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Abstract—We introduce Evenly Cascaded convolutional Net-
work (ECN), a neural network taking inspiration from the
cascade algorithm of wavelet analysis. ECN employs two feature
streams - a low-level and high-level steam. At each layer these
streams interact, such that low-level features are modulated
using advanced perspectives from the high-level stream. ECN is
evenly structured through resizing feature map dimensions by a
consistent ratio, which removes the burden of ad-hoc specification
of feature map dimensions. ECN produces easily interpretable
features maps, a result whose intuition can be understood in
the context of scale-space theory. We demonstrate that ECN’s
design facilitates the training process through providing easily
trainable shortcuts. We report new state-of-the-art results for
small networks, without the need for additional treatment such
as pruning or compression - a consequence of ECN’s simple
structure and direct training. A 6-layered ECN design with
under 500k parameters achieves 95.24% and 78.99% accuracy on
CIFAR-10 and CIFAR-100 datasets, respectively, outperforming
the current state-of-the-art on small parameter networks, and
a 3 million parameter ECN produces results competitive to the
state-of-the-art.

Index Terms—cascade algorithm, multi-level feature repre-
sentation, network efficiency, recurrent convolution, recursive
convolution

I. INTRODUCTION

How do humans come to understand their world? Consider
the learning of mathematics - we learn basic mathematics
before proceeding to advanced mathematics, the understanding
of basic math serving as the foundation on which to de-
velop an understanding of advanced math. Once an advanced
understanding of math is acquired, it in turn is used to
better understand basic math, reinforcing an understanding
of mathematics as a whole. Similarly in perception - higher
levels of abstraction within our perceptual hierarchies are built
upon the lower levels of abstraction. Additionally, using higher
level interpretations to reinforce lower level interpretations can
provide benefits to perception as a whole, in the same way that
using a more expansive understanding of mathematics to un-
derstand elementary mathematics reinforces an understanding
of mathematics as a whole.

Fig. 1. Our evenly cascaded design with 6 cascading layers using a scaling
rate of 0.75. The growth rate (the number of high level feature channels
generated in each subsequent layer) is set to 8. From the second layer on,
the low level feature channels are framed in blue boxes, the newly generated
high level feature channels are framed in red boxes.

Disregarding the interplay between levels of abstraction in
perception, the recent trend in deep neural networks is to
simply make networks deeper. Since networks have become
so deep, researchers have developed a now standard design
that divides network layers into blocks of layers [10], [16],
[22], [29]. Each block consists of layers of transforms that
produce feature maps of the same shape. Cross-block trans-
forms recombine the previous features and incorporate strided
convolutions or pooling operations to reshape the feature maps.
This strategy is an extension of the traditional design of the
multilayer perceptron or fully-connected network [28]. The
introduction of blocks has allowed a better organization of the
evolving layers of abstraction within those networks. Overall,
more high level features are abstracted through these trans-
forms (Fig. 1, 3). However, the unstructured recombination
of features in existing networks has made the investigation of
deep neural networks nontrivial [26], [34].

Aside from deviating from basic intuitions about learning
and perception, the now standard design has other apparent
shortcomings. Since strided convolution or pooling are used
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Fig. 2. Visualizations of feature maps in ECN. The underlying network has 8
feature maps in the first hidden layer. The feature channel growth rate is set to
8. In this 6-hidden-layer network there are 8, 16, 24, 32, 40, 48 feature maps
in layers 1-6 respectively. In each deeper layer the newly generated higher
level feature maps are appended as a new row. (a) Level 1 feature maps in the
first hidden layer. (b) Level 1 features are adapted and tiled in the first row,
level 2 features are newly generated using level 1 features, and are appended
in the second row. (c) Both level 1 and level 2 features are adapted and tiled
in the first two rows. Level 3 features are newly generated from level 1 and
level 2 features, and are appended as the third row. (d) Level 4 features. (e)
Level 5 features. (f) Level 6 features are used for recognition. The feature
maps have been rescaled for better visualization.

to resize the feature maps by integer scales, researchers are
compelled to create ad hoc network shapes, ones which are
subject to awkward constraints of integer pooling and strides.
Some networks assign more layers in later stages, where the
feature maps are very small [10]. Some other networks are
wider but have fewer layers [33]. The specification of feature
map dimensions or distribution of computational resources is
highly engineered and uneven in these designs. It is difficult
to determine which designs outperform others, given that the
overall shape is different. To make things worse, when the task
changes, the network shape needs to be handcrafted again.

Arguably the biggest shortcoming of existing designs is
that they afford little intuition on the training process, and
consequently make deep networks notoriously hard to train.
Researchers have expended significant effort in developing
better methods to train these networks.

In this work we introduce an architecture more closely
in line with intuitions of biological learning and perception:
Evenly Cascaded convolutional Network (ECN). ECN is 1)
easier than existing architectures to adapt to new tasks, 2)
produces internal representations which are more humanly
interpretable, 3) performs robustly as parameter count is
restricted, and 4) produces competitive performance when
compared to other state-of-the-art methods.

ECN is structured around the insights that 1) maintaining

low-level features through to the upper layers of a network is
beneficial, 2) allowing multiple levels of features to interact
with each other within the network is beneficial, 3) abrupt
changes in feature map dimension could be less ideal than
gradual changes, and 4) the manner in which features are
conventionally combined within network blocks hampers the
preservation of low-level features. Our architecture instantiates
the first two of these insights through a “cascade” architecture
- a two stream architecture, one stream for low-level features,
one stream for successively higher level features, where these
two streams interact at every layer. This differs from the
existing method of using skip connections to introduce low-
level features into upper level network layers in that low level
features are maintained, and modulated appropriately, rather
than simply jumping layers [16]. This approach differs from
a conventional two-stream approach [4] in that both streams
interact with each other. For the third insight, in both streams
of our cascade architecture bilinear interpolation is employed
for fractional pooling, allowing a gradual rather than abrupt
decrease of feature map dimensions. Different from existing
architectures, in ECN a scaling factor is introduced which
simplifies the design of the shape of the network removing the
need for handcrafting network shape. For the fourth insight we
remove the conventional combination of features across blocks
in neural networks in order to preserve the low-level signal in
ECN’s two-stream cascade architecture. We demonstrate that
preserving multilevel features enhances training by providing
easy-to-train shortcuts.

Our evaluation of ECN resulted in several intriguing results:
1) With ECN’s principled structuring, shallow networks (Fig.
1) seem to perform competitively well when compared to
extremely deep networks. 2) Complex high level tasks such
as image classification can be approached through evenly
downsampling and adapting a set of highly structured features
(Fig. 2). 3) Low level features may be of critical importance in
high level tasks such as image classification: not only do these
features remain similar in the deeper adaptation process, but
they may have provided major convenience for the training of
high level features.

Finally, we evaluate ECN using multiple convolution block
designs and find that recurrent and recursive designs lead to
improved efficiency and accuracy. Without additional treat-
ment, a standard convolution block design combined with
recurrent connections leads to state-of-the-art accuracy in
benchmark image classification tasks. Another block design
using a recursive filter gives rise to state-of-the-art efficiency.
Our 6-cascading-layer design with under 500k parameters
achieves 95.24% and 78.99% accuracy on CIFAR-10 and
CIFAR-100 datasets, respectively, outperforming the current
state-of-the-art on small parameter networks, and our 3 million
parameter version is competitive to the state-of-the-art.

II. RELATED WORK

Even though convolutional networks have led to many
exciting breakthroughs in visual and language learning tasks
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[22], the mathematical understanding of convolutional net-
works is severely underdeveloped. It is intuitively clear that
convolutional networks can be understood in part within the
context of scale-space theory or multiresolution analysis [27].
While an excellent attempt has been made [26] to explain
convolutional networks in wavelet terms, it remains unclear
how the techniques in wavelet theory can be explicitly used
to simplify the construction and training of convolutional
networks.

Skip connections or identity maps in the networks [2],
[10], [13], [16] are a popular method for improving network
performance. One intuitive understanding of the function of
skip connections is that they pass lower level representations
to deeper levels. In LSTM [13] and ResNet [10] networks
the representations are adapted during this process. Whereas
in DenseNet [16] shallow features are passed to the deeper
levels without modification. One recent work, termed Dual
Path Networks(DPN) [2], connects the two approaches using
a high order recurrent neural network, and horizontally con-
catenates ResNet [10] and DensNet [16], and shows improved
performance.

Presently, the best performing networks are typically 50
to 100 layers deep [10], [16], [31]. Translating an existing
backbone architecture to a new application with different input
and output sizes is a nontrivial task. The structuring of these
standard designs are constrained by integer resizing operations
such as pooling and strided convolution. Fractional pooling
and strides have been explored previously, e.g. [8]. In our
implementation of fractional pooling we employ bilinear inter-
polation, as is done in [20]. Furthermore, existing architectures
merge different levels of features at the end of each block
such that low- and high-level features become entangled and
in-differentiable. ECN safely removes these limitations.

As the networks become wider and deeper, methods such
as pruning [9], [23], [25], quantizing [5], and knowledge
distillation [12] have been introduced to reduce the size of
these networks. ECN uses recursion [24], [30] to re-use
parameters across layers, allowing for greater compactness of
network design. In the other direction, significant efforts have
been spent on discovering more efficient network layers or
overall architectures [14]–[16], [18], [35], [36].

III. METHODS

ECN is based on a simple cascading layer design. Intu-
itively, a cascading layer incorporates multilevel features and
gradually resizes those features before providing them to the
next layer. ECN consists of iteratively stacked cascading lay-
ers. This iterative construction process ends when a stopping
condition is met - e.g., when feature map dimensions fall
below a predefined size.

A. Utilization of Multilevel Features

We now follow the intuition that allowing an interplay
between level of abstraction within perception can give rise
to greater perceptual synergy at the beginning of Section I in
introducing ECN’s usage of multilevel features. To illustrate

Fig. 3. Multilevel feature representations within ECN. For the i-th layer (i-
th row in the figure), fractional scaling is used to downsample the features
from layer i − 1 (row i − 1 in the figure). A convolution block is applied
over these downsampled features to generate the modulation signal, and the
level i features (red block). The modulation signal is then added to the features
downsampled from the previous layer. The superscripts in each block represent
the number of modulations the features have undergone.

ECN’s relation to work in the literature we also provide three
additional viewpoints of our utilization of multilevel features:
one from the network architecture, one from wavelet analysis,
and one from optimization of neural networks.

1) From a Network Architectural Point of View: Our cas-
cading design can be viewed as evolving from the designs
of several well-performing networks [2], [10], [16]. Our
first design can be viewed as a ResNet-inspired DenseNet,
or a DenseNet-inspired ResNet. We make an extension to
DenseNet [16] when passing low level features to deeper lay-
ers by allowing them to be modulated by higher level features.
The modulation of low level features can be viewed as a
feedback mechanism, where high level knowledge is providing
“advanced viewpoints” to improve the low level knowledge,
effected through a link from the higher level stream to the
lower level stream of the network. The modulation signal
is generated using a convolution block, and is added to the
original features as in residual learning [10]. The generation of
high level features is also achieved using the convolution block
- however, the results are appended to the existing channels
(Figs. 1, 3). Similar to our design, but more costly, Dual Path
Network [2] concatenates ResNet and DenseNet layers. By not
passing low-level features through a 1 × 1 convolution, such
as is done in DPN, ECN better preserves low-level features,
making them more directly available at higher layers.

As a consequence of this ECN is able to pass features
throughout the whole network, rather than only within each
block. With this design we explicitly enforce that the shallow-
est level features be preserved throughout the whole network,
with adaptations made only if they improve the final task
(Figs. 1, 2).

2) From a Wavelet Point of View: It is noteworthy that
the cascading layer is a more general form of the cascade
algorithm used in wavelet packet decomposition [4], [27],
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where previous level signals are decomposed into a low
frequency branch and a high frequency branch, usually fol-
lowed by downsampling by a factor of 2. In wavelet packet
decomposition, the original signal is decomposed into a binary
tree. The difference between this and ECN is that in ECN
the two siblings are merged before the next level of decom-
position, deviating from a tree structure. The extensions we
made in our cascading design derive from the adaptations and
downsampling of features which we introduce later. Due to the
cascading design, the evolution of feature maps within ECN
closely resembles the evolution of modulus maxima in scale-
space theory [27]. This relation suggests a path for further
mathematical investigation of neural networks.

3) From an Optimization Point of View: ECN’s construction
facilitates training by providing easily trainable shortcuts to
the optimization: we speculate that as a consequence of the
two stream architecture, ECN allows the decomposition of f ,
the mapping from network input to output, into a series of
progressively hierarchically deeper, and therefore harder to
train, functions: f = f1 + f2 + ... + fN . See figure 3 for
a visualization of function decomposition within and across
layers. In figure 3 layer N contains features of levels 1 through
N - this provides a direct link from the training (gradient)
signal not only to higher level features, as is the case in other
architectures, but to mid- and low-level features as well. This
relaxes the interdependence in training between fi (low fi
can be trained with less dependence on high fi), and has
the potential to facilitate training by allowing a training of
f component-wise. The result of this is the capability to train
a complex function, f , by training the simpler functions of
which it is composed, fi.

Decompositions analogous to this kind have been proven to
be helpful in multiscale signal analysis. Complex operations
are simplified by conducting them at multiple scales, either (1)
from coarse-to-fine or (2) in parallel. Here, we take the second
approach to train different levels in parallel: the easier to train,
or coarse, components can serve as a backbone model for the
harder components, where the harder-to-train layers have only
to compensate for the residuals of the learning problem. We
conjecture that ECN’s construction facilitates the progressive
training of neural networks. Note that ECN’s construction is
a revival of the layer-wise pretraining technique [1] which
triggered the era of deep learning. This classic approach
followed the correct intuition of progressively developing
high level representations. But the layer-wise training, which
belongs to the first approach, lacks proper supervision signal.

B. Fractional Scaling

To facilitate the passing of low level features throughout
the whole network, and to evenly resize the feature maps in a
network, we propose to use fractional scaling, performed using
bilinear interpolation, replacing the classic integer pooling and
striding operations. Bilinear interpolation was first introduced
in Spatial Transformer Networks [20] to continuously deform
feature maps for recognition tasks. Here we use bilinear

interpolation to replace all the size change operations in the
network.

Using bilinear interpolation, the outputs of the previous
layer are fractionally scaled to the desired shape, and then
serve as inputs to the next layer. Since bilinear interpolation
is a locally smooth operation, subgradients can be calculated
for backpropagation. In a network with a decreasing feature
map dimension, having a constant scaling factor close to 1
leads to a deep network. Similarly, having a constant scaling
factor close to 0 leads to a shallow network.

We adopt a simple uniform sampling when scaling the
feature maps for obtaining the sample grid for bilinear in-
terpolation. Non-uniform sampling is a natural extension [6]
and we leave it for future work. Here, the output feature map
dimension can be either calculated from the scaling factor or
manually specified. The uniformly spaced sampling grid is
then calculated to sample from the previous feature map.

C. Convolution Block Design

Many researchers have proposed different convolution block
designs for use within layers of convolutional networks. How-
ever, in most cases different block designs are associated with
different network architectures. As a consequence, it is difficult
to draw conclusions about the relative merits of different
block designs. However, with ECN’s evenly cascaded design,
it is straightforward to incorporate different block designs. In
this work we propose and evaluate multiple block designs.
More advanced block designs than are presented here can
be evaluated in subsequent works and potentially result in
improved performance. In this paper we include six basic
blocks:

Block 1: Single convolution (Fig. 4(a)). The convolutional
layer has one single convolution operation, combined with
standard techniques such as batch normalization [19] and the
ReLU activation function [22]. We order these operations as
BN → ReLU → Conv.

Block 2: Double convolution (Fig. 4(b)). Two single convo-
lution layers are chained together, the number of intermediate
output channels is set to be the larger of the input and output
channels.

Block 3: Recurrent convolution (Fig. 4(c)). We iteratively
reuse the weights in Block 1 through recurrent connections.
We made alterations to the previously reported approach [24].
Firstly, the number of input channels do not usually match
the number of output channels. Here we propose a simple
solution: when the output channels (OUT ) are more than the
input channels (IN ), we slice the matching channels from the
output (e.g. the first IN channels) to reuse as input. Similar to
an LSTM [13] we add the outputs of the later iterations to the
initial outputs. It is important to point out that our implementa-
tions of this recurrent design lead to worse results in ECN. The
output signals usually have very different statistical properties
from the input signals, and this inconsistency interfered with
training. Our solution to this is that we insert an individual
batch normalization operation for each iteration, leaving the
convolution kernel weights shared in all iterations. This design
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Fig. 4. Convolution blocks that we evaluate: (a) Single convolution, (b) Dou-
ble convolution, (c) Recurrent convolution, (d) Recurrent double convolution,
(e) Recursive convolution. Conv C stands for cross-channel 1 × 1 convo-
lution, Conv S stands for channel-wise spatial convolution. (f) Recursive
quadruple convolution.

TABLE I
CIFAR ACCURACIES FOR ECN-6

Conv Block Initial
Channels Scaling CIFAR-10 Parameters CIFAR-100 Parameters

type 4 16 3/4 93.49% 214330 68.15% 220180
type 4 32 3/4 95.47% 849130 76.05% 860740
type 4 64 3/4 96.20% 3380170 79.80% 3403300
type 4 128 3/4 96.68% 13488010 81.75% 13534180

type 6 64 3/4 95.24% 421770 78.99% 444900

significantly improves performance with very little increase in
number of parameters (Tables VI, VII, Fig. 5).

Block 4: Recurrent double convolution (Fig. 4(d)). Similar
to Block 3 we iteratively reuse Block 2.

Block 5: Recursive convolution (Fig. 4(e)). To make the
convolutions more efficient we adopt separable convolution
operations [14] to replace standard convolution. Cross-channel
1 × 1 convolution is applied in the first stage to change the
number of input channels to match the number of output chan-
nels, followed by the channel-wise convolution in the second
stage. Compared to standard convolution which involves more
parameters, separable convolutions are usually more efficient
but are weaker than directly applying standard convolutions.
One fix for this weakness is to iteratively apply the filtering
as in Blocks 3 and 4. Traditionally this technique is called
recursive filtering. We adopt this name and include this class
of filtering in our comparison.

Block 6: Recursive quadruple convolution (Fig. 4(f)). Each
recurrent double convolution (Block 4) is replaced by four
separable convolutions.

IV. EXPERIMENTS

A. Datasets

We evaluate ECN over three datasets: CIFAR-10, CIFAR-
100 [21], and ImageNet-32 [3]. These datasets consist of
32x32 pixel images. CIFAR-10 has 10 classes, CIFAR-100
has 100 classes, and ImageNet-32 has 1000 classes. We
employ standard methods of data augmentation, including
horizontal image flips, and random 32x32 crops of zero padded

TABLE II
ECN-6 ARCHITECTURE

ECN-6
3x3 Conv[

CascadedConvBlock
FractionalScaling

]
× 6

global average pooling
Softmax

images, with 4 pixel padding. CIFAR-10 and CIFAR-100 each
contains 50,000 training samples, and 10,000 testing samples.
ImageNet-32 contains images of ImageNet [7], downsampled
to 32x32 pixels; it contains 1.2 million training samples, and
50 thousand validation samples.

B. Results

The ECN network we use has a shape where feature map
dimensions consistently decrease in size; it is constructed by
iteratively stacking cascading layers until the feature map size
is below a preset threshold (4 pixels). In our experiments we
fix the number of iterations in Blocks 3, 4, 5, and 6 to 3.

In table I we employed a scaling factor of 3
4 , resulting in

an evenly cascaded structure with 6 cascading layers (ECN-6).
We report results for differently scaled structures using block
4, and one more result using a more efficient design using
block 6. At the beginning of the network, a convolution is used
to transform the channel count of the input to init channels,
which takes the value 16, 32, 64, or 128. In each consecutive
layer, we generate channels of high level features with a
growth rate of init channels × 2 × (1 − scaling factor),
corresponding to 8, 16, 32, 64 respectively in the four net-
works. The overall network architecture can be found in table
II. Here a cascaded convolution block [27] represents using
one convolution block and grouping the results into a low
level branch and a high level branch. Global average pooling
is used to convert the final feature map into a vector for
classification. To avoid overfitting we also insert dropout after
ReLU activations for the 3 largest networks in table I. The
dropout rates range from 0.03-0.25. We use stochastic gradient
descent to train the network for 2000 epochs with a batch size
of 512, for CIFAR10 and CIFAR100, and for 50 epochs and a
batch size of 512 for ImageNet-32. The training is scheduled
with an initial learning rate of 0.1 and followed by cosine
annealing learning rates. The results can be found in table I.

Our studies on ImageNet-32 demonstrate ECN’s potential
to generalize to larger scale datasets. We evaluate ECN-3
and ECN-6, corresponding to scaling rates of 1

2 and 3
4 , over

ImageNet-32. We use initial channel counts of 32, 64, and 128,
and report results in table IV-B, with channel counts given in
parentheses. ECN-6 is more efficient than the strong baseline
results reported in WideResNet [33]. An ECN-6 network
using only 2 million parameters shows comparable results
to a WideResNet architecture using 9.5 million parameters.
ECN with block 4 produces competitive results using smaller
number of parameters than WideResNet. ECN-3, which has 3
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TABLE III
RESULTS ON THE IMAGENET-32 DATASET, FOR WIDERESNET [33], AND

ECN (CHANNEL COUNT)

ImageNet32 Params Top-1 error Top-5 error
WRN-28-1 [33] 0.44M 67.97% 42.49%
WRN-28-2 [33] 1.6M 56.92% 30.92%
WRN-28-5 [33] 9.5M 45.36% 21.36%
WRN-28-10 [33] 37.1M 40.96% 18.87%
ECN-6, block 6 (32) 0.24M 63.91% 38.50%
ECN-3, block 6 (64) 0.48M 59.05% 33.68%
ECN-6, block 6 (64) 0.68M 55.51% 30.26%
ECN-6, block 6 (128) 2.1M 46.29% 21.92%
ECN-3, block 4 (128) 7.8M 45.10% 21.06%
ECN-6, block 4 (128) 14.0M 41.87% 18.61%

TABLE IV
ERROR RATE COMPARISON WITH STATE-OF-THE-ART EFFICIENT

ARCHITECTURES

Model Params CIFAR-10 CIFAR-100
VGG-16 pruned [23] 5.4M 6.60 25.28
VGG-19 pruned [25] 2.3M 6.20 -
VGG-19 pruned [25] 5M - 26.52
Resnet-56 pruned [23] .73M 6.94 -
Resnet-110 pruned [23] 1.68M 6.45 -
Resnet 164-B pruned [25] 1.21M 5.27 23.91
DenseNet-40-pruned [25] .66M 5.19 25.28
CondenseNet-94 [15] .33M 5.00 24.08
CondenseNet-86 [15] .52M 5.00 23.64
ECN, Block 6 .42M 4.76 21.01

TABLE V
ERROR RATE COMPARISON WITH STATE-OF-THE-ART ARCHITECTURES

Model Params CIFAR-10 CIFAR-100
ResNet-1001 [11] 16.1M 4.62 22.71
Stochastic-Depth-1202 [17] 19.4M 4.91 -
Wide-ResNet-28 [33] 36.5M 4 19.25
ResNeXt-29 [32] 68.1M 3.58 19.25
DenseNet-BC-190 [16] 25.6M 3.46 17.18
NASNet-A* [15] 3.3M 3.41 -
CondenseNet*light-160 [15] 3.1M 3.46 17.55
CondenseNet-182 [15] 4.2M 3.76 18.47
ECN, Block4 3.3M 3.8 20.2
ECN, Block4 13.3M 3.32 18.25

cascading layers and 7 million parameters outperforms the 9.5
million parameter WRN-28-5 result. A larger ECN-6 network
using block 4 with 14 million parameters achieves accuracy
that is comparable to WRN-28-10, which contains 37.1 million
parameters.

C. Comparison of Convolution Blocks over CIFAR10 and
CIFAR100

We have compared the six block designs over CIFAR10
and CIFAR100 using various sized networks. The networks
are trained for 500 epochs. We tested scaling factors 1

2 ,
3
4 ,

and 7
8 , and the corresponding networks have 3, 6, and 12

cascading layers. The growth rates are calculated using the
same strategy as explained above. For these experiments we
use 3-stage learning rate scheduling, decreasing the learning
rate at 40% and 80% total epoch count by a factor of 10. We
set batch size to 512 for CIFAR-10. For CIFAR-100 a batch

size of 128 usually leads to better performance, and we report
the better of size 128 and size 512 batches. The results over
CIFAR-10 and CIFAR-100 can be found in tables VI and VII,
respectively.

By comparing Blocks 1 and Blocks 3 in tables VI and VII,
and Fig. 5, we found that reusing the convolution weights
via recurrent connections significantly improves performance,
while maintaining a small network size. When the convolution
block becomes powerful, and especially when the model gets
large, the improvement due to recurrent connections becomes
smaller (Blocks 2 vs Blocks 4). Still, we find a surprise here
that through recurrent connections even the single convolu-
tion can perform competitively with the widely used double
convolution, using the same number of parameters (Fig. 5).
The optimal balance between depth and width varies from
block to block. Our most efficient convolution block is block 6,
which uses recursive quadruple convolutions. We reach state-
of-the-art efficiency and the best results are reported in the last
row of table I. It is noteworthy that although using separable
convolution [14] reduces the number of parameters, the gain
in efficiency also comes with a decrease in accuracy. The
effective reduction in parameters enabled by using separable
convolutions in ECN blocks 5 and 6 is around 2 fold to 4 fold.

When compared to other state-of-the-art efficient architec-
ture designs, listed in table IV, ECN using block 6 achieves
the lowest error rate without using any pruning methods. This
is significant, as a simple and principled architecture design
is proving to be better than sophisticated methods such as
pruning described in [25], [23] and even better than [15] with
smaller parameter count (Figs. 6, 7). On the other hand, ECN
block 4 does relatively well compared to other architectures
listed in table V that are using more advanced designs than
ours.

We have shown that there are avenues for improving the
performance of convolutional networks by using principled
designs like ECN. Even the simplest designs can reach state-
of-the-art performance. Due to limitations in space and compu-
tational resources, only the 6 basic block designs are evaluated.
More advanced block designs can modularly replace our basic
block designs and potentially produce even better numbers.
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VI. CONCLUSION

Taking inspiration from cascading methods in wavelet
packet decomposition, we have developed Evenly Cascaded
convolutional Networks (ECN) for image tasks. ECN differs
from other networks in the use two interacting streams -
a high-level feature stream and a low-level feature stream.
ECN’s two streams allow for the promulgation of low-level
features throughout the entire network, as well as the modu-
lation of those low-level features using advanced perspectives
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TABLE VI
COMPARISON OF CONVOLUTION BLOCKS ON THE CIFAR-10 DATASET

CIFAR-10 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Ch Sc Acc Params Acc Params Acc Params Acc Params Acc Params Acc Params
16 1/2 83.35% 47482 89.71% 114586 88.59% 47866 91.84% 115546 84.56% 9066 88.59% 19514
16 3/4 88.58% 97258 92.04% 212410 90.96% 98122 92.57% 214330 87.90% 17090 89.92% 35370
16 7/8 90.12% 195082 93.26% 407194 91.51% 196906 93.12% 411034 89.35% 32946 91.02% 66986
32 1/2 87.88% 187114 92.40% 454954 91.66% 187882 93.86% 456874 89.78% 28362 91.47% 64106
32 3/4 91.13% 385738 94.09% 845290 93.15% 387466 94.59% 849130 91.04% 55418 93.36% 117450
32 7/8 92.70% 776074 94.36% 1622506 93.93% 779722 94.67% 1630186 92.64% 108762 93.87% 223754
64 1/2 90.41% 742858 94.41% 1813066 94.39% 744394 95.29% 1816906 92.25% 97674 93.59% 228554
64 3/4 93.53% 1536394 95.43% 3372490 95.24% 1539850 95.66% 3380170 93.96% 195818 94.87% 421770
64 7/8 94.65% 3095818 95.75% 6477514 95.63% 3103114 95.68% 6492874 94.54% 389034 94.82% 806666

TABLE VII
COMPARISON OF CONVOLUTION BLOCKS ON THE CIFAR-100 DATASET

CIFAR-100 Block 1 Block 2 Block 3 Block 4 Block 5 Block 6
Ch Sc Acc Params Acc Params Acc Params Acc Params Acc Params Acc Params
16 1/2 53.93% 53332 64.93% 120436 59.64% 53716 66.45% 121396 54.88% 14916 61.95% 25364
16 3/4 61.50% 103108 68.45% 218260 63.62% 103972 67.95% 220180 59.96% 22940 64.86% 41220
16 7/8 65.40% 200932 71.23% 413044 66.43% 202756 71.26% 416884 63.21% 38796 66.71% 72836
32 1/2 62.17% 198724 71.12% 466564 68.19% 199492 72.72% 468484 64.85% 39972 69.44% 75716
32 3/4 68.98% 397348 75.02% 856900 71.66% 399076 75.62% 860740 67.61% 67028 71.34% 129060
32 7/8 71.72% 787684 76.04% 1634116 73.16% 791332 76.42% 1641796 70.36% 120372 73.22% 235364
64 1/2 67.02% 765988 75.47% 1836196 74.00% 767524 77.13% 1840036 70.23% 120804 74.25% 251684
64 3/4 73.79% 1559524 78.64% 3395620 76.67% 1562980 79.03% 3403300 73.70% 218948 76.80% 444900
64 7/8 74.87% 3118948 79.57% 6500644 77.76% 3126244 80.07% 6516004 75.38% 412164 76.93% 829796

from high-level features. The explicit use of multilevel features
not only leads to highly capable networks but provides short-
cuts for the training process. Additionally, ECN is structured
such that feature map dimensions decrease in a consistent
manner, removing burdens of ad hoc architecture design,
and potentially improving feature preservation and utility.
We have evaluated ECN over CIFAR-10 and CIFAR-100,
obtaining state-of-the-art performance, for both datasets, for
small network settings; and over ImageNet-32 ECN obtains
competitive results.
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