightly different 
proof, and we claim this estimate with

Proposition 1.7. We have

∫
|T∓t|�T 1/100

|F (it)|2dt �ε (log T )ε. (1.22)

Propositions 1.4, 1.5, 1.6, and 1.7, along with an easy fact that the contribution from 
|t| ≥ T + T 1/100 is very small (for which see Section 2.3), altogether imply Theorem 1.1, 
taking η = (log T )−1/18. The proof of Proposition 1.4 appears in Sections 3 and 4. The 
main part of this paper is in proving Proposition 1.6, which appears in Section 5. Finally, 
we show Proposition 1.7 in Section 6.

The proof of Corollary 1.2 appears in Section 7, and discussion of Conjecture 1.3
occurs in Section 8.

1.6. Remarks on Conjecture 1.3

The outline of Theorem 1.1 given in the previous subsection does not apply to 
Conjecture 1.3, for a number of reasons. One important reason is that the proofs of 
Propositions 1.4 and 1.5 rely on a solution of the shifted convolution problem which is 
intertwined with the QUE problem on Γ\H (see [8, Appendix A] for more discussion). 
We currently do not have a quantitative QUE theorem (e.g. with power-saving error 
term). Another problem is that the proof of Proposition 1.6 opens the divisor function 
as the Dirichlet convolution of smooth functions, which is not available for general Maass 
cusp forms.
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2. Notation and initial developments

2.1. Notation

Recall VT (y) = √
yKiT (y). By a well-known formula for the Mellin transform of the 

K-Bessel function, we have

γVT
(1/2 + s) :=

∞∫
0

VT (2πy)ys dy
y

= 2−3/2π−sΓ
(1/2 + s + iT

2

)
Γ
(1/2 + s− iT

2

)
. (2.1)

It is also helpful to recall the Rankin–Selberg L-function

Z(s,ET ) :=
∞∑

n=1

τiT (n)2

ns
= ζ(s− 2iT )ζ(s + 2iT )ζ(s)2

ζ(2s) . (2.2)

2.2. Miscellaneous lemmas

Here we collect some basic tools used throughout this paper.

Lemma 2.1 (Vinogradov–Korobov). For some c > 0 and for any large |t| � 1, 1 −
c

(log |t|)2/3 ≤ σ ≤ 1, we have

ζ(σ + it)±1 � (log |t|)2/3+ε, (2.3)

and

ζ ′

ζ
(1 + it) � (log |t|)2/3+ε, (2.4)

For a reference, see [16, Corollary 8.28, Theorem 8.29]. As a corollary to Lemma 2.1, 
it follows from standard methods from [4] (see [11, Lemma 2.1] for more details) that

∑
p≤x

p−1−it = log ζ(1 + it) + O(1), (2.5)

provided log x � (log |t|)2/3+ε.
We also need the mean value theorem for Dirichlet polynomials of [25].

Lemma 2.2 (Montgomery–Vaughan). Let an be an arbitrary complex sequence. We have

U∫ ∣∣∣ ∑
n≤N

ann
−iu

∣∣∣2du =
∑
n≤N

|an|2(U + O(n)).

0
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More generally, if λ1, . . . , λR are distinct real numbers, and δr = mins �=r |λr − λs|, then

U∫
0

∣∣∣ ∑
r≤R

are
iλru

∣∣∣2du ≤
∑
r≤R

|ar|2(U + 3πδ−1
r ). (2.6)

We require the following change of basis formula from additive characters to multi-
plicative.

Lemma 2.3. Suppose that cn is a finite sequence of complex numbers, q ≥ 1 is an integer, 
and (a, q) = 1. Then

∑
n

cne
(an

q

)
=

∑
d|q

1
φ(q/d)

∑
χ (mod q/d)

τ(χ)χ(a)
∑
n

cdnχ(n). (2.7)

The proof follows from [16, (3.11)], letting d = (n, q).
We will also have need of the following

Proposition 2.4 (Jutila–Motohashi [20]). Let 1 � U � V , and let q be a positive integer. 
Then ∫

V≤|u|≤V +U

∑
χ (mod q)

|L(1/2 + iu, χ)|4du � q1+ε(U + V 2/3)1+ε, (2.8)

This is a generalization of a result of Iwaniec [15], corresponding to the case q = 1.
We will also frequently refer to results in the literature on exponential integrals and 

exponential sums. Textbook references include [10] [14] [16].

2.3. Initial developments

We will calculate Fψ,x,T (s) = F (s) here, and then perform some easy approx-
imations. Inserting (1.10) into (1.12), using (2.1) and the Mellin inversion formula 
ψ(y) = 1

2πi
∫
(1) ψ̃(−u)yudu, we obtain

F (s) = μψ̃(1/2 + s + iT ) + μψ̃(1/2 + s− iT )

+ ρ∗(1)
(2π)s

∑
n �=0

τiT (n)e(nx)
|n|1/2+s

1
2πi

∫
(1)

ψ̃(−u)|n|−uγVT
(1/2 + s + u)du. (2.9)

Next we develop some simple approximations. First, note that

|ρ∗(1)|2 = 2/π
2 . (2.10)
cosh(πT ) |ζ(1 + 2iT )|
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By (2.1) and Stirling’s bound, combined with (2.10), the integral appearing in (2.9) is 
exponentially small if |Im(s +u) −T | � (log2 T ). Since ψ̃ has rapid decay in the imaginary 
direction, we have that F (it) � (1 + |t|)−2T−100, say, for |t| ≥ T + T ε.

We can simplify F (s) in the range |Im(s)| ≤ T − T ε. Let

F0(s) = ρ∗(1)γVT
(1/2 + s)

∑
n �=0

τiT (n)e(nx)
|n|1/2+s

ψ
(√|s + iT ||s− iT |

2π|n|
)
. (2.11)

Lemma 2.5. For each ε > 0 there exists δ > 0 so that∫
|t|≤T−T ε

|F (it)|2dt =
∫

|t|≤T−T ε

|F0(it)|2dt + O(T−δ). (2.12)

As a consequence of Lemma 2.5, in the statements of Propositions 1.4, 1.5, and 1.6, 
we may freely replace F by F0. We will do so systematically in the rest of the paper, 
with no further mention.

Note that if s = it, 0 ≤ t ≤ T , the function ψ appearing in (2.11) is supported on 
|n| � T 1/2(T − t)1/2.

Proof. In the range |t| ≤ T − T ε, Stirling’s formula gives

Γ
(1/2 + s + u± iT

2

)
∼ Γ

(1/2 + s± iT

2

)(1/2 + s± iT

2

)u/2(
1 +

∞∑
j=1

Pj,±(u)
(s± iT )j

)
,

where Pj,± is a polynomial, and where the meaning of ∼ here is as an asymptotic 
expansion. Therefore, since |s ± iT | � T ε, we can truncate the expansion at j � ε−2

with a very small error term. By (2.1), we have

γVT
(1/2 + s + u) ∼ (2π)−u|s + iT |u2 |s− iT |u2 γVT

(1/2 + s)
∏
±

(
1 +

∞∑
j=1

Pj,±(u)
(s± iT )j

)
.

Therefore, for s = it, |t| ≤ T − T ε,

F (s) =
[
ρ∗(1)γVT

(1/2 + s)
∑
n �=0

τiT (n)e(nx)
|n|1/2+s

1
2πi

∫
(1)

ψ̃(−u)
(√|s + iT ||s− iT |

2π|n|
)u ∏

±

(
1 +

∑
1≤j≤ε−2

Pj,±(u)
(s± iT )j

)
du

]
+ O(T−100).

The leading term in the u-integral is calculated exactly via (2.11), so that

F (s) =
∑

−2

Fl(s) + O(T−100),

0≤l≤ε
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say. The lower-order terms in the asymptotic expansion with l ≥ 1 involve linear 
combinations of derivatives of ψ in place of ψ, and multiplied by factors of the form 
(s + iT )−j1(s − iT )−j2 , and are hence all of the same essential shape yet smaller by these 
additional factors. In fact, one can show that 

∫
|t|≤T−T ε |F0(it)|2dt � T ε′ , using only the 

mean value theorem for Dirichlet polynomials (Lemma 2.2), and by similar reasoning, 
for j ≥ 1, we have 

∫
|t|≤T−T ε |Fj(it)|2dt � T−δ, for some δ > 0. �

Next we smoothly decompose the t-integral into pieces of the form T − |t| � Δ where 
T ε � Δ � T (it will also be necessary to treat the integral of |F (it)|2 with T −|t| � T ε

for which see Section 6 below). As a first-order approximation, we mention that for such 
t, we have

tk
dk

dtk
cosh(πT )|γVT

(1/2 + it)|2 � (ΔT )−1/2, k = 0, 1, 2, . . . . (2.13)

For the purposes of calculating diagonal terms, it is convenient to record the following

Lemma 2.6. Let w be a fixed smooth, compactly-supported function. Suppose logN �
(log T )2/3+δ, for some fixed δ > 0. Then

∞∑
n=1

|τiT (n)|2w
( n

N

)
= |ζ(1 + 2iT )|2

ζ(2) [w̃(1)N logN + O(N(log T )2/3+ε)]. (2.14)

Proof. By Mellin inversion and (2.2), the sum on the left hand side of (2.14) is

1
2πi

∫
(2)

Nsw̃(s)ζ(s− 2iT )ζ(s + 2iT )ζ(s)2

ζ(2s) ds.

We evaluate the integral by the standard method of moving the contour, in this case to 
Re(s) = σ = 1 − c

(log T )2/3 , for some constant c > 0. We first calculate the residue at 
s = 1. Using

Ns = 1 + (s− 1) logN + O((s− 1)2),

ζ(s− 2iT )ζ(s + 2iT ) = |ζ(1 + 2iT )|2(1 + (s− 1)2Reζ
′

ζ
(1 + 2iT ) + O((s− 1)2),

and the Vinogradov–Korobov bound (Lemma 2.1), one calculates that the residue at 
s = 1 is consistent with the right hand side of (2.14). The residues at s = 1 ± 2iT are 
negligible because w̃ has rapid decay in the imaginary direction.

Finally we bound the integral along the line σ. We use the Vinogradov–Korobov bound 
again, which leads to an error of size N(logT )4/3 exp(−c log N

(log T )2/3 ), which is bounded by 
the error term appearing in (2.14). �
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We directly quote the following.

Proposition 2.7 ([35], Theorem 8.1). Suppose that w(x) is a smooth function on the 
positive reals supported on Y ≤ x ≤ 2Y and satisfying w(j)(x) �j (P/Y )j for some 
parameters 1 ≤ P ≤ Y . Let θ = 7/64, and set R = P + T |m|

Y . Then for m �= 0, 
R � T/(TY )δ, we have

∑
n∈Z

τiT (n)τiT (n + m)w(n) = M.T. + E.T., (2.15)

where

M.T. =
∑
±

|ζ(1 + 2iT )|2
ζ(2) σ−1(m)

∞∫
max(0,−m)

(x + m)∓iTx±iTw(x)dx, (2.16)

and

E.T. � (|m|θT 1
3Y

1
2R2 + T

1
6Y

3
4R

1
2 )(TY )ε. (2.17)

Furthermore, with R = P + TM
Y , we have

∑
1≤|m|≤M

|E.T.| � (MT
1
3Y

1
2R2 + MT

1
6Y

3
4R

1
2 )(TY )ε. (2.18)

Remark. The bound (2.18) roughly means that the Ramanujan–Petersson conjecture, 
i.e., θ = 0, holds on average over m.

3. The bulk range: extracting the main term

The purpose of this section is to show Proposition 1.4.

3.1. First steps

For shorthand, set η = η(T ). Let W (t) be a nonnegative function that is 1 on |t| ≤
T − c1ηT , and 0 on |t| ≥ T − c2ηT , where W (j)(t) � (ηT )−j , and where c1 > c2 > 0 are 
fixed positive constants.

We have

∞∫
−∞

W (t)|F0(it)|2
dt

2π = |ρ∗(1)|2
cosh(πT )

∑
m,n

τiT (m)τiT (n)e((n−m)x)
|mn|1/2 J(m,n), (3.1)

where
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J(m,n) =
∞∫

−∞

W (t)|γVT
(1/2 + it)|2 cosh(πT )ψ

(√|T 2 − t2|
2π|n|

)

× ψ
(√|T 2 − t2|

2π|m|
)( |m|

|n|
)it dt

2π . (3.2)

In the right hand side of (3.1), write

∞∫
−∞

W (t)|F0(it)|2
dt

2π = M.T. + E(x, T ), (3.3)

where M.T. corresponds to the terms with |m| = |n| and E(x, T ) are the terms with 
|m| �= |n|. We will bound E(x, T ) with absolute values. We then have

M.T. = |ρ∗(1)|2
cosh(πT )

∑
n �=0

|τiT (n)|2
|n| J(n, n)(1 + e(2nx)), (3.4)

and

|E(x, T )| � |ζ(1 + 2iT )|−2
∑
h�=0

∑
n

|τiT (n)||τiT (n + h)|√
|n(n + h)|

|J(n, n + h)|.

We will show that

M.T. = 3
π

log(1/4 + T 2)
∞∫
0

ψ2(y)
[
1 + Bq(1, T )J0

(θT
y

)]dy
y

+ O(η1/2 log T ), (3.5)

and that

E(x, T ) � η−3/2(log T )8/9+ε. (3.6)

At this point we can also explain how to remove the smoothing factor W . We have

∫
|t|≤T−ηT

|F0(it)|2dt ≤
∞∫

−∞

W+(t)|F0(it)|2dt

∫
|t|≤T−ηT

|F0(it)|2dt ≥
∞∫

−∞

W−(t)|F0(it)|2dt,

(3.7)

where W+ and W− satisfy the same properties as W , but with different choices of 
constants ci. Since the approximations of M.T. and E(x, T ) are independent of the 
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choice of W , we can claim the same asymptotic for 
∫
|t|≤T−η(T )T |F0(it)|2dt, showing that 

Proposition 1.4 follows from (3.5) and (3.6).
Now we analyze J(m, n). Note that m and n are supported on

η1/2T � |m|, |n| � T.

By Stirling’s approximation (see (2.13)), we have that J(m, n) =
∫∞
−∞ j(m, n, t, T )×

(|m|/|n|)itdt, where j is a function satisfying ∂k

∂tk
j(m, n, t, T ) � η−1/2T−1(ηT )−k. Thus 

by standard integration by parts, if |m| �= |n|,

J(m,n) �k
η−1/2

[ηT log(|m|/|n|)]k , k = 0, 1, 2, . . . . (3.8)

3.2. The off-diagonal terms

By [13, Theorem 1.2], we have
∑
n≤x

|τiT (n)τiT (n + h)| � x(h log x)εPiT (x)2,

where

PiT (x) = 1
log x

∏
p≤x

(
1 + |τiT (p)|

p

)
.

We claim

PiT (T ) � (log T )1/3|ζ(1 + 2iT )|7/9|ζ(1 + 4iT )|−1/9. (3.9)

To see this, we begin with the elementary inequality

|x| ≤ 1
18(8 + 11|x|2 − |x|4), (3.10)

valid for any x ∈ [−2, 2]. Applying this with x = τiT (p) = piT + p−iT , we deduce

|τiT (p)| ≤ 1
18

(
24 + 7(p2iT + p−2iT ) − (p4iT + p−4iT )

)
,

which implies in turn

PiT (x) � (log x)−1
∏
p≤x

(
1 + 1

p

)4/3 ∏
p≤x

∣∣∣1 + 1
p1+2iT

∣∣∣7/9 ∏
p≤x

∣∣∣1 + 1
p1+4iT

∣∣∣−1/9
.

Of course, 
∏

p≤x(1 + p−1) � log x. Finally, using (2.5) gives (3.9).
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Using (3.8), we conclude

|E(x, T )| � η−3/2(log T )2/3+ε

|ζ(1 + 2iT )| 49 |ζ(1 + 4iT )| 29
. (3.11)

Lemma 3.1. For t � 1, we have

|ζ(1 + it)|−2|ζ(1 + 2it)|−1 � (log t)1+ε. (3.12)

Lemma 3.1 completes the proof of (3.6).
Note that a naive application of the Vinogradov–Korobov bound would only give 

(log t)2+ε in (3.12), leading to a bound on E(x, T ) that is worse than trivial.

Proof of Lemma 3.1. Using (2.5), we have

log
(
|ζ(1 + it)|−2|ζ(1 + 2it)|−1

)
=

∑
p≤x

−2 cos(t log p) − cos(2t log p)
p

+ O(1),

where log x � (log t)2/3+ε. Note that −2 cos θ − cos(2θ) ≤ 3
2 for all θ ∈ R, since 3

2 +
2 cos θ + cos(2θ) = 1

2(1 + 2 cos θ)2. Thus

log
(
|ζ(1 + it)|−2|ζ(1 + 2it)|−1

)
≤ 3

2 log log x + O(1).

Simplifying completes the proof. �
One may apply many other inequalities in place of (3.10), leading to alternative forms 

of (3.11). We made no attempt to optimize the error term in (3.6).

3.3. The diagonal terms

According to (3.4), write M.T. = MT0 + MTx, say. It suffices to study MTx, since 
MT0 is the special case x = 0. By a rearrangement, we have

MTx = |ρ∗(1)|2
cosh(πT )

∞∑
n=1

|τiT (n)|2
n

(e(2nx) + e(−2nx))J(n, n).

Using the Dirichlet approximation theorem, we have

MTx = |ρ∗(1)|2
cosh(πT )

∞∑
n=1

|τiT (n)|2
n

J(n, n)
[
e
(an

q

)
e(θn) + e

(−an

q

)
e(−θn)

]
,

where (a, q) = 1, q ≤ Q, and |θq| ≤ Q−1. Here Q is a parameter at our disposal to be 
chosen later.
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Converting to Dirichlet characters via Lemma 2.3, we obtain

MTx = |ρ∗(1)|2
cosh(πT )

×
∑
d|q

1
φ(q/d)

∑
±

∑
χ (mod q/d)

τ(χ)χ(±a)
∞∑

n=1

|τiT (dn)|2χ(n)
dn

J(dn, dn)e(±θdn).

Let J±θ(x) = e(±θx)J(x, x). It follows from the definition (3.2) that

dj

dxj
J(x, x) � x−j .

Next, define the Mellin transform

J̃±θ(u) =
∞∫
0

J±θ(x)xu dx

x
.

Note dj

dxj J±θ(x) � x−j(1 + |θT |j). Therefore, repeated integration by parts shows

|J̃±θ(σ + iv)| �σ T σ
(
1 + |v|

1 + |θT |
)−100

,

which we will use for |θT | � T ε. If |θT | � T ε, then a stationary phase argument (see 
[2, Proposition 8.2]) shows

|J̃±θ(σ + iv)| � T σ

|θT |1/2
(
1 + |v|

|θT |
)−100

.

We may combine the two cases with the single bound

|J̃±θ(σ + iv)| � Tσ+ε

1 + |θT |1/2
(
1 + |v|

T ε + |θT |
)−100

.

By the Mellin inversion formula, we have

MTx = |ρ∗(1)|2
cosh(πT )

∑
d|q

1
φ(q/d)

∑
±

∑
χ (mod q/d)

τ(χ)χ(±a) 1
2πi

∫
(ε)

J̃±θ(s)d−1−sLd(1 + s)ds,

where

Ld(s) =
∞∑

n=1

|τiT (dn)|2χ(n)
ns

. (3.13)

By a variation on (2.2), one may readily derive that
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Ld(s) = L(s, χ)2L(s + iT, χ)L(s− iT, χ)Ad(s),

where Ad(s) is given by an absolutely convergent Euler product for Re(s) > 1/2, sat-
isfying a bound Ad(s) �σ dε, for Re(s) ≥ σ > 1/2. Moreover, Ld(s) is analytic in this 
same region except for poles at s = 1, 1 ± iT only when χ is the principal character.

Now let MT ′
x denote the contribution to MTx from χ nonprincipal. To estimate MT ′

x, 
we shift the contour to the line −1/2 + ε. The bound we obtain from these terms is

MT ′
x � T ε

∑
±

∑
d|q

1
φ(q/d)

∑
χ (mod q/d)

√
q/d

∞∫
−∞

|J̃±θ(−1 + σ + iv)||L(σ + iv, χ)2L(σ + iv + iT, χ)L(σ + iv − iT, χ)|dv.

By Hölder’s inequality and Proposition 2.4, we deduce

MT ′
x � T−1/2+εq1/2(T 2/3 + |θT |)1/2 � (T−1/6Q1/2 + Q−1/2)T ε. (3.14)

Any choice of Q with T δ � Q � T 1/3−δ, for some δ > 0, shows MT ′
x � T−δ′ , for some 

δ′ > 0.
Finally, consider the contribution from χ = χ0, denoted MT 0

x . Using τ(χ0) = μ(q/d), 
we see that

MT 0
x = |ρ∗(1)|2

cosh(πT )
∑
±

1
2πi

∫
(ε)

J̃±θ(s)Zq(1 + s)ds, (3.15)

where

Zq(s) =
∞∑

n=1

|τiT (n)|2
ns

μ(q/(n, q))
ϕ(q/(n, q)) .

By (2.2), we derive

Zq(s) = ζ2(s)ζ(s + iT )ζ(s− iT )
ζ(2s) Bq(s, T ),

where

Bq(s, T ) =
∏

pqp ||q

∑∞
j=0

|τiT (pj)|2
pjs

μ(pqp/(pj ,pqp ))
ϕ((pqp/(pj ,pqp ))∑∞

j=0
|τiT (pj)|2

pjs

. (3.16)

Now we shift the contour to σ = −1/2 + ε, picking up residues at s = 0 as well as 
±iT . The poles at ±iT give small residues, due to the decay of J̃±θ(s) at this height 
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(since |θT | � T 1−ε, which is implied by Q � T δ). The contribution on the new contour 
is obviously no larger than the one obtained with (3.14). This discussion now shows

MTx = |ρ∗(1)|2
cosh(πT )Ress=0

(∑
±

J̃±θ(s)Zq(1 + s)
)

+ O(T−1/6Q1/2 + Q−1/2)T ε).

3.4. Evaluation of the residue

First we examine the Dirichlet series aspect of the residue. By the Vinogradov–
Korobov bound (Lemma 2.1), we have

ζ2(s)ζ(s + iT )ζ(s− iT )
ζ(2s) = |ζ(1 + 2iT )|2

ζ(2)

( 1
s2 + O((log T )2/3+ε)

s
+ . . .

)
.

Of course, Bq(s, T ) = Bq(1, T ) + B′
q(1, T )s + O(s2), and a calculation shows Bq(1, T )

and B′
q(1, T ) are O(q−1+ε). Finally, we claim that J̃θ(0) = O(log log T ), and

∑
±

J̃ ′
±θ(0) = π2

2 log T
∞∫
0

ψ2(y)J0

(θT
y

)dy
y

+ O(η1/2 log T ). (3.17)

Taking these claims on J̃±θ for granted, we may then derive

MTx = π2

2
|ρ∗(1)|2

cosh(πT )
|ζ(1 + 2iT )|2

ζ(2) Bq(1, T ) log T
∞∫
0

ψ2(y)J0

(θT
y

)dy
y

+ O(η1/2 log T ),

(3.18)
where we have used η1/2 log T � (log T )2/3+ε. Evaluation of the constant shows this is 
consistent with (3.5).

Now we prove the claims on Jθ. We have

J̃ ′
θ(0) =

∞∫
0

e(θx)J(x, x) log xdx
x
, (3.19)

and likewise J̃θ(0) is given by the same integral, but without the logx factor. Trivially 
bounding the integral shows Jθ(0) = O(log log T ), since J(x) is supported on η1/2T �
x � T , and log(1/η) � log log T .

Moreover, log x = log T + O(log log T ), on the support of J(x). Then inserting the 
definition of J and applying some changes of variables, we obtain

J̃ ′
θ(0) = log T

∞∫
ψ2(y)

[ ∞∫
W (t)|γVT

(1/2 + it)|2 cosh(πT )eiθ
√

T2−t2
y

dt

2π

]dy
y
,

0 −∞
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plus an error of size O(log log T ).
Stirling’s formula implies cosh(πT )|γVT

(1/2 + it)|2 = π2

2 (T 2 − t2)−1/2(1 +O(T−1+ε)), 
for t in the support of W . Hence

J̃ ′
θ(0) = π2

2 log T
∞∫
0

ψ2(y)
[ ∞∫
−∞

W (t)(T 2−t2)−1/2eiθ
√

T2−t2
y

dt

2π

]dy
y

+O(log log T ). (3.20)

It is not difficult to see that

∞∫
−∞

W (t)(T 2 − t2)−1/2eiθ
√

T2−t2
y dt =

T∫
−T

(T 2 − t2)−1/2eiθ
√
T2−t2

y dt + O(η1/2 log T ).

By the change of variables t = T cos(ϕ) and [9, 8.411.1], we have

T∫
−T

(T 2 − t2)−1/2 cos
(
θ

√
T 2 − t2

y

)
dt = πJ0

(θT
y

)
.

Putting all the calculations together, we derive (3.17), which completes the proof of 
Proposition 1.4.

4. Large values of Δ via shifted divisor sum

Having extracted the main term in Section 3, we may make a small notational sim-
plification by restricting attention to t ≥ 0 only. The same bound holds for t < 0 by 
symmetry.

The goal of this section is to prove Proposition 1.5. We begin with some simplifications 
of a general nature.

Lemma 4.1. Suppose that T δ � Δ ≤ η(T )T , where 0 < η(T ) < δ for some small δ > 0. 
Then ∫

1
2Δ≤T−t≤Δ

|F0(it)|2dt �
|ζ(1 + 2iT )|−2

√
ΔT

I(Δ, T, x,N) + T−100, (4.1)

where

I(Δ, T, x,N) =
∞∫

−∞

w1

(T − t

Δ

)∣∣∣∑
n≥1

τiT (n)e(nx)
n1/2+it

w2

( n

N

)∣∣∣2dt, N =
√

ΔT , (4.2)

and w1, w2 are certain fixed smooth weight functions with compact support on the positive 
reals.
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Proof. The essential part of the proof is a separation of variables argument. We will need 
variations on this argument in other parts of the paper, so we provide full details here.

Using Stirling’s approximation (2.13), and the inequality | 
∑

n �=0 an|2 ≤ 2| 
∑

n>0 an|2+
2| 
∑

n>0 a−n|2, we obtain

∫
1
2Δ≤T−t≤Δ

|F0(it)|2dt �
|ζ(1 + 2iT )|−2

√
ΔT

∫
1
2Δ≤T−t≤Δ

∣∣∣∑
n≥1

τiT (n)e(nx)
n1/2+it

ψ
(√T 2 − t2

2πn

)∣∣∣2dt.

The support on ψ means that the n-sum is supported on n � N , where

N =
√

ΔT . (4.3)

This integral is not yet quite in the form I(Δ, T, x, N). For this, we multiply ψ by a 
redundant factor w2(n/N), such that w2(n/N) = 1 for all n in the support of ψ, yet 
such that w2 is smooth of compact support. Then we use ψ(y) = 1

2πi
∫
(0) ψ̃(−u)yudu, 

and apply the Cauchy–Schwarz inequality to the u-integral, obtaining

∣∣∣∑
n

anψ
(√T 2 − t2

2πn

)∣∣∣2 �
∞∫

−∞

|ψ̃(iu)|
∣∣∣∑

n

ann
−iu

∣∣∣2du, (4.4)

using the fact that 
∫∞
−∞ |ψ̃(iv)|dv � 1 (the reader may recall that ψ was fixed at the 

beginning of the paper and is independent of all relevant parameters).
In our application, we may truncate the u-integral at |u| ≤ Δ

100 , leading to an error 
that is at most O(T−100), using the rapid decay of ψ̃, and the fact that Δ � T δ. That 
is,

∫
1
2Δ≤T−t≤Δ

∣∣∣∑
n≥1

τiT (n)e(nx)
n1/2+it

ψ
(√T 2 − t2

2πn

)∣∣∣2dt

�
∫

1
2Δ≤T−t≤Δ

∫
|u|≤ Δ

100

|ψ̃(−iu)|
∣∣∣∑
n≥1

τiT (n)e(nx)
n1/2+it+iu

w2

( n

N

)∣∣∣2dtdu + O(T−100).

Next we change variables t → t − u and over-extend the t-range of integration to 
49
100Δ ≤ |t − T | ≤ 101

100Δ, which is valid due to the positivity of the integrand. In this 
way the variables u and t are separated, and the u-integral can be bounded again using ∫∞
−∞ |ψ̃(iv)|dv � 1.

Finally, by attaching a smooth weight function w1(T−t
Δ ) supported on the positive 

reals, we obtain the desired result. �
Proof of Proposition 1.5. The basic approach is similar to that of Proposition 1.4, in 
that we will solve a shifted divisor problem. In light of Lemma 4.1, we need to show
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I(Δ, T, x,N) � |ζ(1 + 2iT )|2(Δ log T + NT−δ′ + NSΔ), (4.5)

for Δ � T 25/27+ε, and some δ′ > 0. Opening the square and integrating in t, we obtain

I(Δ, T, x,N)

=
∑

m,n≥1
τiT (m)τiT (n)e((m− n)x)

w2
(
n
N

)
w2

(
m
N

)
√
mn

∞∫
−∞

w1

(T − t

Δ

)( n

m

)it

dt. (4.6)

By Lemma 2.6, the terms with m = n contribute to I(Δ, T, x, N) an amount

� Δ|ζ(1 + 2iT )|2 log T,

which leads to the first bound in (4.5).
Our main job is to bound the terms with m �= n, in which case we set m = n + h. By 

simple estimations, these terms contribute to I(Δ, T, x, N) an amount

Δ
N

∑
h�=0

e(hx)
∑
n

τiT (n)τiT (n + h)K(n, h),

where

K(n, h) =
w2( n

N )
( n
N )1/2

w2(n+h
N )

(n+h
N )1/2

(n + h

n

)−iT

ŵ1

(
− Δ

2π log
(n + h

n

))
.

In particular, K(n, h) is supported on n � N and satisfies

∂j

∂uj
K(u, v) � RjN−j

(
1 + Δ|v|

N

)−A

, j = 0, 1, 2, . . . ,

with A > 0 arbitrary, and where

R = Δ−1T. (4.7)

Proposition 2.7 gives

Δ
N

∑
h�=0

e(hx)
(∑

n

τiT (n)τiT (n+h)K(n, h)−M.T.
)
� T

1
3+εN

1
2R2 +T

1
6+εN

3
4R

1
2 , (4.8)

where M.T. is a main term (off-diagonal) to be discussed presently. A short calculation 
shows that the two error terms in (4.8) are O((ΔT )1/2T−δ) for Δ � T

25
27+ε. It turns out 

that the main terms are surprisingly difficult to estimate with uniformity in x, and we 
next turn to this problem.
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The off-diagonal main term is defined by

M.T. =
∑
±

|ζ(1 + 2iT )|2
ζ(2) σ−1(h)

∞∫
max(0,−h)

(y + h)∓iT y±iTK(y, h)dy.

These two terms then give to I(Δ, T, x, N) an amount

|ζ(1 + 2iT )|2
ζ(2)

∑
±

Δ
N

∑
h�=0

e(hx)σ−1(h)

∞∫
0

w2( y
N )

( y
N )1/2

w2(y+h
N )

(y+h
N )1/2

(y + h

y

)−iT∓iT

ŵ1

(
− Δ

2π log
(y + h

y

))
dy.

When the choice of sign makes the exponent of (y + h)/y be −2iT , then a simple inte-
gration by parts argument shows that

∞∫
0

w2( y
N )

( y
N )1/2

w2(y+h
N )

(y+h
N )1/2

(y + h

y

)−2iT
ŵ1

(
− Δ

2π log
(y + h

y

))
dy � N

(
1 + |h|T

N

)−10
.

Hence this off-diagonal term contributes to I(Δ, T, x, N) an amount that is

� |ζ(1 + 2iT )|2 Δ
N

∑
h�=0

N
(
1 + |h|T

N

)−10
� |ζ(1 + 2iT )|2ΔN

T
� |ζ(1 + 2iT )|2Δ,

since N � T , which is more than satisfactory for (4.5). The other main term is more 
subtle, and gives

MTOD := |ζ(1 + 2iT )|2
ζ(2)

Δ
N

∑
h�=0

e(hx)σ−1(h)

×
∞∫
0

w2( y
N )

( y
N )1/2

w2(y+h
N )

(y+h
N )1/2

ŵ1

(
− Δ

2π log
(y + h

y

))
dy. (4.9)

We will show here

MTOD � |ζ(1 + 2iT )|2(Δ log T + NSΔ), (4.10)

where SΔ is a function satisfying (1.16). It is quite easy to show with a trivial bound 
that MTOD � |ζ(1 + 2iT )|2N , so (4.10) amounts to a logarithmic saving with the sum 
over Δ in dyadic segments (there are of course O(logT ) such values of Δ over which to 
sum). As a first simple approximation step, by taking Taylor expansions we have that
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∞∫
0

w2( y
N )

( y
N )1/2

w2(y+h
N )

(y+h
N )1/2

ŵ1

(
− Δ

2π log
(y + h

y

))
dy

=
∞∫
0

w2( y
N )2

( y
N ) ŵ1

(
− Δh

2πy

)
dy + O

(
|h|

(
1 + |h|Δ

N

)−100)
,

and hence by a trivial estimate on the h-sum, we have

MTOD = |ζ(1 + 2iT )|2
ζ(2) Δ

∑
h�=0

e(hx)σ−1(h)
∞∫
0

w2(y)2

y
ŵ1

(
− Δh

2πNy

)
dy

+ O
(N

Δ |ζ(1 + 2iT )|2 log T
)
. (4.11)

This error term is certainly O(NT−δ), since Δ � T 25/27+ε. By changing variables, we 
have

MTOD � |ζ(1 + 2iT )|2N
∞∫
0

w2

( y

2π

)2∣∣∣ Δ
Ny

∑
h�=0

σ−1(h)e(hx)ŵ1(−
Δh

Ny
)
∣∣∣dy + O(NT−δ).

We need to control the sum over h, on average over Δ running over dyadic segments. 
We pause our estimations of MTOD to state the following.

Lemma 4.2. Let w1 be a smooth function supported on the positive reals, and for x ∈ R

and H � 1, define

R(x,H) = H−1
∑
h�=0

σ−1(h)e(hx)ŵ1(h/H). (4.12)

Then ∑
1�H<∞
Hdyadic

|R(x,H)| � 1, (4.13)

where the implied constant depends only on w1 and is uniform in x.

Remark. The assumption that w1 is supported on the positive reals, so in particular 
w1(0) = 0, is used crucially in the proof. More generally, if w1 is some fixed Schwartz-class 
function, then it is not hard to see that R(x, H) �w1 1.

Lemma 4.2 suffices to show (4.10), as H = yN
Δ = y T 1/2

Δ1/2 , and Δ runs over dyadic 
segments. This means that H can be partitioned into two classes of dyadic segments 
(taking even powers and odd powers separately, for example).

Having accounted for all the terms, the proof of Proposition 1.5 is complete. �
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Proof of Lemma 4.2. We open σ−1(h) as a Dirichlet convolution, obtaining

R(x,H) = H−1
∑
a≥1

a−1
∑
b�=0

e(abx)ŵ1

(ab
H

)
.

For larger values of a, say a > K ≥ 1, we estimate trivially, obtaining

H−1
∑
a>K

a−1
∑
b�=0

e(abx)ŵ1

(ab
H

)
� 1

K
.

For a ≤ K, we apply Poisson summation, getting

H−1
∑
a≤K

a−1
∑
b�=0

e(abx)ŵ1

(ab
H

)
=

∑
a≤K

a−1
(−ŵ1(0)

H
+ 1

a

∑
ν∈Z

w1

(
H
(
x− ν

a

)))
.

Thus

R(x,H) =
∑
a≤K

a−2
∑
ν∈Z

w1

(
H
(
x− ν

a

))
+ O

(
K−1 + log(eK)

H

)
.

Suppose that w1 is supported on [α, β] where 0 < α < β. If we assume that K ≤ εH

for ε−1 > 2β, then the sum over ν will capture at most one value of ν, which must 
be the integer nearest ax. More precisely, we have that the sum over ν vanishes unless 
α ≤ ‖ax‖H

a ≤ β, where ‖ax‖ denotes the distance from ax to the nearest integer. For 
each a, there are at most 1 + log2(β/α) dyadic values of H such that the sum over ν
does not vanish. Thus ∑

H
ε−1

H dyadic

∑
ν∈Z

∣∣∣w1

(
H
(
x− ν

a

))∣∣∣ � 1. (4.14)

We set K = εH, and by reversal of order of summation combined with (4.14), we derive

∑
H
ε−1

dyadic

∑
a≤εH

a−2
∑
ν∈Z

∣∣∣w1

(
H
(
x− ν

a

))∣∣∣ � ∞∑
a=1

a−2 � 1.

For H � ε−1 we use only the trivial bound Q(x, H) � 1, which needs to be used Oε(1)
times. Thus we obtain that (4.13) holds. �
5. The medium sizes of Δ

5.1. Statement of results

The goal of this section is to collect some results which together prove Proposition 1.6. 
Recall I(Δ, T, x, N) is defined by (4.2). One of the main results of this section is
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Proposition 5.1. Suppose T δ � Δ � T 1−δ, for some δ > 0. Then

I(Δ, T, x,N) � N |ζ(1 + 2iT )|2((log T )−50 + SΔ), (5.1)

where SΔ has the properties described in Proposition 1.5.

Proposition 5.1 then implies Proposition 1.6, via Lemma 4.1.
The methods in this section rely on opening the divisor function τiT (n) =∑
ab=n(a/b)iT and do not rely on the spectral theory of automorphic forms but rather 

abelian harmonic analysis. The relative sizes of a and b play a major role in our estima-
tions, and so we wish to localize a and b at this early stage. To this end, define

IA,B =
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
a,b

e(abx)
a1/2−itb1/2+2iT−it

f
( a

A

)
g
( b

B

)∣∣∣2dt, (5.2)

where A, B � 1, and w1, f, g are fixed smooth functions supported on the positive reals. 
For small values of b, it is better to not use a dyadic partition. Instead, let B0 � Tα for 
some small 0 < α < 1/4, and let g0 be a smooth function such that g0(y) = 1 for y < 1, 
and g0(y) = 0 for y > 2. Then set

IB0 =
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
a,b

e(abx)
a1/2−itb1/2+2iT−it

g0

( b

B0

)
w2

(ab
N

)∣∣∣2dt. (5.3)

We elucidate a connection between I(Δ, T, x, N), IA,B, and IB0 , with the following

Lemma 5.2. With certain w, f, g, g0, B0 as above, and with AB � N =
√

ΔT , we have

I(Δ, T, x,N) � IB0 + log T
( ∑

B0�B�N
dyadic

IA,B

)
+ N log T

Δ100 . (5.4)

Proof. In the definition of I(Δ, T, x, N) (that is, (4.2)), write τiT (n) =
∑

ab=n(a/b)iT , 
and then apply a partition of unity to the b-sum. In this way, we have

I(Δ, T, x,N) =
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
j

∑
a,b

e(abx)gj(b)
a1/2−itb1/2+2iT−it

w2

(ab
N

)∣∣∣2dt,
where gj are elements of the partition.

First we choose g0(b/B0) to be one element of the partition of unity. Next we simply 
apply Cauchy’s inequality to separate this part of the partition from all the other terms. 
This explains the presence of IB0 in (5.4); the main point here is we did not lose the 
factor log T .
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We may assume that g0 is such that 1 − g0(y/B0) equals a dyadic partition of unity 
(meaning, each gj(b) = g(b/B), say with b � B, where AB = N , and B runs over a 
dyadic sequence), since we could start with a dyadic partition of unity of this type, and 
then write g0 as a sum of elements of this dyadic partition. Having located b � B with 
g(b/B), a is automatically localized by a � A by the support of w2. We are then free to 
multiply by f(a/A) where f is smooth of compact support, and such that f(a/A) = 1
for all a in the support of g(b/B)w2(ab/N). In all, this shows that we may write

I(Δ, T, x,N) � IB0 +
∞∫

−∞

w1

( t

Δ

)∣∣∣ ∑
B0�B�N
B dyadic

∑
a,b

e(abx)f(a/A)g(b/B)
a1/2−itb1/2+2iT−it

w2

(ab
N

)∣∣∣2dt.

Applying Cauchy’s inequality shows an estimate almost of the form (5.4), the only dif-
ference being that instead of IA,B, we have an expression of the form

∞∫
−∞

w1

( t

Δ

)∣∣∣∑
a,b

e(abx)f(a/A)g(b/B)
a1/2−itb1/2+2iT−it

w2

(ab
N

)∣∣∣2dt.
That is, we have a weight function of the form f(a/A)g(b/B)w2(ab/N), and we would 
like to omit w2 in order to separate the variables further. Using a method very similar 
to that in the proof of Lemma 4.1, we can do this, at the cost of an error term of size 
Δ−100N log T . �

In the application to I(Δ, T, x, N) with Δ � T ε, we have AB = N = (ΔT )1/2. 
However, for some technical reasons, when Δ � T ε, we need a minor generalization of 
the range of A, B. For this reason, in the rest of this section we let

AB = M, where T 1/2−ε � M � T 1−ε. (5.5)

For ease of reference, we collect a few lemmas together, deferring the proofs until later 
in this section.

Lemma 5.3 (Poisson in b). Suppose 1 � Δ � T 1−δ, and T 1/2 � B � T 1−δ, for some 
δ > 0. Then

IA,B �
(
Δ + MT

B2

)
log T. (5.6)

Lemma 5.4 (Poisson in a). Suppose (log T )100 � Δ � T 1−δ and B � T δ for some 
δ > 0. Then

IA,B � M |ζ(1 + 2iT )|2(log T )−50 + ΔB2

M
log T + Δ log T. (5.7)
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Lemma 5.5 (Determinant equation, Poisson in b2). Suppose that T δ � Δ � T 1−δ and 
T 1/2−δ � M � T 1−δ for some δ > 0. Then

IA,B � Δ log T + M

Δ + T εA
2

Δ
(ΔT )1/4

M1/2 (ΔT )1/2
(Δ
T

)1/12
. (5.8)

Finally we require a result valid for B � T ε.

Lemma 5.6 (Determinant equation, Poisson in a2). Suppose that B0 = Tα, for some fixed 
0 < α < 1/4, and (log T )100 � Δ � T 1−δ, for some δ > 0. Then with SΔ satisfying the 
same properties as in Proposition 1.5, we have

IB0 � M |ζ(1 + 2iT )|2((log T )−50 + SΔ) + Δ log T. (5.9)

Remark. For later discussions in Section 6, it is helpful to describe how the conclusion 
of Lemma 5.6 is affected when we only assume that w1 has support on R instead of the 
positive reals. In this case, a bound of the form (5.9) still holds, but we may only claim 
that SΔ � 1, instead of the stronger condition (1.16).

Before proceeding to the proofs of these lemmas, we describe how they combine to 
prove Proposition 5.1. We need to bound all the terms on the right hand side of (5.4). 
Lemma 5.6 treats IB0 with an acceptable bound. Next we analyze IA,B . In the case 
Tα � B � T 1/2−ε, we apply Lemma 5.4. In the case B � T 1/2+ε, i.e., A � Δ1/2T−ε, 
we may apply Lemma 5.3. Finally, in the case T 1/2−ε � B � T 1/2+ε, i.e., Δ1/2T−ε �
A � Δ1/2T ε, then we apply Lemma 5.5. We have therefore covered all the ranges of B, 
showing Proposition 5.1.

5.2. Proof of Lemma 5.3

The basic idea is that Poisson summation in b inside the absolute square gives a 
saving by reducing the length of summation (provided B is slightly larger than T 1/2). 
Furthermore, this process is compatible with the savings from the t-integration.

We have

∑
b

e(abx)
b1/2+2iT−it

g
( b

B

)
=

∑
l∈Z

∞∫
−∞

e(axu + lu− (2T − t)
2π log u)u−1/2g(u/B)du.

Write the phase here as φ(u) = (ax + l)u − 2T−t
2π log u, which satisfies

φ′(u) = (ax + l) − 2T − t

2πu .

We first claim that the integral is small unless there is a stationary point. The second 
term in the derivative of the phase is � T , and repeated integration by parts (see [2, 
B
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Lemma 8.1]) shows that the integral is small (say, O(T−100)) unless (ax + l) � T
B . By 

periodicity, we may as well assume |x| ≤ 1/2, in which case a|x| ≤ a � M
B = o(T/B)

(recall (5.5)), and therefore this means l � T
B . We think of l + ax as a perturbation of l. 

The stationary point occurs at 2πu0 = 2T−t
l+ax . By [14, Lemma 5.5.6] or [2, Proposition 8.2]

(taking only the first term in the asymptotic expansion), we get an asymptotic formula 
in the form

∑
b

e(abx)
b1/2+2iT−it

g
( b

B

)
=

∑
l

(
2T−t
2πe

)−i(2T−t)

(l + ax)1/2−2iT+it
P
( 2T − t

B(l + ax)

)
+ O((BT )−1/2),

where P is a function supported on v � 1, satisfying P (j)(v) �j 1. In fact, P is a 
constant multiple of g. The phase here takes the form

eiϕ(t,T )

(l + ax)it−2iT ,

for some function ϕ independent of a and l. Altogether, this shows

IA,B �
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
a,l

P ( 2T−t
B(l+ax) )f

(
a
A

)
a1/2−it(l + ax)1/2−2iT+it

∣∣∣2dt + O
(ΔA

BT

)
.

Note that this error term is ΔA
BT = ΔM

B2T , which is acceptable.
Since |t|T � Δ

T � T−δ, and a|x|l � A
T/B = M

T � T−δ, we can take Taylor expansions 
to obtain

P
( 2T − t

B(l + ax)

)
= P

(2T
Bl

)
+

∑
j,k

Pj,k

(2T
Bl

)( t

T

)j(ax
l

)k

+ O(T−100),

where Pj,k is a finite linear combination of derivatives of P , with j + k ≥ 1, and the 
total number of terms in the sum bounded by a function of δ. By Cauchy’s inequality, 
we then have

IA,B �
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
a,l

P (2T
Bl )f

(
a
A

)
a1/2−it(l + ax)1/2−2iT+it

∣∣∣2dt + O
(ΔA

BT

)
,

where by abuse of notation, P is meant to represent P or one of the Pj,k (of course the 
case of P is the hardest for us to estimate, as the terms with j + k ≥ 1 will be smaller 
than this by a factor � T−ε, so the notation is not that abusive after all).

Change variables a �→ da and l �→ dl where now (a, l) = 1. Define the coefficients

γa,l =
∞∑ P ( 2T

Bdl )f
(
ad
A

)
d1−2iT ,
d=1
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so that

IA,B �
∞∫

−∞

w1

( t

Δ

)∣∣∣ ∑
(a,l)=1

γa,l
a1/2−it(l + ax)1/2−2iT+it

∣∣∣2dt + O
(ΔA

BT

)
. (5.10)

Note that γa,l = 0 unless a � Ml
T . We have the trivial bound |γa,l| � 1, and so ∑

a,l
|γa,l|2

al � log T . To finish the proof, we will apply (2.6) to (5.10). Here r corre-
sponds to the pair (a, l), and λr = λa,l = log( l+ax

a ). Here we have

|λa1,l1 − λa2,l2 | =
∣∣∣ log

(
1 + a2(l1 + a1x) − a1(l2 + a2x)

a1(l2 + a2x)

)∣∣∣ � |a2l1 − a1l2|
a1l2

,

and so |λa1,l1 − λa2,l2 | � 1
a1l2

� B
AT under the assumption (a1, l1) �= (a2, l2). Therefore,

IA,B � ΔA

BT
+

∑
(a,l)=1

|γa,l|2
al

(
Δ + AT

B

)
�

(
Δ + MT

B2

)
log T. (5.11)

5.3. Proof of Lemma 5.4

The initial steps of the proof are quite similar to that of Lemma 5.3, except that 
we apply Poisson summation in a instead of b. The later steps are different because we 
encounter a more difficult counting argument in this problem. We have

∞∑
a=1

e(abx)
a1/2−it

f(a/A) =
∑
q∈Z

∞∫
−∞

e((bx− q)u + t

2π log u)u−1/2f(u/A)du.

By [2, Lemma 8.1], the integral is O(A1/2Δ−100) unless |bx − q| � Δ
A , that is,

∣∣∣x− q

b

∣∣∣ � Δ
M

. (5.12)

Here we are using the fact that w1 has support on [1, 2], so that t � Δ. Assuming 
(5.12) holds, the integral can be asymptotically evaluated using stationary phase. The 
conditions of [2, Proposition 8.2] are not quite met if Δ is small compared to A. Instead, 
we may quote [14, Lemma 5.5.6] (the reader may also try to derive a weighted version 
of [16, Corollary 8.15]). In this way, we have

∞∑
a=1

e(abx)
a1/2−it

f(a/A) = (t/e)it
∑
q∈Z

P
(

t
A(q−bx)

)
(q − bx)1/2+it

+ O
(A1/2

Δ3/2

)
,

where as in the proof of Lemma 5.3, P (v) is a smooth function supported on v � 1, 
satisfying P (j)(v) � 1 (in fact, P here is a constant multiple of f). Hence
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IA,B �
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
b,q

g(b/B)P
(

t
A(q−bx)

)
b1/2+2iT−it(q − bx)1/2+it

∣∣∣2dt + O(ABΔ−2). (5.13)

The error term is satisfactory.
By analogy with (5.11), one might expect that IA,B � (Δ + BΔ

A )T ε, and note BΔ
A =

ΔB2

M = M Δ
A2 (and if M = N =

√
ΔT , this is N B2

T ). However, there are some differences 
so this guess is not entirely reliable, yet partially hints at the truth.

Next we perform some simplifications, towards separation of variables. Write (b, q) =
d, and set b = db0, q = dq0 where now (q0, b0) = 1. In the summation, we enforce the 
condition (5.12) (of course q/b = q0/b0), which is redundant to the support of P . We 
then obtain

IA,B �
∞∫

−∞

w1

( t

Δ

)∣∣∣∑
d

1
d1+2iT

∑
(b0,q0)=1

|x− q0
b0

|	M−1Δ

g(db0/B)P
(

t
Ad(q0−b0x)

)
b
1/2+2iT−it
0 (q0 − b0x)1/2+it

∣∣∣2dt

+ O(ABΔ−2).

By the same separation of variables method as in the proof of Lemma 4.1, we can remove 
the weight function P by a Mellin transform. Let us say that the integration variable 
attached to P is v. Changing variables t → t − v, and letting 2T ′ = 2T + v, we obtain, 
for some smooth, nonnegative, compactly-supported function w3,

IA,B � max
|T ′−T |�Δε

∞∫
−∞

w3

( t

Δ

)∣∣∣∑
d

1
d1+2iT ′

∑
(b0,q0)=1

|x− q0
b0

|	M−1Δ

g(db0/B)

b
1
2+2iT ′−it
0 (q0 − b0x) 1

2+it

∣∣∣2dt

+ M

Δ2 . (5.14)

Define the following coefficients αb by

αb = b−2iT ′ ∑
d

g(db/B)
d1+2iT ′ ,

so with this notation

IA,B � max
|T ′−T |�Δε

∞∫
−∞

w3

( t

Δ

)∣∣∣ ∑
(b0,q0)=1

|x− q0
b0

|	M−1Δ

αb0

b
1/2−it
0 (q0 − b0x)1/2+it

∣∣∣2dt + M

Δ2 .

Note the trivial bound αb � 1. We also have that

αb � (log T )−100, for b � B
2/3+ε

, (5.15)

(log T )
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by using a Mellin transform, and the Vinogradov–Korobov bound (Lemma 2.1).
We also choose a nonnegative w4 so that w3 ≤ w4 and ŵ4 has compact support (cf. 

[33]).
Next we open the square and perform the integration. For notational simplicity, we 

drop the max over T ′ by assuming that T ′ is chosen to maximize the expression. Then 
we obtain

IA,B � Δ
∑

(b1,q1)=1
|x− q1

b1
|	M−1Δ

|αb1 |
(b1(q1 − b1x))1/2

×
∑

(b2,q2)=1
|x− q2

b2
|	M−1Δ

|αb2 |
(b2(q2 − b2x))1/2

|ŵ4|
( Δ

2π log
(b2(q1 − b1x)
b1(q2 − b2x)

))
,

plus O(MΔ−2). Using

log
(b2(q1 − b1x)
b1(q2 − b2x)

)
= log

(
1 + b2q1 − b1q2

b1(q2 − b2x)

)
,

and the compact support of ŵ4, we may further restrict attention to integers b1, b2, q1, q2
satisfying ∣∣∣q1

b1
− q2

b2

∣∣∣ � M−1. (5.16)

Therefore, we have

IA,B � M

Δ2 + M
∑

(b1,q1)=1
|x− q1

b1
|	M−1Δ

∑∗

(b2,q2)=1
|x− q2

b2
|	M−1Δ

|αb1αb2 |
b1b2

, (5.17)

where the star denotes that (5.16) holds.
Consider the diagonal contribution to (5.17), that is, the terms with q1 = q2 and 

b1 = b2. These terms contribute to IA,B an amount that is

� M
∑
b�B

|αb|2
b2

(
1 + Δb

M

)
.

Using αb � 1, the part with Δb
M contributes O(Δ log T ). On the other hand, using the 

trivial bound αb � 1 for b � (log T )100, and with αb � (log T )−100 for b � (log T )100, 
we obtain that

M
∑

b−2|αb|2 � M(log T )−100 � M |ζ(1 + 2iT )|2(log T )−50.

b�B
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Thus the diagonal terms are bounded in accordance with Lemma 5.4.
Now consider the off-diagonal terms where q1/b1 �= q2/b2. Let us restrict to say b1 �

X1, and b2 � X2, where the Xi range over dyadic segments, with 1 � Xi � B. We 
first claim the number of solutions in (q1, b1) to (5.12) with b1 � X1 is � 1 + ΔX2

1
M . To 

see this, note that the term “1” accounts for a potential solution (this certainly cannot 
be improved for arbitrary x since given q, b there exist x satisfying (5.12)). Once such 
a solution is found, we can estimate the number of others by noting that the spacing 
between two reduced fractions of denominator of size X1 is � X−2

1 , so the total number 
of such fractions that can be packed into an interval of length L is bounded from above 
by 1 + LX2

1 . This proves the claim. By a similar argument, for each choice of (q1, b1), 
the number of (q2, b2) with 0 < | q1b1 − q2

b2
| � M−1 is � X1X2

M .
Thus the bound on the off-diagonal terms is

�
∑

X1,X2 dyadic
M

(
1 + ΔX2

1
M

) 1
X1X2

X1X2

M
�

(
log T + ΔB2

M

)
log T,

which completes the proof.

5.4. Proof of Lemma 5.6

When b is very small (and so a is very large) then we treat the problem in a similar 
way to the early steps of [6]. We go back to the original definition (5.3), open the square, 
and execute the integral, obtaining

IB0 = Δ
∑

a1,a2,b1,b2

w2

(
a1b1
N

)
w2

(
a2b2
N

)
g0

(
b1
B0

)
g0

(
b2
B0

)
e((a1b1 − a2b2)x)

(a1a2b1b2)1/2(b1/b2)2iT

× ŵ1

(
− Δ

2π log a1b1
a2b2

)
.

Our plan is to solve the equation a1b1 − a2b2 = h �= 0 via Poisson summation in a2
(mod b1). The contribution to IB0 from h = 0 is O(Δ log T ), by a trivial bound. Let I ′B0

be the contribution to IB0 from h �= 0. First we extract the greatest common divisor 
d = (b1, b2) which necessarily divides h. In this way we obtain

I ′B0
= Δ

∑
h�=0

e(hx)
∑
d|h

∑
(b1,b2)=1

g0

(
db1
B0

)
g0

(
db2
B0

)
(db1)1/2+2iT (db2)1/2−2iT R(b1, b2, h), (5.18)

where

R(b1, b2, h) =
∑

h

w2

(
da1b1
M

)
w2

(
da2b2
M

)
(a1a2)1/2

ŵ1

(
− Δ

2π log
(
1 + h/d

a2b2

))
.

a1b1−a2b2= d
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We next re-interpret the equation a1b1−a2b2 = h
d as a congruence a2 ≡ −b2

h
d (mod b1), 

and replace every occurrence of a1 with 
h
d +a2b2

b1
. Therefore by Poisson summation in a2

(mod b1), we have

R(b1, b2, h) = 1
b1

∑
l∈Z

e
( lb2(h/d)

b1

)
∞∫
0

w2

(
h+drb2

M

)
w2

(
drb2
M

)
(h+drb2

db1
r)1/2

ŵ1

(
− Δ

2π log
(
1 + h/d

rb2

))
e
(
− lr

b1

)
dr.

Here the integral is of the form q̂(y) =
∫
q(r)e(−ry)dr where q is a function supported on 

r � M
db2

� M
B0

, satisfying q(j)(r) � ( M
db2

)−j−1, and with y = l
b1

. Thus q̂(y) �j ( |y|Mdb2
)−j , 

by integration by parts. Now we have, with y = l/b1, that

|y|M
db2

= |l|M
db1b2

� |l|Md

B2
0

� |l|MT−2α,

and since we assume M � T 1/2−ε, and α < 1/4, if l �= 0, then q̂(l/b1) � (lT )−100 which 
is very small. For this reason, we only need to consider l = 0.

Remark. Here b is small enough that Poisson summation conveniently leads only to the 
zero frequency, i.e., l = 0. As in [6, proof of Theorem 1], one can certainly consider 
larger values of b which lead to nonzero frequencies. However, if b is large compared to 
a, we should apply Poisson summation in b. These arguments are used in the proof of 
Lemma 5.5.

Now we return to the proof. We have

I ′B0
= Δ

∑
h�=0

e(hx)
∑
d|h

∑
(b1,b2)=1

g0

(
db1
B0

)
g0

(
db2
B0

)
(db1)1/2+2iT (db2)1/2−2iT

× 1
b1

∞∫
0

w2

(
h+drb2

M

)
w2

(
drb2
M

)
(h+drb2

db1
r)1/2

ŵ1

(
− Δ

2π log
(
1 + h/d

rb2

))
dr, (5.19)

plus a small error of size O(T−100). By changing variables r → r
db2

, we obtain that (5.19)
equals

Δ
∑

e(hx)
∑ 1

d

∑ g0

(
db1
B0

)
g0

(
db2
B0

)
b1+2iT
1 b1−2iT

2
h�=0 d|h (b1,b2)=1
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×
∞∫
0

w2

(
r
M

)
w2

(
r+h
M

)
(r(r + h))1/2

ŵ1

(
− Δ

2π log
(
1 + h

r

))
dr. (5.20)

At this point, the integral is independent of b1 and b2. Note that if we restrict attention 
to d ≥ D > 1, then by a trivial bound, we obtain

Δ
∑
d≥D

1
d

M

dΔ log2 B0 � M

D
log2 T.

We set D = B
1/2
0 , so that this error term is satisfactory.

Next we claim that if d � D = B
1/2
0 , then

∑
(b1,b2)=1

g0

(
db1
B0

)
g0

(
db2
B0

)
b1+2iT
1 b1−2iT

2
= |ζ(1 + 2iT )|2

ζ(2) + OC((log T )−C), (5.21)

where C > 0 is arbitrarily large. For this, we simply apply a double Mellin transform, 
obtaining that the left hand side of (5.21) equals

( 1
2πi

)2 ∫
(1)

∫
(1)

(B0

d

)s1+s2
g̃0(s1)g̃0(s2)

ζ(1 + 2iT + s1)ζ(1 − 2iT + s2)
ζ(2 + s1 + s2)

ds1d2.

Integrating by parts once, we have that for Re(s) > 0,

g̃0(s) = −1
s

∞∫
0

g′0(x)xsdx.

Since g0 is identically 1 for 0 ≤ x < 1, g̃0 has a pole at s = 0 (and nowhere else). Further-
more, Ress=0g̃0(s) = − 

∫∞
0 g′0(x)dx = 1. We move the s1 integral to σ1 = − α

(log T )2/3 , 
some α > 0, followed by the same process for the s2 integral. By the rapid decay of g̃0, 
the residues at s1 = −2iT and s2 = 2iT are very small. Using Lemma 2.1 (Vinogradov–
Korobov), we obtain that the left hand side of (5.21) equals

|ζ(1 + 2iT )|2
ζ(2) + O((log T )4/3 exp

(
− β

logB0

(log T )2/3
)
,

for some constant β > 0. Since we assume B0 � T δ, this error term is O((logT )−C) for 
C > 0 arbitrary.

Applying (5.21) to (5.20) and extending the d-sum back to all the divisors of h (without 
making a new error term), we obtain for arbitrary C > 0
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I ′B0
= Δ |ζ(1 + 2iT )|2

ζ(2)

∞∫
0

∑
h�=0

σ−1(h)e(hx)
w2

(
r
M

)
w2

(
r+h
M

)
(r(r + h))1/2

ŵ1

(
− Δ

2π log
(
1 + h

r

))
dr

+ OC

( N

(log T )C
)
.

At this point we can use Taylor expansions (think of h
M � 1

Δ , even though this is not 
literally true), giving now

I ′B0
= Δ |ζ(1 + 2iT )|2

ζ(2)

∞∫
0

w2(r)2

r

∑
h�=0

σ−1(h)e(hx)ŵ1

(
− Δh

2πMr

)
dr+O

(M |ζ(1 + 2iT )|2
(log T )100

)
.

By comparison to the expression for MTOD given by (4.11), we have shown that these 
terms equal M · SΔ plus a satisfactory error term. We already showed that if w1 has 
support on the positive reals, then SΔ satisfies (1.16). If w1 has support on R, then we 
have SΔ � 1, by the remark following Lemma 4.2. This completes the proof.

5.5. Proof of Lemma 5.5

We return to the definition of IA,B as

IA,B = 1
M

∞∫
−∞

w1

( t

Δ

)∣∣∣∑
a,b

e(abx)
a−itb2iT−it

f1

( a

A

)
g1

( b

B

)∣∣∣2dt,
where g1(x) = x−1/2g(x), and f1(x) = x−1/2f(x). We square out the sum and perform 
the t-integral, obtaining

IA,B = Δ
M

∑
h∈Z

e(hx)
∑

a1,a2,b1,b2
a1b1−a2b2=h

ŵ1

(
−Δ
2π log

(
1 + h

a2b2

))
(b1/b2)2iT

f1

(a1

A

)
f1

(a2

A

)
g1

(b1
B

)
g1

(b2
B

)
.

From the term h = 0, we easily derive a bound of size O(Δ log T ), consistent with (5.8). 
Let IOD

A,B denote the terms from h ≥ 1. By symmetry, it suffices to bound these terms.
Let d = (a1, a2), which necessarily divides h, and change variables ai → dai, h → dh, 

giving

IOD
A,B = Δ

M

∑
d

∑
h≥1

e(dhx)
∑

(a1,a2)=1
a1b1−a2b2=h

ŵ1

(
−Δ
2π log

(
1 + h

a2b2

))
(b1/b2)2iT

f1

(da1

A

)

× f1

(da2

A

)
g1

(b1
B

)
g1

(b2
B

)
.
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Note that the terms with h � M
dΔT ε may be bounded by O(T−100), from the rapid 

decay of ŵ. Next we interpet the equation a1b1 − a2b2 = h as a congruence b2 ≡ −a2h

(mod a1), where we need to substitute b1 = a2b2+h
a1

wherever it appears. To aid in this, 
we observe that

(b1
b2

)2iT
=

(a1

a2

)−2iT
e2iT log(1+ h

a2b2
).

Therefore, we have

IOD
A,B = Δ

M

[ ∑
d�A

∑
(a1,a2)=1
ai	A/d

(a1/a2)2iT f1

(da1

A

)
f1

(da2

A

) ∑
1≤h� M

dΔT ε

e(dhx)

∑
b2≡−a2h (mod a1)

e−2iT log(1+ h
a2b2

)ŵ1

(−Δ
2π log

(
1 + h

a2b2

))
g1

(a2b2 + h

a1B

)
g1

(b2
B

)]

+ O(T−100).

We clean this up a bit by the approximations g1(a2b2+h
a1B

) = g1(a2b2
a1B

) + O( h
a1B

), and

ŵ1

(−Δ
2π log

(
1 + h

a2b2

))
= ŵ1

( −Δh

2πa2b2

)
+ O

(Δh2

a2
2b

2
2

(
1 + Δh

a2b2

)−100)
.

The error terms in these approximations contribute at most O(MΔ ) to IA,B . We also 
apply a dyadic partition of unity to the sum over h, with a generic piece denoted by 
w3(h/H), where H runs over dyadic numbers � M

dΔT ε.
Now define

U(v, y) = ŵ1

( −Δv

2πa2y

)
g1

( a2y

a1B

)
g1

( y

B

)
w3

( v

H

)
,

which is supported on v � H, y � B, and therein satisfies the bounds

xmynU (m,n)(v, y) �m,n 1,

uniformly in the auxiliary variables a1, a2, d, Δ, T, H, . . . . In the terminology of [21], this 
means that U forms a 1-inert family of functions.

Therefore,

IOD
A,B � Δ

M

∑
d�A

∑
(a1,a2)=1
ai	A/d

∑
H dyadic

|Da1,a2,d| + O
(M

Δ

)
,

where
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Da1,a2,d =
∑

1≤h� M
dΔT ε

e(dhx)
∑

b2≡−a2h (mod a1)

e−2iT log(1+ h
a2b2

)U(h, b2).

We now turn to the estimation of D, where the first step is applying Poisson summa-
tion in b2. We obtain

Da1,a2,d =
∑

1≤h� M
dΔT ε

e(dhx) 1
a1

∑
ν∈Z

e
(−νha2

a1

) ∞∫
−∞

e−2iT log(1+ h
a2t )−2πi νt

a1 U(h, t)dt.

Write the phase above as

φ(t) = −2T log
(
1 + h

a2t

)
− 2π νt

a1
,

and note

φ′(t) = 2Th
t(a2t + h) − 2π ν

a1
= 2Th

a2t2

(
1 + O

( h

a2B

))
− 2π ν

a1
.

We have

h

a2B
� T ε

Δ , and B
Th

a2B2 � T

M
� T δ.

Taken together, these bounds show that B|φ′(t)| � T δ for all t in the support of G
unless

ν � TH

B2 , (5.22)

so in particular ν > 0. By [2, Lemma 8.1], the condition B|φ′(t)| � T δ is sufficient to 
show that the integral is small, say O(T−100), by repeated integration by parts, so from 
now on we suppose (5.22) holds. Our plan is to apply stationary phase analysis to the 
integral. Note that

−φ′′(t) = 4Th
a2t3

(1 + O(Δ−1T ε)) � THd

MB2 .

Moreover, φ′ is monotone with a unique zero for t � B given by

t0 =
√

hTa1

πνa2
[(1 + η0)1/2 − η

1/2
0 ], (5.23)

where

η0 = πhν
.
4Ta1a2
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Note that η0 � Δ−2T 2ε. It is not hard to see that for j ≥ 1, φ(j)(t) � THd
MBj . We may 

then apply [21, Main Theorem] with Y = THd
M , Z = B, X2 = H. Since Y � T δ (using 

hd ≥ 1 and M � T 1−δ), the conditions to apply stationary phase are in place. For 
forthcoming steps, we need to analyze φ(t0).

Observe

log
(
1 + h

a2t0

)
= log(a2t0 + h) − log(a2t0) = log

(2Tha1

2πνt0

)
− log(a2t0),

which simplifies as −2 log(
√

1 + η0 −
√
η0). Similarly, we have

2π ν

a1
t0 = 4T√η0.

Therefore, we have

φ(t0) = 4T log(
√

1 + η0 −
√
η0) − 4T√η0(

√
1 + η0 −

√
η0)

= −8Tη1/2
0 (1 + c1η

1/2
0 + c2η0 + c3η

3/2
0 + . . . ),

for certain constants ci.
By [21, Main Theorem], we conclude that

∞∫
−∞

e−2iT log(1+ h
a2t )−2πi νt

a1 U(h, t) = B
√
M√

THd
e−8iTη

1/2
0 (1+... )U1(h) + O(T−200), (5.24)

where U1(h) = U1(h, ν, a1, a2, . . . ) satisfies the derivative bounds

vmU
(m)
1 (v) � 1, (5.25)

with uniformity in all auxiliary variables. One could alternatively apply, say, [14, Lemma 
5.5.6] to obtain an asymptotic in (5.24), with a weaker (but sufficient) error term, and 
a weight function of the form cU(h, t0), for some constant c. One would then need 
to manually check (5.25), which is a somewhat tedious exercise. In the same vein, [2, 
Proposition 8.2] develops a full asymptotic expansion for (5.24), but does not directly 
give the bounds on U1(h) with respect to h (however, [21, Main Theorem] builds on this 
work in a crucial way).

We insert (5.24) back into D, obtaining

Da1,a2,d =
∑

ν	TH
B2

B
√
M

a1
√
THd

∑
h	H

e(dhx)e−8iTη
1/2
0 (1+... )U1(h) + O(T−100).

To track our progress, note that the trivial bound applied to D now shows D � M
√
T

Δ3/2 T
ε, 

while the original trivial bound is D � MBT ε (assuming B � A). In the case of interest 
ΔA
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to us, when A ≈
√

Δ and B ≈
√
T , these bounds are equalized. However, the new 

formula for D is more accessible to understand the dependence on h.
Consider the exponential sum

∑
h	H

e−8iTη
1/2
0 (1+... )+2πidhxU1(h),

where the phase is of the form

ϕ(h) = −8T
√
γ0h(1 + c1

√
γ0h + c2(γ0h) + . . . ) + 2πdhx,

where hγ0 = η0. For each j ≥ 2, we have

ϕ(j)(h) = T
√
γ0h

hj
(d(j)

0 + d
(j)
1 (γ0h)1/2 + . . . ),

for certain constants, with d(j)
0 �= 0. We conclude that

|ϕ(j)(h)| � T
√
γ0H

Hj
� dHT/M

Hj
.

By partial summation, and Weyl’s method (see [16, Corollary 8.5] and check that the 
frequency dHT/M is larger than the length H of summation, since, dHT

M � HT δ), we 
conclude that

Da1,a2,d � T ε d

A

TH

B2
B
√
M√

THd
H1/2(dHT/M)1/6 + T−100 � T ε

(T

Δ

)2/3(M
Δ

)1/2
.

Hence,

Δ
M

∑
d�A

∑
(a1,a2)=1
ai	A/d

∑
H dyadic

|Da1,a2,d| � T εA
2

Δ
(ΔT )1/4

M1/2 (ΔT )1/2
(Δ
T

)1/12
.

This completes the proof of Lemma 5.5.

6. The smallest values of Δ

In this section we show Proposition 1.7, that is,
∫

|t−T |�T 1/100

|F (it)|2dt � (log T )ε. (6.1)

The analysis from Section 2.3 does not cover all of this range because Stirling’s asymp-
totic is no longer applicable (one of the gamma factors making up γVT

(1/2 + it) is 
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evaluated at imaginary part ≈ |T − t|). Instead, we go back to the original definition 
(2.9). Obviously,

∞∫
−∞

|ψ̃(1/2 + it± iT )|2dt � 1,

so that by Cauchy–Schwarz, we have
∫

|t−T |�T 1/100

|F (it)|2dt � 1 + 1
|ζ(1 + 2iT )|2

∑
Δ�T 1/100

dyadic

K(Δ, T, x), (6.2)

where

K(Δ, T, x) =
∫

|t−T |	Δ

∣∣∣∑
n≥1

τiT (n)e(nx)
n1/2+it

k(n, t, T )
∣∣∣2dt,

and where with σ > −1
2 , we have

k(n, t, T ) = 1
2πi

∫
(σ)

ψ̃(−u)n−u cosh(πT/2)γVT
(1/2 + it + u)du.

When Δ � 1, we need to re-interpret |t − T | � Δ as |t − T | � 1, but we do not make 
new notation for this range.

Next we split the n-sum into three intervals: n � N−
0 , N−

0 � n � N+
0 , and n � N+

0 , 
where

N−
0 = (ΔT )1/2

(log T )2 , N+
0 = (ΔT )1/2(log T )ε.

Let us call these three intervals Ni, i = 1, 2, 3, respectively. To simplify the analysis, 
we suppose that these three ranges are detected by a smooth partition of unity, say 
γ1 + γ2 + γ3 = 1, with γi respective to Ni.

Our goal is to relate K(Δ, T, x) to expressions to which we may apply the results of 
Section 5. To this end, we have

Lemma 6.1. Suppose that Δ � (log T )ε. Then

K(Δ, T, x) �
∫

|t−T |	Δ

(ΔT )− 1
2

∣∣∣ ∑
N−

0 �n�N+
0

τiT (n)e(nx)γ2(n)
n1/2+it

∣∣∣2dt + |ζ(1 + 2iT )|2
(log T )2 . (6.3)

If Δ � (log T )ε, then
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K(Δ, T, x) �ε

∫
|t−T |�(log T )ε

T− 1
2

∣∣∣ ∑
N−

0 �n�N+
0

τiT (n)e(nx)γ2(n)
n1/2+it

∣∣∣2dt

+ |ζ(1 + 2iT )|2
(log T )2 . (6.4)

The error terms here contribute � (log T )−1 to (6.1), after summing over the O(logT )
values of Δ in (6.2), which is satisfactory.

Proof. By Cauchy’s inequality, it suffices to bound the three ranges Ni separately. For 
n � N−

0 (that is, i = 1), we take σ1 = −1
4 , and for n � N+

0 (i = 3), we take σ3 = 1/ε2

(large). In each n-range, we then move the u-integral outside and apply Cauchy–Schwarz 
in the following form (similarly to (4.4) above):

∫
t

∣∣∣ ∑
n∈Ni

τiT (n)e(nx)γi(n)
n1/2+it

1
2πi

∫
(σi)

ψ̃(−u)n−u cosh(πT/2)γVT
(1/2 + it + u)du

∣∣∣2dt
�

∫
t

[( ∫
(σi)

|ψ̃(−v)| cosh(πT )|γVT
(1/2 + it + v)|2dv

)

×
( ∫

(σi)

|ψ̃(−u)|
∣∣∣ ∑
n∈Ni

τiT (n)e(nx)γi(n)
n1/2+it+u

∣∣∣2du)]dt. (6.5)

We next argue that

∫
(σ)

|ψ̃(−v)| cosh(πT )|γVT
(1/2 + it + v)|2dv � (1 + |t− T |)σ− 1

2 (1 + |t + T |)σ− 1
2 . (6.6)

By Stirling’s approximation, the left hand side of (6.6) is bounded by

∞∫
−∞

|ψ̃(−σ − iy)|(1 + |t + T + y|)σ− 1
2 (1 + |t− T + y|)σ− 1

2 dy.

The main range of the integral is |y| ≤ 1 + 1
2 |t − T |, which by a trivial bound leads to 

the claimed bound. If |y| ≥ 1 + 1
2 |t − T |, then the rapid decay of ψ̃ can be used to show 

that this part of the integral is negligible by comparison. Hence

K(Δ, T, x)

�
3∑

i=1

∫
|t−T |	Δ

(ΔT )σi− 1
2

∞∫
−∞

|ψ̃(−σi − iy)|
∣∣∣ ∑
n∈Ni

τiT (n)e(nx)γi(n)
n1/2+σi+it+iy

∣∣∣2dydt. (6.7)
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To focus on the important parts here, we shall apply the mean value theorem for 
Dirichlet polynomials (combined with Lemma 2.6) in some ranges where this is accept-
able. In (6.7), with i = 1 (so σ1 = −1/4), we have the bound

∑
n�N−

0

|τiT (n)|2
n1/2

(Δ + n)
(ΔT )3/4

� |ζ(1 + 2iT )|2 log T
(ΔT )3/4

(Δ(N−
0 )1/2 + (N−

0 )3/2) � |ζ(1 + 2iT )|2
(log T )2 ,

consistent with Lemma 6.1. A similar (even stronger) bound holds for N3, and we omit 
the details as it is even easier than the above case (it saves an arbitrary power of logT ). 
Therefore,

K(Δ, T, x) �
∫

|t−T |	Δ

(ΔT )− 1
2

∞∫
−∞

|ψ̃(−iy)|
∣∣∣ ∑
N−

0 �n�N+
0

τiT (n)e(nx)γ2(n)
n1/2+it+iy

∣∣∣2dydt

+ |ζ(1 + 2iT )|2
(log T )2 . (6.8)

If Δ � (log T )ε, then we can use an argument as in the proof of Lemma 4.1 to truncate 
the y-integral at 1

100Δ, and then over-extend the t-integral slightly, which is valid by the 
positivity of the integrand. The error term obtained in this way saves an arbitrarily large 
power of log T which is acceptable for these values of Δ. This proves (6.3).

Next suppose Δ � (log T )ε. In this situation, we truncate the y-integral at (log T )ε, 
which by the rapid decay of ψ̃ introduces an error term that saves an arbitrarily large 
power of logT over the trivial bound, which is satisfactory. We then use a simple over-
estimate in the following shape:

(ΔT )−1/2
∫

|t−T |	Δ

|f(t)|2dt ≤ T−1/2
∫

|t−T |�(log T )ε

|f(t)|2dt.

At this point, the t-integral has the same length as the y-integral, so we can again change 
variables t → t −y and double the length of t-integration to separate the variables t and y. 
This proves (6.4). �

Now we are ready to prove the bound (6.1). First, we claim

∑
(log T )100�Δ�T 1/100

dyadic

∫
|t−T |	Δ

(ΔT )− 1
2

|ζ(1 + 2iT )|2
∣∣∣ ∑
N−

0 �n�N+
0

τiT (n)e(nx)γ2(n)
n1/2+it

∣∣∣2dt
� (log T )ε. (6.9)

In order to apply the results from Section 5, we apply a dyadic partition of unity within 
the n-sum, and apply Cauchy’s inequality. Since log(N+

0 /N−
0 ) � log log T , there are 
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at most O(log log T ) such dyadic pieces to consider. We then open the divisor function 
τiT (n) =

∑
ab=n(a/b)iT , and apply a partition of unity to the a- and b-sums, leading 

to a similar decomposition as in Lemma 5.2. One small difference is that now n � M , 
where N−

0 � M � N+
0 . We apply Lemma 5.6 to satisfactorily bound IB0 , choosing 

B0 = T 13/56. The factor (log T )ε arises because N+
0

(ΔT )1/2 � (log T )ε. Now we consider 
IA,B where B � T

13
56 . By [10, Theorem 2.9], with q = 3, Q = 8, and partial summation, 

we have

∑
b	B

e(abx)
b1/2+2iT−it

� B1/2T
1/30

B1/6 .

Therefore, trivially summing over a and integrating over t, we obtain

IA,B � ABΔT 1/15

B1/3 � ABT
1

100+ 1
15− 13

168 = MT−1/1400.

Since this gives a power saving, it is easily seen to be satisfactory. This shows (6.9).
Next, consider the terms with (logT )ε � Δ � (log T )100, as well as Δ � (log T )ε. In 

both cases, we reduce to O((log T )ε) instances of expressions of the form

(log T )ε

M |ζ(1 + 2iT )|2
∫

|t−T |�(log T )100

∣∣∣∑
n

τiT (n)e(nx)w2(n/M)
n1/2+it

∣∣∣2dt.

Again, we decompose this as in Lemma 5.2, with B0 = T 13/56. The IA,B parts are 
bounded as in the previous paragraph, giving a power saving. The IB0 part is bounded 
with Lemma 5.6. The remark following Lemma 5.6 indicates that in the present setting, 
where w1 has support on, say, [−10, 10], we may only claim SΔ � 1. This is acceptable, 
because there are only O((logT )ε) such instances of these expressions. This completes 
the proof.

7. Corollary 1.2

7.1. Shifted QUE

The main tool in proving Corollary 1.2 is the following more general version of The-
orem 1.1. Let a be a fixed (small) real number, and define the shifted restricted QUE 
integral:

Iψ,a(x, T ) =
∞∫
0

ψ(y)E∗
T (x + iy)ψ(y(1 + T−1a))E∗

T (x + iy(1 + T−1a))dy
y
.
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Theorem 7.1. Let conditions be as in Theorem 1.1. Then

Iψ,a(x, T ) = 3
π

log(1/4 + T 2)
∞∫
0

ψ2(y)
[
J0(a) + Bq(1, T )J0

(∣∣∣θT
y

+ ia
∣∣∣)]dy

y

+ O((log T )35/36+ε). (7.1)

The implied constant depends continuously on a, and is independent of x.

To deduce Corollary 1.2, we let a = a0 = 3.831 . . . be the location of the global 
minimum of J0(x) for x ≥ 0. Then J0(a0) = −0.4027 . . . , and |J0(x)| < |J0(a0)| for all 
x > a0. Hence |J0(|y−1θT + ia|)| ≤ |J0(a0)| (with equality iff θ = 0, i.e. x is rational). 
We also claim that |Bq(1, T )| < 1, for all q ≥ 2, which we prove in Section 7.2 below. 
Of course, Bq(1, T ) = 1 for q = 1. In any event, we may deduce that Iψ,a0(x, T ) < 0 for 
all x ∈ R and T sufficiently large. Therefore, there must exist y in the support of ψ so 
that E∗

T (x + iy) and E∗
T (x + iy(1 + T−1a0)) have opposite signs, and hence also a zero 

in-between.
Now we embark on the proof of Theorem 7.1. Since many of the details are nearly 

identical to those in the proof of Theorem 1.1, we will be brief in those instances. We 
also refer to [19] for more in-depth explanations in certain locations. In place of (1.11), 
we instead have

Iψ,a(x, T ) = 1
2π

∞∫
−∞

|F (it)|2
(
1 + a

T

)−it

dt,

for which see [19, (5.5)]. Therefore, any already-proven upper bound on an integral of 
|F (it)|2 over some interval immediately implies the same bound here. In particular, the 
proof of Theorem 1.1 gives that

Iψ,a(x, T ) = 1
2π

∫
|t|≤T−ηT

|F (it)|2
(
1 + a

T

)−it

dt + O(η1/2 log T ),

where η is some fixed small negative power of logT . We may also freely replace F by F0
in the above approximation.

Now we follow some of the steps from [19] to handle this new weight (1 + T−1a)−it. 
By [19, Lemma 5.4], we have

(
1 + a

T

)−it

=
L∑

�=0

(
−it

�

)( a

T

)�

+ O(10−L),

uniformly for |t| ≤ T and a in some fixed compact set. We pick L � log log T , with an 
implied constant large enough so that 10−L log T � η1/2 log T . Hence
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Iψ,a(x, T ) =
L∑

�=0

a�
1
2π

∫
|t|≤T−ηT

(
−it

�

)
T−�|F0(it)|2dt + O(η1/2 log T ).

For � ≥ 1, the contribution from |t| ≤ T 1/2 (say), is O(T−1/2+ε), On the other hand, 
when |t| ≥ T 1/2, then we have

(
−it

�

)
= (−it)�

�! (1 + O(|t|−1�2)),

which is a small error term. After applying this approximation, we may then extend the 
integral back to |t| ≤ T 1/2 with an error that is absorbed by the existing error term. 
Thus,

Iψ,a(x, T ) =
L∑

�=0

(−ia)�

�!
1
2π

∫
|t|≤T−ηT

( t

T

)�

|F0(it)|2dt + O(η1/2 log T ).

Now we carry through the arguments from Section 3. Essentially the only difference 
is that J(m, n) is altered by the presence of the factor (t/T )� in (3.2). It is easy to 
see that the k-th derivative bound on the new J is altered by multiplication by at most 
O(�k) � (log log T )k. These factors are easily absorbed by a factor (logT )ε. We therefore 
obtain the same error term stated in (3.6). The main term changes in an interesting way, 
however, so we now focus on that aspect.

The analog of the formula (3.20) for J̃ ′
θ(0) is now of the form

π2

2 log T
∞∫
0

ψ2(y)
[ ∫
|t|≤T

( t

T

)�

(T 2 − t2)−1/2eiθ
√

T2−t2
y

dt

2π

]dy
y
.

For � odd this integral vanishes, while for � even we have from [9, 8.411.6] and gamma 
function identities, that

∫
|t|≤T

( t

T

)2�
(T 2 − t2)−1/2 cos

(
θ

√
T 2 − t2

y

)
dt = π

(2�)!
�! 2−2�

(θT
2y

)−�

J�

(θT
y

)
.

This has the effect that the term J0(y−1θT ) appearing in Theorem 1.1 is now replaced 
by

S :=
∞∑
�=0

(−1)�a2�

(2�)!
(2�)!
�! 2−2�(u/2)−�J�(u),

where u = y−1θT . Technically, the sum we obtain is truncated at 2� ≤ L, but may be 
extended to ∞ with an error that is absorbed by the existing error term. We claim
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S = J0(|u + ia|).

To see this, we insert the power series expansion of (u/2)−�J�(u), which gives

S =
∞∑
�=0

(−1)�a2�

�! 2−2�
∞∑
k=0

(−1)ku2k

k!Γ(k + � + 1)2−2k.

Letting k + � = m, this neatly simplifies with the binomial theorem to give

S =
∞∑

m=0

(−1)m

22mm!2 (a2 + u2)m,

which is precisely the power series expansion of J0(
√
a2 + u2), as claimed. This completes 

the proof of Theorem 7.1.

7.2. Bounding Bq(1, T )

It is clear that Bq(1, T ) � q−1+ε, but it is pleasant to claim a clean bound valid for 
all q, which allows for the uniform statement in Corollary 1.2 (with no exceptions near 
rationals with small denominators).

If q = pqp with p prime and qp ≥ 1, then

Bq(1, T ) = Y + X

Z + X
,

where Y = −(p − 1)−1p−(qp−1)τiT (pqp−1)2, X =
∑∞

j=qp
p−j |τiT (pj)|2, and Z =∑qp−1

j=0 p−j |τiT (pj)|2. It is easy to see Bq(1, T ) < 1, since Y ≤ 0 < Z. It is also easy 
to see −Y < Z, whence Bq(1, T ) > −Z+X

Z+X ≥ −1. Thus, each local factor making up 
Bq(1, T ) has absolute value strictly less than 1, and so |Bq(1, T )| < 1 for all q ≥ 2.

8. Maass cusp forms

Here we provide some discussion of Conjecture 1.3. Begin by writing the Fourier 
expansion in the form

uj(x + iy) = ρj(1)
∑
n �=0

λuj
(n)e(nx)
|n|1/2 VTj

(2π|n|y).

Here ρj(1) is determined by the normalization of uj . The initial developments from 
Section 2.3 carry over with minimal changes. We expect that the main term comes from 
the interval |t| ≤ T − o(T ), which is the range of t studied in Section 3. Moreover, we 
expect that there is cancellation in shifted convolution sums with Hecke eigenvalues, and 
so the main term should come from the diagonal, as in (3.4). It is easy to formally carry 



1216 M.P. Young / Advances in Mathematics 340 (2018) 1166–1218
through the argument from Section 3.3. The main difference is that Ld(s) now takes the 
form

Ld(s) =
∞∑

n=1

λuj
(dn)2χ(n)
ns

.

This Dirichlet series has a pole iff χ is principal, and moreover the pole is simple (for 
comparison, in the Eisenstein series case, the pole is double).

The contribution from χ = χ0 is then analogous to (3.15), but with

Zq(s) =
∞∑

n=1

λuj
(n)2

ns

μ(q/(n, q))
ϕ((q/(n, q)) = Z1(s)Bq(s, uj),

say, where

Bq(s, uj) =
∏

pqp ||q

∑∞
k=0

λuj
(pk)2

pks

μ(pqp/(pk,pqp ))
ϕ((pqp/(pk,pqp ))∑∞

k=0
λuj

(pk)2

pks

. (8.1)

By standard Rankin–Selberg calculations, we have that ρj(1)2
cosh(πTj)Ress=1Z1(s) equals an 

absolute constant. We indirectly work out the constant of proportionality at the end.
In Section 3.4, we bounded J̃θ(0), and asymptotically evaluated 

∑
± J̃ ′

±θ(0). In the 

cusp form case there is no reason to analyze J̃ ′
±θ(0), since the Dirichlet series only has 

a single pole, and instead we need to asymptotically evaluate 
∑

± J̃±θ(0). Luckily, we 
may re-use the calculations from Section 3.4, since in (3.19) we used the approximation 
log x ∼ log T (with now T = Tj). Hence, the main term of 

∑
± J̃ ′

±θ(0) is simply log T
times the main term of 

∑
± J̃±θ(0), for which one may then consult (3.17).

Putting everything together, we obtain the main term as in the right hand side of 
(1.7), but multiplied by some absolute constant of proportionality, which we claim is 1. 
One can check this by comparison with [35, Conjecture 1.1], by specializing q = 1. 
Alternatively, one may integrate both sides of (1.7) over 0 ≤ x ≤ 1, in which case the 
result must be consistent with the QUE theorem of Lindenstrauss and Soundararajan. 
As discussed in the introduction, the term with Bq(1, uj)J0( θTj

y ) is negligible except on 
a set of x of measure 0.

It may also be worth commenting on the presence of the factor δj , which is only 
implicitly visible in Theorem 1.1, since the Eisenstein series is even. This δj factor arises 
from studying the “opposite” diagonal terms (those terms with m = −n), which are 
precisely those terms leading to the secondary main term with Bq and the J0-Bessel 
function.

We also extend Conjecture 1.3 into an analog of Theorem 7.1 in the obvious way.
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